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Abstract— In this paper, the H∞ stabilization problem is
studied for discrete-time semi-Markov jump singularly perturbed
systems (SMJSPSs) with repeated scalar nonlinearities. As the
exact statistical information of the sojourn time or the mode tran-
sition is difficult to obtain, the case with only partial semi-Markov
kernel information available is considered. Furthermore, intro-
ducing an external disturbance or nonlinearity into the analysis
of discrete-time semi-Markov jump systems (DTSMJSs) meets
critical obstacles, since the relation between the system state
vectors at two nonadjacent instants is difficult to determine.
To address this issue, the variation trend of the Lyapunov func-
tion for a semi-Markov jump sequence is analyzed in detail. Sub-
sequently, criteria of mean-square exponential stability (MSES)
for DTSMJSs are established for the first time based on the
Lyapunov stability theory. By virtue of the criteria obtained
and the cone complementary linearization algorithm, a controller
ensuring MSES and H∞ performance for discrete-time nonlinear
SMJSPSs is constructed. Finally, the effectiveness and applicabil-
ity of the proposed method are validated by simulation examples
including an inverted pendulum model.

Index Terms— Semi-Markov jump singularly perturbed sys-
tems, repeated scalar nonlinearities, mean-square exponential
stability, H∞ performance.

I. INTRODUCTION

DUE to the powerful capability of modeling hybrid
systems encountering abrupt variations in structures or
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parameters, switched systems have achieved great progress in
both theory and application during the past several decades
[1]–[8]. To describe the switching behavior displaying stochas-
tic features, the Markov chain has been extensively utilized and
many excellent achievements on Markov jump systems (MJSs)
have emerged [9]–[14]. However, as pointed out in
[15], MJSs have tight restrictions on the type of sojourn
time probability distribution (STPD), which may lead to
inapplicability of the Markov jump model in many practical
scenarios. To overcome this deficiency, the semi-Markov
jump systems (SMJSs) were proposed subsequently. For
SMJSs, the STPD is not confined to memoryless random
distributions, and the system jump at a certain instant may
depend on the time it remains in the current mode. Therefore,
SMJSs can be seen as generalizations of MJSs [16]–[21].
In addition, the dynamic behavior of many practical systems
usually exhibits the multiple-time-scales property due to the
parasitism of some small parameters, such as electromagnetic
transient processes in power systems or time constants of
actuators in control systems [22]–[24]. The existence of these
small parameters makes controlling of the system particularly
intricate as it is difficult to conduct effective analysis of
all dynamics on a single time scale. As a consequence,
the singularly perturbed models are employed to deal with
such case, where a singularly perturbed parameter (SPP) �
is utilized to describe the discrepancies between the “fast”
and “slow” dynamics [25]. Significant achievements have
been made on singularly perturbed systems with Markov
jump parameters (e.g., [26]). However, when it comes to
semi-Markov jump singularly perturbed systems (SMJSPSs),
research on relevant issues is far away from maturity and
many key problems still remain open, e.g., how to deal
with the sophisticated systems with SPP and memory
transition probabilities (TPs) exsit simultaneously. Subsequent
analysis on obtaining numerically checkable conditions that
independent of time-varying TPs and SPP also deserves
further investigation.

On the other hand, with regard to the analysis and syn-
thesis for SMJSPSs, a prevailingly adopted method is the
semi-Markov kernel (SMK) approach [27]. Different from
[28], [29], where the sojourn time of each subsystem is
assumed to obey a specified probability distribution with fixed
parameters, the SMK is described by an embedded Markov
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chain (EMC) and a sojourn time probability density function
(STPDF) depending on both the current and next system
modes [30]. In doing so, the STPDF can be considered
separately for different system modes and, as a consequence,
this method can be applied to a larger scope of systems.
Focused on a class of linear SMJSs, the stabilization issue was
addressed in [31] by virtue of multiple Lyapunov functions
and the SMK approach. With the assumption that the slow
state variables of the system are available, the mode-dependent
controller design problem for SMJSPSs was discussed in
[32]. Visibly, the existing results about SMJSs/SMJSPSs are
generally restricted by an implicit assumption that the accurate
information of SMK is completely available. However, in prac-
tical applications, acquiring the detailed information on SMK
is a thorny problem and it is more common that only part
of the statistical information about sojourn time or TPs can
be obtained precisely [33]. Therefore, it is more reasonable to
address the analysis and synthesis problems for SMJSPSs with
partially known sojourn time or TPs. Although the problem
with partially known TPs has been already studied in the
last few decades [34], [35], the obtained results are mainly
confined to MJSs and few papers are devoted to SMJSPSs
with partially known SMK. This triggers our great interest to
address this issue.

Furthermore, it can be noted that most of the currently
developed approaches to discrete-time SMJSs (DSMJSs) focus
on the stability and stabilization analysis for linear systems
based on the σ -error mean-square stability (σ -EMSS) lemma
given in [27], and the performance analysis is rarely involved.
Despite the advantages of the proposed methods in dealing
with discrete-time SMJSs in [36], [37], the form of the
investigated systems is restricted. Especially, the developed
methods are difficult to apply to the performance analysis of
nonlinear discrete-time SMJSPSs. The main reason is that,
the state equation of the system needs to be iterated from time
k to time k + τ to express the relationship between Lyapunov
function (LF) values at times k and k+τ [37]. In this situation,
introducing nonlinear and external disturbance terms into the
system brings additional difficulties to the problem solving.
Although the H∞ control problem has been investigated for
SMJSs in [38], the LF is required to decrease between any
instants k and k + 1, which may result in more conservative
results. In order to find an applicable and easy-to-use method
to solve those problems, the variation trends of the LF at
jumping and non-jumping instants for a semi-Markov jump
sequence are discussed in detail in this paper based on the
Lyapunov stability theory. Consequently, a set of stability
criteria that can be applied to a broader class of DSMJSs,
namely, mean-square exponential stability (MSES) criteria, are
obtained.

Motivated by the above discussion, this paper focuses on
developing a mode-dependent controller ensuring the MSES
and prescribed H∞ performance for a class of discrete-time
nonlinear SMJSPSs with partially known SMK information.
The main contribution can be summarized as follows.

(i) An eminent stability concept, i.e., MSES, is considered
for DSMJSs for the first time, and the corresponding novel
stability lemma is established. As a consequence, an external

disturbance or nonlinearity can be introduced into the analysis
of DSMJSs, which means the proposed method are capable of
generalizing some outstanding works regarding DSMJSs, e.g.,
[30], [36], [39].

(ii) From a new perspective, that is, how the LF varies with
the semi-Markov jump sequence, the stabilization analysis
of the semi-Markov jump nonlinear systems is carried out.
By considering that the Lyapunov function can decrease or
increase at non-jumping instants while at the jumping instant
the Lyapunov function value is less than that at the previous
jumping instant, the utilization of x(k + κ) = Āκ

a x(k) [30]
is avoided. Consequently, the complexity of the subsequent
decoupling process is reduced greatly.

(iii) As the first attempt, the H∞ control problem is studied
for discrete-time SMJSPSs with repeated scalar nonlinearities.
To make the problem under investigation more comprehensive,
we consider that only partial SMK information is available.
In addition, in contrast to [37], the cone complementary
linearization (CCL) algorithm is adopted to deal with the
coexistence of an unknown matrix and its inverse in the
derived stabilization criteria. Besides, a dimension-adjusting
matrix is introduced for matrix processing.

Notations: The notation employed in this work is standard.
R: the set of real numbers; Z: the set of non-negative integers;
R[a1,a2]: the set {a ∈ R|a1 ≤ a ≤ a2}; Z[a1,a2]: the set
{a ∈ Z|a1 ≤ a ≤ a2}; E{·}|ζ : the conditional expectation
operator conditioned on ζ ; sym{A}: A + AT ; tr(A): the trace
of the square matrix A; λmax(A)/λmin(A): the maximum or
minimum eigenvalue of matrix A; P > 0: matrix P is posi-
tive definite. Other conventional notations and corresponding
interpretations can be found in [27].

II. PROBLEM STATEMENT

A. System Description and Controller Design

For a fixed complete probability space (�̂, �̂,Pr), we
consider the following discrete-time SMJSPSs with repeated
scalar nonlinearities (	):⎧⎨⎨

⎨⎩
x(k + 1) = Aϑ(k)E�x(k)+ Bϑ(k)u(k)

+ Cϑ(k)g(E�x(k))+ Dϑ(k)ω(k),

z(k) = Uϑ(k)E�x(k)+ Fϑ(k)u(k),

(1)

where E� � diag{In1, � In2 } and � is the SPP. x(k) ��
x T

s (k) x T
f (k)

�T ∈ Rnx with xs(k) ∈ Rn1 and x f (k) ∈ Rn2

being the slow and fast state vectors, respectively. z(k) ∈ Rnz ,
u(k) ∈ Rnu and ω(k) ∈ Rnω are the system output, a control
input and an external disturbance that belongs to l2[0,∞),
respectively. g(·) is a bounded nonlinear function satisfying

|g(ν)+ g(ξ)| ≤ |ν + ξ | ,∀ν, ξ ∈ R. (2)

{ϑ(k)}k∈Z is a right-continuous semi-Markov chain (SMC),
and for ∀k ∈ Z, ϑ(k) ∈ N � {1, 2, . . . , N}, Aϑ(k), Bϑ(k),
Cϑ(k), Dϑ(k), Uϑ(k) and Fϑ(k) are given matrices with suitable
dimensions.

One of the main objectives of this paper is to design a state-
feedback controller that guarantees stability and prescribed
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performance of the resulting closed-loop system. For this pur-
pose, a mode-dependent controller is constructed as follows:

u(k) = K̃ϑ(k)xs(k) = Kϑ(k)E�x(k), (3)

where Kϑ(k) �
�

K̃ϑ(k) 0nu×n2

	
is the controller gain to be

determined. To simplify the notation, we set Aϑ(k) � Aa for
∀ϑ(k) � a ∈ N , and other symbols are similarly defined.

Then, by denoting η(k) �
�

x T
s (k) �x T

f (k)
�T

, the closed-loop

system (	̂) can be expressed based on (1) and (3) as follows:

η(k + 1) = E�[ Āaη(k)+ Cag(η(k))+ Daω(k)],
z(k) = F̄aη(k),

(4)

where

Āa � Aa + Ba Ka, F̄a � Ua + Fa Ka.

Remark 1: In the circumstance that the mode information
of the considered system is readily available, designing a mode
dependent controller may be conducive to achieving better
control effect. Furthermore, the fast variables are difficult to
be measured directly in most practical SPSs. Thus, a mode
dependent slow state feedback controller is designed in this
paper. However, the negligence of fast state information may
affect the ultimate control of the system. Besides, the imple-
mentation of actuator may fail in the operation of real systems
[40], [41]. Therefore, designing a comprehensive controller
which can not only make full use of system information but
also tolerant sudden failure deserves further exploration.

B. Semi-Markov Jump Mechanism

The SMC {ϑ(k)}k∈Z is employed to describe the stochastic
jump of systems among different modes. Thus, before pro-
ceeding further, two relevant concepts need to be introduced,
i.e., the Markov renewal chain (MRC) and the SMK.

To facilitate the description of a semi-Markov jump
sequence, for ∀m ∈ Z we define⎧⎨⎨⎨⎨
⎨⎨⎨⎩

km : time instant corresponding to the mth jump (k0 = 0);

Gm : mode index corresponding to the mth jump;

Tm : sojourn time of Gm between two jump instant km

and km+1 (Tm � km+1 − km).

Then, the following two definitions are used to introduce
the concept of the SMC.

Definition 1 [42]: For the stochastic process
{(Gm, km)}m∈Z

(I) {(Gm, km)}m∈Z is a discrete-time homogeneous MRC,
if ∀a, b ∈ N , a �= b, and ∀d ∈ Z[1,∞)

Pr(Gm+1 = b, Tm = d|k0,G0; k1,G1; . . . ; km,Gm = a)

= Pr(Gm+1 = b, Tm = d|Gm = a)

= Pr(G1 = b, T0 = d|G0 = a).

(II) The stochastic process {Gm}m∈Z is called the embedded
Markov chain (EMC) of the MRC. The TPs of the EMC are
defined as

πab � Pr(Gm+1 = b|Gm = a), ∀a, b ∈ N ,

with 0 ≤ πab ≤ 1, ∀a �= b, πaa � 0, and
�N

b=1 πab = 1.
� � [πab]a,b∈N is employed to denote the corresponding
transition probability matrix (TPM).

Definition 2 [42], [43]: Given an MRC {(Gm, km)}m∈Z,
{ϑ(k)}k∈Z represents a SMC related to the MRC, if for ∀k ∈ Z,
ϑ(k) = GM(k) with M(k) � max{m ∈ Z|k ≥ km}. The
SMK of the SMC can be defined as �(d) � [θab(d)]a,b∈N ,
where θab(d) � Pr(Gm+1 = b, Tm = d|Gm = a) with�∞

d=1
�

b∈N θab(d) = 1, 0 ≤ θab(d) ≤ 1, ∀a, b ∈ N , a �= b,
∀d ∈ Z[1,∞) and θaa(d) � 0, ∀a ∈ N , ∀d ∈ Z[1,∞). Then,
by defining the STPDF as

ςab(d) � Pr(Tm = d|Gm+1 = b,Gm = a),

the following equation can be obtained

θab(d) = πabςab(d),∀a, b ∈ N ,∀d ∈ Z[1,∞). (5)

Remark 2: Note that in many practical scenarios, the com-
pletely accurate information of SMK, i.e., θab(d) is difficult to
obtain. Therefore, in this paper, the partially known SMK issue
is considered. To facilitate the subsequent analysis, we make
the following assumptions. For ∀a, b ∈ N , d ∈ Z[1,∞),

N̄a � {b|θab(d) is available}, μa �
�d̄a

d=1

�
b∈N θab(d)

Ña � {b|θab(d) is unavailable }, N � N̄ a ∪ Ña .

If for a scalar φ close enough to 1 such that μa > φ holds,
then it can be regarded that d̄a ∈ Z[1,∞) is closely enough to
the sojourn time upper bound (STUB) for the ath mode [37].

Next, to study the stabilization and performance of
SMJSPSs, the following lemmas and definitions are recalled.

Definition 3 [39]: Given the STUB d̄a ∈ Z[1,∞) for mode
a (∀a ∈ N ), the closed-loop system (4) with ω(k) ≡ 0
is mean-square exponentially stable (MSESB), if there exist
scales β > 0, 0 < α < 1 such that, for any initial conditions
η(0) ∈ Rnx , ϑ(0) ∈ N , the following inequality holds:
E{
η(k)
2}|x(0),ϑ(0)(Tm∈Z[1,d̄a ]|Gm=a)

≤ βαk−k0E{
η(k0)
2},∀k ≥ k0. (6)

Remark 3: It is generally known that most of the cur-
rent research on stability and stabilization of DSMJSs are
based on the σ -EMSS lemma proposed in [27]. Obviously,
using Lemma 1 in [27] encounters restrictions on the form
of the systems as the relationship between η(km + t) and
η(km) needs to be determined. Therefore, to eliminate this
restriction, the discussion of σ -EMSS is generalized to
MSES and, subsequently, a new stability lemma applicable
to a broader class of systems is proposed in this paper.
In addition, the convergence rate can be tuned by the
scalar α.

Lemma 1 [44]: A matrix Q is positive diagonally domi-
nant, if and only if Q � [quv]u,v∈[1,nx ] > 0 and there exists a
symmetric matrix R � [ruv ]u,v∈[1,nx ], such that

ruv ≥ 0, quv + ruv ≥ 0,∀u �= v, (7)

quu ≥
�

v �=u
(quv + 2ruv ), ∀u. (8)
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Lemma 2 [44]: If Q is a positive definite diagonally domi-
nant matrix, then for all nonlinear functions g(·) satisfying (2),
the following inequality holds:

ηT (k)Qη(k)− gT (η(k))Qg(η(k)) ≥ 0,∀η(k). (9)

Definition 4 [4]: If the closed-loop system (4) is MSES
and under zero initial conditions there exists a scalar γ̄ >
0 such that the following inequality holds for any nonzero
ω(k) ∈ l2[0,∞):�∞

k=0
E{zT (k)z(k)} ≤ γ̄ 2

�∞
k=0

E{ωT (k)ω(k)}, (10)

then the closed-loop system (4) is MSESB with a prescribed
H∞ performance level γ̄ .

Lemma 3 [32]: For a positive scalar �̄, if (i) S1 ≥ 0; (ii)
S3 < 0; (iii) �̄2S1 + �̄S2 + S3 < 0 hold simultaneously, then
�2S1 + �S2 + S3 < 0 holds for ∀� ∈ (0, �̄].

III. MAIN RESULTS

In this section, a set of stability and stabilization criteria
for DSMJSs are presented. Based on these criteria, sufficient
conditions guaranteeing the MSES and H∞ performance of
the closed-loop system (4) are derived. Then, by virtue of some
proper matrix decoupling methods and the CCL algorithm, the
specific form of the desired mode-dependent controller gain is
given.

A. Mean-Square Exponential Stability Criteria

First of all, a result on the MSES of DSMJSs is given for
subsequent analysis.

Lemma 4: For a discrete-time nonlinear stochastic jump
system η(k + 1) = fϑ(k)(η(k)) with bounded sojourn time,
η(k) and ϑ(k) denote the state vector and the jumping sig-
nal, respectively. k0, k1, . . . , km , . . . are the jumping instants.
If there exist scalars β1 > 0, β2 > 0, and a set of C1 functions
V (η(k), ϑ(k), k − km) : Rnx → R with k ∈ Z[km ,km+1),
such that for given positive constants hϑ(km ), lϑ(km ), d̄ϑ(km ),
ϑ(km) ∈ N , the following inequalities hold under any initial
conditions η(0) ∈ Rnx , ϑ(0) ∈ N
δ̄ϑ(km )

�



lϑ(km )h
d̄ϑ(km )

ϑ(km )
< 1, if hϑ(km ) > 1,

lϑ(km )hϑ(km ) < 1, if 0 < hϑ(km ) ≤ 1,
(11)

β1 
η(k)
2

≤ V (η(k), ϑ(k), k − km) ≤ β2 
η(k)
2 , (12)

hϑ(k)V (η(k − 1), ϑ(k − 1), k − km − 1)

≥ V (η(k), ϑ(k), k − km),∀k ∈ Z[km+1,km+1), (13)

hϑ(km )V (η(km+1 − 1), ϑ(km+1 − 1), km+1 − km − 1)

≥ V (η(km+1), ϑ(km), km+1 − km), (14)

E{lϑ(km )V (η(km+1), ϑ(km), km+1 − km)}|η(km),ϑ(km)

≥ E{V (η(km+1), ϑ(km+1), 0)}|η(km ),ϑ(km), (15)

then the system is MSESB.
Proof: Consider that the STUB for mode a (∀a ∈ N )

is d̄a . Define a σ -algebra generated by {ρι � (η(kι), ϑ(kι)),

Fig. 1. A possible evolution of Lyapunov function.

ι ∈ Z[0,m]} as ϒm � σ {ρ0, ρ1, . . . , ρm}. First, it can be derived
from (11) and (13)-(15) that

E{V (η(km+1), ϑ(km+1), 0)}|ρm

≤ E{lϑ(km )h
Tm
ϑ(k)V (η(km), ϑ(km), 0)}|η(km ),ϑ(km)

≤ δ̄ϑ(km )V (η(km), ϑ(km), 0). (16)

Then, recalling the property of the conditional expectation
[37], one can infer from (16) that

0 ≤ E{δ̄ϑ(km)V (η(km), ϑ(km), 0)

− E{V (η(km+1), ϑ(km+1), 0)}|ρm }|ρ0

≤ E{δ̄ϑ(km)V (η(km), ϑ(km), 0)}|ρ0

− E{V (η(km+1), ϑ(km+1), 0)}|ρ0 ,

which means that

E{V (η(km+1), ϑ(km+1), 0)}|ρ0

≤ δ̄E{V (η(km), ϑ(km), 0)}|ρ0, (17)

with δ̄ � max∀ϑ(km )∈N {δ̄ϑ(km)}.
Considering k ∈ [km, km+1), it follows from (13) and (17)

that

E{V (η(k), ϑ(k), k − km)}|ρ0

≤ δ̄mE{hk−km
ϑ(k) V (η(k0), ϑ(k0), 0)}|ρ0

≤ β̄αk−k0+1E{V (η(k0), ϑ(k0), 0)}|ρ0 ,

with β̄ � max∀ϑ(km)∈N {hd̄ϑ(km )

ϑ(k) , 1}, α �
max∀k∈Z[k0 ,∞)

{δ̄m/(k−k0+1)}. Obviously, α ∈ (0, 1). Then,
combining with (12), one can get

E{
η(k)
2}|ρ0 ≤ α
β2

β1
β̄αk−k0E{
η(k0)
2}. (18)

As (18) is derived with the bounded sojourn time d̄a (∀a ∈ N ),
one finally obtains (6).

Remark 4: From the perspective of the LF variation trend,
an illustration of Lemma 4 is presented in Fig. 1, where
a possible evolution of LF under the restrictions (11)-(15)
is given. It can be observed that the LF can increase
or decrease at non-jumping instants, while at the adjacent
two jumping instants it is required to decrease. Notice that
ϑ(k) is right-continuous, then by introducing a virtual point
(km+1, V (η(km+1), a, km+1 − km)), the comparison between
the expectation values of LF at jumping instants km+1 and
km can be made. Meanwhile, by virtue of condition (11),
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δ̄ϑ(km) < 1 can be ensured, which combining with (17)
implies that the expectation of V (η(km+1), b, 0) is smaller
than V (η(km), a, 0), i.e., the expectation of the LF value at the
current jump instant is smaller than that at the previous jump
instant. As a result, the LF will tend to zero in the mean-square
sense in spite of the increase of its values at some non-jumping
instants.

Remark 5: In [37], the authors considered that the LF value
at any non-jumping instant km + t can be increase or decrease
relative to the LF value at the jumping instant km , and at
the jumping instant km+1 the LF value is required to be less
than that at the instant km . Although this consideration can
yield results with less conservatism, the relationship between
η(km + t) and η(km) needs to be determined. Specifically,
even for a simple system η(k + 1) = Āaη(k), a coupling term
Āt

a should be introduced, which would make the decoupling
process more difficult. If a nonlinearity or disturbance is
presented, relevant analysis would be even more complicated.
The method proposed in this paper enables one to avoid this
problem and, therefore, would be applicable to a broader class
of systems.

Remark 6: The main reason for considering the LF dis-
cussed above is to reach a favourable compromise between
the easily-checked conditions and the less conservative results.
Different from conventional construction of LF, the approach
utilized in this paper focuses on coordinating the varia-
tions of the LF at the jumping and non-jumping instants of
semi-Markov jump signal, aiming at providing more possi-
bilities and easily implemented approach to demonstrate the
stability.

B. Stabilization and Performance Analysis

In the following, the stabilization and performance analysis
for the closed-loop system (4) is performed. Before proceeding
further, we introduce the following notation

δ̃ � min
∀a∈N

{δ̃a}, δ̃a �



laha, when ha > 1,

lahd̄a
a , when 0 < ha ≤ 1,

h̄ � max
∀a∈N

{ha}, d̄max � max
∀a∈N

{d̄a}, δ̄ � max
∀a∈N

{δ̄a},
h̃ � min

∀a∈N
{ha}, hmax � max{h̄, 1}, hmin � min{h̃, 1}.

Theorem 1: For given positive scalars ha , la , d̄a , a ∈ N ,
and γ , if there exist symmetric positive definite matrices
Pa(τ ), τ ∈ Z[0,d̄a], positive diagonally dominant matrices
Qa(τ ) � [qaτ

uv ]u,v∈[1,nx ], and symmetric matrices Ra(τ ) �
[raτ

uv ]u,v∈[1,nx ], τ ∈ Z[0,d̄a−1], such that for ∀a, b ∈ N , a �= b,
and ∀τ ∈ Z[1,d̄a], the following relations hold:

δ̄a �



lahd̄a
a < 1, when ha > 1,

laha < 1, when 0 < ha ≤ 1,
(19)

⎡
⎢⎢⎢⎢⎣
ψ1

a(τ−1) 0 0 ĀT
a F̄T

a

∗ −Qa(τ−1) 0 CT
a 0

∗ ∗ −γ 2 I DT
a 0

∗ ∗ ∗ −Pa(τ ) 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦<0, (20)



qa(τ−1)

uu −
�

v,v �=u
(qa(τ−1)

uv + 2ra(τ−1)
uv ) ≥ 0, ∀u,

ra(τ−1)
uv ≥ 0, qa(τ−1)

uv + ra(τ−1)
uv ≥ 0, ∀u �= v,

(21)

P−1
b (0) − la P−1

a (τ ) < 0, (22)

where ψ1
a(τ−1) � Qa(τ−1) − ha E−1

� P−1
a (τ − 1)E−1

� , then the
closed-loop system (4) is MSESB with the prescribed H∞
performance index

γ̄ � γ

���� hd̄max
max h̄(1 − δ̄)

hd̄max
min h̃ δ̃(1 − δ̄1/d̄max)

.

Proof: Construct a LF as

V (η(k), ϑ(k), τ ) � ηT (k)E−1
� P−1

ϑ(k)(τ )E
−1
� η(k) (23)

where τ � k − km , with km � max{ki ∈ Z|k ≥ ki , i ∈ Z}.
Denote J (k) � zT (k)z(k) − γ 2ωT (k)ω(k) and ϑ(km) = a,
ϑ(km+1) = b, ∀a, b ∈ N , a �= b. Since the bounded
nonlinear function g(·) satisfies the constraint (2), then based
on condition (21), it can be derived from Lemma 1 and
Lemma 2 that

0 ≤ ηT (km + τ − 1)Qa(τ−1)η(km + τ − 1)

−gT (η(km + τ − 1))Qa(τ−1)g(η(km + τ − 1)).

Subsequently, by applying Schur complement to (20), and
combining (4), (23) with the above analysis, we can imme-
diately get

V (η(km + τ ), a, τ )+ J (km + τ − 1)

− ha V (η(km + τ − 1), a, τ − 1)

≤ 0,∀a ∈ N ,∀τ ∈ Z[1,Tm ]. (24)

Step 1: In the first place, we prove that the closed-loop
system (4) is MSES for ω(l) ≡ 0.

Obviously, (19) is equivalent to (11).
From (23), one can get

υ1 
η(k)
2 ≤ V (η(k), ϑ(k), τ ) ≤ υ2 
η(k)
2

with υ1 � min∀a∈N ,τ∈Z[1,d̄a ] λmin(E−1
� P−1

a (τ )E−1
� ),

υ2 � max∀a∈N ,τ∈Z[1,d̄a] λmax(E−1
� P−1

a (τ )E−1
� ). Therefore,

(12) holds.
Combining (23), (24) with ω(l) ≡ 0, the following inequal-

ity is obtained:
hϑ(km )V (η(km + τ − 1), ϑ(km), τ − 1)

≥ V (η(km + τ ), ϑ(km), τ ), ∀τ ∈ Z[1,Tm ], (25)

which means that (13) and (14) are satisfied.
Furthermore, one can deduce from (22) that

0 ≥ E{V (η(km+1), b, 0)− la V (η(km+1), a, Tm)}|ρm

=
�d̄a

Tm=1

�
b∈N

θab(Tm)

μa
x T (km + Tm)

×
�

P−1
b (0) − la P−1

a (Tm)
�

x(km + Tm) (26)

which means that (15) is satisfied.
Thus, by Lemma 4, the MSES of the closed-loop system (4)

is guaranteed.
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Step 2: In the following, the H∞ performance is analyzed.
Denote l̂ (km, t) � lϑ(km−1)h

km −t−1
ϑ(km−1)

. One can get from (15),
(19) and (24) that for k ∈ (km + 1, km+1)

E{V (η(k), a, τ )} ≤ E
�

hd̄max
max V (η(km), a, 0)

−
�k−1

t=km
hk−t−1

a J (t)

�
. (27)

Moreover, for k = km

E{V (η(km), a, 0)} ≤ E �
δ̄V (η(km−1), ϑ(km−1), 0)

−
�km−1

t=km−1
l̂ (km, t) J (t)

�
. (28)

Obviously, (19) ensures δ̃ ≤ δ̄ < 1 and δ̃ ≤ lϑ(k j )h
τ j

ϑ(k j )
≤ δ̄,

∀ j ∈ N , τ j ∈ Z[1,Tj ]. Then, under zero initial conditions,
by iterating inequalities (27) and (28), one can derive

0 > E{hd̄max
max δ̄

m−1
�k1−1

t=k0
lϑ(k0)h

k1−t−1
ϑ(k0)

J (t)

+ . . .+ hd̄max
max δ̄

0
�km−1

t=km−1
lϑ(km−1)h

km −t−1
ϑ(km−1)

J (t)

+
�k−1

t=km
hk−t−1

a J (t)},

which yields

hd̄max
min δ̃

h̄
E{δ̄m−1

�k1−1

t=k0
zT (t)z(t) + . . .

+ δ̄0
�km−1

t=km−1
zT (t)z(t) + δ̄−1

�k−1

t=km
zT (t)z(t)}

≤ hd̄max
max γ

2

h̃
E{δ̄m

�k1−1

t=k0
ωT (t)ω(t) + . . .

+ δ̄
�km−1

t=km−1
ωT (t)ω(t) +

�k−1

t=km
ωT (t)ω(t)}. (29)

Denoting M̄(t, k) as the number of jumping instants in the
interval (t, k], one concludes that (k−t)/d̄max−1 ≤ M̄(t, k) ≤
k − t . Then, the following inequality is deduced from (29):

E{
�k−1

t=k0
δ̄k−t−2zT (t)z(t)}

≤ hd̄max
max h̄γ 2

hd̄max
min h̃δ̃

E{
�k−1

t=k0
δ̄

k−t−1
d̄max

−1
ωT (t)ω(t)},

which yields

E{
�∞

k=k0+1

�k−1

t=k0
δ̄k−t−1zT (t)z(t)}

≤ hd̄max
max h̄γ 2

hd̄max
min h̃δ̃

E{
�∞

k=k0+1

�k−1

t=k0
δ̄

k−t−1
d̄max ωT (t)ω(t)}.

Subsequently, by exchanging the summation order and utiliz-
ing the equal ratio summation formula, one obtains

E{
�∞

t=k0
zT (t)z(t)} ≤ γ̄ 2E{

�∞
t=k0

ωT (t)ω(t)}. (30)

Thus, (10) is satisfied.

C. Controller Design

In this subsection, based on Theorem 1, a mode-dependent
controller is constructed by utilizing the CCL algorithm.

Theorem 2: For given positive scalars �̄, ha , la , d̄a , a ∈ N ,
and γ , if there exist matrices Ȳa , symmetric positive definite
matrices Pa(τ ), τ ∈ Z[0,d̄a], positive diagonally dominant
matrices Qa(τ ) � [qaτ

uv ]u,v∈[1,nx ], and symmetric matrices
Ra(τ ) � [raτ

uv ]u,v∈[1,nx ], τ ∈ Z[0,d̄a−1], such that for ∀τ ∈
Z[1,d̄a], ∀a, b ∈ N (a �= b), and � = 1, 2, the relations (19),
(21), (22) and the following inequality hold:
⎡
⎢⎢⎢⎢⎣
φ�a(τ−1) 0 0 ÃT

a ψ̃15
a

∗ −Qa(τ−1) 0 CT
a 0

∗ ∗ −γ 2 I DT
a 0

∗ ∗ ∗ −Pa(τ ) 0
∗ ∗ ∗ ∗ ψ3

a(τ−1)

⎤
⎥⎥⎥⎥⎦ < 0,

(31)

where

φ1
a(τ−1) � ha[H1Pa(τ − 1)H1 − sym{Ȳ T

a }],
φ2

a(τ−1) � ha[E�̄Pa(τ − 1)E�̄ − sym{Ȳ T
a }],

ψ3
a(τ−1) � diag{−I,−Q−1

a(τ−1)}, E�̄ � diag{In1 , �̄ In2},
Ãa � ĀaȲa, ψ̃

15
a �

�
Ȳ T

a F̄T
a Ȳ T

a

	
, H1 � diag{In1 , 0n2},

then the system (4) is MSESB with the prescribed H∞
performance index γ̄ for ∀� ∈ (0, �̄].

Proof: For inequality (31), one can infer from Lemma 3
that⎡
⎢⎢⎢⎢⎣
ψ̃11

a(τ−1) 0 0 ÃT
a ψ̃15

a

∗ −Qa(τ−1) 0 CT
a 0

∗ ∗ −γ 2 I DT
a 0

∗ ∗ ∗ −Pa(τ ) 0
∗ ∗ ∗ ∗ ψ3

a(τ−1)

⎤
⎥⎥⎥⎥⎦ < 0,

(32)

where ψ̃11
a(τ−1) � ha[E�Pa(τ − 1)E� − sym{Ȳ T

a }].
For (32), by virtue of the inequality

−Ȳ T
a E−1

� P−1
a (τ − 1)E−1

� Ȳ a ≤ E� Pa(τ − 1)E� − sym{Ȳ T
a }

and Schur complement and pre- and post-multiplying
the last inequality by diag{(Ȳ −1

a )T , I, I, I, I, I } and
diag{Ȳ −1

a , I, I, I, I, I }, respectively, one obtains that (32)
implies (20). This completes the proof.

Theorem 3: For given scalar ε, positive scalars �̄, ha , la ,

d̄a (a ∈ N ), γ and a matrix Ī �
�

Ī1 Ī4

Ī2 Ī3

�
satisfying

det( Ī1 + ε Ī2) �= 0, if there exist matrices Ȳa � Ya Ī with

Ya �
�

Y11a εY11a

Y21a Y22a

�
and K̃a , symmetric positive definite

matrices Pa(τ ), τ ∈ Z[0,d̄a], positive diagonally dominant
matrices Qa(τ ) � [qaτ

uv ]u,v∈[1,nx ], and symmetric matrices
Ra(τ ) � [raτ

uv ]u,v∈[1,nx ], τ ∈ Z[0,d̄a−1], such that for ∀τ ∈
Z[1,d̄a], τ̂ ∈ Z[0,d̄a], ∀a, b ∈ N (a �= b), and � = 1, 2,
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the relations (19), (21) and the following conditions hold:⎡
⎢⎢⎢⎢⎢⎣

φ�a(τ−1) 0 0 ÂT
a ψ̂15

a

∗ −Qa(τ−1) 0 CT
a 0

∗ ∗ −γ 2 I DT
a 0

∗ ∗ ∗ −Pa(τ ) 0
∗ ∗ ∗ ∗ ψ̂3

a(τ−1)

⎤
⎥⎥⎥⎥⎥⎦ < 0,

(33)

P̄b(0)− la P̄a(τ ) < 0, (34)

Qa(τ−1) Q̄a(τ−1) = I, Pa
�
τ̂
�

P̄a
�
τ̂
� = I, (35)

where

Ka �
� K̃a εK̃a

	
,

ψ̂15
a �

�
Ī T Y T

a U T
a + Ī T KT

a FT
a Ī T Y T

a

	
,

Âa � AaYa Ī + BaKa Ī , ψ̂3
a(τ−1) � −diag{I, Q̄a(τ−1)},

then the closed-loop system (4) is MSESB with the prescribed
H∞ performance index γ̄ and the desired controller gain in (3)
is given by

K̃a = K̃aY −1
11a. (36)

Proof: By setting Ȳa � Ya Ī and K̃a � K̃aY11a , it can be
concluded from (33 )-(35) that (22) and (31) hold. Moreover,
condition (33) implies φ�a(τ−1) < 0. Since Pa(τ − 1) is a
symmetric positive definite matrix, one can obtain Ȳa > 0.
Then, combining with the form of Ya and Ī presented above,
one can obtain that Y11a is invertible. Thus, the desired
controller gain can be calculated by (36). This completes the
proof.

Remark 7: Note that the conditions presented in Theorem 3
are not convex due to the constraint (35). To address this issue,
the CCL algorithm is employed, by which the original noncon-
vex feasibility problem is transformed into the minimization
problem constrained by a set of linear matrix inequalities [45].
The details are given as follows:

Min tr

��N

a=1

��d̄a−1

τ=0
Qaτ Q̄aτ +

�d̄a

τ̂=0
Pa(τ̂ )P̄a(τ̂ )

��
,

(37)

subject to (19), (21), (33), (34), and�
Qa(τ ) I

I Q̄a(τ )

�
> 0, ∀a ∈ N , τ ∈ Z[0,d̄a−1], (38)�

Pa(τ̂ ) I
I P̄a(τ̂ )

�
> 0, ∀a ∈ N , τ̂ ∈ Z[0,d̄a]. (39)

Detailedly, the critical process of the CCL algorithm is to
transfer the solving of condition (19), (21) and (33)-(35)
into verifying the feasibility of (37) subject to (19), (21),
(33), (34), (38) and (39). If they are feasible, the matrices
Qaτ , Pa(τ̂ ), K̃a should be calculated. Moreover, we have
to substitute these solved matrices into condition (19), (21),
(22) and (31) to determine whether they are feasibility. Only
when these condition are feasible, the expected controller
gain can be calculated by (36). Although the adopted method
are powerful in dealing with the circumstance where there
are complex coupled nonlinear terms in the conditions to be

solved, the implementation of this process is intricate and
the presented conditions should be checked for ∀τ ∈ Z[1,d̄a],
τ̂ ∈ Z[0,d̄a], ∀a, b ∈ N (a �= b), which may bring in huge
computation burden. Thus, exploring effective method with
simplicity deserves further investigation.

Remark 8: In the decoupling process of Theorem 3, a
dimension-adjusting matrix Ī is introduced. The main reason
is that in the construction of matrix Ya , the dimensions of Y11a

and εY11a are the same. If the dimension-adjusting matrix Ī is
not applied, one will have Ȳa = Ya . As Ȳa are square matrices,
it means that the dimension of Ȳa is required to be even, i.e., nx

is an even number. This would impose restrictions on appli-
cations of the proposed methods. Therefore, the matrix Ī is
utilized for adjusting dimensions, as illustrated in Example 2.
Furthermore, it can be noticed that condition (33) requires
Y11a( Ī1 + ε Ī2) > 0. Thus, the selected parameters in Ī satisfy
the constraint that Ī1 + ε Ī2 is nonsingular.

IV. EXAMPLES

Example 1: Consider the discrete-time SMJSPS with three
modes and the following parameters

A1 =  

� −1.36 0.69
−1.81 0.57

�
, C1 =

�
0.31 0.24
0.68 0.43

�
,

A2 =  

�
1.34 0.62

−0.37 0.36

�
, C2 =

�
0.42 −0.61
0.21 0.34

�
,

A3 =  

�
1.31 1.14
0.21 −0.61

�
, C3 =

�
0.36 −0.13
0.24 0.62

�
,

B1 = B2 = B3 = �
1 1

	T
, F1 = F2 = F3 = 1,

D1 = D2 = D3 = �
0.1 0.1

	T
, U1 = �

0.6 0.3
	
,

U2 = �
0.2 0.4

	
, U3 = �

0.4 0.6
	
, Ī = diag{1, 1},

and  = 1; E� = diag{1, �} with �̄ = 0.05. The jumping
among these modes is described by the SMC with the STUB
being d̄1 = 10, d̄2 = 6 and d̄3 = 8. The TPM � � [πab]a,b∈N
and STPDF !(d) � [ςab(d)]a,b∈N with partially unavailable
information are given as

�=
⎡
⎣ 0 0.8 0.2

0.15 0 0.85
π̃31 π̃32 0

⎤
⎦ ,

!(d) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
e−7 · 7d

d! ς̃13(d)

e−5 · 5d

d! 0
0.6d · 0.46−d · 6!

(6 − d)!d!
0.6(d−1)0.8 − 0.6d0.8 0.58 · 8!

(8 − d)!d! 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

respectively, where π̃31, π̃32 and ς̃13(d) are unavailable ele-
ments. Without loss of generality, for the unavailable elements,
we consider that π̃31 = s1(k), π̃32 = 1 − s1(k), and ς̃13(d) =
s2(k)(1 − s2(k))d−1 with s1(k) ∈ [0, 1], s2(k) ∈ [0.65, 0.8].
Besides, for the variation rate of LF, we set ha = 0.8 and
la = 1.1 with a ∈ {1, 2, 3}. Other parameters are assigned as
γ = 2, ε = 0.5.

First of all, we show the effectiveness of the designed
controller by comparing the state and output responses of the
open-loop and closed-loop systems. Based on the conditions
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Fig. 2. The state and output responses of the open-loop system over 100
realizations.

Fig. 3. The state and output responses of the closed-loop system over 100
realizations.

Fig. 4. The state responses of the closed-loop SMJSPS with (a) l1 = 0.75,
l2 = 0.82, l3 = 0.88, h1 = 0.92, h2 = 0.95, h3 = 0.98 and (b) l1 = 16,
l2 = 15, l3 = 17, h1 = 14, h2 = 17, h3 = 16 over 100 realizations.

presented in Theorem 3, the following controller gains are
derived by using the CCL algorithm.�

K̃1 K̃2 K̃3
	 = �

1.2791 −1.2556 −1.1270
	
.

The external disturbance ω(k) is assumed as

ω(k) = 0.8 · exp(−0.2k) · sin(8k).

The nonlinear function satisfying (2) is chosen as g(η(k)) =
tanh(η(k)). The initial condition is assigned as x(0) =�

0.56 −0.32
	T . Then, Fig. 2 shows the state and output

responses of the open-loop system over 100 realizations. With
the calculated controller gains and employing 100 randomly
generated jump sequences, the state and output responses of
the closed-loop system are depicted in Fig. 3. Obviously,
an unstable SMJSPS turns to a stable one with the using of the
designed controller, which implies the validity of the proposed
control scheme.

In what follows, the influence of the LF variation rate at
non-jumping and jumping instants on the SMJSPS stability is
investigated. The state responses of the closed-loop SMJSPS
with different LF variation rates, i.e., different ha and la , a ∈
{1, 2, 3}, are depicted in Fig. 4 (over 100 random generated
jump sequences), where ha and la are taken as: (a) l1 = 0.75,
l2 = 0.82, l3 = 0.88, h1 = 0.92, h2 = 0.95, h3 = 0.98
(the LF is required to decay at both non-jumping and jumping
instants); (b) l1 = 16, l2 = 15, l3 = 17, h1 = 14, h2 = 17,
h3 = 16 (the LF is allowed to increase at both non-jumping
and jumping instants). It can be noted from Fig. 4 that to
ensure the MSES and H∞ performance of the SMJSPS, the LF

TABLE I

THE MAXIMUM �̄max CORRESPONDING TO DIFFERENT γ

TABLE II

THE OPTIMAL H∞ PERFORMANCE INDEX γ̄min FOR DIFFERENT ε, d̄a
AND la , a ∈ {1, 2, 3} WITH THE MAXIMUM ITERATION

NUMBER Tmax = 100

Algorithm 1 Calculate the Minimum γ for Different d̄a

Input: System parameters; Scalar: d̄a; Accuracy coefficient:
o(γ ); Search interval: [γlow,γup]; Maximum number of
iterations: Tmax ; Number of iterations: T .

Output: The minimum γmin.
1: Set Flag = 0;
2: Let γuse = (γlow+γup)/2. Check the conditions (19), (21),

(33), (34), (38) and (39). If they are feasible, Flag = 1
and go to 3; else, go to 6;

3: Minimize (37) and calculate K̃a , Pa(τ̂ ), Qa(τ ). Then,
check the conditions (20), (22) with the calculated K̃a ,
Pa(τ̂ ), Qa(τ ); If they are feasible, γup = γuse and go to
4; else, and go to 5;

4: If
  γup − γlow

  < o(γ ), then γmin = γup and go to 7; else,
go to 2;

5: If T < Tmax , go to 3; else, γlow = γuse and go to 4;
6: If Flag = 1, then γlow = γuse and go to 4; else, γmin =

Null, go to 7;
7: return γmin.

should decrease at some non-jumping or jumping instants to
make the LF attenuating as a whole.

Remark 9: To achieve the optimal performance index under
different parameters or investigate the effect of the scalar γ on
the upper bound of the SPP, the minimum γ is calculated for
different d̄a . For this purpose, Algorithm 1 is provided based
on Theorem 3 and Remark 7.

Next, the relationship between γ and the SPP upper bound
�̄ is discussed. Using our calculation method, the maximum �̄
corresponding to a certain γ is denoted as �̄max and its values
are listed in Table I. It can be observed that the maximum SPP
upper bound grows larger as γ increases, which means that
weak system performance may result in a larger upper bound
of the SPP.

Furthermore, the influence of ε, STUB d̄a , and variation
rate la on system performance γ̄ is explored. For simplicity,
we set ha = 1. Other parameters are the same as before. The
minimum values of γ̄ , i.e., γ̄min, for different ε, d̄a and la , are
presented in Table II, from which one can observe that within
a certain range a decrease of la or an increase of ε may lead
to worse system performance.
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Fig. 5. Structure of inverted pendulum controlled by DC motor.

Example 2: To further verify the applicability of the pro-
posed methods, we consider an inverted pendulum controlled
by a DC motor [46], which is presented in Fig. 5 and can be
described as follows:⎧⎨⎨
⎨⎩

ẋ1(t) = x2(t),

ẋ2(t) = g/ l sin(x1(t)) + N Km/(ml2)x3(t),

Lẋ3(t) = u(t) − Kn Nx2(t) − Ra x3(t) + ω(k), a ∈ {1, 2},
where x1(t), x2(t) and x3(t) represent the angle θ(t), the angu-
lar velocity θ̇ (t) and the current i(t), respectively. u(t) is an
input voltage and ω(k) is a disturbance. Denote � = L =
0.05H . Then, by employing discretizing methods similar to
those in [46] with the same system parameters, one can obtain
the following system model:


x(k + 1) = Aa E�x(k)+ Bau(k)+ Daω(k),

z(k) = Ua E�x(k)+ Fau(k),

where

E� = diag{1, 1, �}, Ua = �
1 1 1

	
, Fa = 0.4,

A1 =
⎡
⎣ 1.0313 0.0796 0.0020

0.7805 0.9913 0.0397
−0.0196 −0.0397 0.0089

⎤
⎦ ,

A2 =
⎡
⎣ 1.0313 0.0797 0.0018

0.7812 0.9944 0.0354
−0.0181 −0.0354 0.0063

⎤
⎦ ,

B1 = D1 =
⎡
⎣ 0.0239

0.7993
0.7818

⎤
⎦ , B2 = D2 =

⎡
⎣ 0.0180

0.5596
0.4708

⎤
⎦ .

In addition, the STUBs are given as d̄1 = 8, d̄2 = 5. The
TPM and STPDF are assigned as

� =
�

0 1
1 0

�
, !(d) =

⎡
⎣ 0 ς̃12(d)

0.6d · 0.45−d · 5!
(5 − d)!d! 0

⎤
⎦ ,

where ς̃12(d) is the partially unavailable element of SMK.
Considering that ς̃12(d) = s3(k)(1 − s3(k))d−1 with s3(k) ∈
[0.5, 0.8], then, it can be calculated from (5) and Remark 2 that
μ1 = �d̄1

d=1 ς̃12(d) ≥ 0.9961 and μ2 = �d̄2
d=1

0.6d ·0.45−d ·5!
(5−d)!d ! =

0.9898. Thus, the selection of d̄1 and d̄2 is reasonable when
the partially known STPDF !(d) is taken as above. The

dimension-adjusting matrix Ī is chosen as Ī =
�

Ī1 0
Ī2 Ī3

�

with Ī2 =
�

0 0
0.8 0.6

�
, Ī3 = �

0.9 −0.3
	
, Ī1 = diag{0.8, 0.5}.

Fig. 6. The state and output responses of the closed-loop system and the
evolution of system mode ϑ(k).

In addition, we set γ = 5, ε = 0.4, ha = 0.88, la = 1.1 with
a ∈ {1, 2, 3}. Based on Theorem 3 and Lemma 7, one obtains�

K̃1 K̃2
	 = �−2.5110 −1.1421 −3.3018 −1.6249

	
.

With the disturbance ω(k) = exp(−0.2k) · sin(2k) and the
initial condition x(0) = � −0.5 0.7 −0.8

	T , the state and
output responses, as well as the evolution of the system modes,
are presented in Fig. 6. It can be observed from Fig. 6 that the
state responses converge to zero with the designed controller,
which validates effectiveness of the proposed methods.

V. CONCLUSION

The H∞ controller design problem for discrete-time semi-
Markov jump singularly perturbed systems with partially avail-
able semi-Markov kernel information has been addressed in
this paper, where the repeated scalar nonlinearities and external
disturbance have also been considered. A novel mean-square
exponential stability criterion for discrete-time semi-Markov
jump systems has been established via the analysis of the
variation trend of the Lyapunov function. Then, based on the
derived criteria, a set of sufficient conditions, which guarantee
the mean-square exponential stability and H∞ performance
of the resulting closed system, have been constructed. Fur-
thermore, the cone complementary linearization algorithm has
been employed to deal with a nonconvex condition to obtain
specific controller gain. Finally, simulation results have been
provided to prove validity of the proposed method. It should
be noted that the derived control scheme is centered on
systems without time delays. As time delays are non-negligible
in practical engineering [47], [48], extending our results to
the study of the control synthesis issue for time-delayed
hidden semi-Markov jump systems deserving further explo-
ration. Besides, since the conditions obtained in this paper are
sufficient, probing superior approaches to further reduce the
conservatism of the results is also a significant issue worthy
of in-depth investigation.
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