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An Architecture for Real-Time Arbitrary and
Variable Sampling Rate Conversion With

Application to the Processing of Harmonic Signals
Fco. Javier Galindo Guarch , Philippe Baudrenghien , and Juan Manuel Moreno Arostegui

Abstract— The paper presents a new solution for sampling
rate conversion and processing of harmonic signals with known
but possibly varying fundamental frequency. This problem is
commonly found in particle accelerators, for tracking the beam
signals whose revolution frequency varies during the acceleration
ramp. It is also common among many other fields such as speech
and music processing, removal of mechanical noises, filtering of
biomedical recordings, active crack imaging, etc. The key element
in the proposed solution is a new architecture for a Farrow-based
resampler, in which the resampling ratio can take any value and
can be modified continuously to follow the signal fundamental
frequency. The combination of two complementary resamplers
creates a processing region where signal synchronous processing
is performed. The resampler architecture is optimized for modern
FPGA features. It decouples the processing and sampling clocks,
and uses a single processing (hardware) clock whose frequency
remains fixed. The functional model was migrated to Xilinx Sys-
tem Generator and the overall performance is evaluated with an
application that filters a periodic signal whose frequency follows
a known linear ramp in the presence of additive white noise.

Index Terms— Resampler, Farrow structure, arbitrary sam-
pling rate conversion, particle accelerator, harmonic signals,
signal synchronous processing, FPGA.

I. INTRODUCTION

C IRCULAR particle accelerators transfer energy to a beam
by successive small momentum kicks. RF power injected

into electromagnetic cavities induces electric fields which
accelerate the particles at each passage. An increase in energy
causes an increase in particle velocity. The effect is very
small in relativistic machines, where the energy increase does
not result in a significant change in velocity as it saturates
at the speed of light, but is significant in smaller machines.
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Fig. 1. Sketch of a circular particle accelerator: Accelerating cavity, RF
pick-up sensor and the processing block.

Fig. 2. Homothetic transformation. Position and tone spacing change during
acceleration ramp proportionally to the revolution frequency increase (we call
it Homothetic transformation because the change in spectrum is equivalent to
a dilation of the frequency axis).

In modern circular machines, the particles travel in a vac-
uum chamber and the trajectory is not changed during the
acceleration (Fig. 1). The change in particle velocity therefore
results in a change in revolution period [1]. The Low Level
RF system (LLRF) uses beam based signals (azimuth and
transverse position) acquired with an electromagnetic pick-up
sensor (Fig. 1) [2]. In return, after processing, it generates the
drive for the RF amplifier powering the cavity. The processing
is intended to keep the beam in the center of the vacuum
chamber and to minimize the effect of RF noise. When a
particle bunch passes through the pick-up, it generates a short
pulse. In the time domain this signal is a train of delta pulses
spaced by the revolution period, as the bunch crosses turn after
turn. The signal spectrum is also a train of deltas at multiples
of the revolution frequency [3].

During the acceleration ramp the revolution frequency
increases and the spacing of the spectral lines changes. This
is depicted in Fig. 2. The trace in blue shows the harmonic
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content of the pick-up signal at the beginning of the RF ramp,
while the traces in purple and red correspond to increased
energy levels, with higher revolution frequencies.

This has severe implications on the LLRF system processing
these signals. The digital processing, for instance filtering,
needs to adjust its frequency response in real time to the
changing signal spectrum during the acceleration ramp. When
digital electronics was first introduced in particle accelerators
in the mid-eighties, the obvious solution was to use a sampling
clock which was a multiple of the revolution frequency [4].
The processing algorithm then needs not to be changed during
the acceleration. However, modern FPGAs are intended for use
with a fixed clock, implying adaptation of the algorithm as the
acceleration proceeds.

This work presents a solution for the processing of pseudo-
periodic signals whose period changes slowly and in a known
manner, by tuning the sampling rate of the processed signal.
It uses a single fixed clock and avoids the real-time recon-
figuration of the processing elements. The treatment of a
frequency-variant signal in real time is made possible, using
any static algorithm. The solution is based on a Farrow-
inspired arbitrary ratio resampler, for real time applications.
The architecture is targeted for FPGA implementation.

The paper is structured as follows: Section II presents the
state of the art for signal processing of pseudo-periodic signals.
Section III is a review of existing rate conversion methods,
with a focus on our processing requirements and implementa-
tion problems. Section IV presents the new proposed solution.
Section V describes the implementation of our resampler in
detail. Section VI presents a proof of principle of our proposal,
and section VII summarizes the main results.

II. STATE OF THE ART IN SIGNAL SYNCHRONOUS

PROCESSING

In the previous section, the beam signal was modeled as a
succession of delta pulses. Due to the non-zero bunch length,
the revolution frequency harmonics (nFrev) are not all equal
in amplitude, An and phase1, ϕn . As the revolution frequency
varies very slowly compared with the beam dynamics, the sig-
nal from a given bunch is

x(t) =
N∑

n=0

An · ei(2πnFrevt+ϕn ) (1)

where N , the number of harmonics to be considered, depends
on the intended application. For example, if we want to
compensate for the beam-induced transient in a given cavity
we must consider only the harmonics falling in the cavity
bandwidth. In all cases the signal bandwidth must be limited
before sampling to avoid aliasing.

Let us consider a simple process trying to enhance the
pick-up signal out of white additive measurement noise. The
required comb filtering contains harmonically related pass-
bands located on the revolution frequency harmonics. Its
frequency response would follow the signal spectrum shown

1The envelope of the revolution frequency harmonics is the Fourier Trans-
form of the longitudinal bunch profile.

on Fig. 2. Recall that the revolution frequency varies with time
in our system.

In particle accelerators the historic solution was to clock the
hardware with a multiple of the revolution frequency [4], [5].
The treatment therefore inherits beam synchronism by design.
We call this method Signal Synchronous Processing (SSP).
There is no need for frequency tracking and reconfiguration
of the processing. The real frequency F[Hz] of the signal
sampled using a clock at fs[Hz] is mapped to a normalized2

digital frequency � [radian/sample]. Consider now a frequency
sweep with an excursion � (2). If the sampling clock fs is
swept in proportion, the digital frequency � remains constant

� = 2π
F(1 + �)

fs(1 + �)
= 2π

F

fs
= constant (2)

If the processing algorithm has been designed at that digital
frequency �, there is no need for reconfiguration. The swept
sampling clock locks the processing on the spectral content of
the beam signal.

This method has been widely used for compensation of
beam-induced voltage in accelerator cavities and for lon-
gitudinal [5] and transverse bunch-by-bunch dampers [6].
Frequency modulation of the sampling and processing clock
brings two problems however. First, a sweeping clock is not
optimal for modern hardware. Second, the swept sampling
clock modulates any absolute processing in the signal (such
as compensation for sensor response) which is not intended to
track the instantaneous frequency.

Another classic method is Adaptive Noise Cancelling [7].
The filtering of electrocardiogram using the Least Mean
Square (LMS) algorithm is an early example. More sophis-
ticated algorithms such as the Recursive Prediction Error
(RPE) and Recursive Maximum Likelihood (RML) have been
proposed for comb filtering [8], [9]. The later did not require
knowledge of the instantaneous fundamental frequency. It can
be estimated by the algorithm. The computational load of
these algorithms scales linearly with the number of harmonics
when using the simple LMS, and quadratic for the more
sophisticated RPE and RML algorithms. Their performance
degrades if the number of harmonics present in the signal is
not modeled correctly [8]. The solution proposed in the present
paper requires the knowledge of the fundamental frequency.
But it is much lighter in terms of calculations as it will be
independent of the number of harmonics.

Variable Fractional Delay (VFD) filters have been proposed
to implement a comb adapted to any fundamental frequency
(not necessarily a sub-multiple of the sampling frequency)
[10]. The coefficients of the filter are then changed to track
the fundamental frequency. A side effect is the displacement
of the poles with the delay that can possibly make the Infinite
Impulse Response filter (IIR) unstable. In the proposed method
we do not reconfigure the filter coefficients as function of the
changing signal frequency. The tracking is the responsibility
of the resamplers while the comb filter has fixed coefficients,
and therefore fixed pole locations.

2The normalized frequency � denotes a digital frequency in radians per
sample, relative to a sampling clock at fs (in Hertz) acquiring fs samples
per second.
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Fig. 3. Sampling Rate Conversion with Analog reconstruction.

Fig. 4. Synchronous sampling rate conversion architecture: One single clock
is present, being synchronous to input and output sampling rates.

Fig. 5. Asynchronous sampling rate conversion architecture: The ratio R
between input and output clocks can be any real number.

III. SAMPLING RATE CONVERSION ARCHITECTURES

The ideal system for the presented application has two
clock domains. One is the input fixed frequency clock for the
processing algorithms that do not depend on the fundamental
frequency of the signal, and the other is an output sweeping
clock for the SSP. Such a system has been installed in the
CERN SPS in 2002 [11]. There, digital data transfer and sam-
pling frequency adaptation are solved by analog reconstruction
of the signal after the first clock domain, and subsequent new
sampling by the second domain [12]. This is depicted in Fig. 3.

Today rate conversion can be done with all-digital resam-
plers. Discrete Sampling Rate Conversion (SRC) is an oper-
ation transforming the sequence x[n] acquired at a given
sampling rate fs, into a new sequence y[m], which approxi-
mates the acquisition of the original time-continuous signal at
another rate f ′

s [13]. These discrete resamplers can be classified
in two families: Synchronous SRC (SSRC) and Asynchronous
SRC (ASRC) [14]. In the first one the timing reference is
derived from a single clock, as depicted in Fig. 4. The relation
between sampling rates is dictated by the resampling ratio R
which is a fixed rational number

ASRC addresses a different philosophy. In this case there
are two clocks and the output clock is asynchronous with
respect to the input (Fig. 5). The resampling ratio, relation
between the clocks, now adopts any value and can vary
in operation with time. Architectures and optimizations in
the literature are in general abstracted from the hardware
which will be used for implementation [15]-[18], focusing
on the properties of the resampling filters [19]-[22]. There
are digital architectures with arbitrary resampling ratios which
can be either synchronous [23]-[24], or asynchronous [25]-[27]
depending on the implementation.

Fig. 6. Time-distance between input and output samples.

Resampling algorithms and solutions are usually classified
according to the desired conversion ratio R. Integer ratios
are well suited for implementation with Cascaded Comb
filters or Cascaded Integrator Comb (CIC) architectures which
exploit factorization of the transfer function. Fractional ratios
are more suited for polyphase implementations where the
periodic interpolation/decimation processes benefit from the
optimization of the clocking and processing architecture. Sub-
sequent optimizations of the polyphase architecture have led
to architectures based on time multiplexing of the data-path,
pre-stored filter coefficients, computation of the coefficients
online, or a deeper optimization, the so-called Farrow-based
architecture and its evolutions [16], [18], [28], [29].

This last architecture translates the interpolation operation to
filtering of input samples to produce new outputs. The Farrow-
based resampler includes a (Farrow-based) VFD filter [15],
and a time-distance algorithmic engine. The latter computes
the time-distance [30] between an output sample and the
nearest input sample, that is plus or minus half an input clock
period. The VFD filters the input samples to produce new
resampled data, closely approximated to the original time-
continuous signal at the calculated time-distance (Fig. 6).

The Farrow architecture requires limited or no hardware
modifications when handling different resampling ratios [31]
and allows for efficient implementations. It is the most com-
mon solution for arbitrary SRC. Static ratios, as in Soft-
ware Defined Radio where the sampling ratio of generic RF
front-ends is adapted to different standards [29], [32] are
implemented generally with Farrow-based SSRCs. These are
well suited for either Application Specific Integrated Circuits
(ASICs) or FPGAs, as the output clock has fixed frequency
derived from the system clock. When the ratio is irrational,
SSRC is implemented with rational approximations validated
according to the application. These solutions are not valid for
us as the ratio supports only a discrete set of values, fixed
during operation, and if other values are needed re-synthesis
of the architecture is required [30], [33]-[37].

For resampling ratios varying in operation, as in digital
audio [38], digital video [39] and digital communications syn-
chronization [40]-[42], Farrow-based ASRC in ASICs or soft
processors [43]-[46] are used. ASRC is well suited for tech-
nologies where the clocking architecture can be optimized for
arbitrary swept clocks. It can also be implemented in FPGAs
but an output swept clock-domain limits the use of internal
hardware resources, as clock managers, intended for stable
clocks. None of these available solutions solve our problem,
which is the need for an FPGA arbitrary and sweeping ratio
resampler, reconfigurable in real time, and using a fixed
processing clock to best profit from all the FPGA features [47].
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Fig. 7. Decoupling of sampling and processing clocks, samples vs processing
slots in a system with fp = 2 · fs.

IV. THE PROPOSED METHOD

A. The Decoupling of Processing and Sampling Clocks

In discrete-time processing systems, the sampling clock fs
is the rate at which the data is acquired. In one sampling
period Ts, one data sample is digitized. On the other hand,
the processing clock fp defines the rate at which the system
is able to perform an elementary operation. In one processing
period Tp, one processing slot is available. For simple systems
the sampling and processing clocks are identical. However,
when the processing requirements are more demanding, this
paradigm limits exploitation of the hardware capabilities,
the use of new devices, and the implementation of more
complex algorithms.

Processing and sampling clocks need not be equal. The
processing clock can be faster. This is the case in the solution
presented here (Fig. 7). The sampling clock, at the top of the
image, represents data acquired at fs, while the processing
clock, bottom, runs at a frequency fp that is the double of fs.

This decoupling idea is not new [36], [48]. It is widely
used to implement time multiplexing of hardware resources
within digital systems, for interleaving or serializing data.
The presented resampler uses this decoupling scheme with
a different flavor. It uses a fixed-frequency processing clock
for the hardware. At the same time, the data-path has a
variable and arbitrary sampling period. This is achieved by
abstracting the data-path samples from the hardware. The
sampling period of the data is decoupled from the hardware
processing clock. In [36] a similar solution is used for SRC
in a multichannel system, however the architecture is limited
to a fixed conversion ratio, and its modification implies re-
synthesis of the architecture. This solution is constrained by
technological limitations, as the software tool only allows for
a single clock domain. It is therefore not valid for us, as it
does not handle a real-time variable ratio.

A consequence of the decoupled scheme is the use of
a single hardware clock. Traditionally the resampler input
port, or clock domain, uses a hardware processing clock
at the input sampling rate. At the output port, a second
hardware clock runs at the new output sampling rate, derived
from the input or system clock in FPGA SSRC. The new
architecture now uses the same hardware processing clock rate
in both input and output ports, or hardware clock domains.
Fig. 4 remains valid but the processing clock fp is also used
in the decoupled interfaces of the data-path, which contains
data virtually sampled at a rate fs at the input and R · fs at the
output. Note that, when the processing clock is faster than the

Fig. 8. Decoupling of sampling and processing clocks, valid signal and
relation between the original and resampled signals.

rate at which the data is acquired, there are more processing
slots than samples available. By exploiting carefully this
characteristic, the resampler can solve the problem of the
different volume of data samples at the input and output ports.
In the case of up-sampling for instance, there will be more
samples at the output. In all cases the processing clock fp
must be larger than fs and f ′

s . If the maximum resampling
ratio is for instance R = 2, a simple choice for the processing
clock is

fp = 2 · fs (3)

This decoupled architecture satisfies the needs for a real-
time variable and arbitrary rate, the use of a fixed processing
clock at the input and output ports, and the use of a variable
sampling rate at the input and/or output ports.

B. The Valid Flag

The decoupled architecture can be implemented, adding
little extra complexity to the system. An extra hardware line
in the data-path, one bit wide, is used to indicate which
processing slots contain valid data, and which ones are void
slots. The decoupling therefore requires only this extra valid
line and some glue logic. The activation rate, ar, of the valid
line is a function of the relation between the sampling period
and the period of the processing clock

fs = ar · fp (4)

Additional processing after the resampler (filtering for
example) needs only to process slots flagged as valid. When
the flag is not active, the processing can remain idle or discard
the results. This solution satisfies the requirements and imple-
ments a variable ratio resampler with very little complexity.

Fig. 8 depicts the concepts presented so far. The top trace
shows data sampled at fs. The following two traces show the
input and output ports of a resampler configured with a ratio
R = 4/3 (up-sampling) and a processing clock fp = 2· fs.
The first of these shows the data flow for the input data-path
containing the data bus and the valid signal. The valid line
flags one data out of two processing cycles, arin = (1/2).
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Fig. 9. Resampler architecture based on a Farrow VFD filter, and an
algorithmic engine that implements the DIANA algorithm for computing time
distances.

The bottom trace shows the data flow at the output port.
The activation rate of the valid signal is now four out of six
processing cycles

arout = R · arin = (4/3) · (1/2) = (2/3) (5)

The sampling rate of the data-path at the output port is

fs_out = R · fs_in = (4 / 3) · fs_in

= (4/3) · arin · fp = (2 / 3) · fp (6)

C. Farrow-Based Resampling Architecture

The resampler uses an interpolating filter implemented with
a hardware efficient Farrow-based VFD filter [15]. The result-
ing architecture does not need polynomial re-computation of
the interpolating coefficients for each output sample. Instead,
it exploits the reordering of the filtering arithmetic operations
within a Farrow architecture. The VFD hardware internals are
depicted in Fig. 9. It is composed of a bank of FIR sub-filters,
which pre-processes the available input samples, din in (7),
to generate intermediate filtered data, FIRn(din). These filters
FIRn use coefficients that are static and pre-computed offline.
A new output dout is computed by combining the intermediate
data, weighted by powers of the delay value dly

dout(din, dly) = (dly)0 ·FIR0(din)+(dly)1·FIR1 (din)

+ · · ·+(dly)N ·FIRN(din)

= FIR0(din) + dly · (FIR1(din)

+dly · (FIR2(din) + dly · (· · · ))) (7)

The Horner’s rule [49] in (7) efficiently reorders the
arithmetic to optimize the hardware implementation. ASRC
implementations of this architecture employ at least two clock
domains, marked clock_a and clock_b in Fig. 9. Our
goal is to use a single processing clock, and the decoupled
data-path in the FPGA. This combination makes it possible
to have different sampling rates in data-paths, using a single
processing clock, and to vary rates in real-time. The problem
is now to synchronize the data-path in the different elements of
the VFD, and the delay in the time-distance engine. References
[33] and [36] have faced similar problems, however their
solutions require an external signal at the output sampling rate.
The present solution presents a data-path which is capable of
this arbitrary real time modification of the ratio with a single
system clock.

Fig. 10. (a) Absolute time position for input sample x[3], and output samples
y[3] and y[4]. (b) Delay computation for output y[3]. (c) Delay computation
for output y[4].

A Farrow resampler contains a time-distance algorithmic
engine, that calculates the delay for the VFD. This delay is the
time difference between available input samples and desired
interpolated output. For static resampling ratios, it is a periodic
sequence, making the implementation easy with a Numerically
Controlled Oscillator (NCO) [16], [37]. In [25] a solution for
a variable rate is presented, but it is not valid for us as it does
not address a decoupled data-path (where data propagates in
the hardware based on the input sampling rate; this concept is
presented in section V). The solution presented in [36] uses
such a data-path, but in addition to the processing clock it
requires an external signal driving the output rate. This adds
complexity that we want to avoid.

For our real time variable and arbitrary ratio implemen-
tation, with fixed processing clock and decoupled data-path,
a new algorithm has been developed, the DIstAnce iN time
Algorithm (DIANA). The architecture and the algorithm focus
on these adaptive processing requirements rather than opti-
mization of the sampling rate conversion performance.

The delay generated by the VFD is a physical time differ-
ence in seconds. Fig. 10(a) shows several cases: The diamonds
mark the input samples, x[n], with Tin the input sampling time.
The circles represent output samples y[m], with Tout the output
sampling time. Fig. 10(b) depicts the delay computation for
the output sample y[3], considering x[3] as the input sample
in the middle tap of the interpolating filter [22]. The delay
value is the time difference between the two discrete samples

dly = ty[3] − tx[3] < 0 (8)

In this case, looking “backwards”, the delay value is a
negative number. Fig. 10(c) depicts the delay computation for
the output sample y[4]. In this case, the delay value is positive,
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Fig. 11. DIANA algorithm for time-distance computation.

looking “forward”

dly = ty[4] − tx[3]> 0 (9)

From now on, we will normalize the delay to the input
sampling frequency fs. The VFD filter will accept delay values
in the range [−0.5, +0.5]. After normalization, a delay equal
to one output sample will be 1/R with R the resampling ratio.
The DIANA algorithm is shown in Fig. 11. The input variables
are the valid_i signal of the data-path, which indicates
when a new input sample is available, and the op_prev
signal which keeps track of whether a valid output sample was
calculated during the previous iteration. In case a new input
sample is received, the delay variable dly is decremented by
one unit. If the previous iteration has produced a valid output
sample, the delay must be incremented by 1/R according to
the time position of the next output sample. When the delay
magnitude is less than or equal to 0.5, a new output sample
can be computed. This is indicated by the output signal op
forwarded to the VFD together with the delay value. The
algorithm is initialized with dly = 1.

The architecture assumes that each new sample arriving at
the resampler is directly inserted into the VFD filter bank. The
algorithm iterates with the processing clock fp. The algorithm
can handle the delay computation as long as the processing
clock frequency fp is higher than both input and output
sampling clocks ( fs and f ′

s ). This architecture handles changes
in the ratio, in real time, by just updating the R variable. Of
course, the change in ratio must be very slow compared to the
processing period 1/ fp and to the resampler latency. A proof
of principle presented in section VI demonstrates this feature.

The VFD of Fig. 9 has been designed using the weighted-
least-square (WLS) method [22]. The delay signal dly takes
values from -0.5 to 0.5. For each value we want the response
from d_in to d_out to approximate an exact delay. Let
H [�,p] be this transfer function, with � the normalized

angular frequency in radian/sample and p the delay, the WLS
computes the filter coefficients that minimize the cost function

J =
∫ απ

0

∫ 0.5

−0.5

∣∣∣H (�, p) − e− j�p
∣∣∣2

dp d� (10)

The parameter α is a fixed number, smaller than one, that
specifies the passband. The number of filters and the filter
length must be chosen to achieve the required precision in the
passband. In our design, we set α = 0.6, and used six filters
containing fifteen taps each. The resulting maximum square
error for all values of p, in the passband is 10−9. This was
found to be good enough for our application. The number of
taps has a big effect. We have reduced it to seven, without
changing other parameters, which resulted in a maximum
square error of 3·10−5.

V. IMPLEMENTATION OF THE RESAMPLER

A. The High Level Architecture

The high-level architecture of the resampler is presented in
Fig. 12. From a functional point of view, only four signals
interface with the architecture. At the input the data-path
port, d_in_str, feeds the available data samples, a control
port, T_out_n, lets the resampler know the relation between
output and input rates (1/R), and finally a clock port, clk,
drives the hardware. At the output, only the data-path port,
d_out_str, is present.

Looking at the internals of the resampler, it is composed
of three functional blocks. The first entity, in red in Fig. 12,
hosts the DIANA engine, algorithm presented in Fig. 11,
for the computation of the time shift (dly signal). It also
controls when an output data sample can be computed (op
signal). The second block implements the VFD filter, in blue
in Fig. 12. This hosts the bank of FIR filters to process
the available samples, and the Horner chain of adders and
multipliers combining these filter outputs as outlined in Fig. 9.
Finally, the third block, in green in Fig. 12, contains the
“Control Logic and Synchronization Memories”. This block
handles the communication and synchronization between the
entities of the resampler and the interface ports.

B. The Interface Ports

The data-path port d_in_str in the input interface of
the resampler is composed of two signals (Fig. 12), a data
bus data_i, which can be implemented with any generic
bit width depending on the application, and a valid signal
valid_i one bit wide. The data bus contains the quantized
samples provided to the resampler. The valid signal indicates
when the data bus contains valid information. The control
port of the resampler, T_out_n, is also a bus signal with
a width depending on the application performance (precision
of the resampling ratio). Finally, the clock port clk, receives
the processing clock. The output interface follows the same
philosophy. The data-path port d_out_str is composed of
two signals, a bus containing the data words data_os, and
a valid signal valid_o indicating valid samples. Again,
the processing clock is clk and the sampling period is defined
by the activation ratio of the valid signal.
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Fig. 12. Functional architecture of the resampler. Data-path decoupled architecture with a VFD filter bank, a DIANA engine and the Control Logic and
Synchronization Memories.

Fig. 13. Implementation of the DIANA engine.

C. The DIANA Engine

This functional unit, depicted in Fig. 13, has three input
ports. The first one is the valid signal, valid_i, indicating
the validity of the data present in the engine input data-path.
This indicates a new input sample arriving at the resampler.
The second input port is a bus signal, T_out_n (equal to 1/R
in normalized units), which provides the information about
the resampling ratio. Finally, a clock input port receives the
processing clock.

At the output, the entity has two ports. The first is the
computed delay, dly, implemented by means of a bus sig-
nal whose width is dependent on the performance (desired
precision) of the resampler. The second port contains the
op signal, which indicates that a new output sample can be
computed using the delay value present in the delay bus. The
DIANA algorithm of Fig. 11 is implemented by means of an
accumulator (Fig. 13).

Two multiplexers evaluate the accumulator step at each
iteration. One is controlled by the valid_i signal, while the
other is driven by feedback logic evaluating the op signal from
the last iteration. The output of the multiplexor is accumulated
by a dedicated DSP block. The op signal is activated when
a comparator evaluating the magnitude of the accumulator
indicates a value less than or equal to 0.5 (half an input
sampling period). The T_out_n signal is evaluated at each
iteration, for real-time variable and arbitrary ratio operation of
the resampler. In case of a fixed ratio resampler, this signal
could be hard-wired for resource optimization.

D. The Variable Fractional Delay

Introduced in Fig. 9, the VFD unit implements two func-
tional elements: A bank of FIR filters and the Horner chain of

adders and multipliers. The interfacing signals of the entity are
as depicted in Fig. 14. In the filter-bank, the valid_is signal
enables the Tap delay line registers of the bank, when valid
data is present in the data-path. The data signal data_is
feeds the filters of the bank with the new samples in parallel.

In our evaluation system, the bank of filters is composed
of B = 6 filters with fifteen taps each. The outputs of the
filter bank are the B buses data_f, containing the pre-filtered
available samples.

In the Horner structure, the data_fs signals represent B
buses containing the outputs of the filter bank, and dlys
contains the delay value used for the current output sample.
These signals need synchronization among themselves, hence
the postfix “s”. FIFO memories are used for this (in green
in Fig. 14). The memories are part of the “Control Logic and
Synchronization Memories” entity.

E. The Control Logic and Synchronization Memory

This block contains glue logic and synchronization mem-
ories (synchronization is understood as aligning, at the level
of processing-clock cycles, different propagating signals) used
to manage signals between the different functional blocks.
It comprises all the registers, FIFOs, and elements used
for synchronization purposes. These are spread within the
resampler, but it is still possible to group its signals according
to the functional blocks interfaced to, as shown in Fig. 15.
Signals related to the data-path alignment at the input of the
FIR filter bank are located at the top. The synchronization of
delay and data-path by means of FIFOs is shown in the middle.
The signals for qualifying the resampler output are placed at
the bottom.

All these signals propagate through three different paths,
depicted schematically in Fig. 16. The first, in blue, hosts
the data-path from the input to the output interface. The
second, depicted in red, contains the signals related to the
resampling ratio, fed at the input as T_out_n and internally
translated to delay. Finally, the third path, in green, groups the
internal control signals. Alignment between these signal types
is required at certain interfaces between the entities. The first
interface is at the input of the resampler, where the data-path
d_in_str and the resampling ratio T_out_n must arrive
aligned.

The second interface lies at the input of the bank of filters;
it requires alignment between the data-path, signals data_is
and valid_is, the computed delay signal dly, and the
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Fig. 14. Architectural view of the VFD filter. In blue, the FIR bank of filters and the Horner architecture. In green, the Synchronization Memories, not part
of the entity.

Fig. 15. Input and output signals of the Control Logic and Synchronization
Memories for the variable and arbitrary rate resampler architecture.

Fig. 16. Synchronization interfaces of the resampler (vertical lines), and
signal paths (horizontal arrows).

op control signal. The third interface, at the input of the
Horner structure, requires alignment between the data-path
buses data_fs filtered by the bank of filters, the delay value
dlys, and the internal control signals. Finally, the fourth
interface, at the output of the resampler, requires alignment
between the data-path data_os, and the valid_o signal
qualifying the output stream.

These paths and interfaces inside the resampler, depicted
in Fig. 16, have different and unrelated propagation times
and latencies. The solutions adopted in [33] or [36] are
less sophisticated as the resampling ratio does not vary in
operation. The propagation in the data-path is constant for a
given ratio, and when changed, re-synthesis of the architecture
is needed. That is avoided in the presented solution. The
problem solved by the proposed architecture is hence to align
and synchronize the arrival of the signals to the interfaces.

In the input interface, the alignment is an external require-
ment imposed by the resampler to the system hosting it.
The synchronization, in the filter bank interface, is a trivial
problem. Only glue logic (registers) is used to align the data-
path to the output signals of the DIANA engine. This unit
has been designed with a latency of three cycles, thus three
registers are inserted in the data-path between data_i and
data_is, and between valid_i and valid_is. At this
point, those signals, the delay value dly, and the control
signal op are aligned at processing-clock cycle level, hence
ready to be fed to the VFD. The DIANA engine also makes a
decision about processing of a new output sample (algorithm
in Fig. 11), indicated by op. If possible, and depending on
valid_is, the last filtered sample or the new sample ready
in the Filter Bank interface will be used to compute a new
output. In any case, the current delay value needs also to be
synchronized to the input of the Horner structure. The used
sample and the propagation of the delay to the Horner interface
will require different synchronization mechanisms, depending
on the case. The possible scenarios are listed in table I.

In case a new sample needs to be filtered and a new output
computed (scenario 4), the alignment mechanism needs to
estimate the latency of the sample through the filter bank.
This is the time the data-path takes to propagate from the
filter bank interface to the outputs of the filters. Then it needs
to synchronize the delay propagation with the same latency.

This estimation is a trivial problem in a non-decoupled fil-
tering architecture, or with a fixed resampling ratio. The signal



GALINDO GUARCH et al.: ARCHITECTURE FOR REAL-TIME ARBITRARY AND VARIABLE SAMPLING RATE CONVERSION 1661

TABLE I

SCENARIOS, CONTROL SIGNALS AND ACTIONS TO BE DONE

Fig. 17. Tapped delay line data propagation through a classic non-decoupled
filter on the left and the decoupled data-path on the right.

advances one register in each clock cycle. This is depicted in
the left half of Fig. 17. There, latency is a function of the
hardware architectural implementation of the filter (there is no
enable signal). This makes the solution for the synchronization
of the delay signal easy; the filtering latency can be mimicked
by adding the same fixed number of pipeline registers to the
delay path. This is not possible for our filtering architecture
using a decoupled data-path. The filtering latency varies with
the sampling rate. This variation is a direct consequence of
the decoupling and the valid signal: The data advances one
register further in the filter’s tapped delay line only when the
enables are active (valid signal in Fig. 17 on the right). The
data-path propagation through the taps is now driven by the
valid signal, and the latency (in processing clock cycles)
is dependent on its activation rate. The filtering latency, for a
given processing clock, is therefore a function of the sampling
period, as stated in expression (4). As our architecture must be
generic (a resampler accepting different input rates and thus
having different filtering latencies), the delay synchronization
problem cannot be solved anymore by adding a fixed number
of pipeline registers to the delay path.

A second related problem appears in the filter bank due
to this driven propagation through the taps. Filtering of one
sample requires several samples marked valid (depending on

the length of the filter). The active valid signal accom-
panying the initial sample triggers the filtering in the first
tap. Then the upcoming samples with the valid signal
active drive the sample through the output. The pattern of
valid samples (and valid flags) can present bursts within the
data-path processing slots. In that case, the filter produces
consecutive outputs in consecutive processing slots. These
bursts need to be handled properly by the synchronization
mechanism, otherwise corruption may occur. This is the case if
a single filtered sample needs to be re-used twice in the Horner
structure, to produce two output samples, with two delay
values (scenario 2 followed by scenario 4 at the interface 2).
If a burst arrives at that moment, the filter will pop new data,
which will remain for one single slot at the output port. This
violates the delay-sample combination, since the sample is
available for only one of the two processing slots required.

To cope with the propagation based on upcoming samples,
and the variable filtering latency, the solution adopted is to
use FIFO memories for synchronization. Two banks are used:
One stores the delay value dly, the op and the valid_is
control signals in the filter bank interface, and the second
stores the outputs of the filter bank data_f at the output of
the filters. The two banks are depicted in Fig. 18 in dark green.
The first bank (control signals) compensates the propagation
of the data-path through the filter bank. It acts to handle the
propagation latency of the delay and control signals (current
scenario) between the output of the DIANA engine, the filter
bank interface, and the input of the Horner structure (Horner
interface).

The second memory bank stores the valid processed outputs
of the filter bank. This makes the controlled extraction of
filtered samples from the memory possible, reusing them when
needed. The scenario previously presented in the filter bank
interface can now be reproduced in the Horner interface,
by combining the two memory banks. The delay and filtered
sample signals are thus fed aligned to the Horner structure,
and a new output can be produced. The Not Empty FIFOs
block in Fig. 18 generates an active signal when both FIFOs
contain data; the Filter Bank Ready block latches an
active signal after filtering of the first sample in the FIR bank.

The propagation between Horner interface and output inter-
face, through the Horner structure, is deterministic; only
arithmetic operators implemented in DSP macros are present,
and no enable register is used in the pipeline. The latency
can thus be estimated and mimicked: The op control signal,
depicted in Fig. 18, is propagated in parallel to the data-path
with pipeline registers reproducing the delay. At the output of
the Horner structure, the synchronized op signal qualifies the
result of the resampler (signals data_os and valid_o).

F. Performance and Limitations

The resampling ratio R can take any value but, as mentioned
before, the processing clock must be larger than both input and
output rates.

Resampling is an interpolation process. Its performance
degrades with the frequency of the input signal. The design
of the VFD (number of FIR filters and number of taps per
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Fig. 18. Detail of the Control Logic, in the light green region, and the Synchronization Memories, in the dark green regions. In the red region the DIANA
engine, and in the blue region the VFD filter.

FIR) depends on the demanded precision and passband [22].
We have required a maximum square error of 10−9 in the band
extending from DC to 60% of the input Nyquist rate.

The delay dly is calculated from the instantaneous value of
the ratio R and used to combine the FIR outputs in the Horner
polynomial. This indicates that R, which can be modified in
real time, should not change significantly during a time interval
equal to the latency of the FIR filters.

VI. VALIDATION OF THE RESAMPLER

This section presents a proof of principle implementation
validating the architecture presented in the paper. It solves
a classic problem, the enhancement of a periodic signal out
of added white noise, found also in the field of particle
accelerators. Two resamplers are used in combination with a
filter to demonstrate how to implement a SSP system solution.

A. The Test Bench

The presented resampling architecture has first been vali-
dated with MATLAB simulations in order to study the resam-
pling algorithm regardless of any implementation details. The
results have shown that the algorithm behaves as expected.
A functional Simulink model was then used for architectural
exploration and its verification. The algorithmic operations and
control structures were grouped by functionality, and translated
to system level blocks. These were integrated into a functional
system level solution. These simulations included the latency
of the hardware blocks mapping the data-path and the control
structures. No quantification or precision constraints were
incorporated at this stage. The functional model was migrated
to Xilinx System Generator primitives for hardware verifica-
tion. The simulation of the architecture and its internal signals
with a processing clock cycle accuracy is made possible by
the hardware primitives. Finally, the resampling architecture

Fig. 19. System level architecture of the application reproduced in the test
bench implementation. RSP stands for Resampler.

has been integrated into a simulation test bench scenario
mimicking a potential real application of the resampler. System
level simulations of the proof of concept solution are presented
here.

B. The Application

The objective of the processing in this application is the
enhancement of the beam signal out of white noise. For this
it uses a periodic comb filter inserted between two resamplers
(Fig. 19). The signal consists of a short Gaussian pulse
periodic at the beam fundamental frequency plus broadband
(white) measurement noise. The frequency of this repetitive
pulse changes with time in a known fashion.

The test-bench contains only the FPGA blocks responsible
for the resampling and the SSP.

C. The Data-Path

The test-bench architecture hosts, in-between the resam-
plers, a decoupled data-path SSP region. The first resam-
pler increases the sampling rate of the discrete signal. The
resampling ratio is modified in real-time proportionally to the
instantaneous revolution frequency of the beam. This operation
tunes the discrete representation of the sweeping spectral
components of the processed signal to fixed normalized fre-
quencies according to (2). These fixed frequencies are the
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Fig. 20. Data Flow in the proof of concept implementation. In light grey
the region of the FPGA emulated in the test bench.

Fig. 21. Magnitude of the filter frequency response normalized to the SSP
sampling frequency f ′

s .

resonances of the static filter. Finally, the filtered signal is
brought back to the original sampling rate by the second
resampler. The ratio is also modified in real-time in this
resampler with the inverse value of the input ratio.

The data-path is decoupled before the first resampler and
coupled back after the second. The decoupling at the input
consists of doubling the processing clock. It is also necessary
to add a valid signal to the data-path with an activation ratio
of ar = (1/2). The coupling performs the complementary
transformation: It divides the data-path processing clock by
two. This merges sampling and processing clocks at the same
rate. The valid line is not necessary thereafter. The resulting
data flow is depicted in Fig. 20. The resamplers and SSP
filter are implemented in System Generator primitives. The
stimulus and other auxiliary system blocks are implemented
using Simulink blocks for simplicity.

D. The Input Signal

The input stimulus to the test-bench is the digitized signal
fed to the FPGA blocks responsible for the SSP. It is rep-
resented by d_in in Fig. 20. The output corresponds to the
signal d_out. The stimulus signal is sampled at fs = 62.5
Msps. The simulation lasts for 500 ms.

At the beginning of the simulation the fundamental
frequency is Frev = 2.6875 MHz (�rev = 2π ·0.043
[radian/sample]). At the end of the simulation it has increased
by 18.6%, to Frev = 3.1875 MHz (�rev = 2π ·0.051
[radian/sample]). The pulse spectrum contains a DC com-
ponent, the fundamental frequency and harmonics up to 6
Frev, so that it does not extend beyond the passband used in
designing the VFD (section IV.C). A white noise of σRMS =
0.3 is added.

Fig. 22. Stimulus: Time waveform without (a) and with added noise (b) and
spectrogram (c). Digital frequencies are normalized to the input sampling rate.

E. The Filters in the SSP

The processing only considers data with valid_o flag
activated, thus performing SSP at a rate f ′

s (6). It implements
a periodic comb filter

H (z) = 1 − a

1 − a z−N
(11)

with a = 31/32 and N = 24. The normalized fre-
quency response peaks are located at �peak_k = 2π · k/24
[radian/sample]. There are 24 peaks (k ∈ [0, 23]) from DC
to the resampling frequency. Fig. 21 depicts the magnitude
response of the filter normalized to the SSP sampling fre-
quency f ′

s .
After tuning the spectral content of the signal to the filter

frequency response (up-sampling with the first resampler),
the signal harmonics will be located on the response peaks,
while the white noise will be attenuated.

F. The Resampling Ratio in the SSP

The up-sampling ratio, R signal in Fig. 20, tracks in real-
time the known instantaneous fundamental frequency Frev.
As a computation example, at the start of the simulation,
the needed sampling rate which tunes the fundamental fre-
quency to the first filter peak is

f ′
s_init = 2π · Frev_init/�peak_1 = 2.6875/(1/24) = 64.5 Msps

(12)
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Fig. 23. Time domain (a), spectrogram (b) and top view of the spectrogram
(c) at the output of the processing architecture. Digital frequencies are
normalized to the input sampling rate.

The resampling ratio is therefore

Rinit = f ′
s_init/ fs = 64.5 / 62.5 = 1.032 (13)

At the end of the simulation, the needed sampling rate is

f ′
s_end = 2π · Frev_end/�peak_1 = 3.1875/(1/24) = 76.5Msps

(14)

The resampling ratio is then

Rend = f ′
s_end/ fs = 76.53 / 62.5 = 1.224 (15)

The resampling ratio is larger than one, resulting in up-
sampling in the first stage. After the comb the data will be
down-sampled with the risk of aliasing. A Low-Pass filter
with design sampling frequency of 64.5 Msps, Fpass = 0.34
[radian/sample] and Fstop = 0.37 [radian/sample] is added
after the comb to prevent this.

G. Results of the Test Bench

Fig. 22 shows the time waveform and spectrogram of the
input stimulus signal. In the time domain the Gaussian pulse
shows distortion caused by the truncation of its spectrum
after the harmonic at 6 Frev. In the frequency plot, the x
axis shows the normalized frequency contents of the signal
spectrum, the y axis shows the simulation time. The DC

Fig. 24. Data Flow with SSP and Asynchronous (fixed sampling rate)
algorithms.

TABLE II

FPGA RESOURCE UTILIZATION AFTER PAR

component, the fundamental frequency and the harmonics are
clearly visible above the floor caused by the added white noise.

Fig. 23 depicts the resulting output signal in both time
and frequency domain, after up-sampling, filtering and down-
sampling. The white noise has been significantly reduced while
the spectral components of the periodic signal are unaffected.
Fig. 23(c) shows a color-coded 2D plot of the spectrogram
of Fig. 23(b). The signal components are unaffected while
the noise is reduced by 36 dB. The noise reduction depends
on the attenuation of the comb in the stop-bands (Fig. 21).
The effect of the anti-aliasing filter is clearly visible. The
spectral components on harmonics seven and eight come from
quantization noise in the fixed-coefficients comb filter and can
be reduced by using more bits.

H. Fixed-Rate Processing

The FPGA where the presented architecture is implemented
can, in addition, perform any other fixed-rate processing
requiring a fixed sampling clock instead of a sweeping
clock. These algorithms can include filtering with a response
unrelated to the signal fundamental frequency, for example
the compensation of amplifier response in particle acceler-
ators LLRF. There is no restriction in performing this side
processing before or after the SSP region in the data-path. A
processing data-path hosting both types of filtering is presented
in Fig. 24.

I. Implementation Results

The implementation of the testbench was successfully per-
formed with a target 125 MHz processing clock for two
devices, a high-grade FPGA, Xilinx Kintex-7 XCKU040-
1FFVA1156C and small device Xilinx Artix-7 XC7A75T-
2FGG484C. The timing report shows that the maximum
achievable clock for the Artix device is 149.9 MHz and
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200.8 MHz for the Kintex. The PAR synthesizer strategy was
“Optimization of Area”.

Table II shows resource utilization results after the PAR.
The used glue logic and memory requirements are very limited
and negligible for both devices. The DSP blocks are mainly
consumed by the bank of filters of the VFD. The data-paths
at the input and output of the resampler are 16 bits wide, with
15 fractional part bits. The filter coefficients are 18 bits wide,
with 16 fractional part bits. The data-path within the resampler
is extended to 24 bits.

VII. CONCLUSION

The paper has presented a new architectural solution for
a Synchronous Sampling Rate Converter (SSRC) with a real
time variable and arbitrary ratio. The design is a Farrow-
based resampler. It has two main parts: A DIstAnce iN time
Algorithm engine (DIANA) calculates the delay between the
present available input samples and the desired interpolated
outputs. It forwards this result to the Variable Fractional
Delay (VFD) consisting of a bank of fixed-coefficient FIRs
filtering the input samples. The FIR outputs are then combined
after multiplication by powers of the delay calculated by
the DIANA engine. The architecture is optimized so that
the resampling ratio can be changed continuously. It uses a
single fixed-frequency processing clock, thanks to a decoupled
data-path that avoids the need for a swept clock as the
resampling ratio changes. This makes it perfectly suited for
implementation in an FPGA.

This architecture was then demonstrated as a solution for the
processing of periodic signals with known but possibly varying
fundamental frequency. Two complementary resamplers are
combined to create a processing region between them where
the sampling period can be swept and a fixed coefficient
comb filter is inserted. The resampling ratio is set so that
the fundamental frequency of the input signal falls on the
first resonance of the comb. The comb then enhances the
harmonics and rejects the broadband noise. The second resam-
pler, with the inverse ratio, restores the signal spectrum to the
original sampling rate. Instead of adapting the processing to
the spectral content of the signal, this method modifies the
sampling rate to tune the spectral representation of the signal
to a predefined normalized frequency in which the processing
is performed with a fixed coefficient filter. This avoids the need
for reconfiguration of the processing elements in real time.

The proposed hardware will be implemented on a uTCA
platform and evaluated in the CERN Super Proton Synchrotron
machine for the compensation of beam induced voltage in a
Radio-Frequency cavity during the acceleration ramp. A sec-
ond paper is being prepared presenting these results. The
authors believe that the method can also be applied to other
fields for the processing of pseudo-periodic signals.

Future work needs to evaluate the real-time behavior of the
architecture. Of prime importance is the tracking capability
of the resamplers. How fast can the fundamental frequency
vary? This is not an issue for the intended application in
particle accelerators as the rate of change is slow, but it may be
important for other fields. Frequency tracking is the responsi-
bility of the VFD that includes Finite Impulse Response filters

with few taps, resulting in a small latency and suggesting a
good tracking capability. This must still be evaluated. Other
optimization methods for the VFD coefficients such as the
Offset Window method [50], [51] need to be studied. Also,
other similar VFD architectures, such as the modified or
transposed Farrow [18], could offer some optimization in the
hardware implementation.
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