
4784 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Using Rotator Transformations to Simplify FFT
Hardware Architectures

Rikard Andersson and Mario Garrido , Senior Member, IEEE

Abstract— In this paper, we present a new approach to
simplify fast Fourier transform (FFT) hardware architectures.
The new approach is based on a group of transformations called
decimation, reduction, center, move and merge. By combining
them it is possible to transform the rotators at different FFT
stages, move them to other stages and merge them in such a way
that the resulting rotators are simpler than the original ones.
The proposed approach can be combined with other existing
techniques such coefficient selection and shift-and-add implemen-
tation, or rotator allocation in order to obtain low-complexity
FFT hardware architectures. To show the effectiveness of the
proposed approach, it has been applied to single-path delay
feedback (SDF) FFT hardware architectures, where it is observed
that the complexity of the rotators is reduced up to 33%.

Index Terms— Center, decimation, fast Fourier transform
(FFT), merge, move, pipelined architecture, reduction, shift-and-
add implementation, twiddle factor.

I. INTRODUCTION

IN TODAY’S digital signal processing world, there exists
a need for converting signals between time and frequency

domains. For this reason, the fast Fourier transform (FFT) has
become one of the most important algorithms in the field.

To calculate the FFT in hardware, various architectures have
been proposed. Among them, the single-path delay feedback
(SDF) [1]–[11] FFT is one of the most popular ones, as it
processes data in pipeline with high throughput and using a
small amount of hardware resources. In an SDF FFT, each
stage consists of a butterfly, a buffer and a rotator. The butterfly
calculates additions and subtractions, the buffer delays the data
and the rotator rotates the data in the complex plane. At each
time instant, the rotation angle may be different. Thus, the
rotator must be capable of rotating by different angles. The
set of all these angles is called twiddle factor.

As a rotation is an expensive operation in terms of hard-
ware resources, different techniques to implement rotators
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have been proposed with the goal of reducing the hardware
cost. The most straightforward approach is to implement the
rotator by using a complex multiplier, which consists of four
real multipliers and two additions. A more efficient alterna-
tive is to implement the rotator as shift-and-add operations.
The coordinate rotation digital computer (CORDIC) [12]–[15]
algorithm exploits this idea and calculates the rotation by a
series of micro-rotation stages that include a small number of
adders. An alternative to the CORDIC is to simplify a com-
plex multiplier into shift-and-add operations. This approach
is useful for rotators that have to rotate among a small
number of angles. In this approach, the multiplications by
the real and imaginary parts of the rotation coefficient are
transformed into shift-and-add operations by using single
constant multiplication (SCM) [16], [17], multiple constant
multiplication (MCM) [18]–[22] or constant matrix multi-
plication (CMM) [23]–[25] techniques. Then, the rotator is
created by merging the shift-and-add multiplications by the
different coefficients [26], [27]. Finally, rotator allocation [28]
is another existing technique to simplify FFT rotators. It is
used in parallel FFT architectures to distribute the rotations
efficiently among the parallel branches.

This paper proposes a new approach to simplify rotators in
FFT hardware architectures based on a set of transformations
called decimation, reduction, center, move and merge. These
techniques take advantage of three main ideas. First, a rotator
can be split into several rotators of smaller complexity. Second,
by extracting a constant angle, the angles of a rotator can be
rotated in order to place them in a more favorable position.
And third, constant rotations can be moved among FFT stages
and merged with other rotators. All these ideas are combined
in the proposed approach, leading to simpler rotators. Fur-
thermore, contrary to rotator allocation [28], the proposed
approach does not alter the data order in the architecture.
Finally, the proposed approach is compatible with previous
approaches used to simplify rotators. This allows for further
complexity reduction when combining several approaches.

The paper is organized as follows. In Section II, we review
previous concepts related to the FFT that are later used in
this paper. In Section III, we present the proposed approach
as a set of transformations that are applied to rotators.
In Section IV, we show the application of the proposed
approach to simplify rotators in FFT hardware architectures.
In Section V, we show the hardware implementation of one of
these architectures. In Section VI, we compare the proposed
approach to previous approaches. Finally, in Section VII,
we summarize the main conclusions of the paper.
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Fig. 1. Flow graph of a 16-point radix-2 DIF FFT.

Fig. 2. A 64-point SDF FFT architecture.

II. BACKGROUND

A. The FFT Algorithm

The FFT algorithm is used to reduce the computation com-
plexity of the discrete Fourier transform (DFT) from O(N2) to
O(N log2 N) operations [29]. Fig. 1 shows the flow graph of
a 16-point radix-2 FFT decomposed by using decimation in
frequency (DIF) [1], [30]. The FFT consists of n = log2 N
stages. At each stage of the flow graph, s ∈ {1, . . . , n},
butterflies and rotations are calculated. The lower edges of
the butterflies are always multiplied by −1. These −1 are not
depicted in order to simplify the graphs.

The numbers at the input represent the index of the input
sequence, whereas those at the output are the frequencies, k,
of the output signal X[k]. Finally, each number, φ, in between
the stages indicates a rotation by:

Wφ
N = e− j 2π

N φ. (1)

As a consequence, data in edges with φ = 0 do not need
to be rotated. Likewise, if φ ∈ [0, N/4, N/2, 3N/4] the
rotations are by 0◦, 270◦, 180◦ or 90◦, which correspond to
complex multiplications by 1, − j , −1 and j , respectively.
These rotations are considered to be trivial, because they
can be carried out by interchanging the real and imaginary
components and/or changing the sign of the data.

B. The SDF FFT Architecture

The FFT algorithm allows for a variety of hardware archi-
tectures. When high throughput and small area are required,
the SDF FFT is an attractive choice. Fig. 2 shows a 64-point

Fig. 3. Internal structure of a stage in an SDF FFT architecture.

radix-2 SDF FFT architecture. It consists of n = log2(N) =
log2(64) = 6 stages and each of them includes a butterfly
(R2), a buffer of length 2n−s and a rotator.

The internal structure of a stage in an SDF FFT is shown in
Fig. 3. First, the buffer collects 2n−s data. Then, these data are
added and subtracted with the incoming data in the butterfly.
The results of the additions pass to the rotator, while the results
of the subtractions are fed back to the buffer. The latter are
passed to the rotator after the former, at the same time that
new data arrive. This allows for continuous flow processing.

It is worth noting that all data pass through the rotator. This
means that the same rotator calculates all the rotations at the
same stage of the flow graph in Fig. 1 and, therefore, the
rotator must be configurable to rotate by different angles at
different clock cycles.

C. Twiddle Factors

In FFT architectures that use conventional FFT
algorithms [31], each rotator in an FFT architecture rotates
by a twiddle factor. A twiddle factor, WL , is a set of L angles
evenly distributed along the circumference, i.e.,

WL = Wφ
L = e− j 2π

L φ, for φ = 0 . . . L − 1. (2)

For the FFT architecture in Fig. 2, if the radix-2 DIF
algorithm is used, the twiddle factors at stages 1 to 5 in are
W64, W32, W16, W8 and W4, respectively. For radix-22 DIF,
the twiddle factors are W4, W64, W4, W16 and W4, and for
radix-23 they are W4, W8, W64, W4 and W8. Note that radix-
2k divides the n stages of the FFT in �n/k� groups, where
�n/k� − 1 of them calculate a 2k-point FFT and one of them
calculates the FFT of the remaining stages.

D. Symmetric Angle Sets

Some of the angles in a twiddle factor are symmetric with
respect to 0◦, 45◦, 90◦ or 135◦. Based on these symmetries,
a symmetric angle set (SAS) [32] is defined as a set of angles
nπ/2 ±α, where n = 0, . . . , 3 and α ∈ [0, π/4]. Any rotation
in a symmetric angle set can be calculated as a rotation by
α ∈ [0, π/4], a trivial rotation and/or an exchange of the real
and imaginary parts of the rotation coefficient. Fig. 4 shows
the angles used in a W16 twiddle factor (φ = 0, . . . , 15) and
in a W32 twiddle factor (φ = 0, . . . , 31), which correspond
to dividing the circumference into 16 and 32 equal parts,
respectively. These angles form several SAS, which are shown
in Tables I and II.

E. M-Rotator

The smaller the number of SAS in a rotator, the smaller the
number of independent coefficients. To quantize this number,
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Fig. 4. Rotation angles φ in twiddle factors. (a) W16. (b) W32.

TABLE I

SYMMETRIC ANGLE SETS FOR THE 16-POINT FFT

TABLE II

SYMMETRIC ANGLE SETS FOR THE 32-POINT FFT

an M-rotator or M-rot [28] is defined as a rotator that can
rotate a number of angles in M different symmetric angle sets.
For instance, a rotator that rotates by 0◦, 45◦ and 135◦ is a
2-rot, as it rotates angles in the symmetric angle sets nπ/2 and
nπ/2 ± π/4. Likewise, the twiddle factor W8 is a 2-rot, the
twiddle factor W16 is a 3-rot (note the 3 SAS in Table I) and
the twiddle factor W32 is a 5-rot (note the 5 SAS in Table II).
In general, a twiddle factor WL is an L/8 + 1-rot. This means
that there are L/8 + 1 angles in the range [0, π/4] and the
rest of the angles can be obtained by symmetries.

III. PROPOSED APPROACH

The proposed approach consists of a group of transforma-
tions that can be applied to the rotators in FFT hardware
architectures. These transformations are called decimation,
reduction, center, move and merge, and are explained in the
steps of Sections III-A to III-F. These steps suggest the order
in which the transformations must be applied.

A. Step 1: Decimate Twiddle Factors

Decimation transforms a twiddle factor WL into a WL/2 in
series with a 2-rot according to

WL = WL/2 · e− j 2π
L φ0 , (3)

Fig. 5. Decimation of a W32 into a W16 and a 2-rot.

which is equal to

e− j 2π
L φL = e− j 2π

L/2 φL/2 · e− j 2π
L φ0 , (4)

where

φL = 2φL/2 + φ0, (5)

for φL = {0, 1, . . . , L − 1}, φL/2 = {0, 1, . . . , L/2 − 1} and
φ0 = {0, 1}.

The specific case of decimating a W32 is shown in Fig. 5.
It can be observed that the W32 is decimated into a W16 plus
a 2-rot.

For any L, decimation halves the number of angles of
the original twiddle factor WL , which is an (L/8 + 1)-rot,
providing a WL/2, which is an (L/16 + 1)-rot, and a 2-rot.
As a result, the combination of the the twiddle factor WL/2 and
the 2-rot calculates the same rotations as the original twidddle
factor WL .

Decimation can be applied repeatedly to obtain a simpler
twiddle factor in each iteration. By applying decimation twice,
a WL is transformed into a WL/4 plus two 2-rots according to

WL = WL/4 · e− j 2π
L φ0 · e− j 2π

L φ1 , (6)

which is equal to

e− j 2π
L φL = e− j 2π

L/4 φL/4 · e− j 2π
L φ0 · e− j 2π

L φ1, (7)

where

φL = 4φL/4 + φ0 + φ1, (8)

for φL = {0, 1, . . . , L − 1}, φL/4 = {0, 1, . . . , L/4 − 1}, φ0 =
{0, 1} and φ1 = {0, 2}.

In general, the decimation of a WL twiddle factor m times
results in a WL/2m twiddle factor in series with m 2-rots by
φi = {0, 2i } for i = 0, . . . , m − 1. This way, an (L/8 + 1)-rot
is transformed into an (L/(8 · 2m) + 1)-rot plus m 2-rots.

B. Step 2: Reduce Twiddle Factors

The aim of reduction is to decrease the number of SAS in a
twiddle factor by extracting a constant angle from the rotator.
Given a twiddle factor WL , the extraction of a constant angle
φ0 results in

WφL
L = e− j 2π

L (φL+φ0) · e j 2π
L φ0 , φL = 0, . . . , L − 1. (9)

If φ0 = 1/2, this leads to

e− j 2π
L φL = e

− j 2π
L

(
φL+ 1

2

)
· e

j 2π
L

(
1
2

)
=

= e− j 2π
2L (2φL+1) · e j 2π

2L , (10)

being

φ2L[odd] = 2φL + 1. (11)
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Fig. 6. Reduction of a W16 twiddle factor. The rotator to the left is a W16
twiddle factor. It is transformed into a 2-rot plus a constant rotator.

Fig. 7. Example of merging two 2-rots into a 4-rot.

As φL = {0, 1, . . . , L − 1}, then φ2L[odd] = {1, 3, 5, . . . ,
2L − 1}, which corresponds to the odd coefficients of the
twiddle factor W2L . This allows to represent the reduction
transformation as

WL = W2L[odd] · e j 2π
2L . (12)

As a result, reduction transforms the twiddle factor WL ,
which is an L/8+1-rot, into the cascade of two rotators. These
rotators are W2L[odd], which is an L/8-rot, and a constant
rotator by the angle α = 2π/2L. Fig. 6 shows the reduction of
a W16 twiddle factor. This rotator is a 3-rot, which is reduced
to a 2-rot and a constant rotator.

Additionally, any constant angle of the form α = 2π/2L +
n2π/L, where n ∈ Z, can be extracted when reducing a
twiddle factor. The result is also a W2L[odd] plus the constant
rotator, with the particularity that the angles of W2L[odd] will
be rotated by n2π/L. This rotation does not change the angles
in the W2L[odd].

C. Step 3: Merge 2-Rots

The 2-rots generated by decimation (step 1) can be merged
together into larger rotators. For two 2-rots we get

e− j 2π
L φp · e− j 2π

L φq = e− j 2π
L φr , (13)

with φp = {0, 2p}, φ j = {0, 2q}, and φr = {0, 2p, 2q , 2p+2q}.
This case is shown in Fig. 7.

In general, m 2-rots generated by decimation can be merged
together to create a single 2m -rot.

D. Step 4: Center Merged 2m-Rots

The 2m-rots obtained from merging 2-rots (step 3) have the
property that the angles start in 0◦ and continue clockwise or
counterclockwise, covering a range smaller than 45◦. Due to
this, all the 2m angles of the rotator are in a different SAS. This
is why the rotator is a 2m -rot. In this context, we can center the
rotator in order to half the number of SAS. This is achieved by
extracting the constant angle that lies in the center of the set.
For a set of merged 2-rots where each of them corresponds to
φi = {0, 2i }, the angle in the center corresponds to

φC = 1

2

∑
i

2i . (14)

Fig. 8. Movement of an extracted angle. (a) Original butterfly with rotations
at a given stage. (b) Structure after extracting e j π

L . (c) Structure after moving
the extracted angle to the next stage.

For instance, for i = {0, 3, 4},
φC = 1

2
(20 + 23 + 24) = 12.5. (15)

The centered rotator has a symmetry with respect to 0◦ and
each positive angle has a symmetric negative angle. Therefore,
centering the rotator halves the number of SAS, i.e., a non-
centered 2m-rot is transformed into a centered 2m−1-rot.

E. Step 5: Move Constant Angles

Both reduction (step 2) and center (step 4) produce constant
rotators as a result of the transformation. The advantage of
constant angles is that they can be moved freely between FFT
stages. To move a rotator from a certain stage to an adjacent
stage, we have to pass the butterfly in the middle. Let us
consider a butterfly with a rotation previous to it, as shown in
Fig. 8(a). The equation of the structure in Fig. 8(a) is

X = x · e− j 2π
L φx + y · e− j 2π

L φy ,

Y = x · e− j 2π
L φx −y · e− j 2π

L φy . (16)

By extracting e j 2π
L φ0 , we obtain Fig. 8(b), which calculates

X = x · e− j 2π
L (φx +φ0) · e j 2π

L φ0 + y · e− j 2π
L (φy+φ0) · e j 2π

L φ0 ,

Y = x · e− j 2π
L (φx +φ0) · e j 2π

L φ0−y · e− j 2π
L (φy+φ0) · e j 2π

L φ0 .

(17)

Finally, by moving e j 2π
L φ0 to the next stage, we obtain Fig.

8(c), which calculates

X = e j 2π
L φ0 · (x · e− j 2π

L (φx +φ0) + y · e− j 2π
L (φy+φ0)),

Y = e j 2π
L φ0 · (x · e− j 2π

L (φx +φ0)−y · e− j 2π
L (φy+φ0)). (18)

As a result, the constant angle is moved to the next stage.
Alternatively, the constant angle can be moved to the previous
stage. As all data of the stage are multiplied by the factor
e j 2π

L φ0 , the move operation can be repeated several times. This
allows for placing the constant rotator at any stage of the FFT.
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Fig. 9. Examples for merging a constant rotator with a twiddle factor. (a) W32
absorbing the angle π

16 at no cost. Only the control changes. (b) Complication
of a W4 when merging it with the angle π

16 .

F. Step 6: Merge Constant Angles

1) Merging a Constant Rotation With a Twiddle Factor:
An extracted constant angle can be merged with the rotators
in the stage where it has been moved. If this stage contains a
twiddle factor

WL = e− j 2π
L φ φ = 0, . . . , L − 1, (19)

the result of merging it with a constant rotator by e j 2π
L φ0 is

e− j 2π
L φ · e j 2π

L φ0 = e− j 2π
L (φ−φ0) φ = 0, . . . , L − 1. (20)

When this method is applied, it is important that merging
the rotators does not increase the total amount of SAS. This
depends on the value of the term φ0. If φ0 ≥ 1 is an integer
number, the rotation angles of the merged twiddle factor are
the same as those of WL . This case is shown in Fig. 9(a), where
a constant angle is absorbed by the twiddle factor without
increasing its complexity.

If φ0 = 1/2, the rotator WL is reduced, as explained in
Section III-B. This not only eliminates the constant angle, but
also simplifies the twiddle factor.

Finally, in case φ0 does not meet any of the previous
conditions, the merged rotator becomes more complicated.
An example of this is shown in Fig. 9(b), where merging the
angle π

16 with a W4 complicates the W4.
Note that, in general, it is a good practice to move the

extracted constant angles to a stage where there exists a large
rotator, as large rotators can generally absorbe the constant
angles without increasing their complexity.

2) Merging a Constant Rotation With an M-Rot: A second
case is to merge a constant rotation with an M-rot. For
instance, merging a constant rotation by e− j 2π

L φ0 with a 2-
rot with φa = {0, a} results in

e− j 2π
L φa · e− j 2π

L φ0 = e− j 2π
L φb , φb = {φ0, a + φ0}. (21)

Fig. 10 shows an example where merging simplifies the
M-rot. In this case, a constant rotation by the angle e− j π

16 is
merged with a 4-rot. This reduces the amount of SAS, as φ = 1
and φ = 31 are in the same SAS. As a result, the 4-rot is
simplified to a 3-rot.

Fig. 10. Example of merging a constant rotator with an M-rot, where a 4-rot
is merged with a constant angle e− j π

16 . As a result, the 4-rot is simplified to
a 3-rot.

Fig. 11. Simplification of a 64-point radix-24 SDF FFT by using the proposed
methods. (a) Original architecture. (b) Simplified architecture.

Fig. 12. Transformation of the rotators in a 64-point radix-24 FFT.

IV. APPLICATION OF THE PROPOSED METHOD

This section shows how to apply the proposed
approach to simplify radix-24 SDF FFT architectures
with sizes 64 to 1024.

A. Transforming a 64-Point FFT

Figure 11(a) shows a 64-point radix-24 SDF FFT. It includes
a W16 in stage 2, a W64 in stage 4 and a W4 in stages 1, 3
and 5.

The rotators in the architecture are transferred to the top
of Fig. 12. This figure shows the transformations that are
carried out. In order to identify the transformation, letters
corresponding to the different transformations are added to
the figure: Decimation (D), reduction (R), merge (M). As the
figure includes twiddle factors of different sizes, the angles
are indicated as φ/L. This represents the φ-th angle in a
circumference divided in L parts, where φ increases clockwise.
This criterion is used in Figs. 12 to 16.
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Fig. 13. Transformation of the rotators in a 128-point radix-24 FFT.

To start the transformation, decimation is applied to the
W64 rotator. This turns it into a W32 in series with a 2-rot
with the angles {0,−1/64}. Then, the W32 and the W16 are
reduced by extracting the angles 1/64 and −1/32, respectively.
This reduces the W16 from a 3-rot down to a 2-rot with the
angles {1/32, 3/32} in [0,−45◦], and the W32 from a 5-rot to
a 4-rot with the angles {1/64, 3/64, 5/64, 7/64} in [0,−45◦].
Next, the constant angles are moved to stage 4, where they are
merged with the 2-rot resulting from decimation. This changes
its angle set to {0,−1/64}− 1/32 + 1/64 = {−1/32,−1/64}.

Fig. 11(b) shows the resulting architecture. It requires a
2-rot in stage 2, and a 4-rot and a 2-rot in stage 4.

From this example, it is worth noting that the the decimation
of W64 has provided a 2-rot that later is used to absorb all
the constant rotations. Indeed, while applying the proposed
approach it is a good practice to decide and keep in mind
which rotator in the architecture is going to absorb the constant
rotators.

B. Transforming a 128-Point FFT

Figure 13 describes the transformation of the rotators in
a 128-point FFT. The original twiddle factors correspond to
radix-24, where the first 4 stages calculate a 16-point FFT and
the last three stages calculate an 8-point FFT.

The first step in the transformation consist in applying
decimation to the W128 rotator. In this case, we extract two
2-rots to decimate the twiddle factor down to a W32. This is
due to the fact that a W32 is a 5-rot, which is a reasonably
small rotator. This W32 is then reduced to a 4-rot plus a
constant rotation. Likewise, the W16 and the W8 are reduced
to a 2-rot plus a constant rotation by −1/32, and a 1-rot
plus a constant rotation by 1/16. Next, the 2-rots obtained
by decimating the W128 are merged together to form a 4-rot.
Finally, this 4-rot absorbs the constant rotators obtained in
the reductions of the three twiddle factors, leading to a
rotator by {0,−1/128,−2/128,−3/128}+ (−1/32)+1/16+
(−1/64) = {2/128, 1/128, 0,−1/128}. The result is a 3-rot,
as it includes 4 angles where 2 of them correspond to the
same SAS. As a result, the rotators in the 128-point FFT are
simplified to a 4-rot, a 3-rot, a 2-rot and a 1-rot.

Fig. 14. Transformation of the rotators in a 256-point radix-24 FFT.

With this example we want to highlight the importance of
the selection of the extracted constant angles in the reduction
process. In this case, some of the extracted angles are positive,
whereas other ones are negative. This is due to the fact that
this selection results in a simple rotator when these angles are
merged. Conversely, if the reduction of the W8 had been done
with the angle −1/16, this would have changed the final rota-
tor into {0,−1/128,−2/128,−3/128}+(−1/32)+(−1/16)+
(−1/64) = {−14/128,−15/128,−16/128,−17/128}, which
is a 4-rot instead of a 3-rot.

C. Transforming a 256-Point FFT

Figure 14 shows the transformation of the rotators in a
256-point FFT. The original twiddle factors correspond to the
radix-24 algorithm.

The first step is to decimate the W256 twiddle factor. As in
previous examples, the goal is to obtain a W32, which is a
relatively simple twiddle factor. This is achieved by extracting
three 2-rots. Next, the W32 and both W16 are reduced. For
the W16 twiddle factors, the angles are extracted in opposite
directions, which makes them cancel each other. Next, the
three 2-rots resulting from decimation are merged together into
an 8-rot. Finally, this 8-rot is merged with the constant rotation
that results from reducing the W32 rotator, leading to a 5-rot.
As a result, the rotators in the 256-point FFT are simplified
to a 5-rot, a 4-rot and two 2-rots.

This example shows the fact that two twiddle factors of the
same size WL , which are L/8 + 1-rots, can be reduced by
extracting opposite angles that cancel each other. This results
into two L/8-rots with no additional constant angles.

D. Transforming a 512-Point FFT

Figure 15 shows the transformation of the rotators in a
512-point radix-24 FFT. As in previous examples, the largest
rotator is first decimated down to a W32. In this case, four
2-rots are obtained apart from the W32. Next, the W16, W8
and the two W32 are reduced and the corresponding constants
are extracted. Then, the 2-rots obtained from decimation are
separated in two groups of two and each of the groups is
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Fig. 15. Transformation of the rotators in a 512-point radix-24 FFT.

Fig. 16. Transformation of the rotators in a 1024-point radix-24 FFT.

merged to form a 4-rot. One of these rotators is then centered
(C) to a 2-rot. The other 4-rot is used to absorb all the
constants that result from reduction and centering. As a result,
the rotators in the 512-point FFT are simplified to three 4-rots,
two 2-rots and a 1-rot.

This example has shown how to group the four 2-rots
obtained after decimation. By grouping them in pairs, small
rotators are obtained. Conversely, the alternative to group the
four 2-rots together would have resulted in a 16-rot. This
rotator is too complex even after centering it into an 8-rot,
which makes this option inefficient. Another observation from
this example is that it centers one of the rotators. This step
transforms an M-rot into an M/2-rot.

E. Transforming a 1024-Point FFT

Figure 16 shows the transformation of the rotators in a
1024-point radix-24 FFT. First, the W1024 is decimated to a
W32 plus five 2-rots, and the W64 is decimated to a W32 and
a 2-rot. Then, both W32 and both W16 are reduced. For each
type of twiddle factor, the selection of opposite angles allows
for canceling the constants. Next, the five 2-rots obtained
from decimating the W1024 are divided into a group of two
2-rots and a group of three 2-rots. The rotators in each of
these groups are then merged, which results in a 4-rot and an
8-rot. Next, they are centered, which transforms them into
a 2-rot plus a constant angle and a 4-rot plus a constant

TABLE III

ROTATORS FOR THE PROPOSED 64-POINT FFT

TABLE IV

FIGURES OF MERIT OF THE PROPOSED 64-POINT SDF FFT
ON A VIRTEX-7 XC7VX330T FPGA

angle, respectively. Finally, the constant angles obtained from
centering are merged with the 2-rot that was extracted in
the decimation of the W64. As a result, the rotators in the
1024-point FFT are simplified to three 4-rots and four 2-rots.

This example has shown the advantage of having pairs
of twiddle factors of the same size. When this occurs, the
constants obtained from reduction cancel each other. Likewise,
this example has shown the centering of an 8-rot, which
results in a 4-rot. Finally, contrary to the 512-point FFT in
section IV-D, in the current example both groups of 2-rots
obtained from decimating the largest rotator are centered after
merging the rotators in each group. This is done because the
2-rot resulting from decimating the W64 is reserved to absorb
the constant angles. Conversely, in the case of the 512-point
FFT one of the two groups must absorb the constant rotations
and, therefore, to center it would not have any advantage.

V. IMPLEMENTATION

The proposed 64-point SDF FFT in Fig. 11(b) has been
implemented in hardware. The internal structure of each stage
is the same as in Fig. 3.

All the rotators have been implemented by using the
combined coefficient selection and shift-and-add implemen-
tation (CCSSI) method [26]. This method obtains the rotation
coefficients for a set of input angles and a minimum effective
word length (W L E ). In the implementation, the effective word
length of the rotators has been chosen to be W L E ≥ 11.

Table III shows the coefficients that are obtained for the
three non-trivial rotators of the architecture. The first columns
shows the stage of the FFT where the rotator is placed.
The second column shows the number of SAS of the rotator.
The third and fourth columns show the rotation angles of the
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rotators represented as φ/L and in radians, respectively. The
fifth column shows the coefficients obtained by CCSSI for
these angles. And the last two columns show the W L E and
the number of adders of the rotators. It can be observed that
the rotators require 6, 8 and 6 adders, respectively, leading to
a total of 20 adders for the rotators in the architecture.

A consequence of the shift-and-add implementation of the
rotators according to [26] is the removal of the rotation
memories. These rotators do not need to store the real and
imaginary parts of the coefficient in a memory. Instead, they
only require a set of control signals that select the rotation
that is carried out at each time instant. These control signals
are obtained directly from the control counter c5c4c3c2c1c0 of
the FFT architecture. Let us consider the case of the 2-rot at
stage 4 in Table III. This rotator comes from the rotator by
{0,−1/64}. By applying [30], the rotation by 0 is calculated
when c5 · c0 = 0 and the rotation by −1/64 when c5 · c0 = 1.
When a constant angle −1/64 is added to the rotator, the 2-rot
by {−1/64,−1/32} is obtained. This changes the angles and
the rotation coefficients, but the control signals do not change.
Thus, the control signal that is used to select the rotation angle
in the 2-rot at stage 4 is calculated directly from the control
counter and the rotator does not need any rotation memory,
as an AND gate is enough to obtain the control signal.

Table IV shows post implementation results for the 64-point
SDF FFT on a Virtex-7 XC7VX330T FPGA. The design runs
at 250 MHz and uses 556 Slices that include 1807 LUTs
and 1406 FFs. Furthermore, the proposed 64-point SDF FFT
does not require any DSP Slice nor BRAM.

VI. COMPARISON

Table V compares the proposed approach to other radices.
The table includes the number of M-rots for each of the
alternatives. For the cases in the proposed approach, they
correspond to the rotators obtained in Section IV. Note that
the second column of the table, where a 64-point FFT is
considered, corresponds to the architecture in Section V. For
radix-2, 22 23 and 24, the type of each rotator is obtained by
considering that a WL rotator is a L/8 + 1-rot.

By comparing the M-rots in all the cases, it can be observed
that the proposed approach reduces the complexity of the
rotators. This is supported by the fact that the largest rotator
for the proposed approach is a 5-rot, whereas other radices
use larger rotators.

Table V also compares the rotator complexity in terms
of the number of adders when the rotators are implemented
as shift-and-add according to [26] with an effective word
length W L E ≥ 12 bits. To achieve this accuracy, the rotators
require the following number of adders [32]. For radix-2,
22, 23 and 24, a W8 uses 4 adders, a W16 uses 8 adders,
a W32 uses 8 adders, and larger rotators require a CORDIC
rotator with 11 stages, which uses 22 adders. For the proposed
approach, all the rotators require 6 or 8 adders.

The comparison in terms of the number of adders shows
that radix-24 achieves the best results among radix-2, 22, 23

and 24, and the proposed approach achieves the best results
among all the alternatives. The percentage of savings of the

TABLE V

ROTATOR COMPLEXITY FOR DIFFERENT RADICES AND FFT SIZES

proposed approach with respect to radix-24 when the rotators
are implemented as shift-and-add is reported in the last row
of Table V and it ranges from 4% to 33%.

Regarding experimental results, Table VI compares the
proposed 64-point SDF FFT to previous 64-point SDF FFT
architectures. We have also implemented a 64-point radix-24

SDF FFT that uses complex multipliers for the rotations and
obtained implementation results for this architecture when
using distributed logic and when using DSP slices for the
multipliers. The table includes the approach, device, word
length (W L), number of slices, look-up tables (LUTs), flip-
flops (FFs), block random access memories (BRAMs), digital
signal processing (DSP) slices, and clock frequency ( fC L K ).

The proposed architecture and the implemented radix-24

architecture only differ in the rotators, the control for these
rotators and the fact that the latter needs rotation memories
and the proposed one does not. As a result, the proposed
architecture save 233 slices, i.e., 41 % of the area of the entire
FFT. Likewise, with respect to [6], the proposed approach
saves 30% of the slices.

The equivalence between DSP slices and distributed logic
can be obtained by comparing the implemented radix-24 FFT
with and without DSPs, leading to the fact that each DSP
slice is equivalent to 197 LUTs and 183 FFs. By applying
this equivalence to [7], it can be deduced that the proposed
approach saves around 22% of the area with respect to [7].

The proposed architecture also reduces the number of slices
with respect to [2]–[5], although we must be aware that these
works use older FPGAs.
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TABLE VI

COMPARISON OF 64-POINT SDF FFTS ON FPGAS

Finally, the clock frequency of 250 MHz in the proposed
architecture is the highest clock frequency among 64-point
SDF FFTs.

VII. CONCLUSIONS

In this paper we have presented an approach to simplify
FFT hardware architectures that is based on transforming
the rotators in the architecture. These transformations are
decimation, reduction, center, move and merge. Decimation
transforms a twiddle factor into a simpler twiddle factor plus
a 2-rot; reduction extracts a constant angle from a twiddle
factor, which simplifies the twiddle factor; center halves the
number of SAS by rotating the angles of a 2m -rot; move
is used to move constant rotations among FFT stages; and
merge combines extracted rotators into a single one. The
use of these transformations leads to simpler rotators in FFT
hardware architectures. By comparing the proposed approach
to radix-23 and 24 algorithms, it has been shown that the
proposed approach reduces the rotator complexity between 4%
and 33% in FFTs from 64 to 1024 points, and the area of
a 64-point SDF FFT is reduced 41% with respect to using
complex multipliers.
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