
2280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

ACE-CNN: Approximate Carry Disregard
Multipliers for Energy-Efficient CNN-Based

Image Classification
Salar Shakibhamedan , Graduate Student Member, IEEE, Nima Amirafshar , Ahmad Sedigh Baroughi ,

Hadi Shahriar Shahhoseini , and Nima Taherinejad , Member, IEEE

Abstract— This paper presents the design and development
of Signed Carry Disregard Multiplier (SCDM8), a family of
signed approximate multipliers tailored for integration into
Convolutional Neural Networks (CNNs). Extensive experiments
were conducted on popular pre-trained CNN models, including
VGG16, VGG19, ResNet101, ResNet152, MobileNetV2, Incep-
tionV3, and ConvNeXt-T to evaluate the trade-off between
accuracy and approximation. The results demonstrate that
ACE-CNN outperforms other configurations, offering a favor-
able balance between accuracy and computational efficiency.
In our experiments, when applied to VGG16, SCDM8 achieves
an average reduction in power consumption of 35% with a
marginal decrease in accuracy of only 1.5%. Similarly, when
incorporated into ResNet152, SCDM8 yields an energy saving
of 42% while sacrificing only 1.8% in accuracy. ACE-CNN
provides the first approximate version of ConvNeXt which yields
up to 72% energy improvement at the price of less than only
1.3% Top-1 accuracy. These results highlight the suitability
of SCDM8 as an approximation method across various CNN
models. Our analysis shows that the ACE-CNN outperforms
state-of-the-art approaches in accuracy, energy efficiency, and
computation precision for image classification tasks in CNNs. Our
study investigated the resiliency of CNN models to approximate
multipliers, revealing that ResNet101 demonstrated the highest
resiliency with an average difference in the accuracy of 0.97%,
whereas LeNet5 Inspired-CNN exhibited the lowest resiliency
with an average difference of 2.92%. These findings aid in
selecting energy-efficient approximate multipliers for CNN-based
systems, and contribute to the development of energy-efficient
deep learning systems by offering an effective approximation
technique for multipliers in CNNs. The proposed SCDM8 family
of approximate multipliers opens new avenues for efficient deep
learning applications, enabling significant energy savings with
virtually no loss in accuracy.

Manuscript received 15 September 2023; revised 26 December 2023 and
30 January 2024; accepted 15 February 2024. Date of publication 1 March
2024; date of current version 30 April 2024. This work was supported by
European Union’s Horizon 2020 Research and Innovation Programme through
the Marie Skłodowska Curie (APROPOS: Approximate Computing for Power
and Energy Optimization, http://www.apropos.eu/) under Grant 956090. This
article was recommended by Associate Editor Y. Tang. (Corresponding
author: Salar Shakibhamedan.)

Salar Shakibhamedan is with the Institute for Computer Technology (ICT),
TU Wien, 1040 Vienna, Austria (e-mail: salar.shakibhamedan@tuwien.ac.at).

Nima Amirafshar, Ahmad Sedigh Baroughi, and Hadi Shahriar Shahhoseini
are with the School of Electrical Engineering, Iran University of Sci-
ence and Technology, Tehran 13114-16846, Iran (e-mail: nima_amirafshar@
elec.iust.ac.ir; sadighbaroughi_aelec.iust.ac.ir; shahhoseini@iust.ac.ir).

Nima Taherinejad is with the Institute of Computer Engineering, Heidel-
berg University, 69117 Heidelberg, Germany, and also with the Institute
for Computer Technology (ICT), TU Wien, 1040 Vienna, Austria (e-mail:
nima.taherinejad@ziti.uni-heidelberg.de).

Digital Object Identifier 10.1109/TCSI.2024.3369230

Index Terms— Energy efficiency, convolutional neural network,
approximate multiplier, image classification.

I. INTRODUCTION

IN THE last decade, CNN has become one of the most
prominent methods in computer vision tasks, such as image

classification [1], object detection [2], and semantic segmenta-
tion [3]. Despite their high configurability and computational
capacity, CNNs are known to consume a significant amount
of energy and computational resources due to their intricate
structure and the number of parameters involved [4], [5],
[6]. CNNs are known for their error-resilient nature, espe-
cially in computer vision tasks. However, with the rise in
implementation of deep learning algorithms, including CNNs,
on-edge devices, and power-constrained hardware [6], [7],
there is a growing demand for improved power efficiency.
This has motivated us to focus on optimizing the resource
usage of CNNs. Image classification tasks utilize CNN due
to their higher performance at the cost of expanding the
computational complexity and resource-hungry units. Higher
computational complexity increases the energy consumption
and the required design time drastically while decreasing
the speed of the system [8]. A conventional CNN combines
convolutional, activation, pooling, and a fully connected layer.
Fundamentally, the most computationally intensive operation
is the multiplication operation for convolutional layers [9].

Generally, multipliers have three main stages: Partial
Product (PP) generation, PP reduction (accumulation), and
final addition. There are three main architectures to reduce
PPs: the Carry-Save Adder (CSA) array, the Wallace tree, and
the Dadda tree [10]. Compared to array structures, Tree-based
PP accumulation has less delay; however, it has more power
consumption and area because it has a more considerable
number of computing units and higher complexity [10],
[11]. In contrast, the array multiplier has a straightforward,
uniform, and modular architecture in which development
and management are easy to comprehend. Correspondingly,
such architecture typically has less power consumption and
area, which is more optimal than Wallace- and Dadda-based
architectures [10], [11].

Approximate multipliers trade the accuracy of the result in a
return for energy and delay improvement. In an error-tolerant
application such as image classification, the energy and delay
are of the greatest concern. Using approximate multipliers for
the core operations of a CNN-based model could alleviate
the computational complexity and resource requirement of the
model, leading to an acceptable classification and improved

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2862-2859
https://orcid.org/0009-0000-4361-8095
https://orcid.org/0000-0002-0271-2816
https://orcid.org/0000-0002-6042-0993
https://orcid.org/0000-0002-1295-0332


SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2281

performance. In this paper, we take advantage of this prop-
erty to propose new approximate signed array multipliers
that are not as accurate as their predecessors, but are more
resource-efficient and do not cause a significant loss in the
classification accuracy of CNN.

As for array architecture, the main bottleneck is carry prop-
agation, which causes significant dependency among Partial
Product Units (50s). To tackle this problem, our proposed
signed approximate multipliers some PP columns disregard
carries in a specific way. Generally, there are various ways
for ignoring carries, each of which causes different levels
of approximation and hardware criteria. According to our
experiments, the smaller number of carry disregard does not
necessarily result in the more accurate and efficient multipliers.
We think the location of carry disregard should be selected
judiciously; in fact, it is possible to ignore a large number of
carries to achieve high-speed and efficient multipliers while
gaining better accuracy and suitability for neural networks.
Hence, the important point is to find an appropriate method
for disregarding the carries, which depends on the multiplier
architecture. Our method results in the parallel operation of
PP columns and reduces hardware complexity. Furthermore,
due to the fact that our multipliers consist of two 8×4 groups
and we intend to disregard carries from the first column up
to a certain column, there are ten possible configurations for
each group. This leads to 100 various approximate multipliers
with different approximation levels, which have been studied
comprehensively in this paper. Thus, our designs strike a better
balance between hardware and accuracy criteria, and in com-
parison with other works [12], [13], we achieve considerably
more efficient CNN-based image classifiers.

Our contributions in this paper are: (1) Design of new
approximate signed multipliers with an emphasise on their
resource efficiency. (2) Design of CNN-based image classi-
fiers using the proposed approximate multipliers. (3) Showing
the performance and energy merits of the CNN-based
model for image classification tasks on the ILSVRC-2012
dataset, using exact and approximate signed multipliers,
and (4) Studying the interplay of the approximate mul-
tipliers properties and the classifiers’ performance to find
the optima.

The remainder of this paper is organized as follows: We
review the literature on approximate multipliers and their
use in CNN-based models in Section II. We describe a new
proposed approximate signed multipliers and the methodology
for designing them in Section III. We propose our CNN models
for image classification tasks using the proposed approximate
signed multipliers in Section IV. We describe our experimental
setup and present its results in Section V. We compare our
work with similar existing works in Section VI and discuss
some of the future steps. Finally, we conclude this paper in
Section VII.

II. RELATED WORKS

1) Approximate Multipliers: Multiplication is a primary
and most common arithmetic operation in diverse applications.
Therefore, we can expect a significant improvement in the
system’s performance by optimizing the multiplication
units [14]. Consequently, integrating approximate computing
in the design of multiplier units and using them in various
applications can considerably reduce the critical path
delay and improve power consumption and area. To apply
approximation in multipliers, designers use the approximation

in three main computation stages. One of the methods is the
operands truncation; this method exploits the fact that all bits
of the operands are not equally important. Therefore, selecting
only a segment of operand bits leads to a much smaller
core multiplier [15], [16]. Another method is approximation
through reducing PPs. In approximate Wallace and Dadda
multipliers [10], the central unit for reducing PPs is the
approximate compressor which has been studied thoroughly,
see e.g., [13], [17], [18], [19], and [20].

The design in [12] includes a constant-truncated part,
an error correction module, and an exact part. As for the
constant region, in the eight least significant columns, PPs
are not generated, and this part always has an 8-bit constant
output, which is “00000110”. It is akin to using 4-2 approx-
imate compressors in some PP columns of constant region,
which produce Carry and Sum equal to zero for all input
combinations. Their approximate compressor generates the
exact result for the “0000” combination, which is most likely
to occur at the input. Moreover, since the error is negative
for all inaccurate results, designing a compensation module
is easier and more efficient. Regarding the exact region, [12]
utilizes accurate compressors to determine the final result.

Reference [13] first developed two types of approximate
4-2 compressors, namely, the positive compressor (PC) and
the negative compressor (NC), by considering the error direc-
tions, not the amount of errors. PC and NC are designed
by modifying the truth table to improve hardware complex-
ity. Afterwards, by means of PC and NC, two approximate
multipliers are developed to produce inaccurate results in the
opposite direction, denoted as the positive multiplier (PM)
and the negative multiplier (NM). They proposed a novel
interleaving mode of approximate multipliers with opposite
error directions, which results in the balanced error distribution
during MAC operations.

Reference [20] first proposed an approximate 4-2 compres-
sor and then designed an approximate multiplier consisting
of truncated region, approximate region, and accurate region.
They manipulated the truth table of a 4-2 compressor so
as to reduce hardware complexity. This approximate 4-2
compressor has accurate results for all entries of its truth
table (i.e., X1 X2 X3 X4) except just four combinations in
which X3 and X4 equal 1. The error is always −1, which
means the approximate results of the compressor are less
than the corresponding exact value. Error being always in
the same direction simplifies the design of a compensation
module.

Concerning approximate array multipliers [10], one of the
most common approximate methods to reduce PPs is using
approximate Half Adder (HA) and approximate Full Adder
(FA). Another method is to eliminate many PPs. Refer-
ence [21] proposed Broken-Array Multiplier (BAM). This
multiplier eliminates several PPs using Vertical Break Level
(VBL) and Horizontal Break Level (HBL) parameters. Also,
[22] proposed the probabilistic analysis-based PP array and
replaced many PPs with other values using the proposed
Propagation and Generation (PG) function. Then eliminated
a number of them and reduced the delay. The main limiting
factor for array multipliers is carry propagation. Therefore,
[23] and [24] proposed approximate unsigned array multipliers
in which several 50s of columns disregard carry. In this paper,
we have extended them and proposed new approximate signed
multipliers as a new branch in the carry-disregard-based family
and we called them SCDM8s.



2282 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

Fig. 1. The architecture of a conventional exact 8-bit signed multiplier and
logic circuit of partial product unit (50).

2) Approximate CNNs: In the CNN context, many approx-
imation techniques, such as pruning [25], quantization [26],
and weight sharing [27], have been used to balance power
efficiency and accuracy. These techniques are mostly con-
ducted on the software (algorithm) level [28]; however, in this
paper, we use approximate multipliers as our approximation
techniques on both software and hardware levels.

Several research papers have investigated the utilization of
approximate multipliers in CNNs to improve accuracy and
hardware efficiency. Here, we reviewe these studies.
In [29], authors investigated the impact of approximate mul-
tipliers on Neural Network (NN) accuracy and hardware
efficiency. They demonstrated that approximate multipliers can
significantly reduce hardware costs while improving classifica-
tion accuracy. By replacing exact multipliers with approximate
designs, they achieved up to a 0.63% improvement in classifi-
cation accuracy, while reducing energy consumption and area.

Authors in [30] analyzed the effects of approximate multi-
plication in Deep Neural Networks (DNNs). They identified
critical factors in different CNN layers that allowed for accu-
rate predictions despite the errors introduced by approximate
multiplication. Their experiments with recognized network
architectures, such as ResNet and Inception-v4, demonstrated
that approximate multipliers could produce predictions nearly
as accurate as FP32 references, with notable energy savings.

In [31] authors proposed energy-efficient approximate
multipliers optimized for CNNs based on Mitchell’s log
multiplication. They employed various design techniques and
operand truncation to reduce energy consumption. Experi-
mental results, showed significant energy savings compared
to exact fixed-point multipliers, with minimal performance
degradation.

Authors, in [32], introduced an approximate multiplier and
a multiplier-less artificial neuron for energy-efficient neural
computing. They exploited the application’s resilience to error
and computation sharing to achieve improved energy con-
sumption in NNs. Their proposed design achieved substantial
reductions in power consumption and area while maintaining
acceptable accuracy levels.

CAxCNN [33] proposed a canonic sign digit (CSD)-based
approximation methodology for representing filter weights in
pre-trained CNNs. By using multipliers with reduced compu-
tational complexity, their technique allowed for the low area
and computational overhead while preserving multiple levels
of classification accuracy.

In [34], authors focused on FPGA-based approximate
multipliers for error-tolerant computing. They presented

several approximate multiplier designs, including those with
associated carry chains, to reduce critical path delay and
power consumption. Their designs showed improvements
in latency, area, and power compared to existing softcore
multipliers. [35], proposed ARA (Approximate computing
based Reconfigurable Architecture), a CNN accelerator
with approximate computing techniques. They explored
hardware-compatible network compression algorithms and
approximate computing units, such as iterative multipliers
and multi-port SRAM integrated LUT-based multipliers,
to achieve high energy efficiency in CNN acceleration.

III. PROPOSED SIGNED MULTIPLIERS

A. Exact Signed Multipliers
Signed multiplication is one of the most common and funda-

mental computational operations in various applications. There
are different ways to represent negative numbers, with two’s
complement being the most common. However, multiplying
two’s complement numbers can be complex because, unlike
unsigned multiplication, the output is not simply the sum of
PPs. Reference [36] introduced an optimized algorithm called
Baugh-Wooley for multiplying signed two’s complement num-
bers. Consider two n-bit operands and their two’s complement
α = (αn−1αn−2 . . . α1α0) and β = (βn−1βn−2 . . . β1β0),
whose product we want to calculate. Equations (1) and (2)
determine the decimal values of these two numbers, based
on which we can calculate the product of α and β using
Equation (3), where αi and β j denote the i-th and j-th bit
of α and β.

α = −αn−12n−1
+

n−2∑
i=0

αi 2i (1)

β = −βn−12n−1
+

n−2∑
j=0

β j 2 j (2)

α × β = (−αn−12n−1
+

n−2∑
i=0

αi 2i ) × (−βn−12n−1
+

n−2∑
j=0

β j 2 j )

= αn−1βn−122n−2
+

n−2∑
i=0

n−2∑
j=0

αiβ j 2i+ j

− 2n−1
n−2∑
i=0

(αiβn−12i ) − 2n−1
n−2∑
j=0

(αn−1β j 2 j ) (3)

Equation (3) clearly shows that the final product is not
simply the sum of PPs, but in two cases, it is obtained by
subtracting PPs, which is not desirable and makes the design
of the signed multiplier more complex. However, according
to reference [36], subtraction can be converted to addition
by taking the two’s complement of the negative numbers.
Finally, as Equation (4) shows, it is sufficient to add all the PPs
together to determine the final product of the multiplication.

α × β = αn−1βn−122n−2
+

n−2∑
i=0

n−2∑
j=0

(
aiβ j 2i+ j

)
+ 2n

− 22n−1

+ 2n−1
n−2∑
i=0

(
αiβn−12i

)
+ 2n−1

n−2∑
j=0

(
αn−1β j 2 j

)
(4)



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2283

Fig. 2. The architecture of an exact 8-bit signed multiplier using two 8 × 4 groups.

Therefore, to design an 8-bit signed multiplier, only two types
of partial product units are required. Figure 1 illustrates an
accurate 8-bit signed array multiplier that includes multiple
50s, each consisting of one AND Gate (3) and a FA used
for both single-bit multiplication and determining the sum of
PPs. In addition to 50, this multiplier has other partial product
units that differ only in the use of a NAND Gate instead of
one 3 (denoted by “N” in Figure 1). Besides these partial
product units, there are multiple 3s and one NAND Gate in
the first row of the multiplier used solely for generating PPs.
The last row has a HA that determines the most significant
bit of the output. This accurate signed multiplier has a long
critical path, indicated in red in Figure 1. However, by creating
a horizontal cut in the middle of the multiplier and dividing it
into two smaller 8×4 groups, the delay of the 8-bit multiplier
can be reduced.

Figure 2 shows an accurate 8-bit signed multiplier con-
sisting of two 8 × 4 groups, named Group A and Group B,
located in the lower and higher significant parts, respectively.
In effect, groups A and B are not a smaller-scale 8 × 4
multiplier; they are the upper-half and lower-half circuits of
the conventional 8-bit multiplier in Figure 1. Owing to this
fact, these two parts are structurally different, and the main
difference is related to the final row of the lower-half part
(i.e., Group B), in which all partial product units are based
on the NAND Gate except the last one. Moreover, this row
has one HA compared to Group A as well. In Figure 2, The
multiplier also includes a Carry Look-ahead Adder (CLA) that
determines the sum of the outputs of groups A and B, resulting
in the final output of the 8-bit multiplier. Compared to the
conventional structure (i.e., Figure 1), this architecture has a
much lower critical path delay. This improvement is due to not
only having shorter critical paths for each groups A and B but
also operating independently and in parallel to each other (the
critical path for each groups A and B is indicated in red in
Figure 2). Furthermore, the CLA reduces the delay caused by
carry propagation and accelerates the process of determining
the final output of the 8-bit signed multiplier, making the
architecture shown in Figure 2 the basis of our proposed
designs. Nevertheless, this structure still faces limiting factors,
the most important of which is the propagation of carry among
partial product units in each group A and B. We believe that by
selecting and using an appropriate approximation method, the
effect of this limiting factor can be reduced, and a suitable
balance between accuracy and hardware efficiency criteria,

Fig. 3. Circuits and symbols of efficient partial product units.

such as critical path delay, power consumption, and area, can
be achieved.

B. Approximate Signed Multipliers
We introduce the 8-bit SCDM8s, which have a structural

similarity to the multiplier in Figure 2. As stated earlier, this
architecture consists of two 8×4 groups, and the delay of these
groups has the most significant impact on the overall multiplier
delay. In other words, due to the simultaneous operation of
groups A and B, improving the critical path delay of both
leads to a considerable reduction in delay in the 8-bit signed
multiplier. The main source of delay in groups A and B is the
propagation of the carry bit, which creates a strong dependency
among the partial product units. This dependency requires
each partial product unit to wait for the completion of some
other units before starting its own computations. Thus, if we
ignore the carry bit in each column of these units, we can
see that the columns of the partial product units can work
independently and in parallel, resulting in an improvement in
delay. Disregarding the carry bit not only improves the speed
but also reduces power consumption and area due to simpler
partial product units.

Figure 3 shows the logical circuit of the optimized partial
product units, namely the Carry Disregard Partial Product
Unit (51), the Half-adder-Based Partial Product Unit (52),
and the Full-adder-Based Partial Product Unit (53). 51 does
not have any input or output for the carry bit (i.e., Cin and
Cout ) and only consists of one 3 for single-bit multiplication
and one X O R Gate for calculating the sum of PPs. On the



2284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

Fig. 4. Symbolic representation of the proposed approximate 8 × 4 units for Group A and Group B.

other hand, 52 only has an output for the carry bit (i.e.,
Cout ) and, unlike 50, ignores the input carry bit (i.e., Cin).
52 is similar in having a 3 for single-bit multiplication but
additionally includes a HA for determining the sum of PPs.
53 is essentially a combination of two 50s but lacks the input
carry bit and only has an output for the carry bit.

In general, in each 8 × 4 group, we aim to disregard the
carry bits from the first column up to a certain column, and
there are 10 different possible configurations for this purpose.
Additionally, there are 100 combinations of groups A and B
configurations, each resulting in a unique approximate 8-bit
signed multiplier with nonidentical critical path delay, power
consumption, area, and accuracy. In this work, we examined
and experimented with all 100 possible combinations for
the approximate 8-bit signed multiplier. Since each of these
approximate multipliers has different levels of accuracy, based
on the experimental results, for presentation in the paper,
we only selected the combinations that showed acceptable
compatibility and provided suitable output quality for image
classification applications based on CNNs. Therefore, only
20 approximate signed multipliers were chosen out of a total
of 100 combinations to appear in the paper.

Figure 4 shows some proposed approximate 8 × 4 units for
Group A and Group B, which are based on disregarding the
carries. The 8×4 units for groups A and B are denoted as G Ax
and G Bx , respectively. In each of these units, the hexadecimal
parameter x determines that the carries are disregarded from
the first column to the x-th column. G A1 and G B1 are
the exact 8 × 4 units for groups A and B, respectively,
as shown in Figure 2. This is because in these units, there
is only one 3 in Column 1, and as expected, they do not
generate carries. For Group A, units G A4 to G Aa are selected,
as experiments have shown that the G A2 and G A3 have not
much difference in terms of accuracy compared to G A4, but
G A4 is more efficient in terms of power consumption and
area. Interestingly, our experiments show that G Aa causes
an unacceptable error for image classification. Thus, for this
specific application, we disregard all configurations with G Aa .

According to Figure 4, the G A4, G A5, G A6, and G A7 follow
a similar pattern in their architecture. These units disregard
the carries from the first column to Column 4, Column 5,
Column 6, and Column 7, respectively, and the partial product
units in all these columns are of type 51. Therefore, these
columns can work independently in parallel, and significantly
improve the delay. Following the columns that disregard the
carries, there is one 53 and two 52s, and the other partial
product units are of the conventional type 50.

Figure 4e also shows the approximate unit G A8, which
disregards all carries from Column 1 to Column 8, enabling
simultaneous and independent operation for columns 1 to 9.
Similarly, all partial product units in columns 1 to 8 are of type
51, and Column 9 has one 52 and one 53. The first unit in
Column 10 is of type 52, and the other units are of type 50.
The approximate unit G A9 (Figure 4f) disregards all carries
from Column 1 to Column 9, providing parallel operation for
these columns. Additionally, since the first partial product unit
in Column 10 does not produce carries, a 51 can be used.
Furthermore, in columns 10 and 11, there are two 52s, where
the output Cout of the first one is connected to the second one’s
Sin input. The G Aa disregards all carries from the first column
to Column 10, allowing the partial product unit in Column
11 not to produce carries. Hence, all partial product units of
the G Aa are of type 51, making it the simplest 8 × 4 unit for
Group A.

Regarding Group B, the design process is completely similar
to what was introduced for Group A. Since Group B is in
the most significant part of the 8-bit multiplier, disregarding
carry digits in this unit leads to more significant errors in the
output of the 8-bit multiplier. As a result, we have chosen
only G B1 to G B5 for Group B according to the experimental
results. Concerning the main differences in the structure of
Group B compared to Group A, we can refer to Row 4,
in which all partial product units have one NAND Gate
(denoted by “N” in Figure 4) except the last one, as well as
a HA that determines the significant bit of the result. Another
notable point is that the final partial product unit in Row 2 has



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2285

Fig. 5. The comparison between accurate (top) and approximate (bottom)
convolution, in which red background shows smaller values and green shows
higher values. The color patterns show the similarity of the outputs in both
versions.

the constant value of zero for its Sin input, which is one in
Group A. For instance, G A5 and G B5 (Figures 4b and 4i)
have similar circuits except for the mentioned differences in
rows 4 and 2.

The approximate unit, G B2 ((Figure 4g), only disregards
the carries of the first two columns, resulting in columns 1 to
3 operating simultaneously and independently. The second
column of this unit has one 51, and columns 3 and 4 have one
53 and one 52, respectively, while the other partial product
units are of type 50. On the other hand, the architectures of
units G B3 (Figure 4h), G B4, and G B5 (Figure 4i) follow a
similar pattern. These units, respectively, ignore the carries of
columns 1 to 3, 4, and 5, and these columns have 51s. After
the carry-disregarding columns, there are one 53 and two 52s,
while the other partial product units are 50. In general, it can
be said that the more columns in both groups A and B operate
in parallel and independently, the shorter the critical path will
be, and hence the delay of these two groups will be reduced.

In conclusion, as mentioned earlier, by combining different
8 × 4 units related to groups A and B, various approximate
signed 8-bit multipliers are obtained under the name SCDM8,
which have different hardware characteristics and accuracy
levels. The proposed approximate signed multipliers are rep-
resented as SCDM8_xy, where the hexadecimal parameters x
and y determine the types of 8 × 4 units located in Group A
and Group B, respectively. For instance, SCDM8_84 consists
of G A8 and G B4 in groups A and B, in turn, and similarly,
SCDM8_a2 consists of approximate units G Aa and G B2.

IV. PROPOSED APPROXIMATE CNN
We used VGG16 [37], VGG19 [37], ResNet101 [38],

ResNet152 [38], MobileNetV2 [39], InceptionV3 [40], and
ConvNeXt-T (Tiny) [41] as the CNNs for the image clas-
sification task to present the capabilities of the proposed
approximate multipliers in practical applications. In CNNs,
the output of each neuron consists of the contribution of
many other neurons. Consequently, the output result is not
highly dependent on a single computation or processing.
Subsequently, suppose there is some error in one of the
computations, which consists of the final output result of the
neuron. This could be compensated by other computations and
processing. This diversity of contribution provides room for
approximation in CNNs.

Figure 5 illustrates the output results of a convolution
operation carried out by an accurate and approximate multi-
plier (CDM8_84), respectively. As demonstrated, the general
pattern and shape of outputs for the convolution as well as
the vector-matrix multiplication (not shown here due to space
limitation) are similar. The pattern of the outputs is what

TABLE I
ARCHITECTURE AND DETAILS OF THE USED CNNS

mainly affects the final result and decision. So, keeping the
main shape of the pattern and structure of the outputs is
fundamental in our computations. In Section V, we study
the interplay of our proposed approximate multipliers and the
performance of our CNN-based image classifiers.

As detailed in Table I, the employed CNNs are characterized
by their remarkable scale, comprising millions of parameters
and potentially yielding billions of operations during the
inference process for a given input image. Table I illustrates
the employed CNNs based on their computational complexity,
measured by the number of MACs (in billion) per inference,
as well as their architectural characteristics. These CNNs
encompass a diverse array of architectural components, includ-
ing convolutional layers, pooling layers, concatenation layers,
and fully connected layers, which collectively contribute to
their robust performance. Extensive studies conducted by [40],
[42], [43], and [44] have shed light on the computational
dynamics of these CNNs.

Notably, their findings reveal that a significant portion,
approximately 95-99%, of the MACs operations are exe-
cuted within the convolutional layers. This concentration
of computational workload within the convolutional layers
underscores their pivotal role and computational intensity due
to the substantial number of multiplications and additions
involved. It is worth emphasizing that this characteristic is not
exclusive to the specific CNN architecture under investigation
but is rather a common observation across a wide range
of CNN models [45], [46], [47], [48]. The computational
demands imposed by convolutional layers can be attributed to
their intricate operations, including convolving the input data
with numerous filters, extracting meaningful features through
non-linear transformations, and performing spatial pooling
operations to enhance translation invariance.

By recognizing the computational intensity of the convolu-
tional layers and understanding their dominant role in MAC
operations, researchers and practitioners can focus their efforts
on optimizing these critical components to achieve efficient
and high-performance CNN architectures. Hence, the pursuit
of novel algorithms, hardware accelerators, and architectural
innovations is driven by the aim of mitigating the computa-
tional burden and improving the overall efficiency of CNNs,
ensuring their widespread applicability in various domains,
such as computer vision, natural language processing, and
autonomous systems.

The training and inference processes of Machine Learning
(ML) and DNN algorithms necessitate the utilization of diverse
hardware platforms, encompassing Central Processing Units
(CPUs), Graphics Processing Units (GPUs), Tensor Processing
Units (TPUs), and custom accelerators [6]. Each of these
hardware units exhibits unique architectural characteristics
and properties, including varying levels of parallelism that
have a profound impact on the overall performance of these



2286 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

algorithms. In our design framework, we place significant
emphasis on considering the quantity of parallel arithmetic
operations that can be executed simultaneously as a critical
specification. This consideration allows us to calculate the total
delay associated with each operation by taking into account
the number of parallel operations and the clock period, which
represents the reciprocal of the operational frequency.

Within CNNs, which are widely employed in various
domains, the input of each layer is intricately dependent on
the output of the preceding layer. As a consequence, the
overall delay experienced by a CNN is intricately linked to
multiple factors, such as the number of parameters within each
layer, the quantity of parallel operations, the clock period,
and other elements that influence the data flow and inter-
layer dependencies. To tackle these inherent challenges and
enhance the efficiency of CNNs, we propose the incorporation
of approximate multipliers specifically tailored for quantized
CNNs. This approach allows us to effectively address two
critical issues.

Firstly, it mitigates the memory-intensive nature of quan-
tization by leveraging approximation techniques, enabling
more efficient use of available memory resources. Sec-
ondly, it addresses the computationally demanding aspect of
CNN operations by leveraging the benefits of approximation,
reducing the computational complexity without significantly
sacrificing accuracy.

By incorporating these approximate multipliers into quan-
tized CNNs, we not only mitigate the challenges associated
with memory utilization and computational intensity but also
address two paramount concerns: energy consumption and
delay. These considerations hold significant importance, par-
ticularly in the context of hardware platforms characterized by
power constraints, such as Internet of Things (IoT) devices,
embedded systems, and edge devices. The ability to optimize
energy efficiency and simultaneously reducing processing
delays is essential for enabling the widespread deployment
of ML and DNN algorithms in resource-constrained envi-
ronments. As we continue to explore innovative algorithms,
hardware accelerators, and architectural advancements, our
objective is to further enhance the efficiency and performance
of CNNs on various hardware platforms, paving the way for
advancements in computer vision, and other domains that
heavily rely on DNNs.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup
1) Approximate Multipliers: We have designed the pro-

posed approximate multipliers in Verilog and synthesized them
in 45nm NanGate Technology using Cadence Genus v2018 to
analyze the critical path delay, power consumption, and area.
Based on this data (inserted in Table II), we generated the
behavioral description of these multipliers as a Python code
and integrated them into the utilized CNNs.

2) CNNs: During the training phase, it is common for
power and computational resources to be unrestricted, allowing
for ample computational capacity. In this study, we took
advantage of this freedom by employing a selection of pre-
trained CNN models from the TensorFlow library [49] in
Python. Specifically, we utilized well-established models such
as VGG16, VGG19, ResNet101, ResNet152, MobileNetV2,
InceptionV3, and ConvNeXt-T which have demonstrated
impressive performance across various computer vision tasks.

These models were chosen for their proven efficacy and
robustness in image classification.

For the training process, we opted for the use of the
ImageNet dataset [50], a widely recognized benchmark in the
field of computer vision. This dataset comprises millions of
high-resolution images spanning a diverse range of objects
and scenes. By employing the float32 number representation,
we ensured precision and accuracy during the training phase.
The network parameters of the pre-trained CNN models were
fine-tuned using this comprehensive dataset, enabling them to
learn intricate patterns and features that contribute to their
superior performance.

Following the training stage, an important step in our
approach involved quantizing the trained CNN models from
float32 to int8 number representation. Quantization is a tech-
nique employed to reduce memory storage requirements and
computational complexity during the inference phase. By rep-
resenting the network weights and activations with fewer bits,
we achieved a balance between computational efficiency and
maintaining satisfactory accuracy levels.

For the evaluation process, we used the post-training quan-
tization (PTQ) on the trained CNNs’ weights and activations.
This involved converting the values from float32 to int8 based
on the type of the layer or tensor. The used specifications such
as granularity, scaling factors, and zero points are similar to
TensorFlow Lite’s 8-bit quantization scheme [49], [51].

In terms of the dataset used for evaluation, we utilized the
well-known ILSVRC-2012 dataset [50]. Comprising approx-
imately 1.3 million images distributed across 1000 distinct
classes, this dataset serves as a widely adopted subset of the
larger ImageNet dataset [50]. It is worth noting that for the
purpose of implementing the inference stage, we solely relied
on the validation subset, as it provides an unbiased evaluation
of the model’s performance on previously unseen data.

In addition to the mentioned pre-trained CNN models,
we extended our experimental setup by training and quantizing
a LeNet5-inspired CNN architecture. This approach allowed
us to explore a different network architecture and compare its
performance against the established models, thereby enhancing
the comprehensiveness of our study. By expanding our reper-
toire of models, we sought to gain a deeper understanding of
the strengths and limitations of various CNN architectures in
the context of our classification task.

B. Results
1) Approximate Multipliers: The result of our evaluations

regarding the performance parameters of proposed approxi-
mate signed multipliers is inserted in Table II. The Mean
Relative Error Distance (MRED) refers to the average of
the difference between the exact and approximate multiplier
output (i.e., �P_k and �X_k , respectively) divided by the
corresponding exact output for all input combinations (k =

1 to 22N for an N-bit multiplier), i.e.,

M RE D =
1

22N

22N∑
k=1

�P_k − �X_k

�P_k
; ∀�P_k ̸= 0. (5)

The SCDM8s compared to the exact signed multiplier
(denoted as “S_Exact8r” in Table II) improved the delay,
power consumption, and Power Delay Product (PDP) by
26.61%, 27.7%, and 45.95% on average, respectively. Among
SCDM8s, the lowest MRED is 0.001 belongs to SCDM8_41,



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2287

TABLE II
PROPERTIES OF THE PROPOSED 8-BIT MULTIPLIERS

while SCDM8_95 has the highest MRED, i.e., 0.163. As for
power consumption, the SCDM8_a5 is far more efficient
than the other SCDM8s. On the other hand, not only the
SCDM8_95 and the SCDM8_85 have the best critical path
delay but also they have least PDP among all SCDM8s.
In addition, we have investigated biasing towards zero in
the SCDM8s. As regards this, the experiments indicated
that there is no such bias in the majority of cases (when
either or both numbers are negative), and thus, all proposed
signed multipliers. Overall, we can see that by increasing the
level of approximation, resource usage improves and accuracy
degrades. Hence comes the following research question; how
far this approximation can go on before it produces an unac-
ceptable effect at the system level, i.e., the CNN classification
performance.

2) Approximate CNNs: We conducted an extensive evalua-
tion to assess the effect of utilizing the proposed approximate
multipliers on the performance of the employed CNNs at
a higher level. Our evaluation aimed to explore the impact
of these approximate multipliers on various aspects, such as
accuracy, computational efficiency, and memory utilization.
To thoroughly evaluate the performance of our classifiers,
we employed specific performance metrics tailored to each
CNN architecture. For the LeNet5-inspired CNN, we uti-
lized accuracy and f1-score as the primary metrics. For the

remaining CNNs models apart from ConvNeXt, we employed
top-1 accuracy and top-5 accuracy as key performance indi-
cators. In the ConvNext paper [41], and the Tensorflow/Keras
library [49], the ConvNeXt-T performance was evaluated using
Top-1 accuracy.

For the LeNet5-Inspired CNN, we used F1-Score instead of
Top-5 accuracy as a performance metric since Top-5 accuracy
is not meaningful for a 10-class classification problem. These
metrics provide valuable insights into the classification capa-
bilities and overall effectiveness of the CNNs. To showcase
the performance results obtained from our evaluation, we com-
piled the comprehensive findings in Table III. This tabulated
representation allows for systematic comparison and analysis
of the different study cases, providing a clear understanding
of the impact of the approximate multipliers on the CNNs’
performance.

Subsequently, we incorporated the proposed approximate
multipliers into our models, replacing all multiplications
within the CNN architectures. This integration aimed to
address the computational intensity and memory utilization
challenges associated with CNN operations. By leveraging the
benefits of approximate multipliers, we strived to optimize
the efficiency and performance of the CNNs, while also
considering the trade-offs in terms of accuracy and other
performance metrics. Through this comprehensive evaluation,
we sought to gain deeper insights into the potential advan-
tages and limitations of utilizing approximate multipliers in
CNN architectures. Our objective was to enhance the overall
efficiency, computational speed, and memory utilization of
the CNN models, thereby contributing to advancements in
deep learning applications. By understanding the impact of
approximate multipliers on CNN performance, we aim to drive
the development of more efficient NNs.

C. Detailed Analyses

In this part, we present a comprehensive analysis of the
observations and results obtained from using and utilizing the
proposed approximate multipliers in the CNN models. The
analysis aims to provide detailed insights into the impact of
approximation on the performance of the models and highlight
noteworthy findings.

1) Accuracy Degradation Trend: One of the primary obser-
vations in our experiments was the consistent trend of accuracy
degradation with an increasing number of approximate bits in
both parts A and B of the multipliers. For example, when
we increased the number of approximate bits from 0 to 6 in
both parts A and B, the accuracy of the LeNet5-Inspired CNN
decreased from 92.3% to 86.5%. Similarly, in the VGG16
model, the accuracy dropped from 92.1% to 88.7% when
the number of approximate bits increased from 0 to 6 in
parts A and B. These results indicate that the introduction
of approximation in the computations has a detrimental effect
on the models’ ability to classify images correctly.

2) Exception Points: However, amidst the overall accuracy
degradation, we noticed several exception points where higher
levels of approximation led to improved performance. These
exceptions occurred during the transition from one configu-
ration to another, such as from SCDM8_61 to SCDM8_62,
SCDM8_71 to SCDM8_73, and SCDM8_81 to SCDM8_82.
For example, in the SCDM8_61 configuration, the LeNet5-
Inspired CNN achieved an accuracy of 86.5%, but when we
increased the number of approximate bits to 7 in both parts A



2288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

TABLE III
PERFORMANCE EVALUATION OF CNNS WITH VARIOUS APPROXIMATE MULTIPLIERS IN DIVERSE CASE STUDIES

and B (SCDM8_62), the accuracy improved to 88.2%. Similar
improvements in accuracy were observed in the other transi-
tion points. These results suggest that specific configurations
of approximate multipliers can enhance the models’ ability to
generalize and make accurate predictions, despite the increased
level of approximation.

3) Impact of SCDM8_85 Configuration: In our experi-
ments, we observed a significant drop in accuracy when
using the SCDM8_85 configuration. The performance of the
classifiers was almost negligible, with accuracy values close to
what would be expected if the classes were selected randomly.
For example, in the VGG16 model, the accuracy dropped from
88.7% (SCDM8_84) to 12.3% (SCDM8_85). This suggests
that the SCDM8_85 configuration was not suitable for main-
taining acceptable performance levels in the CNN models.
Further analysis is needed to understand the specific factors
contributing to this drastic drop in accuracy.

4) Importance of Most Significant Bits: Through our exper-
iments and the provided results, we found that the most
significant bits played a crucial role in maintaining perfor-
mance. Specifically, when the number of approximate bits
reached 9 for the least significant bits or 5 for the most
significant bits, irrespective of the other types of approximate
bits, our metrics dropped to their lowest values. For example,
in the ResNet50 model, when we set 9 approximate bits for
the least significant bits and 5 approximate bits for the most
significant bits, the accuracy decreased to 72.1% compared to
the baseline accuracy of 93.8%. This finding highlights the
importance of the most significant bits compared to the least

significant bits in preserving accuracy and suggests potential
areas for leveraging the least significant bits for approximation.

5) Resiliency of CNNs to Approximation: we investi-
gated the resiliency of CNN models, including LeNet5
Inspired-CNN, VGG16, VGG19, ResNet101, ResNet152,
MobileNetV2,InceptionV3, and ConvNeXt-T to approximate
multipliers. Resiliency refers to the ability of a model to
maintain acceptable performance levels despite the introduc-
tion of approximation techniques. To quantify the resiliency,
we calculated the average difference in accuracy between
the baseline (quantized) model and the approximate models,
considering all the approximate multipliers except those with
an accuracy below 11%. Our findings revealed varying degrees
of resiliency among the CNN models to the approximate
multipliers. The resiliency was determined by averaging the
differences in accuracy across all the considered approximate
multipliers. A smaller average difference indicated a higher
level of resiliency, implying that the model’s performance was
less affected by the approximation. The results, ordered by
the average difference in accuracy (from lowest to highest)
and thus the resiliency of the CNN models to the approximate
multipliers, are as follows:

ResNet101: This model demonstrated the highest resiliency
to approximation, with an average difference in Top-1 accu-
racy of only 0.97% compared to the baseline (quantized)
model. ConvNeXt-T: This is another compelling case study.
This model showcases a commendable level of resiliency, with
an average difference in Top-1 accuracy of 1.39% compared
to the baseline for SCDM8_7X series and all more accurate



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2289

ones. MobileNetV2: Following ResNet101, and ConvNeXt-
T, MobileNetV2 exhibited a good level of resiliency, with an
average difference in Top-1 accuracy of 1.41%. InceptionV3:
Similar to MobileNetV2, InceptionV3 displayed a moderate
level of resiliency, with an average difference in Top-1 accu-
racy of 1.54%. VGG16: This model showed a lower level of
resiliency compared to the previous models, with an average
difference in Top-1 accuracy of 1.95%. VGG19: Similar to
VGG16, VGG19 exhibited a lower level of resiliency, with
an average difference in Top-1 accuracy of 2.01%. LeNet5
Inspired-CNN: Among the analyzed CNNs, LeNet5 Inspired-
cnn exhibited the lowest level of resiliency, with an average
difference in Top-1 accuracy of 2.92%.

These results indicate that ResNet101 demonstrated the
highest average resiliency to the approximate multipliers,
while LeNet5 Inspired-CNN exhibited the lowest average
resiliency. By considering the average differences in accuracy
across multiple approximate multipliers, these findings provide
a comprehensive understanding of the models’ robustness
to approximation, enabling practitioners to make informed
decisions when selecting approximate multipliers for energy-
efficient CNN-based systems.

The observed variations in resiliency underscore the impor-
tance of evaluating multiple approximate multipliers and
considering their impact on the overall performance of CNN
models. By understanding the average resiliency to approx-
imation, researchers and practitioners can better assess the
trade-off between energy efficiency and acceptable levels of
accuracy, contributing to the development of more effective
and resilient energy-efficient deep learning systems.

VI. DISCUSSION AND COMPARISON

A. Discussion
Table IV presents the empirical results regarding the energy

gain and delay gain per inference. The absolute values of
energy and delay were obtained from Table II. The energy
gain and delay gain per inference closely align with the gains
exhibited by the approximate multipliers proposed in Table II.
This alignment can be attributed to two main reasons.

Firstly, the number of required multiplication operations per
inference is nearly equivalent to the number of required MAC
operations per inference. Consequently, the gains achieved are
independent of the architecture and the number of parameters
and can be directly determined by the properties of the
approximate and exact multipliers.

Secondly, energy and delay gains predominantly depend
on the characteristics of individual multiplication operations
within the CNN. Whether these operations occur in a con-
volutional layer, pooling layer, or fully connected layer,
the fundamental arithmetic operations involved are multi-
plications. Hence, the benefits attained through approximate
multipliers are linked to the attributes of these multiplication
operations rather than being specific to the network architec-
ture. To calculate the gains

G P =
Pe

Px
, (6)

was used, where Pe represents the exact value of the compared
parameter, and Px represents its approximated counterpart.
Additionally, the relative changes were computed using

IP =
Px

Pe
. (7)

It should be noted that the study excluded the approximate
multipliers that significantly deteriorated the performance of
the CNNs, as indicated by the results in Table III. Furthermore,
the power-delay product (PDP) of the approximate multipliers,
obtained from Table II, was considered as the energy property
for the purpose of calculations. In order to comprehensively
evaluate the effects of employing approximate multipliers
in CNNs, a holistic perspective encompassing both resource
utilization (energy consumption and delay reduction) and per-
formance was adopted. This evaluation was facilitated through
the Energy-Delay-Accuracy Trade-off (EDAT) metric, which
aims to identify the optimal balance among energy gain, delay
gain, and accuracy, considering their relative importance. The
formulation of EDAT is as follows:

EDAT = G E
w1 · G D

w2 · IA
w3 (8)

To ensure a reasonable and appropriate study that empha-
sizes the performance aspect of EDAT (given that resource
efficiency in an ineffective CNN is meaningless), the weights
were selected as w1 = w2 = 1 and w3 = 2 (as the energy
and delay gains are always greater than 1 and the accuracy
drop is less than 1). Energy gain (G E ) and delay gain (G D)
were calculated based on the values from Table II, using
Equation (6), while accuracy drop (IA) was determined using
the value from Table III and Equation (7).

To explore the behavior of EDAT, we incrementally increase
its value by a step of 0.25 and analyze the corresponding out-
comes. Starting from an initial EDAT value of 1.5, we assess
the suitability of different approximate multipliers across
various (CNNs). The results indicate that all approximate
multipliers exhibit an EDAT value greater than 1.5, making
them suitable choices in this particular condition.

When we progress to an EDAT value of 1.75, we observe the
exclusion of SCDM8_4X and SCDM8_81 from our selection.
This implies that, to achieve superior performance (higher
EDAT value), we require a larger number of approximate bits
in our SCDM8 approximate multiplier family.

Considering an EDAT value of 2, we identify several
approximate multipliers (SCDM8_52, SCDM8_53,
SCDM8_54, SCDM8_61, SCDM8_62, SCDM8_63,
SCDM8_64, SCDM8_72, SCDM8_73, SCDM8_74,
SCDM8_82, SCDM8_83, and SCDM8_84) that consistently
exhibit excellent performance across all scenarios, regardless
of the CNN type. Notably, SCDM8_71 demonstrates
satisfactory performance (EDAT=2) across all applications
except for VGG19. This suggests that, for the range of
least significant approximate bit numbers (5 to 8) and most
significant approximate bit numbers (2 to 4), all approximate
multipliers perform well across the studied applications,
irrespective of the CNN type.

As we progress to an EDAT value of 2.25, we observe
the exclusion of SCDM8_52, SCDM8_53, SCDM8_62, and
SCDM8_71 from our list of viable options. However,
SCDM8_63 presents a unique case as it shows marginal per-
formance in all scenarios and is acceptable only for ResNet152
and InceptionV3.

At an EDAT value of 2.5, only five options remain viable:
SCDM8_72, SCDM8_73, SCDM8_74, SCDM8_84, and
SCDM8_85. This demonstrates the resilience of SCDM8_7X
multipliers under stricter conditions. Progressing to an EDAT
value of 2.75, we observe the exclusion of SCDM8_72,
further highlighting the importance of the most significant bits.
In this case, only approximate multipliers utilizing the most



2290 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

TABLE IV
PERFORMANCE EVALUATION OF CNNS WITH VARIOUS APPROXIMATE MULTIPLIERS IN DIVERSE CASE STUDIES

TABLE V
STATISTICAL PROPERTIES OF EDAT

acceptable most significant bits (3 and 4) remain as viable
options.

Reaching an EDAT value of 3 leads to the exclusion of
SCDM8_83 from our list. This observation emphasizes the
resilience of SCDM8_7X multipliers. At EDAT=3.25, we are
left with only two options: SCDM8_74 and SCDM8_84. This
reinforces the significance of the most significant bits in
approximation.

At EDAT=3.5, SCDM8_74 remains applicable only
for ResNet152 and InceptionV3 (similar to SCDM8_63
at EDAT=2.25) and demonstrates marginal performance
for ResNet101. For EDAT values greater than 3.5, the
only remaining approximate multiplier is SCDM8_84. The
last applications exhibiting acceptable EDAT values are
MobileNetV2, VGG19, and VGG16 (EDAT=3.61).

These observations motivate us to study the robustness of
each application by considering the EDAT value. By assessing
the error resiliency and robustness of the applications while
also considering energy and delay gains, in addition to the
absolute error, we can evaluate the suitability of the proposed
approximate multipliers better. Table V provides an overview
of the statistical properties and distribution of EDAT values
for each of our applications. As demonstrated in Table V,
the SCDM8 approximate multiplier family exhibits excellent
performance for our simplest application, the LeNet5-Inspired
CNN.

Moreover, it generally performs well across all applications
based on the average values. An interesting point to note is
that, in cases where high EDAT values are required, such
as on power-constrained edge devices and embedded sys-

tems, the proposed approximate multipliers prove beneficial
for implementing resource-intensive deep neural networks
(DNNs) like VGG19 (with 19.67 billion required MACs) or
complex DNNs not inherently designed for power-constrained
conditions, such as ResNet152. The statistical properties for
these aforementioned resource-intensive DNNs are similar to
or greater than others in high EDAT value cases. This indicates
that our proposed SCDM8 approximate multiplier family is
suitable for power-constrained hardware implementation of
CNNs that were not originally designed for such hardware
environments.

Furthermore, ACE-CNN is the first to employ approximate
multipliers (of any kind) in the ConvNeXt deep learning model
to study their effect. This pioneering exploration revealed the
relatively error-resilient nature of ConvNeXt-T (Tiny) against
approximation, ranking second only to ResNet101 in terms
of error resilience. Using ACE-CNN multipliers leads to
on average 54% energy improvement while having 79.02%
performance as the Top-1 accuracy (only 1.39% less than the
highest in the exact version), rendering is particularly suitable
for power-constrained scenarios.

B. Comparison
In this section, we present a comprehensive compara-

tive analysis of the performance of our proposed SCDM8
approximate multiplier family in relation to several recent
state-of-the-art approximate multipliers. The objective of this
analysis is to evaluate the effectiveness and suitability of our
approach in practical scenarios. To ensure a fair and mean-
ingful comparison, we have maintained consistent conditions
throughout our study, including the application (model) and
the dataset utilized. By doing so, we aim to provide a real-
istic assessment of the capabilities of the different multiplier
designs.

In Table VI, we present a summary of the perfor-
mance achieved by various state-of-the-art research works
on the same applications for reference. This allows us to
establish a benchmark against which we can evaluate the
advancements and benefits offered by our proposed SCDM8
approximate multiplier family. The accuracy degradation and



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2291

TABLE VI
COMPARISON OF APPROXIMATE CNNS

energy improvement are calculated directly from Table III and
Table IV, respectively. We note that the result of [20] has been
reported by [55].

Upon analyzing the results presented in Table VI, it is
evident that our SCDM8 approximate multiplier family con-
sistently outperforms the competing approaches across a range
of applications. In terms of accuracy degradation, energy
improvement, and computation precision, the ACE-CNN
demonstrates its superiority over the alternative methods. This
highlights the remarkable capability and applicability of the
ACE-CNN in the context of CNNs used in image classification
tasks.

On average, the ACE-CNN family has demonstrated a
noteworthy 21% enhancement in energy efficiency while
incurring a mere 1.79% reduction in accuracy under similar
experimental conditions (i.e., model architecture and dataset).
These results show a commendable trade-off, emphasizing
the potential of the ACE-CNN family to achieve substantial
energy savings without compromising performance integrity.
Table VI shows the results from recent research endeavors.
These studies often employ less complex scenarios, utilizing
smaller datasets and higher computation precision. In contrast,
our experiments maintain a stringent 8-bit precision and pre-
dominantly operate on the ImageNet dataset, renowned for its
significance in image classification tasks.

To make our comparison more comprehensive, we incor-
porated compressor-based approximate multipliers from [12]
and [13] into our case studies. Specifically, we applied the
approximate multipliers from [12] to ResNet101 (pre-trained
on ImageNet) and those from [13] to MobileNetV2 (pre-
trained on ImageNet), introducing more intricate case studies
in terms of the number of MAC operations, data size, and other
complexities. We observe that ACE-CNN has consistently
outperformed them on average by 2.48%, 4.72%, 2.06%,
and 0.66% for VGG16/19, ResNet101/152, MobileNetV2,
and MNIST-based applications, respectively. It is essential
to highlight that authors of [12] implemented their proposed
approximate multiplier using a 7-nm technology, reporting

energy improvements based on this technology. Consequently,
a direct energy improvement comparison would not be fair
(since our design would consume significantly much less
power in that technology as well, if we had access to the tech-
nology). However, in relative terms we see that the ResNet101
by [12] achieves a moderately more energy improvement at
the cost of significantly worse accuracy, compared to our
work. As a matter of fact, the 13% accuracy loss, renders that
implementation impractical for most -if not all- applications
and hence the energy improvement immaterial. Our 0.23%
accuracy loss is tolerable for most -if not all- applications,
rendering the 68% energy improvement a game changing
factor.

The large coverage in experimental conditions in our study
underscores the robustness of ACE-CNN’s performance across
more challenging and realistic scenarios. Furthermore, ACE-
CNN’s adaptability shines through in its ability to offer diverse
configurations and approximation levels, tailored to meet a
spectrum of computational and resource requirements. This
inherent flexibility positions ACE-CNN as a versatile solution
applicable across a broad range of applications, effectively
addressing diverse computational demands and resource con-
straints.

The success of ACE-CNN (SCDM8 multipliers) can be
attributed to the novel approximation technique employed
within the design. This technique effectively explores and
utilizes the available approximation room and space, enabling
the ACE-CNN to achieve superior energy efficiency compared
to the most recent state-of-the-art approaches. By leveraging
the potential for approximation, our SCDM8 multipliers strike
a balance between energy efficiency and computational accu-
racy, making them a highly favorable choice for demanding
image classification tasks.

The outcomes of our comparative analysis provide strong
evidence supporting the adoption of the SCDM8 approximate
multiplier family in real-world applications. The demonstrated
superiority in accuracy degradation, energy improvement, and
computation precision positions the SCDM8 multipliers as a
reliable and efficient solution for a wide range of CNN-based
image classification tasks. Future research efforts may focus
on further refining the SCDM8 family to unlock their full
potential and explore their performance in other domains.

VII. CONCLUSION

In this study, we proposed new approximate signed multi-
pliers and employed them in CNNs to improve their efficiency
and performance. The results of our experiments showed that
the proposed multipliers achieved improvements in critical
delay, power consumption, and power-delay product compared
to exact signed multipliers. The SCDM8 series, in particular,
demonstrated significant gains. We found that the level of
approximation impacts resource usage and accuracy, with
higher levels of approximation leading to better resource
utilization but degraded accuracy.

The proposed SCDM8_XY multipliers can adjust the
approximation level to reach a suitable point in the accuracy-
efficiency trade-off. In our studies, we found out that
SCDM8_XY family (X: 4 → 8, and Y: 1 → 5) can provide,
up to 72% energy improvements, while having only 1.95%,
2.01%, 0.97%,1.25%, 1.41%, 1.54%, and 1.38% for VGG16,
VGG19, ResNet101, ResNet151, MobileNetV2, InceptionV3,
and ConvNeXt-T Top-1 accuracy degradation, respectively.
This shows that our proposed SCDM8 family (ACE-CNN)



2292 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 71, NO. 5, MAY 2024

can have model-independent performance improvement with
negligible accuracy degradation. Whereas there was an over-
all trend of accuracy degradation with increasing levels of
approximation, we observed exceptions where higher levels
of approximation actually improved accuracy. Furthermore,
we assessed the resiliency of the CNN models to approxima-
tion and found varying degrees of resilience across different
models. ResNet101 demonstrated the highest resiliency,
whereas LeNet5-inspired CNNs exhibited the lowest.

Overall, our study highlights the potential benefits and limi-
tations of using approximate multipliers in CNN architectures.
By understanding their impact on accuracy and exploring the
trade-offs, researchers, and practitioners can make informed
decisions on how to develop more efficient and resilient deep
learning systems. We note that the proposed method requires
specialized hardware, which comes with challenges such as the
need for hardware design expertise and extended development
time. Nevertheless, the adoption of specialized hardware in
ML has been growing, since they yield significant performance
improvements, making them valuable for specific practical
applications. Moreover, some future work should be dedicated
to optimizing approximate multipliers and exploring their
applicability in other domains beyond CNN, such as image
and signal processing.

REFERENCES

[1] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li, “Development of
convolutional neural network and its application in image classification:
A survey,” Opt. Eng., vol. 58, no. 4, 2019, Art. no. 040901.

[2] A. Dhillon and G. K. Verma, “Convolutional neural network: A review
of models, methodologies and applications to object detection,” Prog.
Artif. Intell., vol. 9, no. 2, pp. 85–112, Jun. 2020.

[3] G. Burel, H. Saif, M. Fernandez, and H. Alani, “On semantics and
deep learning for event detection in crisis situations,” in Proc. Work-
shop Semantic Deep Learn. (SemDeep). Portoroz, Slovenia: ESWC,
May 2017.

[4] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 5687–5695.

[5] A. Bouguettaya, A. Kechida, and A. M. Taberkit, “A survey on
lightweight CNN-based object detection algorithms for platforms with
limited computational resources,” Int. J. Inform. Appl. Math., vol. 2,
no. 2, pp. 28–44, 2019.

[6] N. TaheriNejad and S. Shakibhamedan, “Energy-aware adaptive approx-
imate computing for deep learning applications,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2022, p. 328.

[7] Md. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient
acceleration of deep learning inference on resource-constrained edge
devices: A review,” Proc. IEEE, vol. 111, no. 1, pp. 42–91, Jan. 2023.

[8] R. Tang, W. Wang, Z. Tu, and J. Lin, “An experimental analysis of
the power consumption of convolutional neural networks for keyword
spotting,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2018, pp. 5479–5483.

[9] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[10] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, Dec. 2020.

[11] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classifi-
cation, and comparative evaluation of approximate arithmetic circuits,”
ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 4, pp. 1–34, 2017.

[12] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “An ultra-efficient
approximate multiplier with error compensation for error-resilient appli-
cations,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 2,
pp. 776–780, Feb. 2023.

[13] G. Park, J. Kung, and Y. Lee, “Design and analysis of approximate
compressors for balanced error accumulation in MAC operator,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 7, pp. 2950–2961,
Jul. 2021.

[14] S. Seyedfaraji, B. Mesgari, and S. Rehman, “AID: Accuracy improve-
ment of analog discharge-based in-SRAM multiplication accelerator,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022,
pp. 873–878.

[15] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2015, pp. 418–425.

[16] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM: An
energy-efficient Truncation- and rounding-based scalable approximate
multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 5, pp. 1161–1173, May 2019.

[17] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate
multiplier design using novel dual-stage 4:2 compressors,” IEEE Access,
vol. 8, pp. 48337–48351, 2020.

[18] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. D. Meo,
“Comparison and extension of approximate 4–2 compressors for low-
power approximate multipliers,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020.

[19] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
“Approximate multipliers based on new approximate compressors,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4169–4182,
Dec. 2018.

[20] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and
error recovery modules,” IEEE Embedded Syst. Lett., vol. 10, no. 1,
pp. 6–9, Mar. 2018.

[21] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 4, pp. 850–862, Apr. 2010.

[22] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi, “Hybrid par-
tial product-based high-performance approximate recursive multipliers,”
IEEE Trans. Emerg. Topics Comput., vol. 10, no. 1, pp. 507–513,
Jan. 2022.

[23] N. Amirafshar, A. S. Baroughi, H. S. Shahhoseini, and N. TaheriNejad,
“An approximate carry disregard multiplier with improved mean relative
error distance and probability of correctness,” in Proc. 25th Euromicro
Conf. Digit. Syst. Design (DSD), Aug. 2022, pp. 46–52.

[24] N. Amirafshar, A. S. Baroughi, H. S. Shahhoseini, and N. TaheriNejad,
“Carry disregard approximate multipliers,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 70, no. 12, pp. 4840–4853, Dec. 2023.

[25] S. Vadera and S. Ameen, “Methods for pruning deep neural networks,”
IEEE Access, vol. 10, pp. 63280–63300, 2022.

[26] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
2021, arXiv:2106.08295.

[27] E. Dupuis, D. Novo, I. O’Connor, and A. Bosio, “CNN weight shar-
ing based on a fast accuracy estimation metric,” Microelectron. Rel.,
vol. 122, Jul. 2021, Art. no. 114148.

[28] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware
approximate techniques for deep neural network accelerators: A survey,”
ACM Comput. Surv., vol. 55, no. 4, pp. 1–36, Nov. 2022.

[29] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 28, no. 2, pp. 317–328, Feb. 2020.

[30] M. S. Kim, A. A. Del Barrio, H. Kim, and N. Bagherzadeh, “The effects
of approximate multiplication on convolutional neural networks,” IEEE
Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 904–916, Apr. 2022.

[31] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, “Efficient Mitchell’s approximate log multipliers for
convolutional neural networks,” IEEE Trans. Comput., vol. 68, no. 5,
pp. 660–675, May 2019.

[32] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM
J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, pp. 1–23, Jul. 2018.

[33] M. Riaz et al., “CAxCNN: Towards the use of canonic sign digit based
approximation for hardware-friendly convolutional neural networks,”
IEEE Access, vol. 8, pp. 127014–127021, 2020.

[34] S. Yao and L. Zhang, “Hardware-efficient FPGA-based approximate
multipliers for error-tolerant computing,” in Proc. Int. Conf. Field-
Program. Technol. (ICFPT), Dec. 2022, pp. 1–8.

[35] Y. Gong, B. Liu, W. Ge, and L. Shi, “ARA: Cross-layer approximate
computing framework based reconfigurable architecture for CNNs,”
Microelectron. J., vol. 87, pp. 33–44, May 2019.



SHAKIBHAMEDAN et al.: ACE-CNN: APPROXIMATE CARRY DISREGARD MULTIPLIERS 2293

[36] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Trans. Comput., vol. C-22, no. 12,
pp. 1045–1047, Dec. 1973.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[39] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[41] Z. Liu et al., “A ConvNet for the 2020s,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2022, pp. 11976–11986.

[42] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[43] B. Wu et al., “Shift: A zero FLOP, zero parameter alternative to spatial
convolutions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9127–9135.

[44] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 116–131.

[45] I.-C. Wu, P.-T. Huang, C.-Y. Lo, and W. Hwang, “An energy-efficient
accelerator with relative- indexing memory for sparse compressed con-
volutional neural network,” in Proc. IEEE Int. Conf. Artif. Intell. Circuits
Syst. (AICAS), Mar. 2019, pp. 42–45.

[46] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, “Memory
requirements for convolutional neural network hardware accelerators,” in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Sep. 2018,
pp. 111–121.

[47] J. Galjaard, B. Cox, A. Ghiassi, L. Y. Chen, and R. Birke, “MemA:
Fast inference of multiple deep models,” in Proc. IEEE Int. Conf. Per-
vasive Comput. Commun. Workshops Other Affiliated Events (PerCom
Workshops), Mar. 2021, pp. 281–286.

[48] B. Cox, J. Galjaard, A. Ghiassi, R. Birke, and L. Y. Chen, “Masa:
Responsive multi-DNN inference on the edge,” in Proc. IEEE Int. Conf.
Pervasive Comput. Commun. (PerCom), Mar. 2021, pp. 1–10.

[49] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2016, arXiv:1603.04467.

[50] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009,
pp. 248–255.

[51] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[52] I. Hammad, L. Li, K. El-Sankary, and W. M. Snelgrove, “CNN inference
using a preprocessing precision controller and approximate multipliers
with various precisions,” IEEE Access, vol. 9, pp. 7220–7232, 2021.

[53] C. Guo, L. Zhang, X. Zhou, W. Qian, and C. Zhuo, “A reconfigurable
approximate multiplier for quantized CNN applications,” in Proc. 25th
Asia South Pacific Design Autom. Conf., Beijing, China, Jan. 2020,
pp. 235–240.

[54] I. Hammad and K. El-Sankary, “Impact of approximate multipliers on
VGG deep learning network,” IEEE Access, vol. 6, pp. 60438–60444,
2018.

[55] M. Zhang, K. Ma, R. Duan, S. Nishizawa, and S. Kimura, “Evaluation of
application-independent unbiased approximate multipliers on quantized
convolutional neural networks,” in Proc. IEEE 36th Int. System–Chip
Conf. (SOCC), Sep. 2023, pp. 1–6.

[56] F.-Y. Gu, I.-C. Lin, and J.-W. Lin, “A low-power and high-accuracy
approximate multiplier with reconfigurable truncation,” IEEE Access,
vol. 10, pp. 60447–60458, 2022.

[57] G. Park, J. Kung, and Y. Lee, “Simplified compressor and encoder
designs for low-cost approximate radix-4 booth multiplier,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 70, no. 3, pp. 1154–1158, Mar. 2023.

[58] M. Pinos, V. Mrazek, F. Vaverka, Z. Vasicek, and L. Sekanina, “Accel-
eration techniques for automated design of approximate convolutional
neural networks,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 13,
no. 1, pp. 212–224, Mar. 2023.

[59] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design
of power-efficient approximate multipliers for approximate artificial
neural networks,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2016, pp. 1–7.

Salar Shakibhamedan (Graduate Student Mem-
ber, IEEE) was born in Tehran, Iran, in 1992.
He received the B.Sc. and M.Sc. degrees in elec-
trical engineering from the K. N. Toosi University
of Technology, Tehran, in 2015 and 2018, respec-
tively, with a focus on multimodal signal processing.
He is currently pursuing the Ph.D. degree at TU
Wien (Vienna University of Technology) with the
APROPOS (EU-funded project) with a focus on
approximate computing in embedded machine learn-
ing and deep learning.

Nima Amirafshar received the B.Sc. degree in
electrical engineering from the Ferdowsi University
of Mashhad (FUM), Mashhad, Iran, in 2019, and
the M.Sc. degree in electrical engineering from
Iran University of Science and Technology (IUST),
Tehran, Iran, in 2023. His research interests include
computer architecture, approximate computing, and
digital circuit design.

Ahmad Sedigh Baroughi received the M.Sc. degree
in electrical engineering from Tabriz University,
Tabriz, Iran, in 2018. He has published three con-
ference papers on high-performance computing and
approximate hardware design. His research interests
include systems on chips, approximate computing,
and digital system designs.

Hadi Shahriar Shahhoseini received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical engineering
in 1990, 1994, and 1999, respectively. He is cur-
rently an Associate Professor with the School of
Electrical Engineering, Iran University of Science
and Technology (IUST). He has published more than
200 papers from his research works in scientific
journals and conference proceedings. His research
interests include high-performance computing, com-
puter networking, and approximate computing.

Nima Taherinejad (Member, IEEE) received the
Ph.D. degree in ECE from The University of British
Columbia (UBC), Vancouver, Canada, in 2015.
He is currently a Full Professor with Heidel-
berg University, Germany, and TU Wien, Vienna,
Austria. He has published three books, four patents,
and more than 90 articles. His research interests
include in-memory computing, cyber-physical and
embedded systems, SoC, memristive circuits and
systems, and health care. He received several awards
and scholarships from universities, conferences, and
competitions he has attended.


