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Min–Max Design of Error Feedback Quantizers
Without Overloading

Shuichi Ohno , Senior Member, IEEE, Yuma Ishihara, and Masaaki Nagahara, Senior Member, IEEE

Abstract— In this paper, we design a no-overloading error
feedback quantizer based on a �� modulator, composed of
an error feedback filter and a static quantizer. To guarantee
no-overloading in the quantizer, we impose an l∞ norm con-
straint on the feedback signal in the quantizer. Then, for a
prescribed l∞ norm constraint on the error at the system output
induced by the quantizer, we design the error feedback filter
that requires the minimum number of bits that achieves the
constraint. Next, for a fixed number of bits for the quantizer,
we investigate the achievable minimum l∞ norm of the error at
the system output with the no-overloading quantizer. Numerical
examples are provided to validate our analysis and synthesis.

Index Terms— Quantization, overloading, delta-sigma modula-
tor, linear matrix inequalities.

I. INTRODUCTION

QUANTIZATION is fundamental in digital processing.
If a sufficient number of bits can be assigned to the quan-

tizer, its errors and overloading may be negligible. However,
there are still some applications where a sufficient number of
bits cannot be utilized. For example, to transmit signals over
rate-limited digital communication channels, the continuous-
valued (or even discrete-valued) signals have to be quantized
into low-resolution signals. But, it is often the case that
communication rates are limited due to physical constraints
especially when wireless communication is used. When only
a small number of bits can be assigned to represent the signals,
quantization errors may cause serious degradation.

An error feedback quantizer is more efficient than the con-
ventional uniform quantization. It consists of a static uniform
quantizer and a feedback filter, where the quantization error
of a static uniform quantizer is filtered by an error feedback
filter and then it is fed back to the input to the static uniform
quantizer (see Fig. 4 in Section II).

Error feedback quantizers have been used to reduce quanti-
zation error in the coefficients of digital filters [1]–[3]. On the
other hand, �� modulators also employ the error feedback
mechanism, and are often utilized in practice to convert real
numbers into fixed-point numbers [4]. For control systems,
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a variant of �� modulator has been studied in [5], which
is called a dynamic quantizer. The parameters in the dynamic
quantizer can be obtained by linear programming (LP) [6] and
by convex optimization [7]. To avoid overloading, [6] proposes
to limit the l∞ norm of the feedback signals. However,
the dynamic quantizer only supports a smaller set of error
feedback filters than conventional �� modulators and hence
the optimal performance cannot be guaranteed [8].

Recently, H∞ optimal design of error feedback filters has
been proposed based on the generalized Kalman-Yakubovich-
Popov lemma [9], [10]. Also, a post filter connected to
the �� modulator is incorporated into the design of the
error feedback filter [11] and the weighted noise spectrum
is also exploited [12]. In [13], the optimal error feedback
filter has been synthesized such that it minimizes the variance
of the quantization error subject to the constraint on the
variance of the input to the static uniform quantizer. However,
the constraint on the variance does not necessarily guarantee
no-overloading in the quantizer. In practical systems, an over-
loading may cause instability followed by a serious effect.
To assure that no overloading occurs, we should take into
account the maximum absolute value, i.e., the l∞ norm of
the input to the quantizer.

In some applications, particularly in control, the worst
largest absolute value of the error is often important, since
the system may be physically broken due the the error which
is not within an allowable range. Thus, this paper develops a
quantizer with error feedback that needs a small number of
bits required for quantization to achieve the requirement on
the worst-case error in the output connected to the quantizer,
while keeping no-overloading in the quantizer. We regulate
the l∞ norm of the feedback signals in the quantizer to assure
no-overloading.

First, we consider finite impulse response (FIR) feedback
filters since the l∞ norm of an FIR filter can be exactly and
directly evaluated. We formulate the design of the optimal FIR
feedback filter as LP, which can be readily solved numerically.
The minimum number of bits assigned to the quantizer is
determined with the optimized feedback filters. Then, we deal
with infinite impulse response (IIR) feedback filters to reduce
the l∞ norm of the error at the output under the constraint
on the l∞ norm of the feedback signals. For the design of
IIR filters, an upper bound of the l∞ norm, which is not tight,
is utilized, since the exact l∞ norm of an IIR filter is not easily
evaluated.

Next, for a given number of bits for the quantizer, that is,
for a fixed data rate, we investigate the achievable minimum
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l∞ norm of the error at the system output induced by the
quantizer with a no-overloading quantizer. The minimum data
rate to keep the state of a closed-loop system in a bounded
region with state feedback control has been provided in [14].
Stabilizability and observability under a communication con-
straint has been studied in [15] for discrete-time, linear and
time-invariant (LTI) systems. Then, an LQG control with
minimum directed information has been developed in [16].
Although these information theoretical analyses give valuable
insights into control under limited data rates, the system may
not always work well in practice, since the minimum data rate
is not a constant rate for each time slot but an averaged rate
over time. On the other hand, our quantizer guarantees the
stability for a fixed bit rate. The error due to the quantization
is evaluated by finding the relationship between l∞ norm
of the feedback signal and the l∞ norm of the error in the
output, which can be obtained by solving convex optimization
problems.

Finally, numerical examples are provided to validate our
analysis and synthesis.

This paper is organized as follows: Systems and quanti-
zation are reviewed in Section II. Relevance to circuits and
systems is shortly discussed in Section III. Then, quantizers
are synthesized in Section IV based on the l∞ norm of the
effect of the quantization error and the output of the error
feedback filter. Section V presents numerical results on our
synthesis and Section VI concludes this paper.

Notation: Z, R, and R+ stand for the set of real numbers,
integers, and non-negative real numbers, respectively. The
z transform of a sequence (or a vector) h = {hk}∞k=0 is
denoted as H [z] = ∑∞

k=0 hkz−k . The output sequence y of
an linear and time-invariant (LTI) system H [z] with the input
sequence x (i.e. y = h ∗ x where ∗ denotes the convolution) is
expressed as y = H [z]x . The l∞ signal space is defined as the
set of all vectors x = {xk}∞k=0 with real components xk such
that �x�∞ := maxk |xk| < +∞. The norm of H [z] induced
by the l∞ norm of the input and output signals is defined
as [17]

�H [z]� = sup
x �=0

�H [z]x�∞
�x�∞

for x ∈ l∞. If H [z] is an single-input and single-output system,
the norm is equivalent to the l1 norm of the impulse response
of the system, that is,

�H [z]� =
∞∑

k=0

|hk |.

II. ERROR FEEDBACK QUANTIZER

To see the effect of quantization errors at the output of the
system connected to a quantizer, let us consider quantization
in a feedback control system depicted in Fig. 1, in which the
plant is assumed to be linear and time-invariant (LTI), and the
signals y and u are functions of time in general. Based on
the observation signal y from the plant, the controller generates
the control input u to the plant.

The observation signal y and the control input u are
assumed to be transmitted through digital communication

Fig. 1. Feedback control system.

Fig. 2. Control system with quantization.

channels. If y and u are real-valued signals, quantization is
required to convert them into discrete-valued signals before
transmission as illustrated in Fig. 2. Note that even if y and u
are discrete-valued digital signals, they may have to be
rounded off if the capacities of the communication channels
are limited.

The difference between the input and the output of the
quantizer is called the quantization error. There are two
quantization errors; one is the quantization error denoted by ec

for the control signal u and the other is the quantization error e
for the observation signal y. With these quantization errors, the
control system in Fig. 2 can be modeled by an additive-noise
control system shown in Fig. 3.

Controllers are often connected to plants through wired
networks. On the other hand, the observation signal are
collected by sensors, which may be connected through wireless
networks. Thus, we here focus on the quantization error e of
the observation signal, assuming that there is no quantization
error at the controller. We assume that each sensor observes a
scalar-valued signal to be quantized and works independently
of the other sensors. Since we consider the independent
quantization of each entries of y, we assume y to be a
scalar-valued signal to a particular quantizer for simplicity of
presentation. We also assume that the plant is a single-input
and single-output (SISO) system. Note that, most of our results
may be applied to the quantization error at the controller
and the multiple-input and multiple-output (MIMO) systems.
We assume the reachability and the observability of the plant,
without which the plant cannot be stabilized in general.

In quantization, real numbers are mapped into their binary
representation. Fixed-point representation and floating-point
representation are available for quantization. In this paper, we
take fixed-point representation into account since it is often
adopted in embedded systems.
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Fig. 3. Control system and quantization error signals.

Fig. 4. Error feedback quantizer.

Let us take a static uniform quantizer for example. The static
uniform quantizer can be described by two parameters, the
quantization interval d ∈ R+ and the saturation level L ∈ R+.
For simplicity, we assume that L is an integer multiple of d .
For the static quantizer, let us consider a mid-rise quantizer1

Q(ξ) expressed as

Q(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

i + 1

2

)

d, |ξ | ≤ L + d

2
and ξ ∈ [id, (i + 1)d), i ∈ Z

L, ξ > L + d

2
−L, ξ < −L − d

2

(1)

The overloading is the saturation due to the fixed number of
bits to represent the quantized values in binary. For the mid-
rise quantizer, the overloading occurs if |ξ | > L + d

2 .
The static uniform quantizer is often utilized in practice

but its errors and effects of the overloading are significant
unless a sufficient number of bits is assigned to the quantizer.
To mitigate these influences, we adopt a quantizer with an
error feedback filter.

Fig. 4 illustrates a block diagram of our quantizer. The
quantization error, or the round-off error, of the static uniform
quantizer Q(·) is defined as

w = v − ξ (2)

where ξ and v are the input and the output vectors of the
static uniform quantizer, respectively. Note that the round-off
error w of the static quantizer is different from the quantization
error defined as

e = v − y. (3)

The round-off error signal w is filtered by the error feedback
filter R[z] − 1 and then it is fed back to the input to the

1Similar results can be obtained for mid-tread quantizers with slight
modifications.

Fig. 5. Quantizer and system.

static uniform quantizer. The error feedback filter R[z]−1 has
to be strictly proper, that is, R[∞] = 1. The error feedback
quantizer in Fig. 4 is also known as a �� modulator, which
is an efficient analog to digital (A/D) converter with feedback
from the output of a static uniform quantizer to shape the
quantization noise [4].

The input signal ξ to the static quantizer can be expressed
from Fig. 4 as

ξ = y + (R[z] − 1)w. (4)

From (2) and (4), the quantization error e is given by

e = v − y = R[z]w. (5)

Thus, the output signal of the quantizer can be expressed as

v = y + e = y + R[z]w. (6)

Let the signal of interest in Fig. 3 be z and the transfer
function from the output v of the quantizer to z be H [z].
Fig. 5 illustrates an equivalent system from y to z. Since the
plant is assumed to be reachable and observable, there exists
a controller that stabilizes the control system when there is no
quantization error. With this controller, H [z] is stable. Thus,
without loss of generality, we can assume that H [z] is stable.

Since e also goes through H [z], the error signal in z that
comes from the quantization error e can be expressed as

� = H [z]e = H [z]R[z]w. (7)

Unless H [z]R[z] = 0, we cannot assure that �k → 0 as
k → ∞ due to the unpredictable round-off errors. Thus,
we cannot guarantee the exponential stability of the feedback
system, even if H [z] is stable. All we can do is to mitigate
the effect of the quantization given by (7). Thus, our goal is
to design an error feedback quantizer so that the maximum
absolute value of � is not greater than a prescribed thresh-
old γ� , which can be expressed as

max
k

|�k | ≤ γ� (8)

or equivalently as

���∞ ≤ γ�. (9)

III. RELEVANCE OF THE RESULTS FOR

CIRCUITS AND SYSTEMS

Error feedback quantizers have been used in many fields
such as circuits and systems, signal processing, communica-
tions, image processing, and control engineering.

Quantization with error feedback has been developed
to reduce quantization error in the coefficients of digital
filters [1]–[3], where H [z] in (7) is the filter to be realized
and R[z] is called an error spectrum shaping filter. The optimal
finite impulse response (FIR) filter that minimizes the mean
squared error (MSE) has been designed in [2]. Error spectrum
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shaping has also been utilized for two-dimensional recursive
digital filters [18].

�� modulators are often used as A/D or D/A converters,
since they exhibit better performance than conventional con-
verters at the expense of a relatively low cost. To develop
single-bit RF transmitters, bandpath �� modulators can be
utilized [19]. A linearized model of the �� modulator can
be described by the same structure with the quantizer having
error feedback. The filter R[z] in a �� modulator is called a
noise shaping filter or a noise transfer function [4].

There are a lot of works on �� modulators; see e.g. [4]
and the references therein. Design methodologies for ��
modulators are well documented in [20]. Once the architecture
is fixed, the first step is the design of the noise shaping
filter R[z], which is the main topic of this paper.

The noise shaping filter has been designed in [9] and [10] to
reduce e in (5) (in place of �). However, it is not necessarily
optimal for the reduction of �, since the system H [z] whose
input is generated by the �� modulator is not taken into
account.

Recently, the importance of the design based on the system
H [z] connected to the �� modulator is recognized. The
knowledge about the system H [z] is incorporated to design an
error feedback filter [11]. The optimal FIR filter that minimizes
the variance of � is developed in [12] where H [z] in (7) is
considered as the weighting function. In [8], the noise shaping
infinite impulse response (IIR) filter is designed to minimize
the variance of � under the constraint on the variance of the
feedback signal.

If the quantization error of the uniform quantizer can
be approximated as a white uniformly distributed random
sequence, the variances of η and � can be characterized
by H2 system norms. To see the performance of �� modula-
tors, the relation between the variances is analyzed in [21].
However, the constraint on the variances of the feedback
signal η cannot always assure no-overloading. Thus, this paper
considers the l∞ norm of the error � at the output of the
system, which can be more important than the variance in
some applications that use �� modulators as A/D or D/A
converters.

To stabilize the �� modulator, Lee criterion [22] is often
utilized, which constraints the H∞ norm of R[z] such that

�R[z]�∞ = max
ω

|R[e jω]| < γ (10)

for some γ > 0. However, Lee criterion does not necessarily
guarantee no-overloading of the �� modulator. To strictly
stabilize the �� modulator, we have to evaluate the l∞ norm
of the feedback signal η.

For these reasons, this paper deals with the l∞ norms of
signals and designs a no-overloading error feedback quantizer
that satisfies the l∞ constraint on the error � at the output of
the system connected to a �� modulator.

IV. SYNTHESIS OF ERROR FEEDBACK QUANTIZER

Unless overloading occurs, the round-off error w is bounded
such as

�w�∞ ≤ d

2
. (11)

Otherwise, the signal z of interest cannot be bounded in
general, since w may be unbounded due to overloading.
Then, the overloading complicates the system behavior, since
���∞ depends on it. To design the quantizer and the system
connected to the quantizer independently, it is better to avoid
the overloading in the static uniform quantizer.

If there is no overloading, then y is bounded, since the
system is stable and the error � is bounded with a stable R[z].
Without loss of generality, we can assume that the observation
signal has the symmetric magnitude limitation described as

�y�∞ ≤ L y . (12)

Let us adopt the static uniform quantizer characterized
by (1) in our error feedback quantizer. From our definitions,
if the feedback signal η meets

�y + η�∞ ≤ L + d

2
, (13)

then no overloading happens at the static quantizer.
It follows from the triangle inequality �y +η�∞ ≤ �y�∞ +

�η�∞ and �η�∞ ≤ �R[z] − 1�(d/2) that if one sets

L y + �R[z] − 1�d

2
≤ L + d

2
(14)

then no-overloading in the static uniform quantizer is assured.
In other words, the l∞ norm of the feedback signal should be
equal to or less than L + d/2 − L y .

For the binary representation of the observation signals, we
have to determine its accuracy and range, i.e., the quantization
interval d and the saturation level L for the uniform quantizer.
If we assign b bits to represent the observation signal, we have

2L = (2b − 1)d. (15)

From (14) and (15), we summarize the above discussion as a
proposition:

Proposition 1: There is no overloading in the error feed-
back quantizer composed of an error feedback filter R[z] − 1
and a mid-rise quantizer if

L y + �R[z] − 1�d

2
≤ 2b−1d (16)

where b is the number of bits assigned to the mid-rise quan-
tizer, d and L y denote its quantization interval and saturation
level respectively.

It should be remarked that (16) is a sufficient condition
for no-overloading. Since the triangle inequality is loose in
general, the design based on (16) may be conservative.

Now, we would like to find the number of bits that assures
no-overloading under the constraint (9), which is, from (7),
achieved if

�H [z]R[z]�d

2
≤ γ�. (17)

To obtain the minimum b that satisfies (16), we set the
quantization interval of our static uniform quantizer to be

d = 2γ�

�H [z]R[z]� . (18)
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Substituting (18) into (16) leads to

L y

γ�
�H [z]R[z]� + �R[z] − 1� ≤ 2b. (19)

For given L y and γ� , the left hand side of the inequality
above can be evaluated with �H [z]R[z]� and �R[z] − 1�,
whose minimum can be obtained by solving the following
optimization problem:

min
R[z]∈R H∞,γ̃� ,γ̃η

cγ̃� + γ̃η (20)

subject to R[∞] = 1 and

�H [z]R[z]� ≤ γ̃� (21)

�R[z] − 1� ≤ γ̃η (22)

where RH∞ is the set of stable proper rational functions with
real coefficients and

c = L y

γ�
. (23)

It should be noted that the objective function is linear
in γ̃� and γ̃η.

The problem above can be solved if we restrict R[z] to
have a finite impulse response. On the other hand, the global
optimal solution is not available for general IIR filters.

A. FIR Filter Design

If R[z] is an FIR filter of order n, then the problem can be
formulated as a linear programming (LP) and be numerically
solved as follows.

To solve the problem, we express the composite sys-
tem H [z]R[z] as a state-space realization. We denote the
state-space matrices of a state-space realization of H [z] as
(Ah, Bh, Ch , Dh), while the state-space matrices of a state-
space realization of R[z] as (Ar , Br , Cr , Dr ) with Dr = 1.
Then, the state-space realization of H [z]R[z] can be written
as

xk+1 = Axk + Bwk (24)

�k = Cxk + Dwk (25)

where the state-space matrices for this are given as

A =
[

Ar Br Ch

0 Ah

]

(26)

B =
[

Br

Bh

]

(27)

C = [
Cr Dr Ch

]
(28)

D = Dh . (29)

It is noted that the impulse response from w to � can be
expressed with the space-space matrices as

fk =
{
D, k = 0

CAk−1B, k = 1, 2, 3, · · · (30)

A state-space realization (Ar , Br , Cr , 1) of the FIR filter
R[z] = 1 + ∑n

k=1 rkz−k is given by

Ar =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Br =

⎡

⎢
⎢
⎢
⎣

0
...
0
1

⎤

⎥
⎥
⎥
⎦

(31)

Cr = [
rn, rn−1, · · · r1

]
, Dr = 1. (32)

Since Ar and Br are constant, A, B, and D are constant.
Moreover, A is Schur, that is, all eigenvalues of A are strictly
inside the unit circle, since H [z] is stable.

For a sufficiently large integer m, we can approximate
�H [z]R[z]� such that

�H [z]R[z]� = |Dh | +
m∑

k=1

|CAk−1B|. (33)

On the other hand, we have from R[z]−1 = ∑n
k=1 rkz−k that

�R[z] − 1� =
n∑

k=1

|rk |. (34)

Then, our problem can be expresses as the following mini-
mization problem:

min
r1,...,rn,γ̃� ,γ̃η

cγ̃� + γ̃η (35)

subject to

|Dh | +
m∑

k=1

|CAk−1B| ≤ γ̃� (36)

n∑

k=1

|rk | ≤ γ̃η. (37)

Note that the matrix C depends linearly on r1, . . . , rn as in (28)
and (32). However, since the absolute values of the variables
are not linear, we cannot easily solve the problem directly.
To cast the problem into a solvable linear programming (LP),
we introduce auxiliary variables.

Putting f̄k = |CAk−1B| for k = 1, . . . , m in (36), we have

|Dh | +
m∑

k=1

f̄k ≤ γ̃� . (38)

It follows from f̄k = |CAk−1B| that

− f̄k ≤ CAk−1B ≤ f̄k for k = 1, . . . , m (39)

Similarly, with non-negative auxiliary variables r̄k ≥ 0 for
k = 1, . . . , n, (37) is found to be equivalent to

n∑

k=1

r̄k ≤ γ̃η (40)

−r̄k ≤ rk ≤ r̄k for k = 1, . . . , n. (41)

Then, our minimization problem is formulated as the follow-
ing LP:

min
r1,...,rn, f̄1,..., f̄m ,r̄1,...,r̄n ,γ̃� ,γ̃η

cγ̃� + γ̃η (42)
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subject to (38), (39), (40), (41), and

f̄k ≥ 0 for k = 1, . . . , m (43)

r̄k ≥ 0 for k = 1, . . . , n. (44)

Our noise shaping filter R[z] is designed by solving this
LP numerically [23].

B. IIR Filter Design

Let us briefly introduce the IIR filter design, where the
order of R[z] is set to be equal to the order of H [z]. For the
design of IIR filters, we re-express the state-space realization
of H [z]R[z] as

A =
[

Ah BhCr

0 Ar

]

(45)

B =
[

Bh

Br

]

(46)

C = [
Ch DhCr

]
. (47)

In [24], the following lemma has been provided by using
the invariant set of a discrete-time system.

Lemma 1: Suppose the initial state x0 is 0 and the input w
is bounded as �w�∞ ≤ 1. Then, the state vectors xk, k =
1, 2, . . . remain in the ellipsoid

E(P) = {x : x TPx ≤ 1} (48)

if and only if there exist a scalar α ∈ [0, 1 − ρ2(A)] and a
positive definite matrix P satisfying

⎡

⎣
(1 − α)P 0 AT P

0 α BTP
PA PB P

⎤

⎦ 
 0, (49)

where ρ(A) is the spectrum radius of A.
It follows from �k = Cxk + Dhwk that if xk ∈ E(P), then

sup
xk∈E(P)

|�k − Dhwk |2 = sup
xk∈E(P)

|Cxk|2 (50)

= sup
x̃k∈E(I )

|CP− 1
2 x̃k|2 (51)

≤ trace
(
CP−1CT

)
(52)

where I is an identity matrix. From the triangle inequality for
the absolute value, we have

���∞ ≤ |Dh |d

2
+

[
trace

(
CP−1CT

)] 1
2
. (53)

On the other hand, with

C̃ = [
0 Cr

]
(54)

we can express η as

ηk = C̃xk (55)

which leads to

�η�∞ ≤
[
trace

(
C̃P−1C̃T

)] 1
2
. (56)

Unlike FIR filters, we cannot evaluate ���∞ and �η�∞
directly. Instead, we consider the minimization using the right

hand sides of (53) and (56), that is, the upper bounds of ���∞
and �η�∞, such that:

trace
(
CP−1CT

)
≤ μ� (57)

trace
(
C̃P−1C̃T

)
≤ μη. (58)

Note that the upper bound of our objective function cγ̃� +γ̃η

is given by c
√

μ� + √
μη, which is not convex in μ� and μη.

Instead of directly solving the problem, let us consider the
following problem:

min
R[z]∈R H∞,xk∈E(P),μ�

μ� (59)

subject to R[∞] = 1, (57) and (58).
The condition xk ∈ E(P) is described by (49), which is a

bilinear matrix inequality (BMI) of the variables. On the other
hand, by using the Schur complement, (57) and (58) can be
expressed as linear matrix inequalities (LMIs):

[P CT

C μ�

]


 0 (60)

[P C̃T

C̃ μη

]


 0. (61)

Since the BMI is not convex, we cannot yet solve (59).
Fortunately, we can convert the BMI into an LMI and then,
since the LMI is convex, we can solve the minimization
problem (59) numerically as detailed in Appendix.

By solving the convex optimization problem (59) for differ-
ent values for μη, we obtain the optimal IIR feedback filters for
different constraints on the l∞ norms of the feedback signals.
With the designed feedback filters R[z] − 1, we can evaluate
the pair (�R[z] − 1�, �H [z]R[z]�) and find the optimal R[z]
that achieves the minimum of the left hand side of (19), which
gives the minimum number for b.

C. Minimum l∞ Norm for a Fixed Number of Bits
We have investigated the number of bits required for quan-

tization to attain a prescribed requirement on the performance
and the no-overloading quantization at the same time. Now,
we would like to consider another problem to find the achiev-
able minimum l∞ norm of the error in the signal of interest
with a no-overloading quantizer for a given number of bits.

Suppose that the number of bits assigned to the static
quantizer is given and fixed. We would like to design the
no-overloading error feedback quantizer that minimizes the
l∞ norm of the error �. From (16), we obtain

L y ≤
(

2b−1 − 1

2
�R[z] − 1�

)

d. (62)

Since d must be positive, we have to meet �R[z] − 1� < 2b.
It follows from ���∞ ≤ �H [z]R[z]�d/2 that ���∞ is bounded
with d = L y/

(
2b−1 − �R[z] − 1�/2

)
as

���∞ ≤ L y�H [z]R[z]�
2b − �R[z] − 1� . (63)

It is obvious that for a fixed value of �R[z] − 1�, the
upper bound for ���∞ is minimized by the filter R[z] that
minimizes �H [z]R[z]�. Then, for a fixed upper bound γ̃η of
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Fig. 6. Rotary inverted pendulum.

�R[z] − 1�, the optimal filter can be found by solving the
following optimization problem:

min
R[z]∈R H∞,γ̃�

γ̃� (64)

subject to R[∞] = 1, (21), and (22).
For a fixed upper bound for �R[z] − 1�, we have the value

for �H [z]R[z]� by solving the optimization problem. Then,
by solving the problem for different values for �R[z] − 1�,
the relationship between �R[z] − 1� and �H [z]R[z]� can be
obtained. Finally, with the values for the pair (�R[z] − 1�,
�H [z]R[z]�), we can obtain the minimum of the right hand
side of (63).

As in Sections IV-A and IV-B, the problem can be for-
mulated as an LP for FIR R[z], whereas the upper bounds
of the norms have to be evaluated for IIR R[z]. The details
are omitted, since the optimization problems can be solved
similarly as described in IV-A and IV-B.

V. NUMERICAL RESULTS

We here consider the quantization for the rotary inverted
pendulum (see e.g. [25]) depicted in Fig. 6 for our design
example.

The pendulum connected at the end of the rotary arm is
controlled by rotating the main body in the horizontal plane.
The yaw angle of the arm is θ(t). The pendulum freely swings
about a pitch angle φ(t) in the vertical plane to the arm. The
torque u(t) is applied to actuate the pendulum. If φ(t) = 0,
then the pendulum is balanced in the inverted position.

We define the state of the rotary inverted pendulum as

xT (t) = [φ(t), θ(t), φ̇(t), θ̇ (t)]. (65)

We periodically change the yaw angle, while keeping the
stability of the rotary inverted pendulum. The target value of
the yaw angle θ̄ (t) is

θ̄ (t) =
{π

2
(10k ≤ t < 5 + 10k)

0 (5 + 10k ≤ t < 10(k + 1))
(66)

for k = 0, 1, . . .. The initial values of the states are assumed
to be zero.

We linealize the equations of motions about the upward
equilibrium, that is φ(t) = 0, and derive the zero-order hold
equivalent discrete-time model [26] with the sampling period
Ts = 0.01. Let A, B, C, D be the state-space matrices of the
linearized and discretized system. Since the continuous-time
system is strictly proper, we have D = 0. The state-space

matrices A and B of the discrete-time linearized system are
given by

A =

⎡

⎢
⎢
⎣

1.0056 0 0.0100 0.0001
−0.0003 1.0000 −0.0000 0.0100
1.1134 0 1.0056 0.0149

−0.0653 0 −0.0003 0.9926

⎤

⎥
⎥
⎦ (67)

B =

⎡

⎢
⎢
⎣

−0.0004
0.0002

−0.0864
0.0431

⎤

⎥
⎥
⎦. (68)

Assuming that all of the state variables be available at the
controller (i.e. C is the identity matrix), we adopt the state
feedback control and determined its gain K by the linear
quadratic regulator (LQR) technique to minimize

∞∑

k=0

(
x T

k Qlqr xk + r |uk |2
)

(69)

where the weights are

Qlqr = diag[10, 2, 0.5, 0], r = 0.05. (70)

Our signal of interest is the discretized φ(t), which is
expressed as φk = C1 xk with

C1 = [
1 0 0 0

]
. (71)

The transfer function from the lth entry of the quantization
error to φ is found to be C1(zI − A − B K )−1 B Kl with K =
[K1, K2, K3, K4] = [57.2598, 6.0910, 6.2562, 3.4953].

Now let us design FIR and IIR filters of order 4 for the error
feedback. We consider the quantization of φ, the first entry of
the state variables, to mitigate the effect of the quantization
on φ. The transfer function is given by

H [z] = C1(zI − A − B K )−1 B K1

= 0.02475z3 − 0.02482z2 − 0.02463z + 0.02469

z4 − 3.59z3 + 4.808z2 − 2.844z + 0.626
(72)

whose zeros are −0.9975, 1, and 1.
The constraint on the maximum absolute value of � is set

to be γ� = 0.05 and L y in (12) is set to be π/2.
With the designed optimal FIR feedback filter, the value of

the objective function c�H [z]R[z]� + �R[z] − 1� is 5.2729.
On the other hand, the value with the designed IIR feedback
filter is 5.8831. The FIR filter exhibits a better performance
than the IIR filter. This is due to the fact that the exact value
of the l∞ norm is evaluated for the design of the FIR filter,
whereas only an upper bound can be used for the design of
the IIR filter. In both cases, the required number of bits is 3
to satisfy the constraint (19), while the conventional static
uniform quantizer requires 6 bits to meet the constraint on �,
since (L y/γ�)�H [z]� = 47.788 < 26.

The signal-to-quantization-noise-ratio (SQNR) is a perfor-
mance measure for quantization errors, SQNR is evaluated
at the output of the quantizer and is defined as the ratio of
the variance of the input y to the variance of the error e
in Fig. 5. The uniform quantizer with 6 bits achieves a better
SQNR than the feedback quantizer with 3 bits, since it utilizes
a larger number of bits than the error feedback quantizer.
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Fig. 7. Frequency responses of the system H [z], the designed FIR filter R[z],
and the transfer function H [z]R[z] from the quantization error to the system
output.

Fig. 8. Error of pitch angles of the pendulum controlled with the
3-bit quantizers having the optimized FIR error feedback filter (solid line)
and the conventional uniform quantizers (dash-dotted line).

However, comparing the two quantizers having an identical
number of bits, e.g. 3 bits, we can conclude that the uniform
quantizer has a larger error � at the output of the system H [z].

Fig. 7 depicts frequency responses of the system H [z],
the designed FIR filter R[z], and the transfer function
H [z]R[z] from the quantization error to the system output.
The designed FIR filter has small/large gains at the pass-
band/stopband of H [z]. Although c�H [z]R[z]�+�R[z]−1� is
minimized, the gain of H [z]R[z] is small at every frequency.

Simulations are conducted with the designed optimal FIR
error feedback filter. To clarify the difference, we only quantize
the signal φ of interest.

Fig. 8 compares the error signal � of the pendulum con-
trolled with the 3-bit quantizers having the optimized FIR
error feedback filter (solid line) and the conventional uniform
quantizer (dash-dotted line) for 10 ≤ t < 20. The maximum
absolute value of the error for our designed quantizer is
less than 0.05, while the maximum absolute value of the
error for the conventional uniform quantizers is about 0.18.
Our designed quantizer satisfies the requirement on the error
clearly outperforms the conventional uniform quantizer.

Fig. 9. Output of the designed quantizer for pitch angle.

Fig. 10. Relation between �R[z] − 1� and �H [z]R[z]� for pitch angle φ.

The output of our designed quantizer for 10 ≤ t < 12 is
shown in Fig. 9. Only three values are taken, which implies
that only 2 bits are required in practice, although our analysis
suggests 3 bits. This is because we adopt the worst-case error
for our performance measure. Indeed, it is well-known that
the condition on the maximum of the absolute value of errors
leads to conservative results.

Next, for a fixed number of bits for the quantizer, we
evaluate the l∞ norm of the error in the signal of interest
with the designed no-overloading error feedback quantizer.
We solve the optimization problems discussed in Section IV-C.

Fig. 10 depicts �H [z]R[z]� as a function of �R[z] − 1�.
In the design of IIR filters, we minimize the upper bound
and then the designed filter is not assured to be optimal.
Here, (

√
μη,

√
μ�) serves as an upper bound for (�R[z]− 1�,

�H [z]R[z]�) of IIR filters. On the other hand, in the design
of FIR filters, we minimize the objective function directly and
the designed filter is optimal among FIR filters. This may be
a reason why the designed FIR filters achieve smaller error
norm than the designed IIR filers.

As �R[z] − 1� increases from zero, �H [z]R[z]� decreases
rapidly at first and then floors. It should be remarked that
�R[z] − 1� = 0 implies that there is no error feedback filter,
that is, the quantizer is just a static uniform quantizer.
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Fig. 11. ���∞ for different numbers of bits.

Fig. 12. Ratios between values by 16-bit fixed-point binary numbers with
different floating length and floating-point numbers.

From the values of (�R[z] − 1�, �H [z]R[z]�) in Fig. 10,
we compute the norm ���∞ with (63) for different numbers of
bits from 1 to 8, which is plotted in Fig. 11. This figure clarifies
the relationship between the error norm and the number of bits
assigned to the quantizer.

The norm of our quantizer decays exponentially with a rate
faster than 1/2. We may conclude that our quantizer is more
efficient in the number of bits than the conventional quantizer
without the error feedback filter, since its decay rate of the
error norm with respect to the number of bits is given by 1/2.

Finally, we evaluate our designed FIR filter in signed fixed-
point binary number formats with a specified word length and
fraction lengths. We fix the word length to be 16 and change
the fraction length from 4 to 10. We compute the normalized
value by dividing the value obtained with fixed-point numbers
by the corresponding value with 64-bit floating-point numbers.

Fig. 12 illustrates the normalized values for �H [z]R[z]�,
�R[z] − 1�, and c�H [z]R[z]� + �R[z] − 1�. In this example,
we require 7 bits for the fraction of each number to achieve
a comparable performance with the filter realized by 64-bit
floating-point numbers. Since R[z] is designed based on the
system H [z], the required precision is dependent on sys-
tem H [z]. It should also be remarked that some of the exist-
ing techniques developed for the physical implementation of

�� modulators may be applied to our feedback quantizer,
since our feedback quantizer has the same structure with some
of �� modulators.

VI. CONCLUSION

We have studied a feedback quantizer composed of a static
quantizer and an error feedback filter. We have investigated
the necessary number of bits required for quantization to
attain the requirement on the system output, while keeping
no-overloading in the quantizer. The number of bits assigned to
the quantizer can be obtained by designing the error feedback
filter that minimizes a constraint for no-overloading. The
design of FIR filters has been formulated as linear program-
ming by directly evaluating the l∞ norm, whereas the design of
IIR filters has been as a convex optimization problem by using
upper bounds on the l∞ norm. In our design example, if one
assigns the same order for filters, the optimized FIR filter
exhibits a better performance than the designed IIR filter. The
efficiency of the designed quantizer has been demonstrated by
simulation.

APPENDIX

Let us convert the non-convex BMI (49) to an LMI by
using the change of variables proposed independently in [27]
and [28].

Let the order of R[z] be equal to the order n of the
system H [z]. The set of n × n positive definite matrices
is denoted as P D(n). We define the following matrices
{Pf , S f , W f , Wg, L}, where Pf ∈ P D(n), S f ∈ P D(n),
W f ∈ R

1×n , Wg ∈ R
n×1, L ∈ R

n×n , with Pf and Pg . Let us
also define matrices from {Pf , S f , W f , Wg, L} as

P−1 =
[

P f S f

S f S f

]

(73)

U =
[

P f In

S f 0

]

(74)

Pg = (Pf − S f )
−1 (75)

and the matrices {MA, MB, MC , MP } as

MA =
[

Ah Pf + Bh W f Ah

L Pg Ah

]

(76)

MB =
[

Bh

Wg

]

(77)

MC = [
Ch Pf + Dh W f Ch

]
(78)

MP =
[

Pf In

In Pg

]

(79)

Direct computations show that if the matrices {Ar , Br , Cr } are

Ar = [Bh W f − P−1
g (L − Pg Ah Pf )]S−1

f (80)

Br = Bh − P−1
g Wg (81)

Cr = W f S−1
f (82)

then {A,B, C} satisfy

MA = U TPAU (83)

MB = U TPB (84)

MC = CU (85)

MP = U TPU. (86)
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Theorem 1 [28] proves that the BMI for the original vari-
ables {A,B, C,P} is equivalent to the LMI for the new
variables {MA, MB, MC , MP } by replacing {PA,PB, C,P}
with {MA, MB, MC , MP }. Thus, (49) and (60) are converted
into

⎡

⎢
⎣

(1 − α)MP 0 MT
A

0 α MT
B

MA MB MP

⎤

⎥
⎦ 
 0 (87)

[
MP MT

C
MC μ�

]


 0. (88)

On the other hand, we have

C̃U = [
Cr S f 0

] = [
W f 0

] := MC̃ . (89)

Premultiplying (61) by diag(U T , I ) and postmultiplying (61)
by diag(U, I ) results in

[
MP MT

C̃
MC̃ μη

]


 0. (90)

Therefore the minimization problem

min
Pf ,Pg,W f ,Wg,L ,μ�

μ� (91)

subject to (87), (88), and (90), gives the minimum of the
minimization problem (59) for a given α.

For a fixed α, the minimization problem is a semidefinite
program, which can be numerically solved by existing opti-
mization packages, e.g., CVX [29], a package for specifying
and solving convex programs. then, the minimum is given by
a line search for α ∈ (0, ρ2(Ah)).
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