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Abstract— In this paper, we propose a low-power memory-
based computing architecture, called selective computing archi-
tecture (SCA). It consists of multipliers and an LUT
(Look-Up Table)-based component, that is multi-context ternary
content-addressable memory (MC-TCAM). Either of them is
selected by input-data conditions in neural-networks (NNs).
Compared with quantized NNs, a higher accurate multiplication
can be performed with low-power consumption in the proposed
architecture. If input data stored in the MC-TCAM appears,
the corresponding multiplication results for multiple weights
are obtained. The MC-TCAM stores only shorter length of
input data, resulting in achieving a low-power computing. The
performance of the SCA is determined by three physical para-
meters concerning the configuration of MC-TCAM. The power
dissipation of the target NN can be minimized by exploring these
parameters in the design space. The hardware based on the
proposed architecture is evaluated using TSMC 65 nm CMOS
technology and MTJ model. In the case of speech command
recognition, the power consumption at the multiplication of the
first convolutional layer in a convolutional NN is reduced by 67%
compared to the solution relying only on multipliers.

Index Terms— Neural networks, memory-based computing,
look-up table, ternary content-addressable memory, VLSI.

I. INTRODUCTION

NEURAL networks (NNs) are machine learning models
that are widely used in image recognition [1], natural

language processing [2], speech command recognition [3]–[5],
healthcare [6], etc. In NNs, the dynamic power consumption
is large because multiplications are performed many times
using input values and weights. For simple applications such
as image recognition using MNIST [7], the power consump-
tion can be reduced under negligible accuracy-loss using a
quantized neural network (QNN) [8]–[10].

It is unclear whether QNNs are useful for other NN appli-
cations such as speech command recognition [11]. Another
method in reducing power dissipation of NNs is look-up table
(LUT)-based computing [12]. In this method, the dynamic
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power consumption can be reduced by replacing floating-point
multiplications with LUT-based computing using ternary
content-addressable memories (TCAMs). A TCAM is one
of the associative memories and performs high-speed search
operations [13]. In such an LUT-based computing approach,
all the possible input values and weights are stored in TCAMs,
and the corresponding multiplication results can be read from
the random access memories (RAMs). When there are pairs of
the input value and the weights in the TCAM during the search
operation, the multiplication result is directly obtained from
the RAM. As the data stored in the TCAM increases, the calcu-
lation accuracy increases, and so does the power consumption.
For realizing an energy-efficient LUT-based computing, it is
important to tune up the trade-off between the power con-
sumption and the computational accuracy in the best balance.

In this paper, we propose selective computing architec-
ture (SCA) based on multi-context TCAM (MC-TCAM) [14]
to reduce power consumption while maintaining the com-
putational accuracy. Each bit cell of the MC-TCAM stores
multiple bits per cell using MTJ (magnetic tunnel junction)
elements [15] with sharing a comparison circuit. Compared
with the conventional single-context TCAM [16], MC-TCAM
can increase the number of words to be stored while main-
taining the power consumption of the search operation. In
the SCA, an input value of multiplication is compared with a
threshold value to determine whether to use either a multiplier
or MC-TCAM. When the input value is below the threshold,
the multiplication result is obtained by LUT-based comput-
ing using the MC-TCAM. Compared with the conventional
LUT-based computing, the value stored in MC-TCAM is
small since the input value range is split. The bit width of
MC-TCAM is reduced, resulting in lower power consumption.
In addition, several parameters of SCA are explored using
training data of a NN to minimize the dynamic power con-
sumption.

As a design example, a SCA-based hardware is designed
using TSMC 65-nm CMOS and an MTJ model [17]. The
target application is a convolutional NN (CNN) model for
speech command recognition [11]. When the proposed SCA
is applied to the first convolutional layer of this CNN model,
the power consumption of the multiplication is reduced by
67% in comparison with a multiplier while maintaining the
computational accuracy.

This paper is an extension of the conference paper [18].
The proposed architecture has two main contributions. First,
TCAM stores only input values, while the conventional
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Fig. 1. Multiplication of an input value, x1, and Nweight -times weights in
a NN.

method stores both input values and weights [12]. When the
input value hits, all multiplication results corresponding to
multiple weights are obtained. This approach increases the
number of multiplier uses that can be avoided with MC-
TCAM. Second, MC-TCAM only applies to small input
values, which requires a smaller MC-TCAM and so a reduced
power consumption.

The rest of this paper is as follows. Section II reviews
Quantized NNs. Section III describes the design concept of
the proposed architecture. Section IV reviews MC-TCAM
and provides the power consumption model of MC-TCAM.
Section V describes the operation of the proposed SCA and
the design space exploration. Section VI evaluates perfor-
mance using an application of speech command recognition.
Section VII concludes this paper.

II. RELATED WORK

A. Review of Quantized NN

NNs are used for image recognitions such as MNIST,
CIFAR-10 [19], ImageNet [1]. Fig. 1 shows multiplications
of an input value and multiple weights in a NN. The power
consumption of NNs is large because floating-point multipliers
with high power consumption are frequently used. In order to
solve this problem, there are many studies on quantized neural
networks (QNNs) such as binary neural networks (BNN) [8],
[9] and ternary neural networks (TNN) [20]. The input values
and weights of the neural network are converted from the
floating-point representation to the fixed-point representation
in this method. As a result, the bit-width of the multiplier is
reduced and so the power consumption. Furthermore, the hard-
ware area is reduced by quantization [21]. As described
above, several applications such as MNIST recognition can be
executed with low power consumption and a high recognition
accuracy using QNNs.

B. Drawbacks of QNN on Computation Accuracy

The effectiveness of quantized neural networks has been
reported in several applications such as image recognition.
However, it is unclear whether it can be used efficiently for

other applications such as speech command recognition appli-
cations. Fig. 2 shows an overview of a speech command recog-
nition application [22] and the simulation result of recognition
rate when QNNs are applied to the application. The data set
contains ten speech commands such as “yes” and “no”, other
speeches and background-noise [11]. The input speech signal
is converted to a speech spectrogram, which is an input to a
CNN [22]. The application runs on MATLAB2019a to check
the accuracy depending on the computing precision. Ideally,
speeches other than the ten speech commands are classified
as unknown, while background-noises are classified as back-
ground. The input values and the weights of all convolutional
layers are converted from 32-bit floating-point representation
to fixed-point representation (32, 24, 16 bit-length). Convert-
ing the representation to 32-bit fixed-point hardly modifies
the accuracy, while converting the representation to 24 or
16 bit fixed-point significantly reduces the accuracy. Therefore,
it is difficult to apply the quantization approach to low-power
speech command recognition with a high recognition accuracy.

III. DESIGN CONCEPT OF PROPOSED ARCHITECTURE

A. Conventional LUT-Based Computing

For applications such as speech command recognition,
it makes sense to explore other solutions than QNNs to
improve the energy efficiency. Another method to reduce the
multiplication cost of neural networks is LUT-based comput-
ing using content-addressable memory (CAM) [12]. Fig. 3
shows an LUT-based computing architecture. In this method,
the input values and weights of a NN are stored in the TCAM.
The RAM stores the corresponding multiplication results,
which is connected by match line (ML). When the input value
and weights of the multiplication exist in the TCAM during the
search operation, the search result is ‘hit‘. When both the input
value and the weight hit in the TCAM, the decoder specifies
the RAM address where the multiplication result is stored.
Then the multiplication result is directly obtained from the
specified RAM.

TCAM is one of associative memories that perform fast and
parallel search operations [13], [23]. Fig. 4 shows a typical
TCAM configuration. Each word stores several TCAM cells,
which store ‘0’, ‘1’, or ’X (wildcard)’. A search data is
compared with the data of all the words in parallel. Basically,
TCAMs have been designed for single-context, therefore each
TCAM cell contains a 1-bit information. The state of data
retrieved from TCAM is defined as context.

In the LUT-based computing architecture, the input value
and weight of a multiplication of a NN are searched from
a TCAM. When the input value and weight hit, the mul-
tiplication result is read from a RAM. This memory-based
computing (MBC) approach is using the lookup process to
reduce the power consumption of NNs.

However, the LUT-based computing using TCAMs has a
trade-off problem between the power consumption and the
calculation accuracy. It is necessary to store a lot of data in
TCAM in order to increase the calculation accuracy, while
the power consumption increases in proportion to the number
of TCAM cells. Thus the designer must do a choice between
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Fig. 2. Speech command recognition using QNN: (a) overview and (b) accuracy.

Fig. 3. Conventional LUT-based computing using TCAM [12].

Fig. 4. Replacing multiplications by lookup search using a 4 [bit] × 3 [word]
TCAM.

improving the accuracy and reducing the power consumption.
The LUT-based computing approach must be improved to
come up with this trade-off when accuracy is required.

B. Overview of Proposed LUT-Based Computing Architecture

Fig. 5 shows an overview of the proposed hardware archi-
tecture. Multi-context TCAM [14] is used as a TCAM of the
proposed LUT-based computing. MC-TCAM stores multiple

Fig. 5. Proposed LUT-based computing using MC-TCAM.

bit data in one TCAM cell and switches the data according
to the context selection signal. Using MC-TCAM, the number
of stored data patterns can be increased while maintaining
the number of TCAM cells, leading to a reduction in power
consumption.

Table I summarizes the comparison among a multiplier,
a conventional LUT-based architecture and the proposed hard-
ware architecture when the number of weights of a NN
is Nweight . A key feature of trained NN for MBC is that
the weights are constant. Therefore, there is no need to
search them from TCAM. In the proposed architecture, only
input values are stored in TCAM. Only input values are
searched from TCAM. Then, when a search result is hit,
all multiplication results corresponding to each weight are
obtained. Compared with the conventional LUT-based archi-
tecture, the proposed architecture searches only input values
in TCAMs, resulting in reducing the number of TCAM cells.

In the proposed architecture, MC-TCAM only applies to
smaller input values. As a result, the bit-width of MC-TCAM
is smaller and so the power consumption.
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TABLE I

COMPARISON OF DIFFERENT STYLES OF COMPUTING

Fig. 6. MC-TCAM cell circuit with n bits: (a) circuit configuration and
(b) function.

IV. MULTI-CONTEXT TCAM

A. Overview

Fig. 6 shows the MC-TCAM cell [14]. Each MC-TCAM
cell contains several context bits and one context is selected
during operation, while the conventional single-context TCAM
cells store one bit. The k-th (1 ≤ k ≤ n) context of the
MC-TCAM cell stores ‘0’, ‘1’, or ‘wildcard (X)’ using four
resistance: RA_k , RB_k , RC_k , and RD_k . This shared compari-
son circuit with MTJ devices improves the area utilization and
increases the number of stored data. In the search operation
at the pre-charge phase, pre is low to pre-charge D and D.
At the evaluation phase, search line (SL and SL) is active
according to input data. When the search result is ‘hit’, M L
is high. In the write operation, W E is high and four bit lines
(B Ls) generate two current signals.

Fig. 7 shows a two-terminal MTJ device and its symbol [15].
The MTJ device consists of three layers; a free layer, a tunnel
barrier, and a fixed layer. The resistance state of the MTJ
element is determined by the spin direction of the free layer.
The spin direction of the free layer can be changed by passing
an current. The free layer is either parallel or anti-parallel to
the fixed layer. Since the magnetic spin direction is maintained

Fig. 7. MTJ device: (a) schematic and (b) symbol.

Fig. 8. Example of context-switching behavior in the MC-TCAM.

without power supply, the MTJ element can be used as a
non-volatile device. An MTJ model [17] is used to simulate the
proposed architecture. The MTJ model has a high resistance
of 1964 � and a low resistance of 763 �.

Fig. 8 shows the context switching of MC-TCAM. When
the context is switched in (i+1)-th search, switch the selection
signal (S1, S2, …, Ss , …, St , …, Sn) that was selected until
the i -th search. When the context is switched, the gates of the
access transistors are charged and discharged, which increases
power consumption compared to the case without context
switching.

B. Modeling of MC-TCAM

The power consumption of the MC-TCAM cell is modeled
in order to perform a design space exploration of the selective
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Fig. 9. MC-TCAM power consumption (=PMC ) dependence on number of
contexts.

computing architecture (SCA) parameter. PMC , the power con-
sumption of the MC-TCAM cell in each number of contexts
can be expressed as the following equation:

PMC = RC S Pcs_cell + (1− RC S)Pck_cell (1)

where RC S is the probability of the context-switching, Pcs_cell

is the power consumption of the cell when the context changes
every search, and Pck_cell is the power consumption of the cell
without the context switching.

Fig. 9 shows Pcs_cell and Pck_cell when the number of con-
texts is changed. A 16-bit × 64-word TCAM is designed and
evaluated at 1.0 GHz using a 65-nm TSMC and an MTJ model
[17] for the simulation. MC-TCAM increases the power con-
sumption slightly when the number of contexts is increased.
The power gap between RC S = 0 and RC S = 1 is constant
regardless of the number of contexts. In Sections V and VI,
a design space exploration of parameters in the proposed
architecture performs using the power consumption models.

V. SELECTIVE COMPUTING ARCHITECTURE (SCA)

A. Overview

Fig. 10 illustrates the flow chart and the block diagram
of the proposed SCA approach. SCA mainly consists of a
multiplier and MC-TCAM. This architecture efficiently finds
the results of multiplying input values by Nweight weights
as shown in Fig. 1. In SCA, an input value is divided into
WB (wasted bit), CB (context bit) and SB (search bit). The
operation of SCA is as follows.

1) Either the multiplier or the MC-TCAM is selected
by comparing the input value with the threshold, th.
When the input value is below th, steps 2) and 3) are
performed. Otherwise, the multiplier is selected. If the
multiplier is selected, steps 2) and 3) are skipped,
while the multiplier is used Nweight times to obtain the
multiplication results.

2) If the input value is smaller than the threshold, the upper
W B(= 32− log2 th) bits of the input value are “0”. As
the upper W B bits are clearly “0”, they do not have to be

Algorithm 1 Design Space Exploration of SCA Parameters
input training data, Pcs_cell , Pck_cell , Pmul , Nweight , PR AM

output explored C Bmin , W Bmin , Nw−min

1: PSC A−min ←∞
2: for C B ∈ NC B do
3: for W B ∈ NW B do
4: SB ← 32−C B −W B
5: for Nword ← 1 : 2S B do
6: for x ∈ training data do
7: W Bx ← x[(32− W B) : 32]
8: C Bx ← x[(2+ SB) : (2+ SB + C B)]
9: SBx ← x[1 : (1+ SB)]

10: if W Bx == 0 then
11: f req(C Bx, SBx)← f req(C Bx, SBx )+ 1
12: end if
13: end for
MC-TCAM
14: ← Nword most frequent input at each contexts
15: PMC ← equation (1)
16: PSC A ← equation (2)
17: if PSC A < PSC A−min then
18: PSC A−min ← PSC A

19: C Bmin ← C B
20: W Bmin ← W B
21: Nw−min ← Nword

22: end if
23: end for
24: end for
25: end for

searched in the MC-TCAM. One of the 2C B contexts of
MC-TCAM is chosen using the C B bits of upper digits
among the remaining bits.

3) SB bits of the input value is searched in the MC-TCAM
with the selected context. If the search data hits a row
of the MC-TCAM, the multiplication results for the
Nweight -times weights are read from the SRAM at once.
Otherwise, the result of multiplication is calculated using
the multiplier.

The proposed architecture works with 32-bit fixed-point
precision regardless of the parameters, so the recognition
accuracy of the application is not compromised.

B. Design Space Exploration of SCA Parameters

SCA has three parameters: W B (wasted bit), C B (context
bit), Nword (number of searched MC-TCAM words). A design
space exploration of these parameters is performed once
offline using training data in order to minimize the power
consumption

PSC A, the power consumption of SCA-based hardware to
calculate the multiplication results of an input value and all
weights, is modeled by the following equation:

PSC A = (1− RMC )Pmul Nweight

+ RMC (PMC Nword SB + PR AM Nweight ) (2)
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Fig. 10. Proposed SCA: (a) flow chart and (b) block diagram.

Fig. 11. Calculating the frequency of input values.

where RMC is the probability that the input value is less than
th and hits MC-TCAM, Nword is number of the MC-TCAM
words. Furthermore, Pmul , PMC , PR AM are the power con-
sumption of the multiplier, the MC-TCAM, and the RAM
respectively, and Nweight is the number of weights for an input
value in a NN.

Equation (2) uses PMC preliminary calculated by equa-
tion (1). In a parameter exploration of SCA, W B , C B and
Nword are swept in order to minimize PSC A as shown in Algo-
rithm. 1. Line 2 through 5 of Algorithm 1 sweeps C B , W B ,
Nword . Then, other values are determined as follows: th =
232−W B, SB = 32−W B −C B , number of contexts = 2C B .
Lines 6 through 13 of Algorithm 1 calculate the frequency
of input values in order to determine the data to be stored in
MC-TCAM. x , an input value, is extracted one by one from
training data stream. Then, x is divided into upper W B bits,
intermediate C B bits, and lower SB bits and compared with
th. If the input value is less than th (ie, the upper W B bits of

Fig. 12. Effect of number of MC-TCAM words on PSC A and RMC in
design space exploration when (W B , C B) = (21, 1) using data set from [11].

x is ‘0’), a context is selected using C Bx of x . The frequency
that each input value is entered to each context of MC-TCAM
is counted as shown in Fig. 11. Line 14 of Algorithm 1 stores
Nword high-frequency input values of each context in MC-
TCAM. Line 15 calculate PMC , the power consumption of
MC-TCAM cell, according to equation (1). Line 16 calculate
PSC A at each C B , W B , Nword using RMC and PMC according
to equation (2). Lines 17 through 22 explore the parameters
that minimize PSC A as shown in Fig. 12. The combination of
C B , W B , and Nword that minimizes PSC A is determined as
the combination of C Bmin , W Bmin , and Nw−min .

VI. EVALUATION AND DISCUSSION

A. Experimental Setup

In order to evaluate the proposed method, SCA is applied
to the multiplications of the first convolutional layer of a
CNN model for the speech command recognition application
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Fig. 13. Design space exploration: (a) PSC A in each W B , C B , and PNword and (b) RCS and RMC in each W B , C B and Nw−min .

described in [22]. The CNN has five convolutional layers
and recognizes 10 speech commands in the dataset [11]. As
there are 12 parallel filters in the first convolutional layer of
the CNN, Nweight is 12. In addition, the speech command
dataset is split into training data, validation data and test data.
The training dataset contains about 25,000 speech commands,
of which about 500 speech commands are used for the design
space exploration of SCA. For evaluation, middle frequency
components of the speech spectrogram of 256 speech “yes”
in the test data set are used.

The proposed hardware is designed using TSMC 65-nm
CMOS, an SRAM [24] and an MTJ model [17].
The performance of the hardware except the multiplier is
evaluated using HSPICE while the performance of multiplier
is evaluated with the gate-level netlist using Synopsys Design
Compiler.

B. Design Space Exploration

The design space exploration is performed with W B
and C B varying from 16 to 24 and 1 to 7, respectively.

Fig. 13 (a) shows PSC A using training data for each W B ,
C B , and Nword configuration. Nw−min , which is Nword that
minimize PSC A, is determined for each W B and C B con-
figuration. Fig. 13 (b) shows RC S and RMC using training
data when Nword is Nw−min in each W B and C B . As C B
increases, RC S is large, while W B that maximizes RMC is
small.

Fig. 14 shows the power consumption of the proposed
hardware using training data when Nword is Nw−min for each
W B and C B configuration. W B that minimizes PSC A is
defined as W Bmin for each C B configuration. When C B is 1,
Nw−min is 256 and W Bmin is 23. The explored Nw−min and
W Bmin in each C B are used for evaluation.

C. Evaluation

Fig. 15 shows the histogram of the speech spectrograms
used for evaluation. If the speech spectrogram is smaller
than th, the result of multiplication with the weight is obtained
from MC-TCAM.
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Fig. 14. PSC A in each W B , C B , and Nw−min in the design space exploration.

TABLE II

PERFORMANCE COMPARISON FOR THE SPEECH COMMAND RECOGNITION

Fig. 15. Histogram of middle frequency components of the speech spectro-
gram of speech “yes” in the test data set [11].

The proposed SCA is compared with a 32×32-bit multiplier
and SCA without parameter explorations [18]. Table II shows
the comparison of a 32 × 32-bit multiplier, previous SCA
without parameter explorations and proposed SCA after para-
meter explorations. This table shows RMC , RC S , and power
consumption using the test data in each C B after the explo-
ration. As C B increases, W Bmin and Nw−min decrease. As
C B increases, RMC and RC S increase and power consumption
decreases. We observe the SCA with the best configuration
(C B = 7, W B = 19, Nword = 64) can achieve a signifi-
cant gain of 67% compared to the conventional computing
using only multipliers, while the computational accuracy is
maintained. Table III shows the power breakdown in the
best configuration. MC-TCAM consumes 7% of total power
consumption.

TABLE III

POWER BREAKDOWN OF SCA BASED HARDWARE
IN THE BEST CONFIGURATION

D. Discussion

It is difficult to directly compare the proposed SCA with the
conventional LUT-based architecture [12] for several reasons,
such as different target applications. In [12], weights of a
target NN are quantized and used for LUT-based computing.
In this method, the power consumption is smaller than that
using only multipliers with a few-percent accuracy loss. The
speech recognition application evaluated in the conventional
LUT-based computing classifies speech signals of 26 English
letters. The quantization method is effective for such simple
applications. However, it is difficult to apply conventional
LUT-based computing that quantizes weights to the speech
command recognition application evaluated in this paper.
When the input values and weights are quantized into 16 bits
in the speech command recognition, the recognition accuracy
is greatly reduced as shown in Fig. 2. As a result, it is difficult
to tune up the trade-off between computational accuracy and
power consumption with conventional LUT-based computing,
while the proposed SCA reduces power consumption while
maintaining recognition accuracy.

For the best configuration of the proposed SCA in the
evaluation, Nw−min is equal to 2S B . In this case, MC-TCAM is
not required. SB can be regarded as the input address of SRAM
that stores the multiplication result. Power consumption is
37.5 mW when MC-TCAM is not used as shown in Table III.
However, this is a special case. MC-TCAM is basically
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required because the optimal parameters vary depending on
the data set.

The area of the SRAM is not considered here since first
we reuse a state of the art model of SRAM [24] and sec-
ondly because the aim of memory-based methods is primarily
power savings while relaxing the area constraint. Therefore,
the estimated area of SCA contains only those of multipliers
and MC-TCAM here. The areas of a multiplier and explored
MC-TCAM are 11,500 μm2 and 35,600 μm2, respectively.
As shown in Table I, the conventional multiplier-based solu-
tion requires Nweight multipliers, and the proposed SCA
additionally requires MC-TCAM. The areas of conventional
multiplier-based and proposed SCA-based computing are esti-
mated to be 138,000 μm2 and 174,000 μm2, respectively. The
proposed SCA increases the area by 26% compared with the
conventional method. Note that when the number of CNN
filters increase, the SCA area overhead will decrease.

SCA can actually replace various operations with
memory-based computing. SCA can be applied to other oper-
ations, such as pooling and activation functions. However,
these operations have a limited impact on power consumption
compared to filters, so gains would be small. SCA is very
effective for operations which are highly numerous and greedy
for power such as multiplications in the convolutional layers
of a CNN.

As the proposed architecture can be applied to each layer
of CNN individually, it is scalable to more layers of CNNs
and/or more complex CNNs. The performance merit of SCA
is determined by the bias of the dataset and the number of
filters in a CNN. For example, if the parameters are C B = 7,
W B = 19, Nword = 64, RMC = 0.83, and Nweight = 24,
SCA can reduce the power consumption by 69% compared to
the case where only the multiplier is used.

In usual speech recognition applications, the throughput
is moderate since it is equivalent to a phone. For instance,
it would be 512 kb/s with 32 bits/sample @16kHz. The
proposed LUT operation (MC-TCAM + SRAM) has been
confirmed to operate at 1 GHz. Therefore, the throughput is not
the bottleneck of the system. In contrast, the leakage current
must be considered in this system. The LUT operation is in
a sleep state most of the time. MC-TCAM has low leakage
current by power gating because it has non-volatile structure
using MTJ devices. However, it is necessary to pay attention to
the leakage current of the SRAM. The dynamic energy of one
SCA operation is 80 pJ, while the static energy of SCA due to
the leakage current of SRAM is 1.6 nJ. If the multiplication
result is stored in MRAM (magnetoresistive RAM) [25] using
MTJ devices instead of the SRAM, the non-volatile property
can help to significantly reduce the leakage current of RAM.
It is the next step of our work after this study that demonstrates
the relevancy of the proposed SCA.

The design space exploration is performed once offline and
takes about 1 hour in the data set. However, the novelty of the
paper is not the design space exploration method. The design
space exploration is used to identify the best configuration
and to demonstrate that such a configuration exists. On the
other hand, an efficient method is required to identify the
best configuration. A machine learning method will be used to

perform this training phase. This is another part of our future
work.

VII. CONCLUSION

In this paper, we have proposed the selective computing
architecture using MC-TCAM for low-power multiplications
in NNs. Either the multiplier or the MC-TCAM is selected
by comparing the input value with the threshold. In the
proposed architecture, the high-precision multiplication result
is obtained with the low-power consumption. SCA can replace
many uses of multipliers with MC-TCAM computing. MC-
TCAM is used as the LUT, improving the memory capacity,
because the MC-TCAM stores multiple data in one memory
cell using the CMOS/MTJ device-hybrid circuit technique.
By preparing MC-TCAM for only small input values, the bit
width of MC-TCAM is small, and the power consumption
is reduced. The design space exploration is performed for
low-power SCA. As a result, the power consumption of the
proposed hardware is reduced up to 67 % compared to the
solution relying only on multipliers while maintaining the
accuracy in a CNN model using TSMC 65-nm CMOS and
the MTJ model.

SCA is a promising low-power solution for NN inference
and a future work will be devoted to the exploration of
different categories of NN applications. If SCA also performs
well on the different layers of deep NN, then very significant
gains can be expected.
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