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Abstract— This paper presents a statistical model to accurately
estimate post-FEC BER for high-speed wireline links using
standard linear block codes, such as the RS(544,514,15) KP4 and
RS(528,514,7) KR4 codes. A hierarchical approach is adopted
to analyze the propagation of PAM-symbol and FEC-symbol
errors through a two-layer Markov model. A series of techniques
including state aggregation, time aggregation, state reduction,
and dynamic programming are introduced making the time com-
plexity to compute post-FEC BER below 10−15 reasonable. Error
bounds associated with each method are found. The efficiency of
the proposed model allows it to handle a larger state space, more
DFE taps, and more sophisticated linear block codes than prior
work. A 4-PAM 60 Gb/s wireline transceiver fabricated in a
7 nm FinFET technology is used as a test vehicle to validate this
model. Measured data with two different channels reveals that
the statistical model can properly predict the post-FEC error
floor with standard FEC codes. While this paper demonstrates
the method for capturing DFE error propagation, the method
is general and can be applied to model other communication
systems having memory effects. Moreover, our proposed model
can be easily extended to higher-level PAM schemes and other
advanced equalizer architectures to assist in making architectural
choices for wireline transceivers.

Index Terms— BER estimation; burst error; decision feedback
equalization (DFE); dynamic programming; error propagation;
forward error correction (FEC); linear block code; Markov
model; pulse amplitude modulation (PAM); state aggregation;
time aggregation; wireline channel.

I. INTRODUCTION

FORWARD error correction (FEC) has become an inte-
gral part of many wireline links at data rates above

25 Gb/s whose impact must be considered when architecting
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transceivers to achieve a target BER below 10−15 without
expensive overdesign [1]. A typical design practice, sometimes
referred to as the FEC limit paradigm [2], is to design the
serializer-deserializer (SerDes) for a targeted BER (e.g. 10−6)
without FEC, called the pre-FEC BER, assuming that an
appropriate FEC code will correct most of the resulting errors
providing a post-FEC BER of some desired level (e.g. 10−12

or 10−15). However, this approach is naïve. For example,
the 100GBase-KP4 standard [3] specifies transmitting 4-PAM
symbols at 100 Gb/s over four backplane interconnects with
less than 33 dB insertion loss at 7 GHz, targeting at a post-FEC
BER better than or equal to 10−12 using a RS(544,514,15)
FEC code. Depending on the equalization techniques used in
the SerDes, the same pre-FEC BER may result in different
post-FEC BER. In particular, error propagation in decision
feedback equalization (DFE) can significantly impact BER.
A DFE removes channel ISI by registering past equalized
symbols in the feedback path and using them to estimate
and cancel ISI from the current symbol. However, if any past
decision registered in the DFE is wrong, the receiver’s decision
is biased and may increase the probability of additional
symbol errors. Errors may thus propagate around the DFE
feedback loop and result in FEC code failures. Unfortunately,
simulations of the targeted post-FEC BERs are prohibitively
long, especially for exploring architectural alternatives. Instead
of using the FEC limit paradigm currently employed by many
designs [4]–[6], which doesn’t consider DFE error propaga-
tion, a model that accurately predicts very low post-FEC BERs
is important for modern SerDes design.

Subject to various noise sources in wireline links [5], [7],
[8], several models have been developed for BER estima-
tion, each having its own limits. For example, the Gilbert
model [9], [10] captures DFE burst errors, but its complexity
grows exponentially with the number of DFE taps. Peak distor-
tion analysis [11] focuses on the impact of residual (unequal-
ized) inter-symbol interference (ISI) but may require too much
simulation time to find all critical data patterns that contribute
to BER.

A key challenge for statistical modeling is to accurately cap-
ture the impact of DFE error propagation on post-FEC BER.
Ref [12] explains the approach in the IEEE 10GBASE stan-
dard for handling DFE error propagation. It considers bursts
combining correct and erred bits, and enumerates all possible
burst-error patterns to estimate BER and link performance.
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Fig. 1. A zero-forcing N -tap DFE example for wireline SerDes.

However, this time-consuming approach is ill-suited to the
longer linear block codes adopted in recent wireline stan-
dards [13], [14]. Another possibility is to extrapolate to very
low BERs based on a few simulations at higher BER [15].
The validity of such methods holds only if the BER-SNR
correlation remains stable when BER is extrapolated to lower
orders of magnitude, which we will show is impractical for
many wireline links.

Past work on post-FEC BER estimation has focused on
systems with BCH codes which operate in GF(2) using
2-PAM signaling [16]. A Markov chain model from [17]
was adopted in [16] to account for DFE error propagation,
and possible burst-error patterns are systematically grouped
through trellis-based dynamic programming. However, 4-PAM
signaling is becoming increasingly critical for 50 Gb/s+ wire-
line links [18]–[20], often with DFEs [21], [22]. Hence more
powerful Reed-Solomon (RS) codes are being used to correct
up to t FEC symbol errors caused by DFE error propagation.
Nonetheless, very few attempts have been made to model and
analyze the post-FEC BER for codes in higher-order Galois
fields, GF(2m), m > 1 in the presence of DFE error propa-
gation [23], [24]. In [23], DFE error propagation across PAM
symbols is considered using a method similar to [12], and
post-FEC BER is calculated by enumerating all symbol-error
combinations that result in t + 1 or more FEC-symbol errors.
It applied the method to only a 1-tap DFE, but the method’s
complexity can grow exponentially for a multi-tap DFE and
large t values. In [24], the probability of having an error-free
RS symbol is assumed to be independent of other symbol
errors in a codeword, which may not be a valid assumption
and thus incapable of accurately modeling error bursting for
a post-FEC BER below 10−15.

Our proposed BER estimation method for wireline links is
an extension of [16], and provides a set of tools to assist in
making architectural choices for wireline transceivers, such as
co-design of the equalization and FEC in the presence of DFE
error propagation and various noise sources. An extension
from 2-PAM to Gray-Coded 4-PAM signaling is included
in our model to calculate the bit-error probability for a
multi-bit PAM symbol accurately. We generalize trellis-based
dynamic programming to the FEC-symbol level, resulting
in a hierarchical model containing many PAM sub-trellises
allowing us to look at post-FEC BER for both non-interleaved
and interleaved FEC codes in a reasonable amount of time.
The model is simplified through state reductions to accelerate
the statistical analysis. The efficiency of the proposed model

allows it to handle a larger state space, more DFE taps, and
more sophisticated linear block codes than prior work. Our
proposed model can be easily extended to higher-level PAM
schemes, and is also applicable to other advanced equalizer
architectures that are likely to arise in ADC-based receivers
for 100 Gb/s+ wireline links [25].

The modeling of DFE error propagation will be discussed
in Section II. This will then be followed by the application
of state aggregation and trellis-based dynamic programming
to improve the computational efficiency of BER estimation in
Section III. In Section IV we will propose a statistical model
to estimate post-FEC BER for high-order PAM schemes and
linear block FEC codes on GF(2m), m > 1. A time-aggregated
trellis model will be used to consider the error propagation
at both the PAM-symbol and FEC-symbol levels. Section V
will describe a method for post-FEC BER estimation and
steps to minimize its computational complexity. Subsequently,
in Section VI, the statistical model is experimentally verified
on a 4-PAM 60 Gb/s SerDes link. Finally, conclusions are
drawn in Section VII.

II. MODELING DFE ERROR PROPAGATION

The statistical model proposed in [16] will be introduced
in this section to estimate the pre-FEC BER in the presence
of DFE error propagation. We first explain how DFE error
propagation is modeled using Markov chain theory, and then
apply trellis-based dynamic programming to efficiently collect
probabilities of all error patterns that are needed for post-FEC
BER calculation in Section IV.

First, consider the link model shown in Fig. 1, communi-
cating symbols bk with time index k. The symbols are filtered
by a finite-impulse-response (FIR) channel response h p with
main cursor h0, and subject to additive noise, nk . Without
limiting the scope of this work, it is assumed that all pre-cursor
and higher-order post-cursor ISIs have been removed by linear
equalizers. The detected symbols dk may differ from the
transmitted symbols resulting in the error sequence,

Dk = dk − bk . (1)

This results in an additive error nd f e
k generated by non-zero

error terms in the DFE feedback path. Assuming a perfect
zero-forcing N-tap DFE,

nd f e
k = −

N∑
p=1

Dk−ph p. (2)
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Then the DFE slicer input rk becomes

rk = bkh0 + nk + nd f e
k . (3)

Error propagation is modeled as a Markov process whose
state is specified by the error terms in the DFE feedback,
Dk−1, Dk−2, . . . Assuming additive white Gaussian noise
(AWGN) nk ∼ N(0, σ 2), we have rk ∼ N(bkh0 + nd f e

k , σ 2).
Hence, the rates at which dk �= bk and dk = bk can be
determined from the appropriate standard error function. This
may be straightforwardly extended to include other impair-
ments such as jitter, crosstalk, or residual ISI by appropriately
changing the probability density function (pdf) of the received
samples rk [7], [8]. The one-step state-transition probabilities
qi �i from a source state ‘i �’ to a sink state ‘i ’ can be calculated
by applying (3) to each pair of valid transitions i �i in the
Markov model, where the term nd f e

k in (3) is exclusively
dictated by the source state ‘i �’. With all qi �i calculated,
we may find the steady-state probability, πi , of any state i in
the Markov model by solving the global balance equation [26],

πi =
∑

i �
qi � iπi � . (4)

subject to ∑
i

πi = 1. (5)

III. REDUCING COMPUTATIONAL COMPLEXITY

IN MARKOV MODEL

A. Aggregation of Weakly Lumpable Markov Process

Applying state lumping (sometimes referred as state
aggregation) to a Markov process allows the generation of
an aggregated chain with a comparatively smaller state space
resulting in reduced analytical complexity. The aggregated
chain provides a coarser analysis of the state space and can
be used to perform DFE error-rate analysis for the original
Markov chain without losing analytical accuracy [27].
Consider a homogeneous and irreducible Markov process
X with finite state space S = {1, 2, . . . , s} whose chain is
defined by its one-step transition matrix Q = [qi �i ] and initial
probability vector γ . We say X is lumpable with respect
to a partition C = {C1, C2,…Cr } given ∪Ci = S, Ci �= ∅
and Cu ∩ Cv = ∅ for any u �= v if the aggregated chain Y
with state space S̄ = {1, 2, . . . , r} is also a homogeneous
Markov process [28]. If the above definition holds true for
all γ , we say X is strongly lumpable with respect to the
partition C; if the above definition applies to at least one but
not necessarily all choices of γ , then we say X is weakly
lumpable with respect to C .

For an N-tap DFE with 2-PAM signaling, the origi-
nal state space S = {1, 2, . . . , 3N } can be reduced to
S̄ = {1, 2, . . . , 2N } using weak lumpability. A 2-tap DFE
example is given in Fig. 2, and states are labelled according
to the errors registered in the DFE: i.e. < Dk−1, Dk−2 >.
With 2-PAM bk = ±1, Dk ∈ {+2, −2, 0} and the DFE
may be in 32 = 9 different states as in Fig. 2(a). We obtain
the 22 = 4 Markov states in Fig. 2 (b) by lumping all
+2 and -2 states at each DFE tap position. The lumped state

Fig. 2. Markov chain model for a 2-tap DFE and 2-PAM symbols
bk ∈ {−1,+ 1}: (a) before lumping [16] (b) after lumping. States are labelled
Dk−1, Dk−2.

±2 preserves the coarser bit-error information by discarding
the sign of error value Dk .

In the scope of this work, we consider the link illustrated
in Fig. 1 subject to AWGN, having equally spaced DFE slicer
thresholds, and an equally probable symbol set bk that is
independent of noise sample nk . Under this particular setting,
it is proven in [27] that, by exploiting the symmetry in the error
states < Dk−1, Dk−2 . . . , Dk−N >, an N-tap DFE Markov
process is weakly lumpable with respect to the partition
lumping all states having the same error magnitude |Dk | at
each DFE tap. In addition, it is always assumed in our work
that a Markov chain is initialized by its steady-state probability
vector π , which is proven in [29] to be always a choice of γ
leading to a homogeneous Markov chain if the chain is weakly
lumpable.

In order to obtain the aggregated Markov model from the
original one, we define γ Ci as the restricted initial vector to a
set Ci in partition C . For all elements in γ Ci , we assign zeros
to those that correspond to states not in Ci and normalize γ Ci

to a unit-sized vector. Therefore, the kth element γ Ci
k is

γ
Ci
k =

{ γk∑
j∈Ci

γ j
if k ∈ Ci

0 if k /∈ Ci .
(6)

Let Uπ be the s × r distributor matrix whose i th row is πCi ,
which is the steady-state probability vector restricted to set Ci ;
let V be the r ×s collector matrix generated by transposing the
distributor matrix Uπ and replacing all non-zero elements by 1.
Denote pi �mim as the one-step state-transition probability from
a lumped state ‘i �

m’ to a lumped state ‘im’. Transition matrix
P = [pi �mim ] of the lumped process Y is then given by

P = Uπ QV . (7)

Moreover, a more straightforward two-step procedure for
computing the aggregated state probabilities from the original
chain is provided in [30]. First, the aggregated steady-state
probabilities Πim can be calculated from the results obtained
by (4) and (5),

Πim =
∑
i�im

πi . (8)
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Fig. 3. 2-PAM trellis paths for having bit error at 2nd stage with N = 2 and
B = 3.

Next, the aggregated state-transition probabilities pi �mim can
be computed by

pi �mim
=

∑
i ��i �m ,i�im

πi � qi � i
Πi �m

. (9)

We may also numerically verify the weak lumpability using
a sufficient condition proposed in [28]. That is, a Markov
process X is weakly lumpable with respect to a partition C if

Uπ QV Uπ = Uπ Q. (10)

B. Trellis-Based Dynamic Programming

We next apply trellis-based dynamic programming [31] to
the Markov model to efficiently calculate the probability of
bit errors in a codeword. The lumped Markov model for an
N-tap DFE with M-PAM signaling may be represented by
an M N-state radix-M trellis. Rather than finding the BER by
enumerating all possible error patterns in the trellis, dynamic
programming solves the problem much faster by grouping the
probability of all trellis paths having the same number of bit
errors. The same aggregation procedure is repeated recursively
when traversing through each stage in the trellis, resulting
in a significant reduction in computational complexity. For
a length-B , t-error-correcting block code, without dynamic
programming, one must calculate the probability of all paths
through the length-B trellis corresponding to t +1 or more bit
errors, adding them together to find the probability of a code-
word error. For example, a trellis representation of the binary
2-tap DFE Markov model with B = 3 is shown in Fig. 3,
highlighting all paths that result in exactly 1 detection error
in the highlighted 2nd bit position. Combining the computed
steady-state error probabilities and branch probabilities, one
may compute the probability of each of these paths, along
with those of paths having errors in the 1st bit and 3rd bit to
find the total probability of 1-bit error within a 3-bit sequence.
Unfortunately, the challenge of enumerating and computing
these probabilities grows exponentially with block length B
making the computations intractable for practical FEC codes
typically having B > 1,000.

Instead, dynamic programming calculates the probability of
long error patterns recursively in terms of state and error

probabilities at the preceding stage. We denote Pr j
k (i) the

probability of arriving at Markov state i at time step k after
traversing all trellis paths containing exactly j bit errors.
For example, Pr1

2(3) represents the probability of arriving
at state #3 at the 2nd stage of the trellis having traversed
all paths corresponding to exactly 1 error. Hence, the bit-
error probabilities at time k + 1, Pr j

k+1(i), can be found

iteratively from the values of Pr j
k (i �), Pr j−1

k (i �) and the branch
probabilities pi �i . For example, for states ‘i ’ where the most
recently received bit is correct,

Pr j
k+1 (i) =

∑
i �

Pr j
k

(
i
�)

pi � i . (11)

whereas for states ‘i ’ where the most recently received bit is
incorrect,

Pr j
k+1 (i) =

∑
i �

Pr j−1
k

(
i
�)

pi � i . (12)

For example, according to (12), Pr1
2(3) = Pr0

1(1)p13+
Pr0

1(2)p23, corresponding to the red-highlighted paths
in Fig. 3 where #1 and #2 are the only possible source
nodes. Moreover, Pr0

1(1) and Pr0
1(2) can be found recursively

from (11) when calculating all node probabilities for the 1st

trellis stage. By repeating this procedure for all k, j and i ,
we will be able to obtain the probability of all error counts
through the trellis with a computing time that increases only
linearly with B . The recursion is initialized assuming the link
has reached a steady-state, so Pr0

0(i) = Πi .

IV. 4-PAM STATISTICAL MODEL FOR NON-BINARY

LINEAR BLOCK CODES

In the previous section, we have reviewed a 2-PAM
statistical model and the application of trellis-based dynamic
programming to model DFE error propagation. In cur-
rent long-reach wireline SerDes applications, such as the
100GBase-KP4, Gray-coded 4-PAM signaling and RS FEC are
standard. For linear FEC codes on GF(2m), the encoder groups
every m bits into one FEC symbol, and correspondingly the
decoder can detect and correct up to t erroneous FEC symbols
in an n-symbol codeword. All m bit errors in each erred FEC
symbol can be corrected so long as the total number of FEC
symbol errors does not exceed t . Hence the higher-order RS
codes provide stronger burst-error correction ability than BCH
codes, a measure taken in part to accommodate DFE error
propagation. In this section, we extend this statistical model
to higher-order M-PAM schemes and linear block FEC codes
on GF(2m), for m being multiple integer of log2(M) including
the standardized wireline RS codes [13], [14]. The analysis is
performed in two layers:

• First, a PAM trellis is defined to model the propaga-
tion of 4-PAM (physical-layer) symbol errors within a
DFE over the course of one individual GF(2m) FEC
symbol.

• Second, a higher layer of analysis groups 4-PAM symbols
into GF(2m) FEC symbols through a time-aggregation
approach and the probability of error propagation across
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Fig. 4. A receiver eye diagram indicating all possible symbol-detection
outcomes for a link communicating Gray-coded 4-PAM symbols bk ∈
{±3, ±1}.

FEC symbol boundaries is considered using a higher-level
FEC trellis.

Dynamic programming is applied to analyze both trellises,
ultimately resulting in the post-FEC BER.

A. 4-PAM Markov Model

With M-PAM signaling, there are in total M2 symbol-
detection outcomes considering all possible pairs of transmit-
ted/detected PAM symbols. Hence an M-PAM N-tap DFE
can be represented by an M2N-state Markov model without
applying state aggregation. Fig. 4 demonstrates a receiver eye
diagram indicating all possible detection outcomes for a link
communicating Gray-coded 4-PAM symbols bk ∈ {±3, ±1}.
All 16 error values Dk ∈ {0T, 0M1, 0M2, 0B, ±2T, ±2M, ±2B,
±4T,±4B, ±6}, together with their associated bit-error pat-
terns, are also labeled in the same figure. The subscript of each
error value denotes its relative position in the 4-PAM eye from
top to bottom. Note that states having the same error value
may correspond to different bit-error patterns. For example,
subject to an error event Dk = +2M, the 1st bit of the received
PAM symbol is in error, which corresponds to the pdf plot
superimposed in Fig. 4 with bk = −1, dk = +1 and nd f e

k = 0.
However, the combination of bk = +1 and dk = +3 results in
Dk = +2T, which instead makes the 2nd bit erroneous while
having the same error value.

Next, in the M2N-state Markov model, all states having the
same error magnitude are aggregated together by applying
weak lumpability, resulting in a much smaller M N-state state
space. Specifically, we can define a new set of Dk ∈ {0, ±2,
±4, ±6} for the 4-PAM example given in Fig. 4. Steady-state
and state-transition probabilities of the new aggregated chain
can be calculated using (7)-(9), similar to what has been done
in the 2-PAM case.

B. 4-PAM Trellis Model

When traversing in an M-PAM trellis using dynamic pro-
gramming, each branch decision corresponds to between 0 and
at most log2M bit errors. We define jPAM as the number of
bit errors in a PAM symbol detection. For example, in a link
communicating 4-PAM symbols bk ∈ {±3, ±1}, jPAM ∈ {0,
1, 2} and the receiver error sequence defined in (1) is
Dk ∈ {±6, ±4, ±2, 0}. Assuming Gray-coding, an error
value ±2 or ±6 corresponds to jPAM = 1, whereas an error

Fig. 5. 4-PAM trellis paths for calculating
∑

j Pr j
2(2) with N = 1 and

B = 2 using (a) lumped trellis model (b) lumped trellis model ignoring ±4 and
±6 error events.

value ±4 indicates jPAM = 2. In each trellis iteration, for
states ‘i ’ where the most recently received 4-PAM symbol has
jPAM-bit errors,

Pr j
k+1 (i) =

∑
i �

Pr j− jP AM
k

(
i
�)

pi � i . (13)

Fig. 5(a) shows an example for a 4-PAM 1-tap-DFE Markov
model with B = 2, highlighting all possible paths ending in
state ±2 (i = 2). For example, Pr j

2(2) represents the probabil-
ity of arriving at state #2 at the 2nd stage of the trellis having
traversed all trellis paths corresponding to exactly j -bit errors,
and the highlighted paths in Fig. 5(a) indicate all possible error
patterns for calculating

∑
j Pr j

2(2). Hence, from (13) we know∑
j Pr j

2(2)= Pr0
1(1)p12+ Pr1

1(2)p22+ Pr2
1(3)p32+ Pr1

1(4)p42,
where the only possible node for k = 1 and j = 2 is #3.
Without lumping the Markov model would have 71 = 7 states
for a 4-PAM 1-tap DFE, but it can be reduced to 4 as in
Fig. 5(a) by lumping the 1-bit errors ±2/±6 and the 2-bit
errors ±4. Note that lumping reduces the model’s complexity
much more as the number of DFE taps increases.

The trellis model can be further simplified to a 2N-state
radix-2 trellis as demonstrated in Fig. 5(b) by ignoring all
the dotted paths in Fig. 5(a) that have unlikely ±4 and
±6 error events. In the following subsection, we will provide
a quantitative justification and discuss the general conditions
for ignoring these error events in the post-FEC BER analysis.

With the M-PAM trellis properly defined, a length
B = m/log2M trellis may be analyzed using the methods
in this section to find the probability of at least 1-bit error
corrupting the GF(2m) FEC symbol.

C. 4-PAM Trellis Model Simplification

We apply the 4-PAM Markov model to a link communicat-
ing bk ∈ {±3, ±1} as depicted in Fig. 1 with N = 4 and
channel response 1/A + α/A z−1 + α2/A z−2 + α3/A z−3 +
α4/A z−4. The channel response is normalized by A = 1+α+
α2 + α3 + α4 to maintain a peak-amplitude constraint on the
transmitter, typically imposed by supply voltage limitations.
Hence, larger α indicates higher A, lower channel bandwidth,
and a weaker main cursor in the channel response. A zero-
forcing 4-tap DFE is assumed at the receiver and may thus
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Fig. 6. Pre-FEC BER versus probability of ±2, ±4 and ±6 error events,
and versus δburst with N = 4, m = 10, 4-PAM signaling and AWGN noise.
The pre-FEC BER is obtained by calculating the weighted average of all error
event probabilities using the 4-PAM Markov model.

introduce error propagation. As α is increased, a lower noise
variance σ 2 is required to maintain the same pre-FEC BER
and thus a larger proportion of errors are caused by DFE error
propagation.

Fig. 6 plots the probability of each error value versus pre-
FEC BER with α = 0.4 and 0.7, respectively. Noise variance
σ 2 is swept to generate each curve. Clearly, for each slicer
decision the probability of ±2 error events (associated with
the nearest-neighboring PAM signal levels) will be greater
than ±4 and ±6 error events. Despite the very large DFE tap
weights in these channels, the probability of ±4 and ±6 error
events are several orders of magnitude lower than ±2 error
events. This fact can be also qualitatively verified by the
example given in Fig. 4, where the noise pdf is obtained by
setting bk = −1, dk = +1 and nd f e

k = 0. A smaller noise
variance σ 2 leads to a tighter pdf distribution and a lower
BER, and the area of each shaded pdf region is proportional
to the probability of each error event. As BER decreases,
the ±4 and ±6 event probabilities corresponding to the area
under the Gaussian-like exponential tail declines much faster
than the probability of ±2 error events. This ultimately results
in a much higher slope for ±4 and ±6 events in the plot.
As pre-FEC BER is the weighted average of these error
event probabilities, neglecting ±4 and ±6 error events will
not impact the accuracy of pre-FEC BER analysis at levels
below 10−2.

When traversing the PAM trellis in a codeword, all error
patterns contributing to the post-FEC BER are recursively
computed by aggregating the probability of all trellis paths
having more than t FEC symbol errors. It is also possible
to neglect ±4 and ±6 error events in post-FEC error-rate
analysis if the probability of burst errors across multiple FEC
symbols is not impacted. This can be quantitatively justified
by analyzing the error propagation probability Pburst between
two neighboring FEC symbols using a 2m/log2M-stage
M-PAM trellis, where every m/log2M stages represents one
FEC symbol in GF(2m). We denote Pr[x] j

k(i) as the prob-
ability of arriving at Markov state i at time step k after
traversing all trellis paths containing exactly j bit errors in the
x th FEC symbol. With an M N-state Markov model, we have
i ∈ [1, M N ], j ∈ [0, k·log2M], k ∈ [0, m/log2M] and

x ∈ [1, 2] in each trellis iteration. We can obtain Pburst by
calculating the error probability of a FEC symbol given an
erroneous preceding FEC symbol. First, we traverse the trellis
for x = 1. Then, the probability space in the leading FEC
symbol is normalized by excluding all error-free trellis paths
using scaling factor

c =
∑

i

∑
j>0

Pr [1] j
m/log2 M (i). (14)

Next, the normalized probability of visiting state i at the last
PAM stage in the erred leading FEC symbol, becomes the
initial condition Pr[x+1]0

0(i) of the following FEC symbol,

Pr [x + 1]0
0 (i) =

∑
j>0

Pr [x] j
m/log2 M (i)/c. (15)

Similarly, we can use the above method to generate P �
burst

by ignoring the ±4 and ±6 error events. The relative error
introduced by the simplified trellis model is

δburst =
∣∣∣∣∣ Pburst − P

�
burst

Pburst

∣∣∣∣∣ . (16)

With m = 10, M = 4 and N = 4, δburst versus pre-
FEC BER for α = 0.4 and 0.7 is also reported in Fig. 6.
For the case where α = 0.7, a larger proportion of errors
are caused by DFE error propagation which increases the
probability of ±4 and ±6 error events. The relative error δburst

monotonically decreases with smaller σ 2, and δburst ≤ 0.01%
for pre-FEC BER ≤ 10−2. When estimating the probability
of a codeword containing 100 FEC symbol errors, the relative
estimation error is bounded by the worst-case scenario having
100 consecutive errors, 1-(1-0.0001)100 ≈ 1%. As modern
SerDes links generally operate with a pre-FEC BER ≤ 10−2,
m = 10, N ≤ 4, t = 15 � 100, and α ≤ 0.4 [19]–[21],
the simplified trellis model can be practically applied to the
post-FEC error-rate analysis with an estimation error much
less than 1%. In addition, we can always apply the original
4N-state PAM trellis to verify the results generated by the sim-
plified model. Therefore, to further reduce the complexity of
the model, we consider a 2N-state radix-2 trellis for all 4-PAM
analysis with Dk ∈ {±2, 0} in the remainder of this work.

D. Time-Aggregated FEC Trellis Model

Using the methods described so far, every FEC symbol in
GF(2m) can be decomposed into a length-m/2 4-PAM trellis
describing link behavior in the physical layer. Recall the
example in Fig. 5 that we apply (13) to recursively compute
Pr j

k (i) in order to aggregate the probability of error patterns
having exactly j bit errors, where j ∈ {0…m/2}.a With an
N-tap DFE, this requires a total number of∑m/2

k=1

∑k

j=0
2N = O

(
2N · m2

)
(17)

iterations to analyze the probability of all error patterns in a
length-m/2 4-PAM trellis.

aThe possibility of more than m/2 bit errors in m 4-PAM symbols is ignored
as per section IV-C.
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Fig. 7. A time-aggregated 4-PAM trellis example with N = 1.

Note that all paths in the trellis representing Pr j
k (i),

the probability of arriving at state i at the kth stage of the
trellis after traversing all trellis paths containing exactly j bit
errors, can be decomposed into 2N groups of trellis paths and
each starts with one of the 2N Markov states at k = 0. For
example, in Fig. 5(b) all trellis paths representing Pr1

2(2) must
begin with one of the two DFE states at k = 0. As such,
we may simplify the entire length-m/2 2N-state radix-2 trellis
to a length-1 2N-state radix-(2N ·m/2) trellis by aggregating all
j -bit-error paths within each of the 2N groups to a one-step
direct transition between the two states at k = 0 and k = m/2.
Each one-step transition in the simplified trellis is equivalent
to traversing m/2 4-PAM symbols in the fully expanded trellis.
Fig. 7 shows an example of a time-aggregated 4-PAM trellis
with N = 1, where we denote a j

i �i as the one-step state-
transition probability from source state ‘i �’ to sink state ‘i ’
with exactly j bit errors. Depending on the choice of sink state
‘i ’ and the number of aggregated PAM-symbol stages, there
are in total m/2 possible transitions between any of the two
states in the simplified trellis. For example, for the transition
a j

22 in Fig. 7, j ∈ {1 . . . m/2} as all the aggregated paths end
at i = 2 has at least 1 bit error.

As such, we may construct a new trellis model for the
entire FEC block, assuming that each state transition from
the kth

F to the (kF+1)th stage has traversed a group of
length-m/2 PAM-trellis paths. This is referred as the time
aggregation of a Markov decision processes [32]; we group
trellis paths over m/2 consecutive 4-PAM symbols while
the time-aggregated Markov model preserves both the time-
homogeneity and bit-error information. We call this time-
aggregated PAM trellis the FEC trellis model, distinguishing
it from the PAM symbol-level trellis considered thus far. With
this approach, a total number of

2N · 2N · m/2 = O
(

22N · m
)

(18)

iterations are required to analyze the probability of all error
patterns in a FEC symbol. Compared with the computational

Fig. 8. Time aggregating a 4-PAM trellis with m = 6 and N = 1 showing
the time-aggregated PAM trellis and the corresponding aggregated one-step
state-transition probability in the fully expanded PAM trellis.

complexity calculated in (17), the time-aggregation technique
outperforms when m > 2N . In current wireline FEC standards,
both the RS(544, 514, 15) KP4 and RS(528, 514, 7) KR4 codes
are in GF(210) [13], [14]. In addition, due to the trade-off
between power, area, and speed in a multi-tap DFE design,
N ≤ 2 in most high-speed wireline applications [20]–[22].
Therefore, time aggregating the underlying PAM trellis of each
FEC symbol results in a significant reduction in computational
complexity.

In order to analyze the FEC trellis, we must first find
all the state-transition probabilities of these 2N states by
analysis of each underlying 4-PAM trellis. Fig. 8 shows an
example illustrating the time-aggregation of a 4-PAM trellis
for N = 1 and m = 6. The FEC trellis is expanded
in Fig. 8 showing the underlying 4-PAM trellis to illustrate
how we may find state-transition probabilities a j

i �i in the
FEC trellis. First, we instantiate the expanded PAM trellis by
assuming that the PAM trellis starts at the state ‘i �’ in a j

i �i with
a probability of 1,

Pr 0
0

(
i �) = 1. (19)

Next, after traversing the expanded 4-PAM trellis using the
dynamic programming procedure described in (13), the tran-
sition probability a j

i � i to the next (kF + 1)th FEC trellis stage
can be calculated by summing the probability of all j -bit-error
PAM-trellis paths ending at state ‘i ’,

a j
i � i = Pr j

m/2 (i)
∣∣∣

Pr0
0(i

�)=1
. (20)

For example, in Fig.8, a2
12 corresponds to the summed prob-

ability of all PAM-trellis paths starting with state i = 1 and
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ending at i = 2 where 2 bit errors are detected in the fully
expanded PAM trellis. For this particular case,

a2
12 = Pr 2

3 (2)
∣∣∣

Pr0
0(1)=1

= p11 p12 p22 + p12 p21 p12. (21)

In the FEC trellis, each transition is equivalent to traversing
a length-m/2 4-PAM trellis. The initial state probabilities
are those at the last PAM stage of the previous FEC sym-
bol. Thus, we can recursively compute Pr j

k (i) in a fully-
expanded length-m/2 trellis, given the initial probability vector
γ = [Pr0

0(1) . . . Pr0
0(2N )]T. By applying the time aggregation

technique, the probability of error propagation across FEC
symbols is captured by directly computing the Pr j

k (i) between
FEC symbol boundaries. The probability of arriving at state
i at the last (m/2)th 4-PAM stage in a FEC symbol after
traversing all paths containing exactly j bit errors, is the
sum of a j

i � i with respect to all possible source node ‘i �’ and
weighted by the initial probability vector γ ,

Pr j
m/2 (i) =

∑
i �

Pr0
0

(
i �)a j

i �i , (22)

which proves the fact that the time-aggregation technique
is equivalent to directly traversing the fully-expanded PAM
trellis while the previous case could potentially benefit from
a reduced computational complexity if m > 2N . Note that
all state-transition probabilities a j

i �i in the FEC trellis are
independent of the time index kF and initial probability vector
γ , resulting in a stationary FEC Markov model where all a j

i � i
only need to be computed once.

E. Dynamic Programming for FEC Codes in GF(2m)

To compute the post-FEC BER, we must apply dynamic
programming to enumerate the probability of all error pat-
terns having more than t FEC symbol errors in a codeword.
However, the dynamic programming algorithm described
by (11-13) can only track the total number of bit errors. There-
fore, we create another error index allowing us to aggregate
all error patterns in terms of both FEC symbol errors and
bit errors. In the FEC trellis, we denote Pr_FEC js, j b

kF
(i) the

probability of visiting Markov state i at time step kF after
traversing all trellis paths containing exactly js FEC symbol
errors and jb bit errors. Hence, the error probabilities at time
kF + 1, Pr_FEC js, j b

kF +1(i), can be found iteratively from the

values of Pr_FEC js, j b
kF

(i) and the branch probabilities a j
i �i .

For a transition to state ‘i ’ in the FEC trellis where the
traversed m/2 PAM symbols have exactly j bit errors,

Pr_F EC js , jb
kF +1 (i) =

∑
i �

Pr_F EC js−min(1, j ), jb− j
kF

(
i �) a j

i �i .

(23)

V. POST-FEC BER ESTIMATION AND

MODEL OPTIMIZATION

A. Post-FEC BER Estimation

We first define Pr_FEC js, j b
n as the grouped probability of

all error patterns having js symbol errors and jb bit errors

along with a FEC trellis path of length n, computed by

Pr_F EC js , jb
n =

∑
i

Pr_F EC js , jb
n (i). (24)

Next, denote W ( js) the probability of having exactly js FEC
symbol errors in an n-symbol codeword,

W ( js) =
js · m

2∑
jb= js

Pr_F EC js , jb
n . (25)

To calculate BER, we define Eavg( js) as the average number
of bit errors in each erroneous FEC symbol given that exactly
js symbol errors occurred in an n-symbol codeword,

Eavg ( js) =

js · m
2∑

jb= js

(
Pr_F EC js, jb

n · jb
)

js · W ( js)
. (26)

Then, the pre-FEC BER can be calculated as

B E R pre−F EC =
n∑

js=1

[
W ( js) · Eavg ( js) · js

n · m

]
. (27)

Finally, to estimate the post-FEC BER for a t-error correcting
RS code in GF(2m) of block length n,

B E R post−F EC =
n∑

js=t+1

[
W ( js) · Eavg ( js) · js

n · m

]
. (28)

When evaluating BER, the time-complexity of the dynamic
programming procedures may become excessive because all
combinations of jb and js must be iterated at each trellis stage.
For an n-symbol codeword in GF(2m), the 2N-state FEC trellis
model would require a total of∑n

kF =1

∑kF

js=1

∑ js · m
2

jb=1

(
22N · m

2

)
= O

(
22N · m2 · n3

)
(29)

iterations. In Section V-B, we will propose a pruning
method to improve the analytical complexity of this dynamic-
programming algorithm.

B. Pruning-Based Dynamic Programming Algorithm

At low BER, as W ( js) decreases exponentially with increas-
ing js , pruning trellis paths having negligible probabilities
can result in a significant reduction in computation. This is
achieved by replacing the upper summation limit n in (27)
and (28) with jmax

s , indicating only trellis paths having up
to jmax

s FEC symbol errors are preserved. Selecting jmax
s is

based on the accuracy requirement on post-FEC BER through
an iterative algorithm that will be explained later. Hence the
same FEC trellis model would require a total of∑n

kF =1

∑ js max

js=1

∑ js·m2
jb=1

(
22N · m

2

)
= O

(
( jmax

s )2 ·22N ·m2 ·n
)

(30)

iterations.
Consider the trellis tree diagram in Fig. 9 for n = 4. All

trellis paths having js > jmax
s (dashed lines) are discarded
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Fig. 9. Pruning FEC trellis paths with jmax
s = 1 in a 4-symbol codeword.

during each dynamic programming iteration by (23). First of
all, the post-FEC BER can be calculated by modifying the
upper summation limit in (28)

B E R post−F EC ≈
j max
s∑

js=t+1

[
W ( js) · Eavg ( js) · js

n · m

]
. (31)

Since all paths having more than jmax
s symbol errors are

neglected, W ( js) = 0 and Eavg( js) = 0 for js > jmax
s .

Naturally, some error is incurred by neglecting the pruned
paths, but we can accurately estimate this error to ensure it
is negligible. We define ε( jmax

s ) as the summed probability of
all truncated paths,

ε
(

jmax
s

) =
n∑

js= j max
s +1

W ( js) = 1 −
j max
s∑

js=1

W ( js). (32)

Moreover, ε( jmax
s ) ≈ W ( jmax

s +1) since W ( js) decreases
exponentially with increasing js . Consequently, the absolute
error in the BER estimate of (31) can be approximated by

e
(

jmax
s

) =
n∑

js= j max
s +1

[
W ( js) · Eavg ( js) · js

n · m

]

≈ ε
(

jmax
s

) · Eavg
(

jmax
s + 1

) · (
jmax
s + 1

)
n · m

. (33)

We may use the fact that Eavg( jmax
s +1) ≈ Eavg( jmax

s )
to approximate e( jmax

s ) without having to calculate
Eavg( jmax

s +1) using the full FEC trellis. Moreover, for
a FEC code correcting t symbol errors, we may also define
the relative error er ( jmax

s ) in our estimate of post-FEC BER,

er
(

jmax
s

) ≈ ε
(

jmax
s

) · Eavg
(

jmax
s + 1

) · ( jmax
s + 1

)
j max
s∑

js=t+1

[
W ( js) · Eavg ( js) · js

] . (34)

The negligibility of the effect of this pruning approach
can be illustrated by an example demonstrated in Fig. 10.
The statistical model is applied to the link depicted in
Fig. 1 with n = 544, t = 15, m = 10 and N = 4 for two
different channel α settings. Under the same 10−3 pre-FEC
BER, results for er ( jmax

s ) and W ( js) are plotted in Fig. 10.
A larger α intensifies DFE error propagation and thus results
in increased W ( js) at longer burst lengths. Since the same

Fig. 10. er ( jmax
s ) and W ( js) for various channel α settings at 10−3

pre-FEC BER.

pre-FEC BER is assumed in both cases, the α = 0.4 channel
has shorter bursts and thus higher W ( js) over shorter burst
lengths. The relative error function er ( jmax

s ) also increases
with a larger α but decreases exponentially by increasing
jmax
s . Accurate pre-FEC BER results are obtained by com-

puting the weighted average of all error event probabilities
provided in Section IV-C. The best value of jmax

s can be
determined by iterating from jmax

s = t+1 until a given
accuracy requirement η on er ( jmax

s ) is met at a pre-selected
pre-FEC BER level which corresponds to the desired post-FEC
BER. For the example given in Fig. 10, if η is 1% with
10−3 pre-FEC BER, the best choice of jmax

s is 18 for both α
settings.

C. Model Verification

A 4-PAM statistical model is applied to a link as depicted
in Fig. 1 with a channel response h = 0.6 + 0.2z−1 - 0.2z−2.
Such a response may, for example, arise from the combination
of a lowpass channel and a continuous time linear equal-
izer (CTLE) that over-equalizes the channel. The solid line
in Fig. 11 reports the pre-FEC vs post-FEC BER calculated
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Fig. 11. Pre-FEC vs post-FEC BER plot for RS(544,536,4) with
h = 0.6 + 0.2z−1 - 0.2z−2.

using the methods described above with jmax
s = 10 for the

RS(544,536,4) code on GF(210). The dotted line reports the
results neglecting DFE burst errors. Behavioral simulation
results are superimposed on the same axes to verify the
correctness of our model down to a post-FEC BER of 10−8.

In Fig. 11, we may identify two regions of interest. First,
consider an extreme case where no burst errors are present.
In such a case, a codeword will be decoded incorrectly
only when there are (t+1) random bit errors, each having
probability p. Hence, post-FEC BER ∼ p(t+1). This case
corresponds to the region (a) in Fig. 11, where the slope of
Post-FEC vs. Pre-FEC BER is (t+1) on a logarithmic scale.
Another extreme case can be represented by region (b), where
individual random bit errors turning into very long bursts
are the dominant source of post-FEC errors. If some small
fraction, b, of pre-FEC random errors will generate bursts long
enough to create post-FEC errors, post-FEC BER ∼ b·p. Thus,
the slope of post-FEC vs. pre-FEC BER in this region is 1 on
a logarithmic scale.

However, our statistical model does not consider decoder
failures in the presence of more than t symbol errors, where the
decoder may correct to the wrong codeword, thus increasing
the number of bit errors. The probability of such a decoder
failure is bounded by 1/t! [33]. In typical wireline SerDes
applications, t is relatively large to correct burst errors, so that
decoding to the wrong codeword does not affect the modeling
accuracy of, for example, the standard RS(544,514,15) code.

VI. EXPERIMENTAL VERIFICATION

A. Device Under Test

We have measured a 4-PAM 60 Gb/s SerDes link based
on a chip fabricated in 7 nm FinFET technology [34].
The overall system-level block diagram of the link is plot-
ted in Fig. 12. Specifically, subject to a 1Vppd maximum
output swing, the transmitter has a programmable 3-tap
FIR filter to mitigate both pre-cursor and post-cursor ISI.
At the receiver, a 13-tap FFE with 5 pre-cursor taps and
7 post-cursor taps is adaptively optimized to cancel ISIs in
the channel. A 2-tap DFE equalizes the first two post-cursor
ISIs. A statistical unit on-chip monitors and stores BER for
PRBS31 data in memory. Both the RS(544, 514, 15) KP4 and

RS(528, 514, 7) KR4 codes in GF(210) are implemented in
the FEC encoder/decoder.

B. Modeling 2:1 Bit Multiplexing

To comply with IEEE wireline system standards, a 2:1 bit
multiplexer is implemented in the PMA sublayer as illustrated
in Fig. 12. The 2:1 bit multiplexing provides an extra layer of
complication and must be considered in our proposed statis-
tical model. Fig. 13 demonstrates an example showing FEC
symbol distribution and 2:1 bit multiplexing at the transmitter.
FEC symbols C1, C2, . . . C544 in a KP4-encoded codeword
are distributed to two PCS lanes (in a round-robin fashion).
Then, a bit multiplexer in the PMA layer groups every two
bits from each PCS lane and forms a physical-layer 4-PAM
symbol. At the receiver, the signal flow in Fig. 13 is reversed
to retrieve the codeword C . As a result, burst errors in the
physical layer are shuffled across multiple FEC symbols thus
making the BER worse.

To model 2:1 bit multiplexing, we carefully consider the
error pattern of each erroneous 4-PAM symbol and identify
the exact bit-error location. First, we apply weak lumpability
to define a new set of simplified 4-PAM error states. Whereas
we previously lumped together all 4-PAM symbol errors with
value ±2, we must now distinguish between errors in the
first and second bit of the Gray-coded symbol. Thus, from
the original 16 error values Dk ∈ {0T, 0M1, 0M2, 0B, ±2T,
±2M, ±2B, ±4T, ±4B, ±6} by ignoring ±4 and ±6 error
events, the new DFE error states are Dk ∈ {0, ±2MSB,
±2LSB}, where the aggregated state ±2MSB = {±2M} and
±2LSB = {±2T, ±2B} represent a first-bit error and a
second-bit error, respectively. Hence, an N-tap DFE may be
represented by a 3N-state radix-3 4-PAM trellis. In each PAM
trellis iteration, two bit-error indexes are needed so we are able
to know exactly which of the two FEC symbols is affected
by the erroneous bit. We denote Pr j1, j2

k (i) the probability of
arriving at Markov state i at time step k after traversing all
PAM-trellis paths containing exactly j1 MSB errors and j2
LSB errors. For states ‘i ’ where the most recently received
4-PAM symbol is ±2MSB,

Pr j1, j2
k+1 (i) =

∑
i �

Pr j1−1, j2
k

(
i
�)

pi � i . (35)

For states ‘i ’ where the most recently received 4-PAM symbol
is ±2LSB,

Pr j1, j2
k+1 (i) =

∑
i �

Pr j1, j2−1
k

(
i
�)

pi � i . (36)

Then, in the FEC trellis model, as the 2:1 bit multiplexing
correlates every two FEC symbols in GF(210), trellis paths
over every 10 consecutive 4-PAM symbols are time-aggregated
to obtain our FEC trellis analysis of error propagation and
RS FEC decoding. Hence, we consider each transition in the
FEC trellis having traversed a length-10 4-PAM trellis with
j1 MSB errors and j2 LSB errors. This results in a 3N-state
radix-(5·3N) FEC trellis model if we neglect all ±4 and ±6
error events, where all the branch probabilities a j1, j2

i �i can be
found using procedures described in section IV-D. To perform
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Fig. 12. System-level block diagram and test setup of the 60 Gb/s SerDes link [34].

dynamic programming on the FEC trellis, we still denote
Pr_FEC js, j b

kF
(i) as the probability of visiting state i at time

step kF after traversing all trellis paths containing exactly js
FEC symbol errors and jb bit errors. For a transition to state
‘i ’ in the FEC trellis where the traversed 10 PAM symbols
have exactly j1 MSB errors and j2 LSB errors,

Pr_F EC js , jb
kF +1 (i)

=
∑

i �
Pr_F EC js−min(1, j1)−min(1, j2), jb− j1− j2

kF

(
i �) a j1, j2

i �i .

(37)

C. Test Setup

The test bench setup for the 60 Gb/s SerDes link is
also superimposed in Fig. 12. A FlexTC temperature forcing
system from Mechanical Devices is used to keep the device
at room temperature with ±0.2 ◦C accuracy. Approximately
Gaussian-distributed crosstalk noise is coupled to the chan-
nel through a crosstalk injection board. Different measure-
ment cases are established by varying the channel insertion
loss using an ARTEK CLE1000 variable ISI channel. The
corresponding overall pulse responses (including TX FIR,
TX driver, channel, RX CTLE and ADC) for two different
cases are also tabulated in Fig. 12.

In case A, the overall insertion loss is 29 dB. We inten-
tionally configure the CTLE in this case to over-equalize so

that the second post-cursor ISI of the overall impulse response
becomes large but negative. DFE error propagation is partic-
ularly bad in this case compared with all-positive post-cursor
ISIs.b With large negative DFE tap weights, a measurable
floor is expected in the post-FEC BER where burst errors
due to error propagation in the DFE dominate. In this region,
we expect to see a plot of post- vs. pre-FEC BER exhibit a
slope of 1. In case B, the system has a lower overall insertion
loss of 24 dB so that the KR4 code can provide adequate
coding gain at low BER.

D. Experimental Results

In Fig. 14, measured results for both the RS(544, 514, 15)
KP4 and RS(528, 514, 7) KR4 codes are reported. Gray
encoding is enabled to reduce BER. Different data points are
generated by varying the amount of Gaussian-like crosstalk
injected to the channel. To minimize the impact of random
jitter, all data points are measured by locking the CDR
phase and DFE tap weights once the DFE tap weights’
LMS adaptation has converged. The curves generated by our
statistical model are also superimposed in Fig. 14, treating
the crosstalk as additive white Gaussian noise. Following
the iterative procedure described in Section V-B, we select

b See Appendix for a justification.
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Fig. 13. System-level diagram showing FEC symbol distribution and 2:1 bit multiplexing at TX.

Fig. 14. Measured and theoretical pre-FEC vs post-FEC BER plot for
RS(528, 514, 7) and RS(544, 514, 15) code.

jmax
s = 20 for the KP4 code and jmax

s = 14 for the KR4 code
to ensure er ( jmax

s ) ≤ 2% at a pre-FEC BER of 10−3 in both
test cases.

All data points in Fig. 14 are measured down to a post-FEC
BER of 10−11. Good consistency is observed between
the theoretical curves and measured results. The combined
effect of many noise sources including ISI, crosstalk, and
ADC quantization noise in wireline links has a pdf that is
well-approximated by a Gaussian [5], [7]. Thus, the shape
of the post-FEC vs pre-FEC BER curve is mainly dictated
by the DFE taps weights. Moreover, for case A where a
large amount of error propagation is present, our statis-
tical model can properly predict the error floor with the
RS(528, 514, 7) KR4 code. Importantly, our statistical model
accurately predicts the measured transition between the two
regions for the KR4 and KP4 FEC in case A. Furthermore,
the model indicates that for the KP4 FEC, in order to ensure a
post-FEC BER of 10−18, a pre-FEC BER of 10−4 is adequate
for case B, whereas a pre-FEC BER of 10−10 is required for
case A, conclusions that would have been almost impossible
to draw using the existing methods. Our statistical model can
be used to quantify the precise pre-FEC BER required to
achieve very low post-FEC BER depending on the channel
and equalizer.

VII. CONCLUSION

This paper described a systematic and efficient method
that can be used to accurately estimate post-FEC BER for
high-speed wireline communication channels using standard
linear block codes on GF(2m). We proposed a two-level hier-
archical statistical model allowing us to model the propagation
of both PAM-symbol and FEC-symbol errors corrupting the

TABLE I

TIME COMPARISON FOR STATISTICAL AND BEHAVIORAL MODELS

AND 60 Gb/s LAB BERT USING RS(544,514,15) CODE

FEC decoder. The model is simplified through a series of
techniques including state aggregation, time aggregation, state
reduction, and pruning-based trellis dynamic programming to
accelerate the statistical analysis. The error bound associated
with each method is also clearly defined. Because of the
hierarchical approach, the time complexity of the analysis
only depends on the FEC code but not the underlying PAM
sub-trellises. An experimental prototype verified the proposed
model where all measured results worked quite closely to that
predicted by the theory.

A comparison of simulation times using the statistical
model, a behavioral Simulink model, and a laboratory 60 Gb/s
bit error rate test (BERT) measurement are recorded in Table I.
The statistical model has all simulation parameters identical to
those reported in Fig. 14. The behavioral model is accelerated
by parallel processing using a 16-core processor, resulting in
6.81 μs per bit in the simulation. The total time needed to
simulate or measure three post-FEC BER levels are reported
in the table, assuming each BER simulation or measurement
must observe at least 1000 bit errors. Note that our statistical
analysis results extend down to 10−15 or even further without
increasing the number of calculations. At these low BER
levels, the impact of error propagation is significant, but
behavioral simulation and even laboratory BERT measurement
are impractical. In addition, the statistical simulation can be
prohibitively long without using the techniques introduced
in this work to improve efficiency of the model. For exam-
ple, according to (30) the statistical simulation performed
in Table I would require a total number of 4.57 × 107 trellis
node iterations assuming a KP4 code with jmax

s = 20. Without
pruning, by (29) the FEC trellis model would instead require
1.08 × 1010 iterations, making the simulation time almost
three orders of magnitude higher.

While this paper demonstrates the statistical analysis
method in the presence of DFE error propagation, the method
is general and can be applied to model other communica-
tion systems having memory effects. Moreover, our proposed
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model can be extended to higher-level PAM schemes and other
advanced equalizer architectures to assist in making architec-
tural choices for wireline transceivers such as co-design of the
equalization and FEC in the presence of error propagation and
various noise sources.

APPENDIX

According to (2) a single receiver error Dk−1 results in an
additive error at the receiver input

nd f e
k = −Dk−1h1. (38)

If another error arises, the additive error at time k + 1 is

nd f e
k+1 = −Dk−1h2 − Dkh1. (39)

If h1 > 0 the sign of (38) is opposite that of the preceding
error, thus increasing the probability of a new error Dk also
having an opposing sign. In this case, since Dk−1 and Dk have
opposing signs, the two terms in (39) will add constructively
resulting in the largest possible additive error term only if h1
and h2 have opposing signs, implying h2 < 0. Alternatively,
if h1 < 0 the additive error (38) is of the same sign as Dk−1
increasing the probability of another error Dk also having the
same sign. In this case, the additive error (39) is increased
when h2 has the same sign as h1; that is, when h2 < 0. Thus,
in either case the probability of propagating errors two or more
time steps is maximized by a negative h2.

To prove that the probability of having errors with the same
sign is higher if h1< 0 and vice versa, we assume Dk−1 = ±2
and an equal probability of transmitting bk ∈ {±1}. According
to (3) the probability of Dk = + 2 is

P+2 = 1

2
Q

(−h0 ∓ 2h1

σ

)
. (40)

Similarly, under the same assumption the probability of
Dk = -2 is

P−2 = 1

2
Q

(−h0 ± 2h1

σ

)
. (41)

With a positive h0 and negative h1, P+2 > P−2 if Dk−1 = +2
and P−2 > P+2 if Dk−1 = -2. Therefore, it is much more likely
that Dk−1 and Dk have the same sign if h1< 0. Similarly,
in (40) and (41) if h1 > 0, it can be easily proven that Dk−1
and Dk are likely to have opposing signs.
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