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The Constant Multiplier FFT
Mario Garrido , Senior Member, IEEE, and Pedro Malagón

Abstract— In this paper, we present a new fast Fourier
transform (FFT) hardware architecture called constant multi-
plier (CM) FFT. Whereas rotators in previous architectures must
rotate among several different angles, the CM FFT exploits
the use of constant multipliers to calculate the rotations. The
paper explores the 4-parallel and 8-parallel radix-2 CM FFT,
which calculates the FFT entirely by using constant multipliers.
Later, radices 2k are presented, with emphasis in radix-24 and
radix-25 as the best alternatives. Experimental results for a
1024-point radix-25 CM FFT show that the proposed approach
reduces the number of block random-access memories (BRAM)
and digital signal processing (DSP) slices with respect to pre-
vious approaches, while achieving the highest clock frequency
for a 4-parallel FFT architecture on field-programmable gate
arrays (FPGAs) reported so far.

Index Terms— Fast Fourier Transform (FFT), pipelined
architecture, constant multiplier (CM).

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most
important algorithms in the field of digital signal process-

ing. It is a key component in applications such as digital
communications [1]–[5], radio astronomy [6], [7] and medical
imaging [8].

In order to meet the high performance and real-time
requirements of modern applications, hardware engineers aim
for designing efficient architectures for the computation of the
FFT. In this context, pipelined hardware architectures [1]–[24]
are widely used, because they provide high throughput and
low latency suitable for real-time processing, as well as a
reasonably low area and power consumption.

There are three main types of pipelined FFT architectures:
Feedback, feedforward and serial commutator (SC). First,
feedback architectures [3]–[6], [9]–[12] are characterized
by their feedback loops, i.e., some outputs of the butterflies
are fed back to the memories at the same stage. Feedback
architectures are divided into single-path delay feedback (SDF)
architectures [6], [9], [10], which process a continuous flow
of one sample per clock cycle, and multi-path delay feed-
back (MDF) architectures [2]–[5], [11]–[14], which process
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several samples in parallel. Second, feedforward architectures
[1], [10], [15]–[18] do not have feedback loops and
each stage passes the processed data to the next stage.
Among feedforward architectures, multi-path delay
commutator (MDC) architectures [1], [10], [15]–[18] are the
most common ones and process several samples in parallel.
Finally, SC FFT architectures [19], [20] are characterized by
the use of circuits for bit-dimension permutation of serial
data. They can process either serial data [19] or parallel
data [20] in a continuous flow.

In pipelined FFT architectures, the amount of hardware
resources is measured in terms of adders, rotators and memory.
Among them, rotators are generally the most costly com-
ponents. Consequently, the design of efficient rotators is a
fundamental challenge for parallel pipelined FFT architectures.

FFT rotators can be implemented in various ways
depending on the target twiddle factor, which is the set of
rotations that a rotator can calculate. Large twiddle factors
are usually implemented by using general multipliers [25] or
CORDIC rotators [26]–[30]. Twiddle factors of intermediate
size (W8 and W16) are generally implemented as shift-and-
add operations [4], [31]–[38]. Conversely, constant rotators
[39]–[44] are not used in FFT architectures except in the case
of a fully parallel implementation of the FFT [45].

W8, W16 and general rotators are configured to rotate by
a set of angles. This means that data flowing through the
path of any of those rotators demand different rotation angles
at different clock cycles. This fact has double impact in the
area of the FFT architecture. On the one hand, the capacity
of rotating by several angles increases the complexity of the
rotator itself. On the other hand, the twiddle factors need to be
stored in a rotation memory. For the entire FFT architecture,
this memory may take up an area equivalent to the data
memory.

Therefore, it would be desired to use constant rotators for
the FFT. They have smaller area usage than other rotators and
do not need to store any twiddle factor in rotation memory,
because they rotate by a single angle and there is no need to
choose among several of them. However, in order to have a
constant rotation in an FFT path, it is needed that all the data
flowing through that path are rotated by the same angle, which
is not the case in common FFT architectures.

In this work we present the constant multiplier (CM) FFT.
The proposed CM FFT has the property that it uses constant
multipliers for calculating the rotations. This is achieved by
grouping data that are rotated by the same angle, and making
them follow the same path in the architecture. The CM
FFT is proposed for 4-parallel and 8-parallel data and for
decimation in frequency (DIF) and decimation in time (DIT)
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Fig. 1. Flow graph of a 16-point radix-2 DIF FFT.

decompositions. Furthermore, both radix-2 and radix-2k CM
FFT architectures are explored. As a proof of concept, a 1024-
point radix-25 CM FFT has been implemented on a field-
programmable gate array (FPGA). Compared to previous
approaches, the CM FFT is shown to be more efficient in
terms of block random access memories (BRAMs) and digital
signal processing (DSP) slices than previous MDF and MDC
FFTs, while achieving a higher clock frequency. This makes
the CM FFT an attractive solution for processing a continuous
dataflow at high rates.

This paper is organized as follows. In Section II, we review
the FFT algorithm. In Section III, we explain how to
extract constant multiplications from the FFT flow graph.
In Section IV, we present the CM FFT and develop it for dif-
ferent radices, parallelization and decomposition. In Section V,
we show the hardware implementation of a 1024-point radix-
25 CM FFT. In Section VI, we present the experimental
results and compare them to previous parallel pipelined FFTs.
In Section VII, we discuss the main findings of the proposed
approach. Finally, in Section VIII, we summarize the main
conclusions of the paper.

II. THE FFT ALGORITHM

The N-point discrete Fourier transform (DFT) of an input
sequence x[n] is defined as:

X[k] =
N−1∑
n=0

x [n] W nk
N , k = 0, 1, . . . , N − 1, (1)

where W nk
N = e− j 2π

N nk .
To calculate the DFT, the FFT based on the Cooley-Tukey

algorithm [46] is mostly used. The Cooley-Tukey algorithm
reduces the number of operations from O(N2) for the DFT to
O(N log2 N) for the FFT.

Figure 1 shows the flow graph of a 16-point radix-2 FFT
according to the Cooley-Tukey algorithm, decomposed accord-
ing to the DIF decomposition [22], [47]. The FFT consists of

n = log2 N stages. At each stage of the graph, s ∈ {1, . . . , n},
butterflies and rotations are calculated. The lower edges of the
butterflies are always multiplied by −1. These −1 are not
depicted in order to simplify the graphs.

The numbers at the input represent the index of the input
sequence, whereas those at the output are the frequencies, k,
of the output signal X[k]. Finally, each number, φ, in between
the stages indicates a rotation by

Wφ
N = e− j 2π

N φ. (2)

As a consequence, data for which φ = 0 do not need to
be rotated. Likewise, if φ ∈ [0, N/4, N/2, 3N/4], data must
be rotated by 0◦, 270◦, 180◦ and 90◦, which correspond to
complex multiplications by 1, − j , −1 and j , respectively.
These rotations are considered to be trivial, because they
can be calculated by interchanging the real and imaginary
components and/or changing the sign of the data.

An index I ≡ bn−1 . . . b0 is also added to the left and to
the right of the flow graph, where bn−1 . . . b0 is the binary
representation of I . It can be observed that the butterflies at
stage s operate on pairs of data that differ in bit bn−s [15].

III. OBTAINING CONSTANT MULTIPLICATIONS

IN THE FFT

The twiddle factor multiplications in the flow graph of Fig. 1
are constant complex multiplications. However, in FFT archi-
tectures it is common that several data flowing through the
same path must be rotated by different angles. Consequently,
rotators that can rotate among a set of different angles are
needed. This includes general rotators and rotators by W8 and
W16. Contrarily to previous FFT architectures, in this paper
we are interested in using only constant complex multipliers
in the FFT, as explained next.

It is known [47] that rotations for a radix-2 DIF FFT are
calculated as

φs(I ) ≡ bn−s · 2s−1 · [bn−s−1 . . . b0], (3)

where bi are the bits of the index I associated to the rotation,
as shown in the flow graph of Fig. 1. For instance, in the first
stage of the flow graph (s = 1), a rotation by φ = 3 is associ-
ated with the index I = 11 ≡ 1011 = b3 b2 b1 b0. According
to equation (3), φ1(11) ≡ b4−1 · 21−1 · [b4−1−1 . . . b0] =
b3 · [b2 b1 b0] = 1 · [011] ≡ 3, as expected.

Likewise, for the radix-2 DIT FFT, the rotations are obtained
as [47]

φs(I ) ≡ bn−s−1 · 2n−s−1 · [bn−s . . . bn−1]. (4)

Continuing with the radix-2 DIF case, if we particularize
equation (3) for the 16-point FFT in Fig. 1, the rotations for
the first three stages are obtained as

φ1(I ) ≡ b3 · 20 · [b2b1b0] = 4 · b3b2 + 2 · b3b1 + 1 · b3b0,

φ2(I ) ≡ b2 · 21 · [b1b0] = 4 · b2b1 + 2 · b2b0,

φ3(I ) ≡ b1 · 22 · [b0] = 4 · b1b0. (5)

This highlights that φs(I ) is obtained as a combination of
constant multiplications. For instance, rotations in the first
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Fig. 2. Flow graph of a 16-point radix-2 DIF FFT where twiddle factors are
decomposed into constant rotations.

stage are a combination of constant multiplications by φ = 4,
φ = 2 and φ = 1. The exact value of the rotation depends on
the bits bi of the index. Again for the case of φ1(11) we obtain
φ1(11) ≡ 4·b3 b2+2·b3 b1+1·b3 b0 = 4·1·0+2·1·1+1·1·1 =
3. This sum of constant rotations is represented in Fig. 2.

For the general case of any N , from (3) we obtain

φs(I ) ≡ 2n−2 · bn−sbn−s−1 +
+2n−3 · bn−sbn−s−2 +
+2n−4 · bn−sbn−s−3 +
+ . . . +
+22 · bn−sb2 +
+21 · bn−sb1 +
+20 · bn−sb0. (6)

Therefore, the rotation by φs(I ) is decomposed into a sum of
constant rotations by φ = 2i , i = 0 . . . n − 2. In radians, this
corresponds to the angles

αi = 2π

N
φ = 2π

N
2i = 2π

2n−i
, i = 0, . . . , n − 2. (7)

The next step is to design the architecture. For this purpose,
we have to map the rotations to rotators. Fig. 3 shows the first
stage of a 16-point 4-parallel radix-2 DIF CM FFT architec-
ture. It consists of butterflies (R2), constant rotators (⊗), trivial
rotators (diamond-shaped) and shuffling circuits. The shuffling
circuits include multiplexers and buffers represented by boxes.
The number inside each buffer indicates the length of the
buffer. The data order at each place of the circuit is represented
at the bottom of the figure by using matrices. These matrices
include the data indexes according to Fig. 2. Each row of the
matrix includes the indexes that flow through one of the paths
of the circuit. This way, the first row includes the data flowing
through the upper path and the lower row includes the data
flowing through the lower path. Each column of the matrix
indicates the instant at which each datum arrives. The values
to the right (column 4) arrive first, followed by the values

at columns 3, 2 and 1. As an example, data with indexes 9,
13, 11 and 15 arrive to the butterflies of the first stage at
consecutive clock cycles at the lowest path of the architecture.

The bits bi close to the matrices are a more compact way
to represent the orders in the matrix. They show which bit
bi of the index varies at each dimension of the matrix. This
representation is described in [48] (Section III).

The buffers and multiplexers in the architecture carry out
the data shuffling. Figure 4 shows how they work for a buffer
size of length L. First, the multiplexers are set to 0 for L clock
cycles. Thus, the first L samples from the upper path (set A)
are stored in the output buffer. At the same time, the first L
samples from the lower path (set C) are stored in the input
buffer. Next, the multiplexer is set to 1 for L clock cycles.
This makes C pass to the output buffer and D is stored in the
input buffer. At the same time, sets A and B are provided in
parallel at the output. When the multiplexer commutes again
to 0, sets C and D are provided in parallel. As a result, sets B
and C are interchanged. More detail on the shuffling circuits
can be found in [48].

The rotators at the FFT stage depend on the data that flow
through each path. In fact, the rotator at each path must be
able to rotate by all the rotations applied to the data flowing
through that path. In the CM FFT, the rotations at the first
stage are split into three rotators by W 1

16, W 2
16 and W 4

16, which
are marked as 1, 2 and, 4 in Figs. 2 and 3. According to Fig. 2,
the rotation by 1 at the first stage occurs only for indexes 9,
11, 13 and 15. In Fig. 3 these indexes flow through the lowest
path, as can be observed from the matrix related to the rotator
by 1. This is why the rotator by 1 is placed at the lowest path
of the architecture. Likewise, rotations by 2 in Fig. 2 occur for
indexes 10, 11, 14 and 15, which are at the lowest path after
the shuffling circuits with buffer length equal to 2. As a result,
the rotator by 2 only needs to be placed at the lowest path at
this place of the circuit. Finally, rotation by 4 occurs for data
with indexes 12, 13, 14 and 15 and corresponds to the lowest
path before the butterflies of the second stage. As a result,
the rotations by the angles of the first stage are calculated by
means of three constant rotators. This is possible thanks to the
shuffling circuits at the first stage, which place data that must
be rotated by the same constant angle at the same path of the
architecture.

IV. PROPOSED CONSTANT MULTIPLIER FFT

A. 4-Parallel Radix-2 DIF CM FFT

Fig. 5 shows the proposed 16-point 4-parallel radix-2 DIF
CM FFT architecture. It consists of four stages with
radix-2 butterflies (R2), constant complex multipliers, trivial
multipliers and shuffling circuits.

The first stage of the architecture in Fig. 5 is similar to
that in Fig. 3. The only difference is that extra registers have
been removed. Note that in Fig. 3 there are four registers in
parallel in a vertical cut after the rotation by φ = 2. Whereas
the pipelining technique introduces registers in a vertical cut of
a hardware architecture with the goal of reducing the critical
path, in this case we apply the same principle in the opposite
direction, i.e., instead of adding registers, we remove registers
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Fig. 3. First stage of the 16-point 4-parallel radix-2 DIF CM FFT architecture. The stage consists of radix-2 butterflies (R2), constant complex multipliers
(⊗), trivial multipliers (diamond shaped) and circuits for data permutation that consist of buffers and multiplexers. The data indexes of the dataflow are shown
at the bottom of the figure.

Fig. 4. Shuffling circuit used in the CM FFT architecture.

that appear in all the paths of a vertical cut of the architecture.
This results in a reduction of the number of registers. Indeed,
removing extra registers between serial-parallel permutation
is always possible when the serial-parallel permutations share
the parallel dimension [48].

Fig. 6 shows the proposed 32-point 4-parallel radix-2 DIF
CM FFT architecture. As the 16-point one, it only uses
constant complex multipliers. By comparing the 16-point and
32-point architectures, it can be observed that, at each stage,
the 32-point architecture has one permutation circuit and one
rotator more than those in the 16-point FFT.

For a general N , the amount of resources of the proposed
4-parallel radix-2 CM FFT can be calculated as follows.
First, the shuffling circuits with buffers of length 2i appear
at n − 1 − i stages and their total memory is 4 · 2i = 2i+2

due to the four parallel paths. The buffer lengths range from
20 = 1 to 2n−3 and, thus, the index ranges from i = 0 to
i = n − 3. Furthermore, shuffling circuits of sizes 2i and
2i−1 are connected, leading to 4 · 2i−1 = 2i+1 registers
that appear in parallel, 2i in each parallel path. This forms
pipeline sections that can be removed. These sections range
from i = 1 to i = 3 and appear at n − 1 − i stages. As a
result, the memory of the architecture for any N is

Total Mem. =
n−3∑
i=0

(n − 1 − i)2i+2 −
n−3∑
i=1

(n − 1 − i)2i+1,

(8)

where the first sum is the total number of registers and the sec-
ond sum is the number of registers in parallel paths that can be
removed. This leads to a total memory for the entire FFT of

Total Mem. = 3

2
N − 4. (9)

Second, each radix-2 butterfly includes two complex adders
and processes two parallel paths. Therefore, at each stage there
is one complex adder per parallel path, being the number of
complex adders in the architecture

Total Adders = 4n = 4 log2 N. (10)

Third, there are constant complex rotators at stages i = 1 to
i = n−2 and the number of them at the i -th stage is n−1− i ,
leading to a total number of constant complex rotators for the
entire architecture of

Total Constant Rot. =
n−2∑
i=1

(n − 1 − i) = (n − 1)(n − 2)

2
.(11)

Trivial rotators are not considered in this calculation, because
they can be merged with the butterflies before or after them.

Finally, the number of multiplexers is calculated considering
that each stage i ∈ [1, n − 1] includes 4 · (n − i) multiplexers,
except the first stage, which includes four less. This leads to
a total number of multiplexers

Total Mux. = 4

(
n−1∑
i=1

(n − i)

)
− 4 = 2n(n − 1) − 4. (12)

B. 4-Parallel Radix-2 DIT CM FFT

Fig. 7 shows the 16-point 4-parallel radix-2 DIT CM FFTs.
As can be observed, the DIT FFT architecture is symmetric
with respect to its DIF version in Fig. 5: In the DIF CM
FFT the first stages include the largest number of constant
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Fig. 5. Proposed 16-point 4-parallel radix-2 DIF CM FFT architecture.

Fig. 6. Proposed 32-point 4-parallel radix-2 DIF CM FFT architecture.

Fig. 7. Proposed 16-point 4-parallel radix-2 DIT CM FFT architecture.

complex multipliers, whereas in the DIT case these multipli-
cations appear towards the last stages. Due to this symmetry,
the amount of resources in the DIT case is the same as in the
DIF one. The 32-point 4-parallel radix-2 DIT CM FFTs can
be obtained in a similar way from its DIF version in Fig. 5
by using symmetry. This also holds for other FFT sizes.

C. 8-Parallel Radix-2 cm FFTs

The 8-parallel radix-2 CM FFT is shown in Fig. 8 for the
case of 16 points and DIF. It replicates the 4-parallel version

in Fig. 5 while including some simplifications in terms of
memory and constant complex multipliers.

The memory of the 8-parallel CM FFT is calculated by
taking into account that the shuffling circuits with buffers of
length 2i appear at n − 1 − i stages and their total memory is
8 ·2i = 2i+3 due to the eight parallel paths. The buffer lengths
range from 20 = 1 to 2n−4 and, therefore, the index ranges
from i = 0 to i = n − 4. Furthermore, shuffling circuits of
sizes 2i and 2i−1 are connected, from which 8 · 2i−1 = 2i+2

can be removed. For these registers that can be removed, i
ranges from i = 1 to i = n − 4. As a result, the total memory
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Fig. 8. Proposed 16-point 8-parallel radix-2 DIF CM FFT architecture.

for the 8-parallel CM FFT is calculated as

Total Mem. =
n−4∑
i=0

(n − 1 − i)2i+3 −
n−4∑
i=1

(n − 1 − i)2i+2,

(13)

which results in

Total Mem. = 2N − 8. (14)

As in the 4-parallel case, the number of adders is the product
of the number of parallel paths, P , and the number of stages,
n. This leads to

Total Adders = P · n = 8n = 8 log2 N. (15)

The number of constant rotators is twice the number in
equation (11), with the exception that two of the constant
complex rotators can be merged together. This reduces the
number by one. This can be observed in the lowest edge of
the first stages in Fig. 8. The total number of constant rotators
is then

Total Constant Rot.=2 ·
(

n−2∑
i=1

i

)
− 1 = (n − 1)(n − 2) − 1.

(16)

Finally, the number of multiplexers is twice the number in
the 4-parallel case in equation (12) minus 8 for each of the
first 2 stages, which are removed in the parallelization, i.e,

Total Mux.=2 ·
(

4

(
n−1∑
i=1

i

)
−4

)
− 8 · 2=4n(n − 1) − 24.

(17)

D. Higher Radices

Radix-2 CM FFTs are efficient for small FFT sizes.
However, as N increases, the extra cost of additional radix-2
stages is higher and higher. This is due to the fact that in
radix-2 the number of constant rotators has an order O(n2),
which is quadratic with respect to the number of stages. The
way to circumvent this problem is to resort to higher radices.

A radix-2k FFT breaks down an N-point FFT into n/k FFTs
of 2k points. For instance, a 1024-point 4-parallel radix-25 FFT
architecture consists of two blocks that calculate an FFT of
25 = 32 points connected by a set of general rotators and
shuffling circuits. This allows for implementing the 32-point
blocks efficiently as radix-2 CM FFTs.

In the selection of the radix, there are two considerations to
take into account. First, if we consider a radix-2k where k is
large, then the 2k-point radix-2 CM FFTs that it is split into
would be complex due to the quadratic increase of the constant
multipliers. For this reason, large values of k are not advisable.
Second, k should not be small, because small values of k
break down the FFT into a larger number of radix-2 CM FFTs,
which results in a larger number of general rotators in between
these blocks. Based on these considerations, the most suitable
radices are radix-24 and radix-25. For them, both the number
of the radix-2 CM FFTs blocks and the hardware complexity
of these blocks is small.

E. 4-Parallel Radix-2k CM FFTs

Fig. 9 shows the proposed 1024-point 4-parallel radix-25

CM FFT. It consists of n/k = 2 32-point 4-parallel radix-2
CM FFTs. One of them involves stages 1 to 5, and the other
one involves stages 6 to 10. Additionally, stage 5 includes
a set of 4 general rotators in the 4-parallel paths and stages
2 to 5 include additional shuffling circuits. Apart from the
4 general rotators, the rest of rotators in the FFT are constant
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Fig. 9. Proposed 1024-point 4-parallel radix-25 CM FFT architecture. For simplicity of the figure, permutation circuits are represented by rectangles with a
number that represent the number of registers in each parallel path. As for other CM FFT architectures in this paper, registers that appear in all parallel paths
are removed, as explained in [48].

rotators. In the figure, shuffling circuits are represented with
a vertical rectangle and a number inside, which allows for a
more compact drawing of the architecture.

The number of hardware components can be calculated for
a general N and radix-2k. The total memory is calculated
as the sum of the memory of the radix-2 CM FFTs and the
memory of the additional shuffling circuits. On the one hand,
the memory for the radix-2 CM FFTs is taken from (9), where
N is substituted by 2k , and this memory is multiplied by
n/k, which is the number of radix-2k FFT blocks. On the
other hand, the additional shuffling circuits are in charge of
accessing all the data in the data flow, so they have to complete
the buffer sizes that are not considered in the radix-2k FFT
blocks. These shuffling circuits have a 4 buffers of memory
2i−2 from i = k to i = n − 1. As a result, the total memory
for a 4-parallel radix-2k CM FFT is

Total Mem. = n

k

(
3

2
2k − 4

)
+

n−1∑
i=k

(
4 · 2i−2

)
, (18)

which results in

Total Mem. = N + 2k
(

3

2
· n

k
− 1

)
− 4 · n

k
. (19)

This total memory has an upper bound of

Total Mem. < N + 2
√

N , (20)

where the term 2
√

N is small compared to N . Therefore,
the complexity of the total memory has order O(N), which
reduces the complexity with respect to radix-2 CM FFT
architectures.

The number of adders for 4-parallel radix-2k CM FFTs is
not modified with respect to radix-2 and fulfills equation (10).

The general rotators appear in between the n/k radix-2k

CM FFT blocks. As there are 4 rotators in parallel in each
connection between radix-2 blocks, the total number of rota-
tors in the architecture is

Total General Rot. = 4
(n

k
− 1

)
, (21)

and the number of constant rotators is equal to the number of
2k-point radix-2 CM FFT blocks times the number of rotators
in each of these blocks according to (11), i.e.,

Total Constant Rot. = n

k
· (k − 1) (k − 2)

2
. (22)

Finally, the number of multiplexers is the sum of the
multiplexers in the radix-2 CM FFT blocks and those in the
additional shuffling circuits. Specifically, there are n/k 2k-
point radix-2 blocks and each of them has 2k(k − 1) − 4
multiplexers according to (12), plus n − k addition shuffling
circuits with 4 multiplexers each. This leads to

Total Mux. = n

k
· (2k(k − 1) − 4) + 4(n − k), (23)

which result in

Total Mux. = 2nk − 4 · n

k
+ 2n − 4k. (24)

F. 8-Parallel Radix-2k CM FFTs

An 8-parallel radix-2k CM FFT consists of n/k 2k-point
8-parallel radix-2 CM FFTs plus additional shuffling circuits
and general rotators. As for the 4-parallel case, the total
memory is calculated by adding the memory of the radix-2 CM
FFTs and the memory of the additional shuffling circuits.
In this case, the memory for the radix-2 CM FFT blocks comes
from (14) and the memory of the additional shuffling circuits
includes 8 buffers of size 2i−3 from i = k to i = n − 1. This
leads to a total memory of

Total Mem. = n

k

(
2 · 2k − 8

)
+

n−1∑
i=k

(
8 · 2i−3

)
, (25)

which results in

Total Mem. = N + 2k
(

2 · n

k
− 1

)
− 8 · n

k
. (26)

This total memory has an upper bound of

Total Mem. < N + 3
√

N . (27)
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TABLE I

CONSTANT MULTIPLICATIONS BY THE FFT ANGLES

As for 4-parallel radix-2k CM FFTs, the complexity of the
total memory has order O(N), which reduces the complexity
with respect to radix-2 CM FFT architectures.

The number of adders for an 8-parallel radix-2k CM FFT
is the same as that in equation (15).

The number of general rotators is one per parallel branch
per connection between radix-2 CM FFT blocks, i.e.,

Total General Rot. = 8
(n

k
− 1

)
, (28)

The number of constant rotators is the result of multiplying
the number of radix-2 CM FFT blocks times the number of
constant rotators in each of these block according to (16), i.e.,

Total Constant Rot. = n

k
· ((k − 1) (k − 2) − 1) . (29)

Finally, the number of multiplexers is calculated by adding
the multiplexers of all the radix-2 CM FFT blocks according
to (17) plus the multiplexers of the additional shuffling circuits,
as was done for (23), i.e.,

Total Mux. = n

k
· (4k(k − 1) − 24) + 8(n − k), (30)

which results in

Total Mux. = 4nk − 24 · n

k
+ −4n − 8k. (31)

V. IMPLEMENTATION

As a proof of concept, we have implemented the 4-parallel
radix-25 1024-point CM FFT in Fig. 9. In this section,
we highlight the main details related to the implementation
of the architecture.

A. Implementation of the Constant Complex Rotators

The proposed 1024-point 4-parallel radix-25 CM FFT cal-
culates constant rotations by W 1

8 , W 1
16 and W 1

32. To obtain a
shift-and-add implementation for these rotations we use the
combined coefficient scaling and shift-and-add implementa-
tion (CCSSI) method [31]. Specifically, we consider the case
of single constant rotation (SCR) with unity scaling. The
results are shown in Table I. The first two columns show the
rotation and the angle, respectively. The third column shows
the coefficient P = C + j S that results from the CCSSI
method. The fourth column shows the scaling factor (R). The
fifth column shows the number of adders that are needed to
calculate the rotation. And the last column shows the accuracy
of the rotation in terms of effective word length (W L E ) [31].

For all the coefficients, the scaling factor is close to a power
of two. Therefore, this scaling is compensated by removing
the least significant bits (LSB) of the output of the rotator,

Fig. 10. Constant rotator circuits for the CM FFT. (a) Constant rotation
by the coefficient 181 − j181 for the angle W1

8 . (b) Constant rotation by
the coefficient 473 − j196 for the angle W1

16. (c) Constant rotation by the
coefficient 251 − j50 for the angle W1

32.

without any additional hardware cost. Note that the scaling of
the rotators in the CM FFT needs to be compensated to meet
the scaling of R = 1 in other parallel paths of the architecture.
This is why a scaling that is close to a power of two and,
therefore, can easily be compensated, has been chosen.

Fig. 10 shows the circuits used to calculate the constant
rotations by the angles in Table I. The operation that is
calculated is (x + j y)·(C+ j S) where x + j y is the input signal
and C + j S is the rotation coefficient according to Table I.

The rotators consist of adders and registers. The registers are
used for pipelining, which allows for reducing the critical path
of the architecture to only one adder and, therefore, increase
the clock frequency of the FFT architecture. To compensate
for the pipelining of the rotators, extra registers are added to
the other parallel paths of the FFT architecture in order to
keep the same delay in all the paths.

The shift operations in the circuits are hard-wired, so they
do not have any hardware cost. It can also be observed that
the constant rotators do not include any rotation memory.
The rotation is carried out by fixed shift-and-add operations,
so there is no need to store the coefficient. Likewise, previous
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W8 and W16 rotators require multiplexers in order to select
among the rotation angles. Conversely, the proposed constant
rotators do not need any multiplexer.

B. Merging Butterflies and Trivial Rotators

In the implemented architecture shown in Fig. 9, trivial rota-
tors, i.e., diamond-shaped ones, appear either before (stages
2, 3, 4 and 5) or after the butterflies (stages 6, 7, 8 and 9).
Furthermore, they are constant rotators, meaning that all the
data passing through the rotator are rotated by W 1

4 . In the
implementation of the architecture, we have taken advantage
of these facts in order to simplify the architecture.

A regular butterfly adds two complex numbers according to

X = x + y = (xr + yr ) + j (xi + yi ),

Y = x − y = (xr − yr ) + j (xi − yi ), (32)

where x = xr + j xi is the upper input, y = yr + j yi is the lower
input, X = Xr + j Xi is the upper output and Y = Yr + jYi

is the lower output.
When a trivial rotator precedes the butterfly, the lower input

y is multiplied by − j , which results in

X = x + (− j)y = (xr + yi ) + j (xi − yr ),

Y = x − (− j)y = (xr − yi ) + j (xi + yr ). (33)

As can be observed, the trivial rotator is embedded in the
butterfly by simply changing some inputs and transforming
additions into subtractions or vice versa. As a result, the num-
ber and complexity of the operation is the same as in a regular
butterfly.

When the trivial rotator appears after the butterfly, the lower
output is multiplied by − j , i.e.,

X = x + y = (xr + yr ) + j (xi + yi ),

Y = − j (x − y) = (xi − yi ) + j (yr − xr ). (34)

In this case, merging the trivial rotator with the butterfly does
not increase the complexity of the butterfly either.

C. Implementation of the Shuffling Circuits

The implementation of the shuffling circuits includes several
improvements. First, they are pipelined by adding a register
previous to the shuffling circuit in order to avoid long critical
paths through the multiplexers. This allows for increasing the
clock frequency of the FFT architecture.

Second, the delays of the shuffling circuits can be imple-
mented using BRAMs or look-up tables (LUTs). We have
evaluated both alternatives for all the shuffling circuits in the
architecture and observed that the implementation using LUTs
obtains the best results, both in area and clock frequency. As a
result, the proposed architecture does not use BRAMs.

Third, the control of the shuffling circuits has been sim-
plified. The control signals for the shuffling circuits can
be obtained from the bits of the control counter. They are
periodical with a duty cycle of 50% and a period that is
twice the length of the permutation circuit. For instance,
a shuffling circuit with buffer length 2 is controlled by a
signal with 2 consecutive 0s, and then 2 consecutive 1s.

TABLE II

CALCULATION OF THE PHASE OF THE SIGNAL CONTROLLING EACH SHUF-
FLING CIRCUIT AND THE LENGTH OF THE SHIFT REGISTERS

This signal corresponds to the bit c2 of the control counter
c7 c6 . . . c2 c1 c0. However, the control signal has to be delayed
a number of clock cycles that makes it start when the first four
data arrive in parallel to the shuffling circuit, i.e., the phases of
the bit of the counter and the control signal may be different.
This makes it necessary to add a shift register for each bit of
the counter to adjust the phase of the control signal.

Table II shows the calculation of the phase of the signal
controlling each shuffling circuit and the length of the shift
registers, according to the previous explanation. Each row of
the table corresponds to one of the shuffling circuits of the
architecture according to Fig. 9. The first column indicates
the stage in which the shuffling circuit is placed. The second
column indicates the size of the buffers of the shuffling circuit.
The third column is the accumulated latency of the architecture
at the input of the shuffling circuit. The fourth column is the
phase of the control signal for the shuffling circuit, which
is equal to the accumulated latency in column 3 modulo the
period of the shuffling circuit, where the period is twice the
size of the buffers of the shuffling circuit in column 2. Finally,
there is one shift register for each group of shuffling circuits
with the same size. The size of the shift register is then the
maximum among the phases of the shuffling circuits with the
same buffer size.

D. Implementation of the General Rotators

The proposed architecture includes a general rotator at
stage 5 in each of the four parallel paths. These rotators
are implemented by using complex multipliers and read-only
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Fig. 11. General rotator using 3 DSP slices.

memories (ROM) to store the rotation coefficients. Each of
the four memories has size 256 and the 8-bit counter that
controls the permutation circuits is also used as the address of
the ROMs. As for the shuffling circuits, the counter should be
delayed according to the latency at this place of the circuit.
However, we have implemented a more efficient solution that
consists in storing the coefficients in the ROM with an offset
according to the latency. As the latency at this point of the
circuit is 318 and the size of the memories is 256, coefficients
are stored in the memories with an offset of 62 addresses. For
instance, the coefficient for φ = 0 is stored in address 62 of
the memory. This removes the need for delaying the control
counter and, therefore, saves hardware resources.

The general rotators are implemented using the Complex
Multiplier IP generator from Xilinx [49]. The circuit is shown
in Fig. 11. This solution uses 3 real multipliers in 3 DSP slices
(DSP48E1) to calculate a complex multiplication according to

X = x(C + S) − (x + y)S

Y = x(C + S) + (y − x)C, (35)

where x + j y is the input, C + j S is the rotation coefficient
and X + jY is the output. This reduces the complexity with
respect to the common alternative of using 4 real multipliers
to calculate a complex multiplication.

The latency of the proposed solution is 6 clock cycles.
In Fig. 11, it can be observed that the signals pass through
6 registers. Some of these registers are internal to the DSPs,
which are labeled as A1, A2, D, AD, B1, B2, M, C and P.
The other registers, which do not have any label, are external

to the DSP. The pipelining of the general rotators leads to
calculating only one mathematical operation per clock cycle,
which allows for a high clock frequency.

VI. COMPARISON AND EXPERIMENTAL RESULTS

Table III compares the proposed CM FFT to previous
approaches for the computation of an N-point FFT, for
the cases of 4-parallel and 8-parallel architectures. The first
column shows the type of FFT architecture and the radix.
Columns two to four show the number of rotators, separated
into general rotators, rotators by W8 & W16, and constant
rotators. The value n in the table is n = log2(N). The fifth
column shows the number of complex adders in butterflies.
The sixth and seventh columns show the sizes of the complex
data and the rotation memories. Finally, columns eight and
nine show the performance in terms of latency and throughput,
respectively.

In Table III, it can be observed that the proposed radix-2 CM
FFT is the only architecture that only uses constant rotators,
and does not use any general, W8 or W16 rotators. Furthermore,
it does not use any rotation memory.

The radix-24 and radix-25 CM FFTs include constant rota-
tors and a small number of general rotators. By comparing
the 4-parallel radix-24 CM FFT to previous radix-24 MDC
architectures [15], it can be observed that the number of
general rotators is the same, whereas the W8 and W16 rotators
in [15] are transformed into constant rotators in the proposed
approach, which reduces the complexity.

Furthermore, the proposed radix-25 CM FFT has smaller
number of general rotators compared to previous parallel
pipelined architectures.

Table IV compares the proposed architecture to previ-
ous 4-parallel 1024-point FFTs in the literature. The table
includes the following parameters: FPGA type, FFT size
(N), parallelization (P), radix, word length (W L), number
of slices, block random access memories (BRAM), digital
signal processing (DSP) slices, clock frequency, throughput
and power consumption. It can be observed that N = 1024,
P = 4, and W L = 16 for all the designs in the table, which
makes them comparable. Furthermore, most of them provide
experimental results for a Virtex-6 FPGA.

For the proposed approach post implementation results have
been obtained for a Virtex-6 XC6VSX475T FPGA (V6 in the
table) and for a Virtex-7 XC7VX330T FPGA (V7 in the table).
By comparing the results for V6 to previous approaches, it can
be observed that the proposed approach achieves not only
the highest clock frequency but also the smallest number of
BRAM and DSP slices. The highest clock frequency is due to
the deep pipelining in the proposed design, which is enabled
by the use of constant multipliers. Due to the simplicity of
these multipliers, they are easily pipelined. The small number
of BRAM is due to using distributed logic for the shuffling
circuits, as explained in Section V-C. This is also why the
number of slices is higher in the proposed approach. Finally,
the smaller number of DSP slices is due to the use of 3 DSP
slices per general rotator, as explained in Section V-D.

Regarding the implementation on the V7 FPGA, it uses
a small amount of hardware resources and obtains a clock
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TABLE III

COMPARISON OF THE PROPOSED CM FFT ARCHITECTURES TO PREVIOUS APPROACHES FOR THE COMPUTATION OF AN N -POINT FFT

TABLE IV

COMPARISON OF 4-PARALLEL 1024-POINT FFTS ON FPGAS

frequency of 680 MHz and a throughput of 2.72 GS/s. To the
best of our knowledge, this is the highest throughput reported
for a 4-parallel pipelined FFT on an FPGA so far.

The power consumption of the proposed architecture on the
V7 is 1.68 W, which is divided into 0.328 W for the clocks,
0.705 W for the signals, 0.642 W for the logic, and 0.004 W
for the DSP slices. These numbers have been obtained from
the post-implementation power report in Vivado. Previous
works in Table IV do not report power metrics that could
be used for a comparison. Indeed, only the most recent

FFT architectures on FPGAs have started to report power
consumption [6], [45].

In order to provide the results graphically, Fig. 12 shows
the throughput versus FPGA utilization of the 1024-point
pipelined FFT hardware architectures in the literature, includ-
ing all the designs in Table IV. In the figure, (1P), (2P), (4P)
and (8P) indicate that the architectures are serial, 2-parallel,
4-parallel and 8-parallel respectively.

The throughput in Fig. 12 is measured in MS/s and the
FPGA utilization is calculated according to the definition
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Fig. 12. Throughput versus FPGA utilization of 1024-point FFT hardware
architectures on a Virtex-6 FPGA.

in [16]. In the figure, it can be observed that all the designs
are efficient in terms of FPGA utilization, as they require less
than 4% of the resources of the FPGA.

The most efficient designs appear towards the upper left
corner, which represents the highest throughput and the lowest
FPGA utilization. According to this, the proposed architecture
achieves the highest throughput and one of the lowest values
of FPGA utilization. Compared to [3], the FPGA utilization
of the proposed approach is similar, whereas the throughput is
36% higher in the proposed approach. Compared to [1], which
is the 4-parallel FFT with highest throughput among previous
works, the proposed approach increases the throughput by
20% and requires less FPGA resources. Compared to [17],
the proposed approach almost doubles the throughput, but
has higher FPGA utilization. This higher FPGA utilization is
mainly due to the deep pipelining in the proposed FFT, which
is used to increase the clock frequency. Thus, the architecture
in [17] and the proposed architecture present a trade-off
between throughput and FPGA utilization: If the main goal is
to increase the throughput, the proposed architecture is the best
alternative, whereas the architecture in [17] provides lower
utilization with lower throughput. Finally, it is interesting to
compare the proposed design to the 8-parallel architectures
in [15], [16]. The throughput of both designs is similar.
However, the proposed architecture is 4-parallel, whereas the
architecture in [15], [16] is 8-parallel, and the FPGA utilization
of the proposed approach is approximately half of the FPGA
utilization in [15], [16]. Therefore, in 6 years from 2014,
we have been able to derive FFT architectures that half the
amount of resources while achieving a similar, or even higher,
throughput.

VII. DISCUSSION

The proposed CM FFT architectures surge from the idea
of using constant rotators to calculate the FFT instead of
the typical W8 and W16 and general rotators. To make
this possible, the proposed approach does two things. First,
it decomposes the rotations at the FFT stages into a sum

of constant rotators. Second, it allocate data that must be
rotated by the same constant rotation at the same path in the
architecture. To achieve this, additional shuffling circuits are
needed in order to guarantee that each constant rotator receives
the corresponding data.

The use of constant multipliers at all or almost all the stages
of the architecture reduces the complexity of the rotators.
Contrary to W8 and W16 rotators, constant rotators only rotate
by a single constant angle. Therefore, they do not require
multiplexers to select among different angles. However, the use
of constant rotators does not necessarily reduce the area of the
entire FFT because, despite their lower complexity, a larger
number of shuffling circuits is used in the architecture.

As a result, the advantage of the proposed architectures is
not observed in the area of the architecture, but in the through-
put. The reason for this is that the smaller complexity of the
rotators allows for deep pipelining that reduces significantly
the critical path of the architecture, which leads to an increase
of the clock frequency and the throughput.

Experimental results for a 1024-point 4-parallel radix-25

CM FFT show that this architecture achieves the highest
throughput among 4-parallel FFT hardware architectures,
which is 20% higher than the highest throughput among
previous works. Furthermore, the FPGA utilization of this
design is very competitive and only the 4-parallel architecture
in [17] presents a noticeable reduction in area with respect to
the proposed approach.

VIII. CONCLUSIONS

In this paper, we have presented the constant multiplier
FFT. This is a new concept that is based on using constant
multipliers to calculate the FFT rotations. When using
radix-2, it is possible to calculate the entire FFT by using
constant multipliers. However, as the increase in the number
of complex multipliers is quadratic with the number of stages,
radix-2 is only feasible for small FFTs. For large FFTs, better
alternatives are radix-24 or radix-25.

The use of constant multipliers allows for deep pipelining
that result in high throughput. Experimental results for a 1024-
point 4-parallel radix-25 CM FFT provide a throughput that
is 20% higher than the highest throughput among previous
1024-point 4-parallel pipelined FFT architectures. As a con-
sequence, the proposed 1024-point radix-25 CM FFT achieves
the highest throughput reported for a 4-parallel pipelined FFT
on an FPGA so far.
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