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Abstract— This paper proposes a self-powered disposable
supply-sensing biosensor platform for big-data-based healthcare
applications. The proposed supply-sensing biosensor platform
is based on bio fuel cells and a 0.23-V 0.25-µm zero-Vth all-
digital CMOS supply-controlled ring oscillator with a current-
driven pulse-interval-modulated inductive-coupling transmitter.
The fully digital, and current-driven architecture uses zero-Vth
transistors, which enables low voltage operation and a small
footprint, even in a cost-competitive legacy CMOS. This enables
converterless self-powered operation using a bio fuel cell, which
is ideal for disposable healthcare applications. To verify the
effectiveness of the proposed platform, a test chip was fabricated
using 0.25-µm CMOS technology. The experimental results
successfully demonstrate operation with a 0.23-V supply, which
is the lowest supply voltage reported for proximity transmitters.
A self-powered biosensing operation using organic bio fuel cells
was also successfully demonstrated. In addition, an asynchronous
inductive-coupling receiver and an off-chip inductor for perfor-
mance improvement were successfully demonstrated.

Index Terms— Sugar monitoring, CMOS, healthcare, point-of-
care testing, wearable computing.
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Fig. 1. Conceptual diagram of the application of the proposed supply-sensing
biosensor platform.

I. INTRODUCTION

ENSURING stable energy is one of the most important
current challenges in wearable and implantable healthcare

devices associated with big-data analysis (Fig. 1). To address
this issue, many developments with respect to batteries [1],
wireless power delivery [2], and energy harvesting [3] have
been reported. Although technical improvements in these areas
have been rapid, none of them fully satisfy the requirements.
Batteries are unsuitable for use near the human body for safety
reason. Even though encased batteries are commonly used
in pacemakers, some people do not want to accept in-body
battery from psychological reason. Besides, generally speaking
encased batteries are costly. Wireless power delivery requires
a large power-receiving antenna, and energy harvesting is
unstable for healthcare application. Additionally, the latter two
approaches require power management units such as power
receivers, AC-DC converters, and DC-DC converters which
consume area and increase cost.

As an alternative energy source, bio fuel cells have been
intensely developed for applications such as disposable
transdermal iontophoresis patches [4]–[6] and brain-machine
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Fig. 2. Proposed supply-sensing biosensor platform compared to conventional
platforms.

interfaces [4]. Bio fuel cells are safe, stable and do not require
an antenna or AC-DC converter. Additionally, the amount of
energy obtained from the human body can be used as bio
sensing data, and thus the sensor electrodes and front-ends
become unnecessary. Of the bio fuel cells, the organic bio
fuel cell [4]–[6] is especially promising because it is cheap
and environmentally friendly, which enables disposable
healthcare. However, the output supply voltage from a bio
fuel cell is usually lower than 0.4 V, and conventional
circuits cannot operate using bio fuel cells without power
management circuits. Thus, a new circuit technique must be
developed for converter-less operation.

This paper introduces a supply-sensing biosensor platform
using a bio fuel cell and a 0.23-V 0.25-μm zero-Vth all-digital
CMOS SCRO with a current-driven, pulse interval-modulated,
inductive-coupling transmitter (Fig. 2). Compared with con-
ventional architecture [7]–[18], the required area and power
can be dramatically reduced. In addition to the contribution
in conference publication [19], the present paper describes
the proposed design principle for the supply-sensing platform,
receiver design for inductive-coupling communication and its
demonstration of intra-chip communication, and design using
off-chip inductor.

Our objective is self-powered sensor where size and cost
are limited. For example, wearable sensors and cavitas
sensors are our target applications. In the existing sensors,
the battery and electronics dominates their size and cost.
Thus, by applying our proposed technique, their size and cost
can be dramatically reduced.

This paper is organized as follows: the proposed supply-
sensing biosensor platform and its design principle are intro-
duced in Section II. The design of the prototype CMOS
sensor and measurement setup are summarized in Section III.
Sections IV and V present the measurement results and
demonstration of the self-powered operation, respectively.
Section VI presents the design and results of the receiver
for demonstrating feasibility of proximity communication.
Section VII introduces the design and experimental verification
of the proposed platform with off-chip inductor for further cost
reduction. Section VIII concludes this paper.

Fig. 3. Circuit diagram of the proposed supply-sensing biosensor platform.

II. SUPPLY-SENSING BIOSENSOR PLATFORM

A. Basic Principles

Fig. 3 shows the circuit diagram of the proposed supply-
sensing biosensor platform, which consists of three parts: the
bio fuel cells, SCRO, and an inductive-coupling transmitter.
The different points from the conventional topologies are
followings:

- Elimination of the power management circuits, clock
sources, and ADCs.

- Introduction of digital-based SCRO.
- Introduction of current-driven inductive-coupling

transmitter.
By eliminating the area-hungry power management circuits,
sensing front-end circuit, power-hungry clock source such
as PLLs, and power-hungry analog-to-digital convert-
ers (ADC), the occupied area and required power can be
dramatically reduced. By introducing digital-based SCRO,
the required minimum supply voltage can be reduced.
By introducing the current-driven inductive-coupling link, low-
voltage operation can be possible.

To minimize the supply voltage, a fully digital, current-
driven architecture was employed. Implementing the proposed
architecture using zero-Vth transistors enables a low-supply
voltage of less than 0.4 V to be used. Zero-Vth transistors are
commonly available on both the state-of-the-art and legacy
CMOS technologies. Thus, our technique can be feasible even
in other technologies. Because the supply-sensing scheme
is unsuitable for pulse amplitude modulation owing to its
nature, time-domain modulation must be employed. To min-
imize power consumption, pulse-interval modulation (PIM)
was employed in this work as shown in Fig. 4.

The overall platform must be designed considering the
performance of bio fuel cells. Fig. 5 illustrates the typical
design considerations for the proposed supply-sensing biosen-
sor platform using bio fuel cells. Output current and power of
the bio fuel cells changes as a function of the load resistance.
In general, higher output current can be obtained at lower
output voltages from typical bio fuel cells. By taking into
account the size of bio fuel cells and resistance of the load
(in our case, the CMOS chip), we have optimized the overall
design.
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Fig. 4. Operation principles of the proposed supply-sensing biosensor
platform. Pulse interval modulation (PIM) is adopted.

Fig. 5. Design guideline of the overall platform with consideration of bio
fuel cell’s output current and power.

The voltage is determined by the relationship between the
impedances of the bio fuel cells and CMOS circuit load.
By optimizing the internal resistance of the bio fuel cells
and the load resistance of CMOS circuits, we ensure being
operating at an specific low voltage in maximum power point
curve. The resistance of the bio fuel cell can be designed
by enzyme amount and its size. While, the resistance of the
CMOS chip can be designed by changing the size of the
transistors.

The oscillating function of SCRO allows us to have withered
a constant current and voltage. As we have confirmed by
measurement, the voltage and current constantly vary.

In the design of current-driven inductive-coupling link, the
most important aspect to ensure communication performance
is to obtain sufficient transmitter current. Obtaining current

is more important than obtaining power. Besides, since our
design utilized zero-Vth transistors which causes large leakage
current, we adopt this design guideline. Thus, a lower supply
voltage is preferred for reliable operation of a current-driven
inductive-coupling transmitter. To obtain the maximum power
from bio fuel cells, the platform should be designed to operate
under the voltage at which it can obtain the maximum power.
However, the available current is not maximized at that point.
Hence, to operate the current-driven inductive-coupling trans-
mitter, a lower supply voltage is preferred.

B. Bio Fuel Cell

In the proposed supply-sensing biosensor platform, the bio
fuel cell has two functions: energy harvesting and front-end
sensing. Typical bio fuel cells can generate a voltage of less
than 0.4 V [4]–[6]. Thus, to realize self-powered operation
without large and expensive power management circuits such
as up-converters, the circuits must operate with a supply
voltage of less than 0.4 V.

In order for bio fuel cells to function as both a power
source and sensing front-end, the anode and cathode must
be designed carefully. Unlike typical biosensors based on
one transducer, the proposed supply-sensing biosensor uses
two transducers (anode and cathode). Thus, if the output
power depends on unintended transducers, the proposed device
cannot function as a sensor even if it functions well as power
source.

For aiming practical application, glucose or lactate fuel cells
are beneficial because it can be used for glucose or lactate
monitoring. However, they are under development and not
available for us. As a preliminary study, we have chosen fruc-
tose fuel cell. Though fructose is not available on the human
body and it has no healthcare application, it is meaningful as
a preliminary study. Since the energy generation mechanism
of fructose fuel cell is similar to that of glucose and lactate
fuel cells, this study will contribute the successive research
and development.

In the case of our prototype fructose sensor, we use the
following reactions: in the anode, the capability to product
current depends on fructose concentration. In the cathode,
the capability to product current depends on oxygen concen-
tration. To sense fructose, the total output current must depend
on not oxygen but fructose, which we achieve by adjusting the
sizes of the anode and cathode.

The biofuel cell in this work is an enzymatic fuel cell.
Fig. 8(a) shows the conceptual image of the mechanism
of power generation from the bio fuel cells. Two kinds
of enzymes, d-fructose dehydrogenase (FDH; EC 1.1.99.11,
169.9 U mg−1, ca. 140 kDa, from Gluconobactor, purchased
from Toyobo Enzyme Co.) and laccase (LAC; EC 1.10.3.2,
108 U mg−1, ca. 60 kDa, from Trametes sp, purchased from
Daiwa Kasei Co.) are immobilized to anode and cathode,
respectively. They can directly catalyze the oxidation of
D-fructose and the reduction of dioxygen, respectively.
We used the FDH as received without further purification.
While, the LAC was purified by anion exchange chromatog-
raphy with a DEAE-Toyoperal column.
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It is really important for the bio fuel cells to be safe in
human use from the viewpoint of practical application. These
enzymes are safe and suitable for human use. By exploiting
these enzymes, following chemical reactions are occurred.

Anode : O2 + 2H+ → H2O

Cathode : Fructose → 5-Keto-D-Fructose+2H+

As a result of the above chemical reaction, electrons are
transferred from the anode to cathode, and energy can be
available at the load devices.

Fig. 8(b) shows a detailed equivalent electrical circuit model
of the bio fuel cell. The model is based on the literature [36].
The bio fuel cells can be modeled as combination of the inter-
nal resistance, Rint, the output source voltage, Vsrc, the ohmic
resistance, Rohm, and the internal capacitance, Cint.

Fig. 8(c) shows a simplified equivalent electrical circuit
model of the bio fuel cell. Since the values of Rohm and Cint
are relatively smaller than those of Rint and Vsrc. The bio fuel
cells can be simply modeled as series of Rint and Vsrc.

C. SCRO

To achieve PIM, the supply voltage must be modu-
lated using pulse intervals. To enable low-voltage operation,
we implemented an SCRO. The SCRO consists of a normal
ring oscillator with inverter cells. As the inverter cell, the stan-
dard cell using one NMOS and one PMOS from the foundry
were utilized.

In the SCRO design, the number of stages should be opti-
mized for low area consumption and low power consumption.
Area consumption is determined by the number of stages of
SCRO. Our target is low-cost implementation, and thus area
consumption should be minimized within the acceptable power
budget from the biofuel cell. As well as area consumption,
the number of stages of SCRO have also impacts on power
consumption.

Since the power consumption of SCRO is much smaller
than that of the inductive-coupling transmitter, the duty ratio
(on/off ratio) is the most important factor that determines
the total power consumption. Besides, since the minimum
pulse width is determined by the bandwidth of the inductive-
coupling channel, the output frequency of the SCRO is the
most important factor which determines the duty ratio and
thus the total power consumption.

In the design of SCRO, the designer also must determine
the target frequency while considering the performance of
the inductive-coupling receiver. For recovering transmitted
frequency signal at the receiver side, the target frequency
must be lower than the maximum operational frequency of the
receiver. In the literature, high-speed (over 10GHz) inductive-
coupling receiver design [8] has been reported. The designer
can choice the receiver architecture while considering the
SCRO and receiver design.

A higher number of stages increases the area consumption
and decreases total power consumption. Due to our target
being a low-cost implementation with acceptable power con-
sumption, the number of stages was reduced as small as
possible. In this work, seventeen stages were used for the

Fig. 6. Operating principle of two kinds of the proximity communication
techniques.

prototype with an on-chip inductor. For the prototype with an
off-chip inductor, 101 stages were used because the demand
for area reduction was relatively relaxed.

D. Low Supply Voltage Inductive-Coupling Transmitter

For the wireless transmitter, we implemented a current-
driven, inductive-coupling transmitter. Considering the limited
power budget, proximity communication without any security
protection was adopted. Commonly-used electrical proxim-
ity communication can be categorized into two approaches:
the capacitive-coupling links and inductive-coupling links.
Fig. 6 shows their conceptual operating principles. The voltage
obtained at the receiver side of a capacitive-coupling link is
determined by the ratio of the coupled capacitance to the total
capacitance. Thus, a voltage that is higher than the transmit
voltage cannot be received.

In contrast, the voltage received in the inductive-coupling
link is determined by a product of the slew rate of the transmit
current and mutual inductance. A high received voltage can be
obtained, even with a low supply-voltage transmitter. Bio fuel
cells can generate larger currents at lower voltages because
of their characteristics [4]; thus, a current-driven inductive-
coupling link is preferable.

To minimize power supply voltage while reaping the advan-
tages of inductive-coupling, the proposed inductive-coupling
transmitter was designed to be as simple as possible. As shown
in Fig. 3, it consists of a pulse generator, buffers, driver, and
inductor. The pulse generator consists of an inverter chain and
an AND gate, which converts the clock signal into a low-duty
pulse signal.

Fig. 7 compares the performance of the proposed method
with other state-of-the-art proximity communications. There is
a trade-off between power supply voltage and the technology
node. The lowest supply voltage was 0.7 V [35] for the
clock-based synchronous inductive-coupling link, and none
of the conventional proximity communications could satisfy
the requirement for operation with bio fuel cells. This work
achieved the lowest supply voltage using the most cost-
competitive technology node.

The inductive-coupling transmitter was designed as
described in [21]. The diameter of the inductor is determined
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Fig. 7. Performance comparison with the state-of-the-art proximity commu-
nications.

by the communication distance. Because of the considerable
degradation of magnetic flux strength as a function of com-
munication distance, the communication distance only can be
extended to be almost same as the inductor’s diameter. The
inductive-coupling transmitter consists of the pulse generator,
the driver, and the inductor.

The pulse generator reduces power consumption by reduc-
ing the on-time of the driver (duty cycle of the transmit pulse).
In the pulse generator, the number of inverter chain stages
determines the pulse width. This number should be odd
for pulse generation. In this work, we use five stages by
considering the bandwidth of the inductive-coupling channel
characteristic.

The transmit current and driver size must be designed
considering the communication channel and receiver cir-
cuit. The proposed platform uses asynchronous architecture.
Thus, an asynchronous receiver must be adopted. In [17],
the required level of voltage to drive the asynchronous receiver
is more than 100 mV. The transmitter should be designed to
transmit sufficient current for reliable operation.

The inductor can be implemented in two ways as an on-
chip inductor on CMOS circuits, or an off-chip inductor on
a PCB board. For low-cost chip implementation, an off-chip
inductor is preferable. In this study, we used both an on-chip
and off-chip inductors. The equivalent circuit model of the
inductor shown in Fig. 9 was utilized for simulation. The
parameters of the equivalent circuit model were calculated
using [15].

E. Testing Method for Reliable Operation

This subsection discusses the testing method of the supply-
sensing platform for reliable operation. For practical appli-
cation, it is essential to ensure that the output power of bio
fuel cell does not collapse after connecting the CMOS chip
including the SCRO and wireless transmitter. In order to
guarantee the reliable operation, we have proposed a testing
method.

The test procedure is as followings:

Fig. 8. Conceptual image of the mechanism of power generation from the
bio fuel cells (a), its detailed equivalent electrical circuit model (b), and its
simplified equivalent electrical circuit model (c).

Test1: Testing the performance of the bio fuel cell.
Test2: Testing the performance of the CMOS chip.
Test3: Based on the results of Test 1 and 2, functional check

that the bio fuel does not collapse after connecting
CMOS chip.

By performing the above testing procedure, the supplier can
guarantee the performance in advance and solve a known good
die (KGD) issue.

III. TEST-CHIP DESIGN AND MEASUREMENT SETUP

A. Test Chip Design

To verify the effectiveness of the proposed approach,
a test chip was fabricated using 0.25-μm CMOS technology
with a nominal supply voltage of 2.5 V. Fig. 10 shows a
microphotograph of the test chip. The occupied footprints of
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Fig. 9. Equivalent circuit model of the inductor used in this work.

Fig. 10. Chip microphotograph of the proposed supply-sensing biosensor
platform in 0.25 μm CMOS.

the core circuit without and with an on-chip inductor were
60 μm×120 μm and 0.6 mm×0.8 mm, respectively. In order
to minimize the circuit footprint, we have not implemented
any storage capacitors in this test chip. Although a storage
capacitor will result in increase of circuit footprint, it will
beneficial for more power consumption and longer communi-
cation distance. Thus, the designer can determine the imple-
mentation of a storage capacitor while taking this trade-off into
account.

The test chip was assembled in a ceramic package. The
diameter of the inductor is 0.5 mm and it has five turns. The
calculated parameters in the equivalent circuit model (Fig. 9)
is as follows: L ind_onchip = 61 nH, Rind_onchip = 2.3 �,
Cind_onchip = 810 fF.

B. Measurement Setup

The measurement setup is shown in Fig. 11. Only two
electrical signals, namely VDD and VSS, were supplied from
the power supply (Key sight technologies, E3632A). To
verify the transmitter operation using magnetic detection, a
magnetic-field probe (Langer, H-Field probe MFA-K 0.1-12,
0.1-6 GHz) and a bias tee (Langer, Bias Tee) were employed.

Fig. 11. Measurement setup. A magnetic probe was utilized to confirm the
generation of magnetic flux from the test chip.

Fig. 12. Measured current and power consumption as a function of supply
voltage. Operation at 0.23 V was verified.

The waveform was obtained using a sampling oscilloscope
(Key sight technologies, DSO6102A). The measurement was
performed under 20°C.

IV. MEASUREMENT RESULTS

A. Results of the Functional Test

Fig. 12 shows the measured current and power consumption
as a function of supply voltage. Operation with 0.23 V power
supply was verified. A supply of 0.23 V is sufficiently low for
self-powered operation using a bio fuel cell and is the lowest
supply voltage ever reported for proximity communications.
Because the drain current of a zero-Vth transistor is propor-
tional to the square of gate-source voltage VGS from 0 to 0.4 V
and is proportional to VGS from 0.4 V, the current consumption
characteristics change at 0.4 V.

B. Performance Evaluation

The measured current consumed at 0.23 V was 1.52 mA,
and the measured power is 0.35 mW, which can be obtained
by a 1cm2 of bio fuel cell [1], [2]. The measured average
power consumption of the driver circuit is 0.33 mW. More
than half is from leakage current. Fig. 13 shows the frequency
of the output pulse from the magnetic field as a function of
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Fig. 13. Measured pulse-rate as a function of supply voltage.

TABLE I

SIMULATED RESULTS OF THE PERFORMANCE VARIATION DUE
TO PROCESS, VOLTAGE, AND TEMPERATURE VARIATIONS

supply voltage. The pulse rate decreases as supply voltage
decreases with an almost linear relationship.

In order to investigate the performance variation, we have
measured ten sample chips totally. Among ten sample chips,
eight chips achieved 0.23-V operation while two chips
achieved 0.22-V operation. Since we have utilized matured
technology (0.25 μm CMOS technology), the performance
variation was successfully mitigated.

The measurement results are obtained from the test chips
that fabricated under normal (both NMOSs and PMOSs are
typical, typical-typical, TT) condition. In order to investigate
the performance variation due to process, voltage, and tem-
perature, we have performed SPICE simulation.

Firstly, we have investigated minimum supply voltage under
process and temperature variations. In TT condition, the simu-
lated minimum supply voltage is 0.22 V. Under this condition,
the simulated results are summarized in upper part of Table I.
Secondly, the output pulse rate was investigated. The results
are summarized in bottom part of Table I.

Fig. 14. Simulated performance of the cold-start capability. (a) Time trend
of supply voltage (b) Oscillation frequency.

C. Discussion on Cold-Start

For evaluating performance of cold-starting, we have per-
formed SPICE simulation. The simulation results are shown
in Fig. 14. Fig. 14 (a) shows the time trend of supply voltage
and Fig. 14 (b) shows the oscillation frequency. As shown in
Fig. 14 (a), after the circuit started up when supply voltage
is 0.23 V, we reduced the supply voltage to 0.15 V. Even when
supply voltage becomes 0.15 V, the oscillation can continue.
While, when the supply voltage becomes 0.14 V, the circuit
does not function. The results indicate that the proposed circuit
has functionality of cold start.

V. SELF-POWERED OPERATION USING BIO FUEL CELL

A. Performance of Organic Bio Fuel Cell

To verify the effectiveness of the proposed platform, self-
powered operation using an organic bio fuel cell [1], [2]
was demonstrated. The bio fuel cell has a cloth-like feature.
The enzymes for energy generation were immobilized on the
bio fuel cell. Fig. 14 shows a summary of the measured
performance of the bio fuel cell. Figs. 14(a) and (b) are
performance of the anode and cathode, respectively. Fig. 13(c)
is the overall performance including both anode and cathode.
By changing the load resistance, each measurement point
was obtained. Fig. 14(d) shows the measurement setup. The
measurement was performed using a three-electrode system
(BSA, 730C electrochemical analyzer).

The bio fuel cell generates its energy from fructose. The
sizes of the Anode and Cathodes of the bio fuel cell are
1-cm and 2-cm square, respectively. The sizes are optimized in
order to function as a sensor, which is stated in Section II-B.
The power peak is obtained at 0.3-0.4 V, which is a typical
characteristic of bio fuel cells [1]–[3]. At the peak power
condition, the power delivery capability of the bio fuel cell
is approximately 0.33 mW.
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Fig. 15. Measured performance of the bio fuel cell and its measurement setup
used to measure the results. (a) Anode performance (b) Cathode performance.
(c) Overall performance (d) Measurement setup.

Fig. 16. Demonstration of self-powered operation using an organic bio fuel
cell. When the bio fuel cell is dipped into a fructose solution, the proposed
biosensor transmits a magnetic pulse.

The performance of the bio fuel cell can be modeled
by a simple electrical circuit model as shown in Fig. 8(b).
The extracted parameters are followings: Rint = 380� and
Vsrc = 0.78 V.

B. Demonstration of Self-Powered Operation

Fig. 16 shows successful self-powered operation using the
bio fuel cell. By dipping the bio fuel cell into a fructose

Fig. 17. Measured output voltage from bio fuel cell (a) and measured pulse
rate (b) as a function of fructose concentration.

solution, the circuit transmitted a magnetic field, and its
waveform appeared on the oscilloscope. This work is the
first demonstration of a self-powered CMOS-based proximity
transmission using bio fuel cells and SCRO.

Fig. 17 shows a summary of the self-powered operation.
Fig. 15(a) shows the output voltage and current of the bio
fuel cell as a function of fructose concentration. The voltage
and current increased as the fructose concentration increased.
Fig. 15(b) shows the measured pulse rate of the output mag-
netic field from the proposed biosensor platform. The pulse
rate increased as the fructose concentration increased. These
results agree well with the performance of the platform shown
in Fig. 12. From these measured results, we have successfully
confirmed the feasibility of the proposed self-powered supply-
sensing biosensor platform.

The leakage varies with respect of source voltage of the bio
fuel cell. Since the monotonicity is guaranteed, this leakage
variation does not affect the measurement of the specific
variable as shown in the result in Fig. 17. For a more reliable
reading, calibration must be performed.

We have confirmed that there is no issue with the circuit
having an intermittent power, which was investigated by
measurement. The cold start voltage is same as the mini-
mum supply voltage. Even after having passed the cold start,
the minimum supply voltage does not change.

VI. DESIGN AND MEASUREMENT

RESULTS OF THE RECEIVER

In order to verify the feasibility of the proposed supply-
sensing biosensor platform, including its communication
capability, we designed and fabricated another test chip using
0.25-μm CMOS technology.
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Fig. 18. Inter-chip communication between the proposed platform and
asynchronous inductive-coupling receiver including the schematic of the
implemented asynchronous inductive-coupling receiver.

Fig. 19. Microphotograph of the test chip for verifying intra-chip commu-
nication between the proposed platform and asynchronous inductive-coupling
receiver.

A. Design

As previously stated, the proposed supply-sensing biosen-
sor platform adopts a time-domain signaling scheme and is
not synchronous. Thus, the receiver must be asynchronous.
Fig. 18 shows the schematic of the inter-chip communication
system including the proposed supply-sensing biosensor plat-
form and an inductive-coupling asynchronous receiver [18],
which is based on a hysteresis comparator.

B. Test Chip Design and Measurement Setup

The test chip was fabricated using 0.25-μm CMOS technol-
ogy. Fig. 19 shows the test chip microphotograph. The test chip
contains the proposed biosensor platform and an intra-chip
asynchronous inductive-coupling transceiver. The transmitter
is 60 μm×120 μm and the receiver is 45 μm×100 μm. The
inductor diameter is 100 μm. The communication distance
between the transmitter and receiver inductor is approxi-
mately 5 μm. Since this transceiver is implemented in the
same chip, the communication distance is limited to be short.
However, if off-chip inductors are introduced, communication
distance can be enlarged because communication distance of
inductive-coupling transceiver is determined by the inductor
size.

Fig. 20. Measurement setup for verifying intra-chip communication between
the proposed platform and an asynchronous inductive-coupling receiver.

Fig. 21. Measured results of the received data of the intra-chip communica-
tion between the proposed platform and an asynchronous inductive-coupling
receiver. The plots are from receiver side.

The measurement setup is shown in Fig. 20. The chip was
packaged in a ceramic package, and the signal was fed into the
chip from a pulse generator (Key sight technologies, 8131A).
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Fig. 22. Test chip microphotograph of the proposed platform without
inductor.

The output signal from the chip was captured using a sampling
oscilloscope (Key sight technologies, DSO6102A).

C. Measurement Results

Fig. 21 shows the measurement results of intra-chip commu-
nication, which shows that the receiver successfully detected
the magnetic flux from the transmitter. The supply voltage of
the receiver was 2.5 V, which is the nominal supply voltage
of 0.25 μm CMOS technology. In our application, the receiver
is expected to be implemented in a power-sufficient environ-
ment. Thus, the supply voltage of the receiver does not need
to be low. In this measurement, the supply voltage of the
proposed platform including the transmitter ranges from 1.0 V
to 1.2 V.

As expected, the receiver can detect the change of the pulse
rate as a function of the supply voltage of the proposed plat-
form. The measurement results show that the communication
system using the proposed platform is feasible.

VII. DESIGN AND MEASUREMENT RESULTS OF THE

PLATFORM WITH AN OFF-CHIP INDUCTOR

To achieve further cost savings, we also designed and
developed the proposed platform with an off-chip inductor.

A. Design

As stated above, an off-chip inductor is less expensive than
an on-chip inductor because it does not occupy additional area
on costly LSI chips. For instance, the on-chip inductor in the
prototype as shown in Fig. 9 occupies almost 90% of the total
area. Thus, by adopting an off-chip inductor, the occupied area
can be reduced dramatically.

An off-chip inductor is designed in the same way as an on-
chip inductor. First, the communication distance is determined
by considering the target application. Next, the diameter is
determined based on the communication distance. In general,
the diameter should be larger than the communication distance.
Third, the number of turns, line width and line space are
determined. A SPICE simulation is then conducted using
the equivalent circuit model (Fig. 8) of the inductor and its
determined parameters.

Fig. 23. Microphotograph of the proposed platform with an off-chip inductor
on a PCB board.

Fig. 24. Measurement setup for verifying the effectiveness of the proposed
platform with an off-chip inductor.

B. Test Chip Design and Measurement Setup

The test chip was fabricated using 0.25-μm CMOS technol-
ogy. Fig. 22 shows the test chip microphotograph. The test chip
contains the proposed biosensor platform without an inductor.
In order to reduce power consumption, there are 101 stages
of the inverters in the SCRO. The transmitter core size is
60 μm × 320 μm and the total transmitter size including the
I/O pads is 160 μm × 330 μm. The transmitter core is small
enough to be easily implemented under the three I/O pads.

Fig. 23 shows the package of the prototype with an
off-chip inductor. The chip was integrated onto the PCB board.
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Fig. 25. Measured current and power consumption as a function of supply
voltage of the proposed platform with an off-chip inductor. Operation at 0.24 V
was verified.

Fig. 26. Measured pulse rate as a function of supply voltage of the proposed
platform with an off-chip inductor. Operation at 0.24 V was verified.

The inductor was fabricated using the interconnect of the
PCB board. By adopting a PCB board with a thick metal
(12 μm) interconnect, the resistance of the inductor can be
reduced and low voltage operation can be achieved. The
calculated parameters in the equivalent circuit model (Fig. 8)
is as follows: L indoffchip = 380 nH, Rindoffchip = 1.8 �,
Cindoffchip = 147 fF.

The size of the entire PCB board is 35 mm× 25 mm, and
the required size of the core PCB board without redundant part
is 15 mm × 18 mm. The redundant parts are for compatibility
with the integration of the receiver, which was not utilized in
this work.

The measurement setup is shown in Fig. 24. A magnetic
probe was utilized and placed over the interconnects of the
off-chip inductor. The signal was fed into the chip from a pulse
generator (Key sight technologies, 8131A). The output signal
from the chip was captured using a sampling oscilloscope
(Key sight technologies, DSO6102A).

C. Measurement Results

Fig. 25 shows the measurement results for the proposed
platform with an off-chip inductor. Operation with 0.24-V
power supply voltage was verified. Because the number of

stages of the inverters in the SCRO is optimized for low power
consumption in contrast to the prototype with on-chip inductor,
the power consumption was lower than that of the prototype
with an on-chip inductor.

Fig. 26 shows the measured pulse rate as a function of
supply voltage. The almost linear relationship between the
pulse rate and supply voltage was confirmed. The measure-
ment results verify the feasibility of the proposed platform
with an off-chip inductor, which would enable further cost
reductions.

D. Discussion

When the off-chip inductors were utilized, the performance
variation due to the angle of transmission is inevitable. About
this issue, the literature [31] reported that the inductive-
coupling link has high immunity on misalignment between the
transmitter and receiver inductors. The performance variation
due to the angle of transmission can be modeled as well as the
misalignment since both result in degradation of the coupling
coefficient. Thus, our proposed system may have sufficient
immunity on the angle of transmission.

VIII. CONCLUSION

This paper demonstrated a self-powered, disposable, supply-
sensing biosensor platform. The platform is based on a
bio fuel cell and a zero-Vth all-digital CMOS SCRO with
a current-driven, pulse-interval-modulated, inductive-coupling
transmitter, that is able to operate under low-power supply
voltage using legacy CMOS technology. Experiments using
a 0.25-μm CMOS prototype chip demonstrated wireless trans-
mission using a 0.23-V power supply, which is the lowest
value for the power supply of a proximity transmitter ever
reported. Self-powered operation using an organic bio fuel
cell was also demonstrated. Additionally, the design and
experimental verification of the receiver and off-chip inductor
were experimentally verified.
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