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Abstract— Approximate multipliers attract a large interest in
the scientific literature that proposes several circuits built with
approximate 4-2 compressors. Due to the large number of pro-
posed solutions, the designer who wishes to use an approximate
4-2 compressor is faced with the problem of selecting the right
topology. In this paper, we present a comprehensive survey and
comparison of approximate 4-2 compressors previously proposed
in literature. We present also a novel approximate compressor,
so that a total of twelve different approximate 4-2 compressors
are analyzed. The investigated circuits are employed to design
8 × 8 and 16 × 16 multipliers, implemented in 28nm CMOS
technology. For each operand size we analyze two multiplier
configurations, with different levels of approximations, both
signed and unsigned. Our study highlights that there is no unique
winning approximate compressor topology since the best solution
depends on the required precision, on the signedness of the
multiplier and on the considered error metric.

Index Terms— Approximate computing, approximate
multiplier, approximate compressors, 4-2 compressors, digital
arithmetic.

I. INTRODUCTION

IMPROVING the energy efficiency of digital circuits is a
major requirement for modern systems on chip. Several

important applications such as machine learning, multimedia
digital signal processing, data mining, and data recognition are
error resilient [1]. For this kind of applications, approximate
computing is an effective way to obtain efficiency gain in terms
of power, speed, and area [2]–[4].

Hardware-level approximation has been investigated mainly
for arithmetic units, such as adders [5]–[10] and multipliers,
that often constitute one of the most energy-hungry digital
block [11].

Several approaches have been proposed to obtain highly
efficient approximate multipliers [12]. Approximate recursive
multipliers use elementary 2 × 2 approximate multiplier mod-
ules that are assembled to obtain n × n multipliers [13]–[15].
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The papers [16]–[18] approximate the result of n × n mul-
tipliers by using a small m × m multiplier (with m < n).
Ref. [19] exploits approximation in the generation of the
partial products by omitting the calculation of some partial
products of the multiplier. Logarithmic multipliers [20], [21]
sum an approximation of the logarithm of the operands and
computes the result as an approximation of the antilogarithm
of the sum. In truncated multipliers, [22], [23], some of
the partial products are not formed and the resulting trun-
cation error is mitigated with the help of suitable correction
functions. Other approaches include runtime configuration of
the approximation [24], approximate Booth encoding [25],
approximate redundant binary multipliers [26] and cooperation
of approximation techniques [27],

The use of approximate compressors has recently emerged
as a viable alternative to implement approximate multiplier.
Compressors (also known as “one counters”) are used to
turn the multi-operand sum of the partial products into a
two-operand addition, using tree-based logarithmic reduction
schemes, such as Wallace [28], Dadda [29], or the Three-
Dimensional Method TDM [30]. The most used compressor
is the full-adder, that can be defined as a (3,2) compressor
because it converts three inputs into a count encoded in two
outputs. The half-adder and higher-order compressors (such
as 4-2 or 5-3) are also commonly employed in multipli-
ers [31], [32]. Hardware-efficient 6-3 and 7-3 exact compres-
sors are developed in [33] using the concept of the stacking
circuit.

Approximate multipliers can be obtained by substituting
some of the exact compressors with simpler circuits that
introduce some errors but give efficiency gain in terms of
power, speed and area. Approximate compressors obtained
by truncating the outputs of exact compressors are proposed
in [34], while approximate compressors with only two outputs
are used in [35], [36]. The paper [37] proposes an approximate
15-4 compressor, built using 5-3 compressor as basic module.
The approach in [38] performs lossy compression of the partial
product rows, using approximate half-adders to generate a
reduced set of product terms. Simple OR gates as approximate
counters are employed in [39]. Ref. [40] presents a new
family of approximate compressors, where the outputs of
compressors have the same weight of the inputs i.e. there are
no carry outputs. Two 4 × 4 approximate multipliers, with
different accuracies, are developed in [41], using encoded
partial products and approximate compressors; the proposed
4 × 4 multipliers are used as building blocks for scaling up to
larger multipliers.
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In this paper, we focus our attention on 4-2 compressors,
that are commonly used to build exact multipliers [42],
owing to the simplified wiring and the efficient transistor-
level implementation [43]–[45]. Several approaches have been
recently proposed to design approximate 4-2 compressors and
to use them to obtain approximate multipliers [46]–[54]. Due
to the large number of proposed solutions, the designer who
wishes to use approximate 4-2 compressors in a multiplier
has a difficult time in selecting the right topology. In this
paper we present a comprehensive survey and comparison of
previously proposed approximate 4-2 compressors, focusing
on the architectures designed to be employed in standard tree-
based multipliers.

We show that the stacking circuit technique [33] can be
modified to design approximate compressors, we highlight that
some of the previously proposed approximate 4-2 compressors
can be derived in this way and we present a new approximate
4-2 compressor. Overall, we analyze a total of twelve different
approximate 4-2 compressors.

The investigated circuits (plus a hybrid solution using two
different approximate 4-2 compressors to reduce different
parts of the partial product matrix) are employed to design
8 × 8 and 16 × 16 multipliers, implemented in 28nm CMOS
technology. For each operand size, we analyze two multiplier
configurations, with different levels of approximations, both
signed and unsigned.

The paper highlights that the error performance of mul-
tipliers using approximate 4-2 compressors depends on the
specific connection of each partial product to each input of the
approximate compressors. This point is overlooked in previous
papers and makes challenging the design of the partial product
reduction tree.

Our analysis shows that approximate compressors are well
suited for the implementation of unsigned multipliers, while
their use in signed multipliers can cause a significant degra-
dation of precision, especially when used in the left-most
columns of the partial products matrix.

The comparison between the circuits presented in this
paper shows that a significant improvement in electrical
performance is provided for certain approximate 4-2 com-
pressors (more than 50% power and delay reduction), while
other designs yield a much lower power saving. Consid-
ering the power-accuracy tradeoff, our analysis shows that
there is no unique winning topology since the best solu-
tion depends on the required precision, on the considered
error metric and on the signedness of the multiplier.
We report tradeoff curves, showing power vs. precision,
that can be helpful for the selection of the best suited
topology.

We test the approximate multipliers in some examples of
image processing. It is shown that some of the investigated
approximate multipliers, while performing well for image
blending, show less satisfactory behavior in the other test
cases.

The main contributions of the paper are:
• a comprehensive survey and comparison of the approxi-

mate 4-2 compressors presented in the literature;
• development of a novel approximate compressor,

obtained by modifying the technique of the stacking
circuit;

• highlight that the partial product reduction tree with
approximate compressors should be designed by optimiz-
ing the specific connection of each partial product to each

input of the approximate compressors, to minimize the
error rate;

• show that approximate compressors are well suited for
unsigned multipliers, while their use in signed multipliers
can result in a significant degradation of precision;

• show power-accuracy tradeoff curves that can be helpful
for the selection of the approximate compressor that is
best suited for a specific application;

The paper is organized as follows. Section II reviews pre-
viously proposed approximate 4-2 compressors and presents a
new proposed circuit. Section III analyzes the error character-
istics of the multipliers, VLSI implementation results and the
trade-off curves between accuracy and power. Applications of
the developed multipliers for image processing are presented
in Section IV.

II. 4-2 COMPRESSORS

A. Exact Compressor

An exact 4-2 compressor should more properly be called a
(5,3) counter since it has five inputs of equal weight (denoted
as x1, x2, x3, x4, Tin) and three outputs, S, C and Tout . The
S output has the same weight as the inputs, while C and Tout
have a double weight. The compressor is designed so that
Tout is not dependent on Tin ; this feature is exploited in tree
multipliers, where Tout produced by a 4-2 compressor in the
i -th column is connected to Tin of a compressor in column
i +1, without impacting on delay. The Fig. 1 shows a common
implementation of a 4-2 compressor, using two full adders;
more efficient designs are proposed in [43]–[45].

B. Previously Proposed Approximate 4-2 Compressors

The Tin and Tout pins are not used in most of previously
proposed approximate 4-2 compressors (with some exceptions,
[55]), to simplify both circuit implementation and wiring. The
maximum value that can be encoded by using only S and C
outputs is three. Having four inputs x1, ..x4, it is obvious that
at least one error (when all inputs are ‘1’) is unavoidable.

Fig. 2(a) shows the schematic of the approximate 4-2 com-
pressor proposed in [46], while the approximate compressor
proposed in [47] is shown in Fig. 2(b). These circuits (referred
in the following as “Momeni” and “Venka”) introduce errors in
the truth-table of the exact 4-2 compressor to obtain a simpler
logic implementation.

Three approximate 4-2 compressors are reported in [48],
that will be referred as “Yang1”, “Yang2” and “Yang3” in
the following. The schematics of the compressors are shown
in Fig. 2(c)-(e). The Yang1 compressor, in Fig. 2(c), is the most
accurate version, with a single error in the truth table: when all
inputs are ‘1’ the output is C = 1, S = 1. This behavior corre-
sponds to the so-called “saturating counter” proposed in [49].
The Yang2 and Yang3 circuits in Fig. 2(d-e) aim at simplifying
the S output circuitry while introducing additional errors in
the truth table of the compressor. The Fig. 2(f) shows the
schematic of the approximate 4-2 compressor proposed in [50],
(named “Lin” compressor in the following). An erroneous
result is produced when all inputs are ‘1’, as in the Yang1 com-
pressor, but in this case the outputs are C = 1, S = 0, resulting
in a difference of two between the number of inputs ‘1’ and
the approximate count value computed by compressor. The
behavior of the Lin compressor corresponds to the “reflecting
4:2 counter” proposed in [49]. In [51], the C output of the
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Fig. 1. An exact 4-2 compressor implemented with two full-adders.

approximate compressor of Fig. 2(e) is modified; the proposed
design (named “Ha” compressor in the following) can be
implemented as depicted in Fig. 2(g). The truth table of the Ha
compressor has four inexact entries (like Yang3 compressor)
but has the characteristic of always underestimating the exact
result. Dual-quality 4-2 compressors, having the flexibility of
switching between exact and approximate operating modes,
are presented in [52]. Fig. 2(h-i) shows the approximate part of
the compressors in [52] that will be referred as “Akbari1” and
“Akbari2”, respectively. A simple approximate compressor is
proposed in [53]. The circuit, named in the following “Sabetz”
and shown in Fig. 2(l), consists of majority gate, does not use
the x2 input and assumes that S output is constant and equal
to ‘1’. The compressor in [54], referred as “Ahma”, is also
very hardware efficient, using only three NOR and one NAND
gates, as shown in Fig. 2(m).

C. Proposed Approximate 4-2 Compressor

The proposed approximate 4-2 compressor uses the concept
of the stacking circuit, originally introduced in [33] to design
hardware-efficient 6-3 and 7-3 exact compressors and modified
here to obtain approximate compressors. Given the four inputs
x1, x2, x3, x4, a 4-bit stacker circuit has four outputs y1,
y2, y3, y4 such that: y1 will be high if any of the inputs is
‘1’, y2 will be high if any two of the inputs are ‘1’ and so
on. A four-bit stacker is described by the following Boolean
equations:

y1 = x1 + x2 + x3 + x4 (1)

y2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 (2)

y3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 (3)

y4 = x1x2x3x4 (4)

In designing a compressor, we can count the number of yi
that are ‘1’ instead of counting the xi , since it easy to see that:

4∑
i=1

xi =
4∑

i=1
yi (the summation here indicates the counting of

the Boolean terms that are ‘1’).
Let us assume that the inputs x1..x4 are independent of

each other and let us indicate as p their probability of being
‘1’. Analysis of (1)-(4) reveals that y1 is the term having
the highest probability of being ‘1’, followed by y2, y3 and
by y4 that is the lowest-probability term (for example, for
p = 0.5 the probabilities of the yi terms are: P(y1) = 0.9375,
P(y2) = 0.6875, P(y3) = 0.3125 and P(y1) = 0.0625).

Since the maximum count value of an approximate 4-2
compressor is three, we have to neglect one of the yi terms in
(1)-(4); from the above discussion the choice that minimizes
the error probability is to neglect y4. Our aim is now to
obtain three new Boolean functions w1, w2, w3, simpler than

(1)-(3), such that
3∑

i=1
wi =

3∑
i=1

yi . We proceed by successive

approximations. In a first step, the wi are constructed so as
to be as simple as possible, while covering all cases in which
y1 is ‘1’ (remember that y1 is the highest probability term
in (1)-(3)). A possible solution is

w1 = x1 + x2 (5)

w2 = x3 (6)

w3 = x4 (7)

By counting the number of wi that are ‘1’ in (5)-(7) we
cover not only all the cases in which y1 = ‘1�, but also all
the cases in which y2 = ‘1�, with the exception of the case in
which x1x2 = ‘1� (note that y2 is the term in (1)-(3) which
has the higher probability, after y1). Furthermore, two of the
four cases where y3 is ‘1’ are also covered by (5)-(7). Thus,
an approximate 4-2 compressor can be obtained by counting,
with the help of a full-adder, the number wi that are ‘1’ in
(5)-(7), as shown in Fig. 3(a); the truth table of this circuit
corresponds to Ha compressor, [51].

A more accurate compressor can be obtained by including
in (5)-(7) the term x1x2 needed to cover all the cases in
which y2 is high. This can be achieved by modifying w2 as
follows:

w�
2 = x3 + x1x2 (8)

The approximate 4-2 compressor obtained from (5),(7),
and (8) has never been proposed before and covers also
all the cases in which y3 is high, except for the case
in which x1x2x3 = ‘1�. The corresponding circuit, shown
in Fig. 3(b) will be named “Proposed” compressor in the
following.

An even more accurate circuit can finally be obtained by
including the term x1x2x3 in w3:

w�
3 = x4 + x1x2x3 (9)

The equations (5),(8), and (9) satisfy the condition
3∑

i=1
wi =

3∑
i=1

yi . The corresponding circuit is shown

in Fig. 3(c) and has the same truth table of the Yang1
compressor.

D. Approximate Compressors Characteristics

Table I reports the truth tables of the approximate 4-2 com-
pressors of Fig. 2 and Fig. 3(b). The erroneous values in the
truth tables are highlighted in bold. The columns denoted as E
report the error, defined as the difference between the number
of inputs ‘1’ and the approximate count value computed by
compressors.

The Yang1 (Fig. 2(c)) and Lin (Fig. 2(f)) compressors have a
single error in the truth table. The Proposed circuit (Fig. 3(b))
and the Yang2 compressor (Fig. 2(d)) exhibit two erroneous
entries, while the other approximate compressors show a larger
number of errors. For the Yang3, Ha and Proposed compres-
sors, the error condition occurs when x3x4 = ‘1�, while in the
Proposed circuit the error takes place for x1x2x3 = ‘1�. In the
other compressors, the errors are more uniformly spread across
the table.

III. MULTIPLIER DESIGN AND PERFORMANCE

We use the approximate 4-2 compressors to implement
n × n multipliers, with n = 8 and n = 16, and consider
two configurations for each multiplier:
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Fig. 2. Schematic of the previously proposed approximate 4-2 compressors. (a) Momeni et. al., [46] (b) Venkatachalam et. al, [47] (c-d-e) Yang et. al [48],
(f) Lin et. al [50], (g) Ha et al. [51], (h-i) Akbari et. al [52], (l) Sabetzadeh et. al [53], (m) Ahmadinejad et. al [54]. The modules AO222 and AO22 refer
to compound And-Or gates, while the module OAI212 refer to a compound Or-And-Invert gate. Their behavior is the following (where dot “·” stands for
“and” and plus “+” for “or”): AO222 (six-inputs gate): Y = A · B + C · D + E · F; AO22 (four-inputs gate): Y = A · B + C · D; OAI212 (five-inputs gate):
Y = not ((A + B) · C · (D + E)).

TABLE I

TRUTH TABLES OF THE APPROXIMATE 4-2 COMPRESSORS

Fig. 3. Derivation of approximate 4-2 compressor using the concept of the stacking circuit. (a) Compressor obtained from (5),(6),(7); its behavior corresponds
to the circuit proposed in [51]. (b) Proposed approximate 4-2 compressor obtained from (5),(7),(8). (c) Compressor obtained from (5),(8),(9); its behavior
corresponds to the Yang1 circuit shown in Fig. 2(c).

i) C-N: uses approximate 4-2 compressors only in the n
less significant columns of the partial-product matrix
(PPM). Aims at minimizing the errors.

ii) C-FULL: uses approximate 4-2 compressors in all the
PPM. This is a more aggressive approach, aimed at
minimizing the power dissipation.

A. Partial Products Reduction
The PPM is reduced by using an approach like the Dadda

multiplier, using several stages of compressors to reduce the
maximum height of the PPM to two rows. The maximum
height is calculated by working back from the final stage.
Owing to the use of 4-2 compressors, this gives 2, 4, 8,
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Fig. 4. Reduction scheme for an 8 × 8 unsigned multiplier with C − N
configuration (approximate 4-2 compressors are used only in the 8 less
significant columns of the partial-product matrix). Carry and Sum outputs
of approximate 4-2 compressors are shown linked by dotted lines, while solid
lines are used for full adders and exact 4-2 compressors outputs. Half adder
outputs are linked by a solid line with a vertical bar.

16, 32, …as the maximum heights for the various stages. Full
and half adders are used only when they are strictly needed
to obtain the required reduction of the PPM.

Fig. 4 shows, as an example, the reduction scheme for an
unsigned 8 × 8 multiplier, C-N configuration. In this diagram,
Carry and Sum outputs of the approximate 4-2 compressors
are shown linked by dotted lines, while solid lines are used
for the outputs of exact 4-2 compressors and full adders. Half
adder outputs are linked by a solid line with a vertical bar.
The arrowed lines in Fig. 4 denote the connections between
the Tin-Tout pins of exact 4-2 compressors. Note the full-adder
in column #12 of the first stage and the full-adder in column
#14 of the second stage, needed to accept the Tout signal of
the exact 4-2 compressor in the previous column.

In the C-N configuration, the 8×8 multiplier uses 9 approx-
imate 4-2 compressors and 8 exact compressors, while in
the 16 × 16 multiplier the number of approximate and exact
compressor is 49 and 48, respectively.

It is important to observe that the investigated approxi-
mate compressors (apart from Yang1 and Lin) are not input
symmetric, since the error depends on the specific order in
which the input bits are connected to the x1, x2, x3, and
x4 inputs. In other words, for the same number of inputs
‘1’, the count value can change if the inputs are permuted
(on the contrary, the inputs of exact compressors can be
freely permuted without changing system functionality). As an
example, the Ha compressor for input x4x3x2x1 = 1100 gives
a count value of one, while for input x4x3x2x1 = 0011 yields
a count value of two.

Therefore, the error performance of a partial products reduc-
tion tree depends on the specific connection of every signal
to every input of the approximate compressors. To minimize
the error rate, the probability of the signals driving the inputs
of the approximate compressors should be considered while
designing the partial product compression tree. This point
is overlooked in previous papers and makes the design of
the partial product reduction tree challenging. Furthermore,
not knowing the exact order of connections used in previous
papers, it is difficult to regain (and compare) the results
presented in the previous art.

In our analysis we proceed as follows (let us consider an
unsigned multiplier, for the time being). In the first partial
product reduction stage, all partial products are independent of

Fig. 5. Partial products probability of the second stage of the multiplier of
Fig. 4 using the approximate Ha compressor [51]. The figure shows an input
configuration for the approximate 4-2 compressors in the second stage that
minimizes the error probability.

Fig. 6. Partial products probability of the second stage of the multiplier
of Fig. 4 using the approximate 4-2 compressor proposed in this paper.
The figure shows a possible input configuration for the approximate 4-2
compressors that minimizes the error probability.

each other and their probability of being ‘1’ (simply indicated
as probability in the following) is 1/4. Therefore, there is
no preferential connection between these partial products and
approximate compressor inputs. Then, the probabilities of
the partial products of the second stage are calculated from
the compressor truth table [40]. For instance, in the Ha
compressor, the probability that S is ‘1’ is:

p(S) = p(x4x3x2x1 = 0001) + p(x4x3x2x1 = 0001) + . . .

. . . + p(x4x3x2x1 = 1100) + p(x4x3x2x1 = 1111)

= 124/256

The contribution of each term in the sum is easily obtained
from the xi probability; as an example: p(x4x3x2x1 =
1100) = p(x4)p(x3)(1 − p(x2)(1 − p(x1)) = 9/256 For the
other compressors the output probabilities are obtained in a
similar way.

Fig. 5 shows, as an example, the columns 5-8 of the PPM
of Fig. 4, using the Ha compressor, with the partial products
of the second stage annotated with their probability. In the Ha
circuit an error occurs when x3x4 = ‘1� therefore, to minimize
the error probability, x3 and x4 should be driven by the
two partial products with lower probability, as shown in the
same Fig. 5.

The situation is quite like the one of Fig. 5 when Yang2
or Yang3 approximate compressor are employed: for Yang3
compressor the error conditions are the same as the Ha
compressor, while for Yang2 the error conditions are a subset
of the ones of Ha compressor.

In the approximate compressor proposed in this paper,
the error condition is x1x2 x3 = ‘1� therefore, to minimize the
error probability, x4 should be driven by the partial product
with higher probability. This gives a different configuration,
as depicted in Fig. 6.

For the other approximate 4-2 compressors it is more
difficult to determine the optimal connection between partial
products and approximate compressor inputs that minimizes
the error probability since the errors are scattered in the truth
table (see Table I). Luckily, this scattering of the error con-
ditions also helps in minimizing the influence of the specific
connection of every signal to every input of the approximate
compressor on the overall multiplier performance. After trying
several configurations, we found that using the same scheme
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Fig. 7. Left-most columns of the PPM of an 8×8 signed multiplier, C-FULL
configuration. The star symbols represent the complemented partial products.
The probability of the inputs of the two approximate 4-2 compressors in
columns #12 and #13 is highlighted (the use of proposed approximate 4-
2 compressor is assumed).

employed for the Ha, Yang2 and Yang3 compressors gives the
best performances also for the other investigated circuits.

The proposed approach can be applied also to partial
products reduction in signed multiplier. In this case, how-
ever, the designer should consider that complemented partial
products (appearing in the PPM of signed multipliers) have a
probability of 3/4 of being ‘1’. This increases the occurrence
of errors, due to the higher probability of partial products.

To better explain this phenomenon, the Fig. 7 shows a
portion (left-most columns) of the PPM of an 8 × 8 signed
multiplier, C-FULL configuration, where the star symbols
represent the complemented partial products. The Figure high-
lights the probability of the inputs of the two approximate 4-2
compressors in columns #12 and #13. The error probability of
these two compressors, using proposed circuit, is about 11%.
As shown in the following (see Tab. II) this value is larger than
the error probability of the entire 8×8 unsigned multiplier C-N
configuration and not far from the error probability of the 8×8
C-FULL unsigned multiplier. A similar behavior is shown by
all other approximate compressors, since in all topologies a
significant increase in error rate occurs when the probability
of partial products increases.

B. Error Metrics

Several metrics have been proposed to assess the error
characteristics of approximate arithmetic circuits [12], [40],
[56], [57]. Let us indicate as M and M � the results produced
by an exact and an approximate multiplier, respectively; the
Error Distance is defined as: E D = |M − M �| and the Relative
Error Distance as: RE D = E D/|M| (for M �= 0). Finally,
let us indicate as MaxOut the maximum absolute value of
the accurate multiplier: Max Out = (2n − 1)2 for unsigned
multipliers and: Max Out = 22n−2 for signed multipliers.

The metrics considered in the following are:
• ER: The Error Rate, which is the percentage of multipli-

cations for which E D > 0.
• NMED: The Normalized Mean Error Distance, defined as

the average value of ED divided by MaxOut.
• MRED: The Mean Relative Error Distance, defined as the

average value of RED.
• NoE B = 2n − log2(1 + E RM S): The Number of

Effective bits, defined as in [40], where ERMS is the root
mean square of ED.

• PRED introduced in [57] as the probability of having
RED higher than 2 percent.

To obtain the error metrics, we have performed exhaustive
simulations for 8 × 8 multipliers, while simulations using
50 million random vectors have been used for the 16 × 16
multipliers.

1) Unsigned Multipliers: Tables II and III summarize the
results obtained for the unsigned multipliers. The Yang1
compressor gives the best error performance, followed by
the Lin compressor; both circuits have a single error in the
truth table and hence show the same error rate. The Lin
compressor is less accurate and hence the multipliers using Lin
compressor exhibit larger NMED, MRED, PRED and lower
NoEB compared to Yang1.

The multipliers using the Proposed compressor show good
error performances, very close to the one of Lin, with a slightly
larger NoEB. The multipliers using Yang2, Yang3, and Ha (in
this order) follow in the ranking. Yang3 and Ha show the same
error rate, as expected. The Momeni, Venka, Sabetz, Ahma
and Akbari compressors show worse error performance, with
Akbari2 and Venka having the same error rate. As expected,
multipliers using C-FULL configuration show a sensible degra-
dation in accuracy, compared to C-N. Only the multipliers
using Yang1, Lin and proposed compressors allow to obtain
MRED<0.01 for both 8 × 8 and 16 × 16 multipliers. Momeni
and Sabetz multipliers show a large MRED and PRED close
to 1; this can be explained observing, from Table I, that these
compressors give a non-zero output when their inputs are zero.
Let us assume that one of two operands of a multiplier is small:
in this case the left-most columns of the partial product matrix
are zero, but the Momeni/Sabetz approximate compressors
placed there produce high S outputs, that appear in the most
significant bits of the product. Therefore, an erroneous result
is computed, with a very large relative error.

The last row in Tables II-V refers to a Hybrid configuration.
In Hybrid multiplier we use two compressor types to reduce
the PPM, with the aim of improving the trade-off between
error and electrical performance (that will be discussed in the
next subsection). To that purpose, in the right-most columns
of the PPM (having a lower weight) we employ a simple
compressor, characterized by low power dissipation, whereas
in the right-most columns of the PPM (that directly contribute
to the most significant bits of the result) we use a low-error
compressor. Based on the results of Tables II-VI, the choice
for right-most columns of the PPM fell on Ahma circuit,
(we prefer not using Sabetz/Momeni compressors due to their
undesired characteristic of giving non-zero output when all
inputs are zero) and to the Proposed circuit for the left-most
columns of the PPM (Lin compressor, slightly more accurate
but also more power hangry, would be another reasonable
choice). The subdivision between right-most and left-most
PPM columns is somewhat arbitrary. In the following, for
the C-N configuration, Ahma compressor is used in the less
significant (3/4)n columns of the PPM, while the Proposed
compressor is employed in the following n/4 columns. For the
C-FULL configuration, Ahma is used in the less significant n
columns of the PPM, with Proposed compressors used in the
following columns.

In terms of error metrics, the Hybrid configuration shows
NMED and NoEB not far from the ones achievable with
the Proposed compressor, while the ER, MRED and PRED
are higher but still much better than the ones of the Ahma
compressor.

2) Signed Multipliers: Results for signed multipliers are
reported in Tables IV and V. For the C-N configuration, error
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Fig. 8. Trade-off curves for unsigned multipliers. Top: 8 × 8 multipliers; Bottom: 16 × 16 multipliers. The red symbols (circled by the dotted lines) refer to
the C − N configuration, while the blue symbols refer to the C-FULL multiplier configuration. The dashed green line represents the Pareto-optimal frontier,
given by configurations with the best tradeoff.

TABLE II

ERROR PERFORMANCE OF THE 8 × 8 UNSIGNED MULTIPLIERS

TABLE III

ERROR PERFORMANCE OF THE 16 × 16 UNSIGNED MULTIPLIERS

rate and NoEB are close to the ones of unsigned multipliers,
while a performance degradation is observed for NMED.
On the other hand, the MRED and PRED show an evident
deterioration. The situation is much worse for C-FULL: here
all performance parameters decrease significantly compared to
unsigned multiplier. The MRED becomes very large (higher

than 1 in all cases except for 8 × 8 multipliers that use Yang1
or Yang2 compressors), highlighting the presence of frequent
and large relative errors. This phenomenon is due to two
factors. The first one is the increase in error rate, due to the
approximate compressors placed in the left columns of the
PPM, where high probability complemented partial products
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TABLE IV

ERROR PERFORMANCE OF THE 8 × 8 SIGNED MULTIPLIERS

TABLE V

ERROR PERFORMANCE OF THE 16 × 16 SIGNED MULTIPLIERS

are present. The second one is due to the fact that errors are
likely to occur by multiplying small negative numbers (with
many ‘1’ bits); in this condition the exact product M is small
in magnitude and the Relative Error Distance E D/|M| is very
large (this is similar to what occurs in approximate adders with
signed operands [10]).

C. VLSI Implementation

In order to investigate the electrical performance of the
approximate 4-2 compressors, the multipliers are described
in HDL and synthesized by targeting a commercial standard-
cell library in 28nm CMOS, from TSMC. Physical synthesis
is performed by using Cadence Genus; no special cells are
designed to implement the approximate compressors, that
are automatically synthesized according to timing constraints,
as this allows to perform a fair comparison between the various
compressors. Please note also that the employed standard-
cell library does not include any special 4-2 compressor
cell. Again, this allows a fair comparison between exact and
approximate compressors. We assume typical corner, standard-
VT devices, with nominal supply voltage of 0.9V; the output
loading corresponds to a fan-out of four inverters 2×. Power
dissipation is computed by simulating the final netlist with
100,000 random vectors to obtain the switching activity of
each node; the toggle frequency is 1GHz.

The Table VI reports the electrical performance of unsigned
multipliers; the signed multipliers exhibit very similar charac-
teristics. In this Table, “min delay” is the minimum delay at
which the circuits can be synthesized, while area and power
are obtained by synthesizing all the circuits with the same
timing constraint (to make a fair comparison): 500ps, and

750ps for 8×8 and 16×16 multipliers, respectively. In addition
to the configurations using the approximate 4-2 compressors,
multipliers using exact 4-2 compressors are also implemented,
for comparison (corresponding results are reported in the
column labeled “exact” in Table VI). The Table VI also shows
the variations with respect to the exact multiplier, reported
as a percentage, with a negative percentage that indicates an
improvement.

1) 8 × 8 Multipliers, C-FULL Configuration: The best
performance is achieved by Sabetz compressor, owing to its
simplicity, followed by Ahma, Momeni and Akbari1 compres-
sors. The Yang1 design shows a modest 12% improvement in
speed, as expected due to the complexity of the compressor
cell. This behavior is confirmed by area and power results, that
for Yang1 are higher that exact multiplier; the improvement in
area and power is marginal also for Yang2. The Hybrid circuit
shows a remarkable 36% reduction in power dissipation.

2) 8 × 8 Multipliers, C-N Configuration: Speed improve-
ment is limited and is similar for all the considered multipliers,
because the critical path traverses just one approximate com-
pressor. Again, the best power reduction (more than 30%) is
obtained with the Sabetz compressor, while Ahma and Momeni
give a power saving of about 20%. The Proposed compressor
allows 8.5% power reduction (like Yang3 and Lin), while the
Hybrid compressor yields about 14% power improvement,
in line with Venka, Ha, and Akbari topologies.

3) 16 × 16 Multipliers: The behavior is like the one
described for 8 × 8 multipliers. The delay improvement for
C-N configuration is limited (lower than 5%), while for
C-FULL configuration a delay reduction up to about 50% is
obtained with Sabetz compressor.
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TABLE VI

AREA, DELAY AND POWER OF EXACT AND APPROXIMATE MULTIPLIERS

TABLE VII

IMAGE BLENDING RESULTS

The largest power reduction is obtained again by Sabetz
compressor (ranging from about 40% for C-N configuration
to about 80% for C-FULL configuration) followed by Ahma,
Momeni, Akbari1 and Hybrid compressors (the Hybrid circuit
exhibits about 45% power reduction for 16 × 16 multiplier,
C-FULL configuration).

D. Tradeoffs

1) Unsigned Multipliers: Fig. 8 shows the tradeoff curves
(power reduction vs. NMED, MRED, and NoEB) for 8 × 8
and 16×16 multipliers. In this Figure the red symbols (circled
by the dotted lines) refer to the C-N configuration, while the
blue symbols refer to the C-FULL multipliers configuration.
The green dashed line represents the Pareto-optimal frontier,
given by configurations with the best power-accuracy tradeoff.

As expected, there is no unique winning topology since
the best solution depends on the required precision and on
the considered metric. The plots displaying power reduction
vs NMED, C-N configuration, show that Lin, Proposed, Ha
and Hybrid compressors lie on the Pareto-optimal frontier,

followed by Ahma and Sabetz (these two latter compressors
characterized by larger NMED).

For the C-FULL configuration only Hybrid, Ahma and
Sabetz lie on the Pareto frontier; the power saving gained by
the C-FULL configuration is paid with a substantial increase
of NMED especially for 16×16 multipliers. A similar picture
is observed when MRED is considered as accuracy metric.
It is worthwhile to note that in the C-FULL configuration
Ahma and Sabetz allow to reach a remarkable power saving
but the corresponding MRED becomes very large (higher than
0.1). By analyzing the power reduction vs NoEB plots, it can
be observed that 16 × 16 multipliers show two well dis-
tinct clusters, corresponding C-FULL and C-N configurations.
Again, Lin, Proposed, Ha and Hybrid compressors lie on the
high-precision side of the Pareto-optimal frontier for the C-N
configuration, while Ahma and Sabetz give the best trade-off
when a larger decrease in the precision can be tolerated.

In all considered cases, Momeni, Venka, Akbari and Yang
topologies reveal sub-optimal.

2) Signed Multipliers: Results for signed multipliers are
shown in Fig. 9. The topologies on the Pareto-optimal frontier
are the same found for unsigned multipliers. It is worth noting,
however, that the two clusters, corresponding C-FULL and
C-N configurations, are more clearly separated, compared to
Fig. 8, especially for 16 × 16 multipliers. This implies that
any power improvement in C-FULL configuration (compared
to C-N) results in a drastic worsening of the error; therefore,
the use of C-FULL multipliers in signed multipliers is not
recommended.

For example, the 16bit C-N multiplier with Sabetz compres-
sors achieves an NMED of 1.5×10−5 with a power saving of
about 39%; with C-FULL configuration the compressor giving
lower NMED and better power saving is Hybrid, with 45.3%
power saving but a three orders of magnitude larger NMED,
about 1.1 × 10−2.

IV. APPLICATIONS

In order to investigate the behavior of the approximate mul-
tipliers in typical error-resilient applications, we considered
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Fig. 9. Trade-off curves for the signed multipliers. Top: 8 × 8 multipliers; Bottom: 16 × 16 multipliers. The red symbols (circled by the dotted lines) refer to
the C − N configuration, while the blue symbols refer to the C-FULL multiplier configuration. The dashed green line represents the Pareto-optimal frontier,
given by configurations with the best tradeoff.

Fig. 10. Image blending results. A multiplier is used to multiply “Lena” and “Cameraman” images on a pixel by pixel basis. Top left: original “Lena” image.
Top, second left: original “Cameraman” image. Top, third left: reference result, obtained by using an exact 8 × 8 multiplier to blend the two original images.
Other images: results obtained with approximate multipliers (C-FULL configuration) using the investigated 4-2 compressors.

some examples of image processing using either unsigned or
signed multipliers.

A. Unsigned Multipliers

1) Image Blending: In this application [20], [46], [53], [54],
two 8-bit grayscale images are multiplied on a pixel-by-pixel
basis; the product is scaled back to 8-bit, to obtain a final 8bit
grayscale image that blends the two input images. We have
performed the processing using C-FULL multipliers and a set
of test images. To assess the quality of the generated outputs,
they have been compared with a reference image obtained with
an exact 8×8 multiplier. The peak signal-to-noise ratio (PSNR)

and the mean structural similarity index (SSIM) are used as
metrics to compare the quality of the output images with the
reference one.

The Fig. 10 shows an example of image blending, while
Tab. VII reports PSNR and SSIM for some image combi-
nations. Most of the investigated compressors work well in
this application, with SSIM close to 1 and PSNR larger than
45dB; the Hybrid circuit performs very well. The multipliers
using Momeni, Sabetz and Akbari1 compressors, while having
a good power reduction, show relatively low PSNR and
SSIM; the use of Ahma compressor also results in a visible
degradation of the image quality.
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TABLE VIII

RESULTS FOR IMAGE SMOOTHING AND SHARPENING

2) Image Smoothing and Sharpening: Image smoothing and
image sharpening are commonly used benchmarks to analyze
the performance of approximate multipliers in the scientific
literature. In image smoothing [52], [58], [54], each output
pixel is computed as:

Y (i, j) = 1

60

2∑

m=−2

2∑

n=−2

I (i + m, j + n)h1(m + 3, n + 3)

(10)

while in the sharpening application [18], [36], [41], [48], [51],
[52], [54]:

Y (i, j) = 2I (i, j)

− 1

273

2∑

m=−2

2∑

n=−2

I (i + m, j + n)h2(m + 3, n + 3)

(11)

Following the previous papers, in (10),(11) the multipli-
cations are approximate while other operations (addition,
subtraction and division) are exact. We have performed
the processing using the C-FULL multiplier configuration;
the Fig. 11 displays some examples of results obtained with
the “boat” test image and shows the 5 × 5 mask matrices h1
and h2. The Tab. VIII reports PSNR and SSIM for different
images and filtering types.

The C-FULL multipliers built with the Momeni and Sabetz
compressors fail in this application (the pixel computation
always produces a faulty result) due to the error mechanism
discussed in Sect. III-B-1 that reveals very critical when
using mask matrices like h1 and h2 in Fig. 11, with several
coefficients small in size (please note that Momeni and Sabetz
compressors can be used with some success if employed
in less aggressive approximate multiplier configurations,
like C-N).

In the considered image smoothing and sharpening applica-
tions, the Yang1 and the Lin compressors give the same result
as the exact multiplier (i.e. no errors are introduced with the
mask matrices h1 and h2, owing to the very low error rate
reported in Table II), while the Proposed compressor produces
an exact result for image smoothing and a result very close to
the exact one (but not exactly the same) for image sharpening.
The Hybrid multiplier gives an SSIM of about 0.99, with a
very good PSNR of about 40dB.

The image obtained with the Akbari1 multiplier show
several artifacts, especially for image sharpening; Akbari2,
Ahma and Venka show a PSNR in the range 25-35dB, while

TABLE IX

EDGE DETECTION RESULTS

better results are achieved with the Yang2, Yang3 and Ha
compressors.

B. Signed Multipliers

To test the behavior of approximate signed multipliers,
we considered edge detection using the Sobel operator, that
finds several applications in computer vision for low-level
feature extraction. In this application the x and y component
of the gradient of the image I (indicated as G X and GY ) are
computed by convolving the image with the two kernels SX
and SY [59], [60]:

G X = SX ∗ I ; GY = SY ∗ I (12)

The kernel SX (corresponding to a 5 × 5 Sobel template),
is shown in Fig. 12, and SY is the transpose of SX . The edges
of the image are extracted from the gradient magnitude, given
by:

G =
√

G2
X + G2

Y (13)

In our tests, the convolutions in (12) are realized with
approximate C-N signed multiplier, while square and square
root in (13) are exact. The Fig. 12 shows some results obtained
with the “Lena” test image, while Tab. IX reports PSNR and
SSIM obtained for some test images.

As it can be observed, in this application only Yang,
Lin, Proposed and Hybrid multipliers give acceptable results,
with PSNR larger than 25dB. The other compressors show
evident artifacts, related to the error mechanisms discussed in
Sect. III-B2, and are inadequate for this application.
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Fig. 11. Filtered “boat” image. First two rows: original image and smoothed images obtained with different multipliers; last two rows: sharpened images.
Bottom right: mask matrices used in (10), (11).

Fig. 12. Edge detection using the Sobel operator, Top left: original “Lena” image. Top, second left: reference result, obtained by using an exact multiplier.
Other images: results obtained with approximate C − N multiplier. Bottom right: kernel matrix SX in (12).

V. CONCLUSION

In this paper, we have presented a comprehensive survey and
comparison of previously proposed approximate 4-2 compres-
sors. We have shown that the stacking circuit technique [33]
can be modified to design approximate compressors, we have
highlight that some of the previously proposed approximate
4-2 compressors can be derived in this way and we have devel-
oped a new approximate 4-2 compressor. A total of twelve

different approximate 4-2 compressors have been investigated
and several multipliers, with different signedness and level of
approximations, have been implemented in a 28nm CMOS
technology.

The power-accuracy tradeoff shows that there is no unique
winning topology since the best solution depends on the
required precision, the considered error metric and the signed-
ness of the multipliers. We have reported power-error tradeoff
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curves and examples of image processing, that can be helpful
for the selection of the topology best suited for a given
application. Based on our analysis, some final considerations
can be drawn:

• approximate compressors that give a non-zero result for
zero inputs (like Momeni and Sabetz) are not recom-
mended, as their use results in large relative errors for
small operands;

• the compressors with best trade-off between energy sav-
ing and accuracy are found to be Lin, Proposed, Ha,
Ahma. The Lin compressor has the additional advantage
of being input commutative (its behavior does not depend
on the specific order in which the signals are connected
to the input pins) and this simplifies the optimal design
of the partial product reduction tree;

• using different approximate compressors in different
columns of the partial products matrix (as in the Hybrid
configuration) can be a viable solution to improve the
energy-accuracy trade-off;

• for signed multipliers, using approximate compressors in
the left-most significant columns of the partial products
matrix should be avoided, as this largely increases the
error rate and increases and the relative error, especially
when multiplying negative numbers small in magnitude;

Possible further investigations include: the use of approximate
4-2 compressors to build recursive multipliers, as in [41], and
the use of modified stacking circuits to design approximate
compressors of different sizes.
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