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Abstract— The optimization of neural networks (NNs) is
necessary to enable their deployment on energy-constrained
devices. State-of-the-art methods leverage approximate multi-
pliers to execute NNs reducing the inference energy without
heavily affecting the accuracy. However, previous works usually
require a specialized hardware accelerator and are limited to
fixed multipliers or reconfigurable ones with few approximation
levels. This paper introduces MARLIN, a framework to deploy
layerwise approximate NNs on PULP, a microcontroller with a
RISC-V core. A multiplier architecture, with runtime selection
of 256 approximation levels, is developed and integrated into
the PULP cluster cores, enabling runtime configuration through
control status register (CSR) instructions embedded within the
code. The PULP toolchain is adapted to incorporate the approx-
imation level selection within the instruction flow seamlessly.
MARLIN leverages the genetic algorithm NSGA-II to search for
the best configurations among thousands of approximate NNs.
The framework is validated by simulating an approximate NN
trained with the MNIST dataset on PULP. Moreover, MARLIN
is used to optimize and approximate six ResNet models trained
with the CIFAR-10 dataset. In particular, for ResNet-56, the most
complex NN used in the experiments, the multiplication energy
is reduced by 23.9% while retaining 99% of the accuracy of the
exact model.

Index Terms— Approximate computing, neural networks,
RISC-V, hardware acceleration, reconfigurable computing.

I. INTRODUCTION

N RECENT years, there has been an increasing necessity
to include neural networks (NNs) in embedded systems
to deliver more advanced functionalities. Nonetheless, NNs
superior task accuracy comes at the cost of high computa-
tional complexity and memory requisites, thereby presenting
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challenges in deploying them on energy-constrained devices,
such as microcontrollers (MCUs) [1], [2]. Over the past
decade, dedicated hardware accelerators [3], [4], [5], [6],
[71, [8], [9] have been developed to optimize energy effi-
ciency and throughput during inference by reducing the data
movement and the cost of arithmetic operations. The latter
usually accounts for around a fourth of the total inference
energy, as the convolutional and fully connected layers of
NNs involve millions of multiplications and additions [10].
Nowadays, quantization-aware training can reduce the bitwidth
of NN models to 8 bits or below with little or no loss in
accuracy [3], [11], [12], [13]. It lowers the amount of memory
traffic and the computational cost, allowing the deployment
of NNs on low-power devices with no support for floating-
point arithmetic. Layer-wise quantization leverages the differ-
ent degrees of robustness and tolerance to error introduction
of NN layers.Therefore, a runtime reconfigurable multiplier
supporting operands with different bitwidths is necessary to
leverage mixed-precision and layer-wise quantization [3], [4],
[11], [12]. Similarly to quantization, approximation is another
co-design technique mainly aimed at reducing the inference
energy [14]. The basic idea is to reduce computational com-
plexity and cost using operators that produce inexact results.
However, as already pointed out, there is high variability in the
sensitivity of single layers inside the same model and among
different models. Therefore, designing a multiplier with differ-
ent approximation levels is fundamental to ensure flexibility
and adaptability. Several strategies have been explored in the
literature to design hardware supporting layer-wise approxi-
mate NN [15], [16], [17], leveraging retraining or parameters
fine-tuning to reduce the accuracy degradation. However, pre-
vious works rely on specialized accelerators and support very
few approximation levels [17], [18], limiting the possibility
of finding the optimal error-accuracy trade-off; other works
use several non-reconfigurable multipliers instances in the
accelerator’s systolic array [15], [19], [20]. The latter approach
increases the area overhead and prevents the same hardware
from executing NNs with different parameters or NNs with
different model architectures with the same energy efficiency
or accuracy. Since Internet of Things (IoT) devices have
limited area and power budgets [1], [2] and must be able
to adapt to different workloads and performance targets, it is
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necessary to adopt a layer-wise approximation strategy that
relies on a single multiplier offering several accuracy levels.
Moreover, the architecture using this multiplier should be
programmable and reconfigurable to support the deployment
of different NNs, reusing the same hardware as efficiently
as possible without requiring a redesign or recall of the IoT
device. Such flexibility allows choosing which NN is suited
for a particular scenario, prioritizing the battery life of the
edge device or the accuracy of the predictions.

In this work, we present MARLIN, an automated layer-wise
approximation co-design methodology that enables searching
for the optimal energy-accuracy trade-off and deploying
approximate NNs on a hardware accelerator. We leverage
a runtime-reconfigurable parallel tree multiplier featuring
256 error levels, assigning low-power inaccurate multiplier
configurations to layers with high error resilience and more
accurate, albeit less efficient, setup to layers with low error
tolerance. Moreover, we search for different network-level
approximate configurations, i.e., NNs with the same model
architecture but a different layer-wise approximation and,
consequently, energy-accuracy trade-off, supporting different
workload priorities. In order to rapidly deploy an approximate
NN and prove the portability of this method to a known open-
source hardware, we selected the PULP MCU [21] as the
target 1oT platform with RISCY [22], a RISC-V core. The
search of the approximate NNs configuration is done with a
non-dominated sorting genetic algorithm (NSGA-II) [23]. This
procedure is automated and executed offline, before the NN
is mapped to any specific hardware. The configuration of the
arithmetic units, using the search results, is done online. The
contributions of this work are summarized as follows:

o A layer-wise approximation strategy that reduces the
energy of arithmetic operations while retaining the orig-
inal task accuracy, applicable to any NN topology with
convolutional and fully connected layers, with no modifi-
cation to the model architecture. During the optimization
process, relying on NSGA-II, approximate NNs are eval-
uated by their error resilience and energy, assigning to
each layer a different multiplier configuration.

e A runtime reconfigurable signed multiplier supporting
256 approximation levels.

o The post-synthesis simulation of the proposed methodol-
ogy on a RISCY core, adapted to include the proposed
approximate multiplier, supporting the runtime selection
of the accuracy. The entire deployment process of the
approximate NN is automated and requires no specific
knowledge of the optimization method.

o The code used in this work, the experimental data, and the
instructions to replicate the results presented in this paper
are available at https://github.com/vlsi-lab/MARLIN

This article is organized as follows: Section II introduces a
background on NN accelerators and relevant works on approx-
imate inference, discussing the differences with MARLIN,
Section III details the co-design framework, the search strat-
egy, the multiplier design, and the modified PULP-toolchain,
Section IV presents the results, a comparison with the state-of-
the-art, and discusses the trade-offs of reconfigurable approx-
imate computing, and Section V summarizes the paper.
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Fig. 1. Generic high-level model of a hardware accelerator for NN inference.

II. BACKGROUND AND RELATED WORKS

A. Hardware Accelerators and Mapping

NN accelerators are typically based on a hardware archi-
tecture that comprises a memory hierarchy and an array of
interconnected processing engines (PEs) [4], [7], [8], [9],
[10], similar to the one depicted in Figure 1. The memory
hierarchy usually comprises the system’s main memory (off-
chip), global buffers (on-chip), and the registers within the
processing engines. The off-chip and on-chip memories are
connected through the system’s bus, whereas the PEs commu-
nicate through a network-on-chip. The execution of a NN is
scheduled with a dedicated mapper that generates the instruc-
tions and partitions the resources, minimizing the energy and
latency associated with the data movement. The complete
cost of a multiplication considered by a mapper includes the
energy and latency required to read all the operands, move
them through the memory hierarchy, compute and store the
result [9], [10], [24], [25]. The mappers used in [7], [8], and
[9] can be compared to the compilers used to generate machine
code for processors such as RISCY [22], which purpose is to
optimize the performance and resource usage. The approxima-
tion methodology described in Section III is orthogonal to the
mapping process as it only modifies the energy associated with
the arithmetic operations and not the data movement. In [24] a
tool that predicts the energy of approximate NN with a mapper
based on [10] is presented validating the assumption that
approximate computing only modifies the arithmetic energy
without affecting the data movement. Therefore, MARLIN
does not influence the mapping and could be easily integrated
in [7], [8], and [9] similarly to what has been done for DORY
in Section III-E, as discussed in Section IV-D. Alternative
hardware architectures for energy efficient NN inference at
the edge are MCUs. ISA extensions and dedicated dot-product
units inserted in the RISC-V pipeline are used in [5] and [6],
whereas in [26] a low-power neural processing unit is con-
nected to the MCU through the bus. In this work, we selected
PULP [5] as the target platform, a MCU-based low-power
computing platform with a host CPU relying on the RISCY or
zero-riscy cores and equipped with a multi-core programmable
cluster. The motivation of using PULP is twofold: the RTL
and the toolchain are open-source and well documented [21],
and, being a MCU-based platform, PULP truly represents
a low-power IoT device with strict resource constraints [2].
Additionally, PULP is selected to produce a prototype that can
be shared and adapted, without limiting the compatibility of
this methodology to the PULP platform, as highlighted by the
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fact that the layer-wise approximation strategy of Section III-B
and the deployment process of Section III-E do not have
any hardware dependencies except the multiplier. The PULP
project includes libraries and tools to easily export a NN
model written in PyTorch to C code compatible with the
MCU. The MARLIN framework includes modified versions
of the RISCY core and software tools, adapted to include the
approximation level selection through control status register
(CSR) instructions, whose generation and compilation are
added to the original PULP toolchain.

B. Approximate Neural Networks

In [19], 600 non-reconfigurable approximate multipliers are
tested with a multi-layer perceptron for MNIST and LeNet-5
for the Street View House Numbers dataset. Each approximate
neural network is executed using one of the 600 multipliers for
every convolutional layer following five retraining steps, thus
generating 600 different sets of weights for each model. In [16]
and [27] is suggested that hardware-aware retraining, while
being a time-consuming, resource-intensive strategy, can miti-
gate the effect of approximation. Mrazek et al. in [15] present
ALWANN, a framework for the approximation of NNs where
the assignment of each layer to an approximate multiplier,
among the eight-bit ones in EvoApproxLib [28], is performed
through the multi-objective genetic algorithm NSGA-II. The
parameters of each approximate NN are fine-tuned (updated
w.r.t. the starting model) without retraining. Therefore, for
each approximate configuration, a new set of weights must be
used for each convolutional layer. Similarly, Jain et al. in [20]
present a methodology to map the layers of a NN on a group
of systolic arrays, each composed of several instances of one
approximate multiplier. The arrays are part of the same accel-
erator, with each region processing only one layer of the net-
work. Contrary to [15], the weights are not updated; therefore,
the original weights can be used with different approximate
configurations. However, considering several static multiplier
architectures is not a scalable approach for a general-purpose
processor due to the area overhead; this method also impacts
flexibility in a custom array accelerator. Our work proposes
a single runtime-reconfigurable multiplier with 256 approxi-
mation levels, trading off the complexity of additional control
logic with increased flexibility. In [17], Tasoulas et al. propose
a methodology based on the modification of the bias parameter
of each layer to alleviate the approximation error. Similarly
to [15], this approach generates a new set of weights for
each approximate NN. However, their multiplier features only
three runtime adjustable approximation levels. Moreover, the
reconfiguration is handled by chaining two bits to each weight
stored in memory, increasing the storage requirements and
energy associated with data movement. According to [29]
and [30], the resilience of a NN model to adversarial attacks
depends on the approximate multiplier adopted. Consequently,
using different configurations, including an exact one, is sug-
gested to achieve higher error tolerance in various scenarios.
MARLIN applied to [30] would remove the constraint of
using a single fixed approximate multiplier, enabling error
compensation, used in [15], [17] and [20] and this work to

2107

HW-specific
D b|oF:;ks E] Optimization
[ N processing (O simulator block

8 External data

\2 \2 g ! v

=) |
quantization : : ‘

Optimized

DORY model

optimization ‘
PULP-sdk

Approx
onfiguratiol

NSGAI }
T 7 T ' PULP
Approximate

RISC-V

PyTorch
training

ID Model !

Reconfigurable

9x9 multiplier AdaPT J

j

L—————> Multiplier results ———> Power metrics

MARLIN

Fig. 2.  MARLIN framework with hardware support specific for PULP SoC.

improve the accuracy. Moreover, MARLIN can eliminate the
limitations of [29], in which 13 different multipliers are used
within each PE to support 13 approximation levels, enabling
21.3 times more approximation levels with a thirteenth of
the multipliers instances. Similarly to [18], we selected a
RISC-V-based deployment platform, thus simplifying the soft-
ware configuration of the approximate hardware. Nevertheless,
in [18], the configuration signals, handled by a control unit
external to the core, are generated by the user, thus relying
on his expertise rather than on an automated mechanism.
We overcome these limitations by embedding the runtime
approximation control inside the instructions processed by the
RISC-V core, leveraging the flexibility of the PULP platform.

III. PROPOSED METHODOLOGY
A. Overview

Our framework comprises different building blocks inter-
acting with one another to determine a flow covering from the
model definition up to its hardware deployment. From now
on, we study the specific case of PULP platform, depicted in
Figure 2. The first external input required is a valid dataset,
such as MNIST or CIFAR-10, which defines the target task
of the NN model. Given a specific application, there are
often constraints on the minimum acceptable accuracy or the
maximum tolerable energy consumption. Once the training
dataset is provided with the specifications, a suitable NN
model is identified and described with PyTorch [31]. At this
stage, hyperparameters tuning is crucial to obtain consistent
results and a model that is already robust to quantization
errors. This phase implies choosing the number of training
epochs, the type of optimizer, and other learning parameters.
A standardized representation of the NN in the form of a
data flow graph is required to port the model to PULP.
For this reason, the trained NN is passed to NEMO [32],
which transforms a floating-point model to an integer one in
ONNX format. The precision of the model is fixed at this
point in the procedure, with the added constraint that the bit-
width of weights and activations cannot be above eight bits,
either signed or unsigned. Up to this point of the procedure,
the model has no knowledge of the approximation. On the
hardware side, a reconfigurable inexact multiplier is designed
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and instantiated in MARLIN with a 9 x 9 bits parallelism.
As MARLIN’s optimization software only requires, for each
configurable approximation level, a look-up table (LUT) stor-
ing all the possible results for each couple of input operands
and the average power to execute a single multiplication, the
multiplier block is interchangeable. A single runtime recon-
figurable approximate unit or several multipliers with fixed
approximation levels could be integrated into the framework
with little or no modification. Once this high-level description
of the computational unit is available, the approximate model
can be implemented and tested through the AdaPT library [33].
Any NN topology built with PyTorch’s convolutional and
fully connected layers can be easily included in MARLIN by
overloading the layer definitions with the AdaPT ones with-
out retraining or changing the model architecture. MARLIN
solves the complex multi-objective problem of assigning an
optimal approximation level to each layer through NSGA-II,
described in Section III-B. It requires repeated simulations of
the model with the selected configurations to evaluate their
accuracy and power consumption. The obtained Pareto front
will show different possible trade-offs between accuracy and
power, corresponding to the two fitness functions NSGA-II
tries to optimize. The last step that MARLIN performs on the
software side is the C code generation to execute the model
on the target hardware, presented in Section III-D. A modified
version of DORY [34] is used to accomplish this task. This
is the first part of MARLIN which requires knowledge of the
actual hardware architecture, including a detailed high-level
description of every memory level size and latency to perform
memory tiling effectively. For this work, PULP was selected as
the target platform among those supported. DORY receives as
an input the ONNX model generated by NEMO and additional
node-by-node dictionary of the NN containing information of
the approximation of each layer retrieved by NSGA-II. The
modified DORY tool generates the C code for the provided
approximate architecture with the received configuration. For
this purpose, DORY has to be aware of the modifications the
PULP platform undergoes. An approximate unit is added to
the execution stage of the cluster cores to approximate all
the relevant instructions in the computation of convolutional
layers. It is based on the same reconfigurable multiplier, whose
LUTs are used by NSGA-II and AdaPT. This unit is managed
through a dedicated CSR in charge of activating, deactivating,
and configuring its approximation level. In Section III-E is
discussed how the modified DORY automatically inserts CSR
write and set instructions in the C code of the model to enable
the approximate unit when required. The final code runs on
the PULP platform through PULP-SDK. The model can be
executed by providing input data read from the external L3
memory while the weights are stored in L2 or L3 memory,
depending on their sizes. The support of a real hardware RTL
on which the model can run is crucial for the validation
of the proposed co-design methodology, allowing accurate
estimations of the metrics of interest on a complex system.

B. Genetic Search of Optimal Inter-Layer Approximation

In this work, we use NSGA-II, to solve the multi-objective
problem of finding NN configurations with different trade-offs
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Algorithm 1 Approximation Level Selection With NSGA-II

1: > M is the quantized exact model

2: > axx_mult is the approximate multiplier
3: > Ng is the number of generations

4: > Np is the population size

5: » Pc is the crossover probability

6

7

8

. > Pm is the mutation probability
. > ¥ is the chromosome of L elements, in range [0, A], storing the mult. configuration
L > f1 (9),f2 (9) are the fitness functions to optimize
9: > P, is the population at iteration n, with size Np
10: > Initialization
11: L < count(M.Conv)
12: A < Ap
13: P < Py
14: f(Py) < (f1(Po), f2(Po))
15: > Execution
16: for (n =0; n < Ng; n+ +) do
17: Qn < Tournament(Py,, Pc, Pm)
18: retrain_models(M, axx_mult, Qy)
19: f1(Qn) < 1/accuracy(M, axx_mult, Qn)
20: f>(Qn) < energy(M, axx_mult, Qpn)
21: f < (f1. /)
22: Ry, <« Py+On
23: for each ¥ in R, do

> Number of Conv. layers in the model

> Number of approximation levels for multiplier
> Initial population vector randomly set

> Initial fitness evaluation

> Total population, size 2Np

24. Rank(9)

25: F <« F;Ud > F; are the fronts
26: end for

27: for each ¥ in R, do

28: for each ¢y in f do

29: disy < disy + Crowding_distance(V, ¢y)

30: end for

31: end for

32: Order R, based on fronts and crowding distance

33: P, 41 < best Np solutions in Ry, > Update iteration counter
34: end for

35: return 6, > Optimum Pareto front is returned

between energy and accuracy. NSGA-II is a multi-objective
genetic algorithm that evolves a population of solutions using
non-dominated sorting and crowding distance assignment to
classify and rank individuals based on their dominance and
diversity. Crossover, i.e., recombination of different chromo-
somes, and mutation, i.e., variation of a gene, are applied to
create offspring solutions, which are then integrated with the
parent population. The selection process favors solutions from
less crowded Pareto fronts and those with higher crowding
distances, promoting the front exploration and providing a
diverse set of non-dominated solutions [23]. The motivations
for choosing the NSGA-II algorithm are its proven effec-
tiveness in multi-objective optimization and relative ease of
implementation and tuning compared to other alternatives such
as reinforcement learning or Bayesian optimization. NSGA-II
generates a set of optimized approximate NN configurations
and selects for each one which approximation level is more
suitable for each convolutional layer. Algorithm 1 details the
NSGA-II search flow. Each chromosome has a dimension L,
which is the number of layers composing the NN. The alleles
of each gene are encoded as an integer number between 0
(exact level) and A, which is the number of approximation
levels supported by the multiplier. Single-point crossover is
used to combine chromosomes while maintaining inter-layer
dependencies between approximate configurations, a strategy
used in [20] to reduce the effect of computation errors on
the NN accuracy without retraining. At the beginning of each
iteration, Np approximate NNs are retrained with 10% of
the training split (0.1 epoch). Then, the accuracy is evaluated
with the validation dataset. Contrary to previous works [15],
[17], the accuracy of candidate inexact NNs is not evaluated
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immediately, but after a quick retraining with a fraction of an
epoch. By leveraging partial retraining and validation, each
NN configuration is evaluated by its resilience to computation
errors and the retraining effort required to recover from
such errors. Solutions with faster recovery will have higher
validation accuracy than others that are less fit, using the
same number of training samples, and therefore have an
evolutionary advantage. Therefore, retraining (or fine-tuning)
is used to compensate for the error and enhance the design
space exploration. For what concerns the fitness evaluation in
Algorithm 1, the inference energy is estimated as in [15] and
[17] by multiplying the number of multiplications of each layer
of the model M with the average energy of the approximate
multiplier when set to the approximation level defined by the
corresponding gene of chromosome ¢. After the evaluation
of the two fitness functions, the algorithm continues with the
mutation, crossover, tournament selection, ranking, and finally,
the evaluation of the crowding distance and the generation
of the new front. The cycle starts anew until all the Ng
generations have been evaluated.

C. Reconfigurable Approximate Multiplier

In this work, we employ a single-cycle multiplier architec-
ture to introduce minimum modifications in the control flow
of the RISCY core. As our primary purpose is guaranteeing
maximum versatility and ensuring portability to different hard-
ware with minimum effort, a parallel multiplier architecture
based on the Dadda reduction tree [35] is selected. The Dadda
algorithm is employed to compress, through half-adders and
full-adders, the matrix of partial products generated in the first
step of the multiplication, following an as late as possible
approach. It is preferred to the Wallace structure as it shows
lower delay and complexity. The modified Baugh-Wooley
algorithm [36] is employed to handle signed multiplication
with minimum overhead in the size of the partial product
matrix. Both techniques are general and scalable to arbitrary
operand bit-width. A variation of the truncation mechanism
proposed in [37] is identified as the target strategy to manage
the dynamic setting of approximation and precision. It allows
for easy support of approximate and exact configurations, both
for full and reduced bit-width of the operands. Truncation
relies on a masking signal to select specific columns of the
partial product matrix to fix at zero to reduce the switching
activity, hence dynamic power, of the logic gates in that section
of the matrix, at the expense of an incorrect output. The
number of reconfiguration levels is selected considering that
when the approximation is extended to the most significant
half of the result, the error becomes unbearable, as argued
in [38] and [39]. An externally configurable masking signal
noted as a, is introduced to manage the selection of the
approximation level, as shown in Figure 3 for the case of
9-bit inputs and a on eight bits. Contrarily to [39], each
mask bit a; of a corresponds to a column of the matrix;
there is no sharing of the configuration signals. From bit
2 onward, the probability of the output bit being one or
giving a carry-out is higher than 50%, as intuitively proven
by the fact that the number of bits stacked in the columns

2109

|

BIEIEIEG GRS

Slale ikl alals
696 ] ) e ] o B
aEEEEEE 0.
e I ] i
gesaadEEy =9 8-
glala|a|ala|alE @ s
alolalaldlddlda® |- 8-U,

R R AR EEER]

Fig. 3.  Precision and approximation configuration management for the
proposed multiplier. The approximation level is selected with the mask a,
while the precision is selected with the mask p. a; indicates the j’h bit of
the approx_mask signal a, p; the j’h bit of the precision_mask signal
p, while pp;; is the 7" bit of the i partial product evaluated according to
modified Baugh-Wooley algorithm.

of the matrix is greater than two (Figure 3). This high
likelihood justifies the choice to gate the first row of the
partial product matrix, from position 2 to 7, to one, when the
corresponding bit of the approximation mask is active, and
it is implemented through the OR with a; complemented in
Figure 3. All other bits are gated to zero, similarly to [37],
using two-inputs AND gates for the masking. An additional
feature of the designed architecture, which is uncommon to
most approximate multipliers, is the capability of runtime
reconfiguration of the precision of the operands. A precision
masking signal p is introduced to perform data-gating on
the partial product matrix using a mechanism similar to the
approximation. The p mask is externally configured according
to the precision of the expected result, thus allowing power
saving when mixed-precision multiplications are required. The
minimum supported bit-width for the input operands is fixed
to two. The precision mask has the length of the output minus
four. Figure 3 shows the precision signal on fourteen bits p;
covering the most significant part of the partial products. When
a precision mask bit is set to zero the corresponding column
of the matrix is entirely zeroed. The complete logic inserted in
the generation of the partial product matrix to manage multiple
approximation and precision levels is depicted in Figure 3.

D. Reconfigurable Approximate RISC-V Core for PULP SoC

The RISCY core architecture instantiated in the PULP
cluster must be adapted to enable reconfigurability in terms
of approximation and precision. The first issue to tackle to
introduce inexact operators in the core is how to expose them
in the instruction set architecture (ISA) so that a programmer
can effectively use them. A possible solution is the one pro-
posed in [18]: adding custom instructions that, when decoded,
configure the execution stage to use approximate operators.
However, this approach requires an additional instruction for
each inexact arithmetic operation supported by the hardware,
defined with a new custom format capable of encoding the
approximation level. Another drawback is related to the fact
that, in this specific case, the C executable code is generated
automatically by the DORY tool. If custom instructions were
used, the user would have to replace the standard instructions
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31 18 11 10 32 1 0

[[]]

[1] approx_MAC
[0] approx_MUL

[31:18] precision_mask
[17:11] unused

[10:3] approx_mask
[2] approx_dot8

Fig. 4. The approx CSR configuration.

with the custom ones, whenever necessary, analyzing the
generated C code line-by-line. The same could be achieved by
making the compiler aware of the approximated instructions
and where they are needed, but that would be time-consuming
to implement and maintain. The methodology suggested in
this work addresses flexibility and simplicity by defining a
new custom CSR handling all the control and configuration
of approximate operators. This approach is scalable; a single
32-bit register can manage all the new operations and does
not occupy additional instruction encoding space. It also
enables reconfiguration, as part of the register bits control
the approximation and precision level. Finally, it is much
more programmer-friendly as it does not require significant
changes in the C code of the microcontroller, except for the
addition of CSR instructions. In order to achieve these results,
the proposed methodology to enable the online configuration
of the approximate multiplier relies on the following steps.
First, a CSR write instruction sets the precision_mask
and approx_mask fields according to the specification of
the layer. Secondly, before the computation starts, a CSR
set instruction enables approx_mac and approx_dots8,
which are disabled when the computation is over. Each CSR
instruction takes one clock cycle. In the general case, the
last couple of CSR instructions are executed a number of
times which depends on the tiler split performed by DORY.
Their position in the code is optimized to produce minimum
overhead in the control flow, considering the presence of MAC
instructions that must produce the correct result. The usage of
three instructions, rather than two, is forced by the specific
organization of the template C files provided by DORY and
PULP-NN C library [22]. The CSR instruction activating the
approximate unit is the one executed more frequently. It is
located before the matmul function, whose pseudocode and
number of assembly instructions are depicted in Algorithm 2.
In a pessimistic estimation, a CSR set is performed once for
each matmult function call, providing a quantitative measure
of the reconfiguration overhead on the execution time. The
GCC compiler is extended to account for the new approx
CSR, whose fields are given in Figure 4.

The Xpulp ISA extension [22] provides additional multiply-
related instructions compared to the basic ones of RV32M.
Some of these, such as MAC and SIMD dot products, are
useful for NN inference. Here, the choice is to provide an
approximate implementation only for instructions used in con-
volutional and linear layers. An in-depth analysis of the disas-
sembly code produced by custom convolutions and a complete
NN is performed to select them. The assembly instructions
included in these benchmarks are approximated, together with
others for which it is straightforward to extend support; they
are all listed in Table I. In this first implementation, the approx-
imate pipeline only computes 8-bit multiplications, even when
the issued instruction expects a 32-bit or 16-bit operation.
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Algorithm 2 PULP-NN matmul function pseudocode

1: » ch_in/ch_out input/output channels of the Conv layer

2: > k_x/k_y filter dimension along x/y

3: > im2col is ch_in - k_x -k_y

4: > col_cnt_im2col is im2col & 0x3

5: > chan_left is ch_out & 0x3

6: > Initialization

7: Load params. from stack and define variables > 26 instr
8: > Execution

9: for (i =0;i < ch_out >>2; i+ +) do

10: Setup > if first iteration 41 instr, else 6 instr
11: for (j =0; j <im2col >>2; j++) do

12: Setup > 15 instr
13: Multiply and accumulate + save > 15 instr -(im2col >> 2) + 9 instr
14: end for

15: if (im2col >> 2 == 0) then; Setup end if > 12 instr
16: while (col_cnt_im2col ! = 0) do

17: Setup > 4 instr
18: Multiply and accumulate + save > 15 instr -(im2col >> 2) + 2 instr
19: end while

20: Quantize and save results > 54 instr
21: end for

22: Setup > 10 instr
23: while (chan_left) do

24: Setup > if first iteration 23 instr, else 1 instr
25: for (j =0; j <im2col >>2; j++) do

26: Setup > 6 instr
27: Multiply and accumulate + save > 6 instr -(im2col >> 2) +4 instr
28: end for

29: if (im2col >> 2 == 0) then; Setup end if > 6 instr
30: while (col_cnt_im2col ! = 0) do

31: Setup > 4 instr
32: Multiply and accumulate + save & 6 instr -(im2col >> 2) + 1 instr
33: end while

34: Quantize and save results > 13 instr
35: end while

36: Save parameters and return > 24 instr

TABLE I
APPROXIMATE INSTRUCTIONS MNEMONICS
MAC MUL DOT8
p.mac mul p.mulsN pv.dotup.b pv.sdotup.b
p.macsN p.muls p-muluN | pv.dotusp.b  pv.sdotusp.b
p.macuN p.mulu pv.dotsp.b pv.sdotsp.b

This restriction cannot cause any error assuming that NN
layers quantization is always on 8 bits or below, which is the
ordinary case. The instructions for which approximate support
is provided are split into three subgroups, according to Table I.
For each category, the approx CSR has a configuration bit;
when this bit is set, all the instructions belonging to that
group are executed in approximate mode. Besides the custom
CSR, a unit responsible for inexact computation is inserted
in the execution stage of the pipeline alongside the exact
multiplier unit, as shown in the high-level block diagram of
the approximate core in Figure 5.

This design choice requires some modifications in the
decoding phase of the instruction. Based on some control
signals, the decoder has to activate either the correct or the
inexact unit. The arithmetic block that is not selected for the
instruction currently in the decode stage does not perform any
operation in the next clock cycle as its inputs are not updated.
Four instances of the designed multiplier are allocated in the
reconfigurable approximate unit, as in Figure 6. They are all
used in parallel to perform SIMD dot products on 8 bits, while
only one is activated for MUL and MAC-related operations.

E. Approximation in PULP Toolchain

Part of the PULP toolchain must be adapted to enable run-
time approximation. Through NEMO and DORY libraries, the
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PULP platform offers software support to generate executable
C code tailored to its architecture, starting from a PyTorch
NN model. NEMO is a PyTorch complementary framework
developed as a support tool to transform an already trained,
full-precision NN into an integer one, performing the quanti-
zation and calibration of the model. DORY is an open-source
tool for optimizing NNs mapping on PULP and other MCUs.
Two building blocks of DORY, the configurable templates and
PULP-NN back-end functions, are modified to automatically
add the approximate CSR instructions in proper points of the
C code, while the mapping optimization is unaffected. Besides
an ONNX graph, the modified DORY uses as input a JSON file
containing a layer-by-layer description of the quantization and
approximation of the NN. Once these parameters become part
of the DORY intermediate representation, they are used to fill
hardware-specific template files with the correct CSR setting
and generate the C code for the different layers. Relying on
a JSON dictionary guarantees flexibility, as new items can
be defined for each node in the network. Furthermore, it is
general; at this level, every type of approximate multiplier
could be available, either reconfigurable or not. Moreover,
as the precision information on the layer is kept separate from
the approximation level, it is possible to configure the layer as
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Fig. 7. MARLIN framework and computing setup for software simulation.

exact but with reduced precision. This choice allows to save
power by leveraging operations with reduced bit-width rather
than with inexact computation.

IV. EXPERIMENTAL RESULTS

This section presents the computing setup used to conduct
experiments to validate the proposed methodology, summa-
rized in Figure 7. We synthesized and tested the modified
RISCY with the reconfigurable multiplier and extracted rele-
vant hardware metrics of the core and the arithmetic operator
alone. Additionally, we compare our approach against state-
of-the-art techniques that apply layer-wise approximation.

A. Multiplier Characterization

A 9-bit reconfigurable multiplier is designed according to
the methodology in Section III-C to compute SIMD 8-bit
dot products supporting all possible combinations of signed
and unsigned operands in RISCY core. The multiplier is
synthesized with Synopsys Design Compiler (DC) using the
UMC 65 nm process technology library. The design is wrapped
by a group of input and output registers to ease the enforce-
ment of timing constraints. Similarly to [38], the target clock
period is set to 2ns, making the multiplier critical path delay
compatible with the one it shows on the synthesized core.
The compile_ultra command is issued to generate the
gate-level netlist. Post-synthesis simulation is performed on
100000 random input samples to back-annotate the switching
activity for accurate power estimation, as in [40]. Random
input samples are a common approach in literature to charac-
terize the power profile of approximate multipliers, [28], [37].
Table II shows the main hardware metrics and mean-relative
error distance (MRED) obtained for the maximum precision
configuration with different approximation levels.

1 19 =il

MRED =~ ; o (1)
The MRED, a commonly used metric to estimate the perfor-
mance of inexact arithmetic units [38], [39], [40], is defined in
Equation (1), where n is the number of possible combinations
of input values (i.e. n = 2'%, for a 9 x 9 multiplier), and y;
and y; are the i"" approximate and exact results, respectively.
Error metrics are evaluated through exhaustive simulation on
the entire inputs dynamic [38], [40]. Table II presents the same
estimations, obtained with the same constraints and testing
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TABLE I

METRICS OF THE 9 x 9 SIGNED RECONFIGURABLE MULTIPLIER AND
COMPARISON WITH AN EXACT 9 x 9 MULTIPLIER
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TABLE III

COMPARISON BETWEEN MARLIN 8 x 8 SIGNED MULTIPLIER AND
STATE-OF-THE-ART APPROXIMATE MULTIPLIERS

. Area Arrival Approx Total L Exact | Online Area Dynamic
Design [um?] (GE)! | time [ns] level power [pW] MRED Multiplier con | conf | recont | MRE [um?] (GE) PQW}ér (uW]
Exact 607.3 (422) 1.7 - 414.0 0 Ha [41] - X X[ 0.002 | 4612 (321 170

0 241.2 0 Strollo [40] - X X | 0053 | 496.8 (345) 131.6

MARLIN 822.6 (572) 1.8 127 183.0 0.07 1 X X 0.031 | 529.2 (368) 2223

255 164.4 0.18 Yang [42] 2 X X 0.041 | 516.2 (359) 206.6

TGE is the 2-input drive-strength-one NAND gate equivalent area. 3 X X 0.069 | 500 (348) 1909

KV6 | / X 0 | 541.1(376) 167.6

IKX5 | X X | 0089 | 378 (263) 1163

0.2 | 940 Mulds 2811 jpon | x x| 0274 | 2009 (140) 60.9

—e— MRED Power 1L12 X X 1.347 126 (88) 36.6

’,- 0 v v 0 | 6509 @52) 1883

_ de La Guia [37] | 127 v v | 0374 | 6509 452) 1303

0.15 4 ™ L 220 = 255 v v | 1.065 | 6509 (452) 109.5
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Fig. 8. MRED and dynamic power variation of the proposed multiplier with
the approximation level for the full-precision 9-bit inputs configuration. The
approximation level on the x-axis corresponds to the 1’s complement of the
approx_mask value.

conditions, for an exact 9 x 9 signed multiplier described
behaviorally in HDL and optimized by Synopsys DC, through
Synopsys DesignWare (DW) library. Our multiplier has an
area overhead of 28%, due to the additional logic for online
reconfigurability. This feature does not impact on the critical
path, as it remains under the 2ns constraint. Finally, our
multiplier, in the exact configuration, saves 41.4% of power
compared to the one by Synopsys DW, while the highest
approximate level saves up to 60.1%.

Although the dynamic power variation with the approxi-
mation setting does not follow a monotonic trend, as can be
observed in Figure 8, sub-optimal configurations are retained
as they come at no hardware cost in area, power and latency
once the 8-bit approx_mask signal is inserted in the multi-
plier logic. Every level has its error distribution, which can
be optimal for a specific NN layer. An optimal subset of
the 256 configurations might be selected offline depending
on the dataset and NN analysed. However, the proposed
methodology aims to be application-agnostic and versatile
to several use-cases, thus hardware and software provide
support for the most generic scenario. The jumps in power
and MRED in Figure 8 can be explained by looking at the
logic in Figure 3. The MRED shows higher steps when the
approximation moves towards columns on the left (e.g., from
configuration 63 to 64, or from 191 to 192). On the contrary,
more power is saved when more columns, as far to the left
as possible, are gated, reducing the switching activity of the
compressors in the Dadda Tree. This condition in Figure 8
corresponds to approx_mask values a = 27 — 1,j €
[0,1,2,3,4,5,6,7,8]. Consequently, when approx_mask
is set as above, that configuration will save more power than

Table III compares different state-of-the-art techniques to
design approximate multipliers. All multipliers are 8-bit signed
and have been synthesized with a clock period of 2ns and
characterized as for the 9 x 9 case. For a fair comparison,
our multiplier is rescaled on 8 bits. The design choice to
fix some bits of the partial product matrix at one rather
than zero when the corresponding columns are approximated
improves the MRED by up to 41.7% compared to [37]
truncation approach, with negligible area and power overhead.
Compared to [40], [41], and [42], all based on approximate
4-2 compressors, our multiplier has lower power consumption,
for corresponding MRED, while still covering a much wider
error dynamic. Furthermore, the approximate compressors
approach, even when runtime error tuning is implemented [38],
[39], cannot provide an exact configuration. This implies
the need to pair an exact multiplier with the approximate
one to manage operations, such as control flow ones, which
must produce the correct output, unacceptably increasing the
total area. This consideration still holds for Evoapproxlib
multipliers [28]. Although, according to Table III, [28] show
better area and power metrics compared to ours, the absence of
reconfigurability precludes their compatibility with MARLIN.
As in [15], the implementation of layer-wise approximation
with [28] requires to instantiate as many multipliers as the
number of approximation levels, which becomes inconceivable
above certain values due to control, area, and power overhead.
In conclusion, our multiplier offers several power-error trade-
offs, spanning the MRED dynamic of most of the 8 x 8 mul-
tipliers compared in Table III, standing as the cheapest and
most flexible solution to implement layer-wise approximation.
Our multiplier, unlike [28], [38], [40], [41], [42], also enables
runtime selection of the result bit-width to add versatility
and reduce power when full precision is not required. For
the 9-bit architecture, output precision from 18 bits down to
4 bits is supported through data-gating on the most significant
columns of the Dadda tree, with a maximum power saving of
around 62%. In Table IV, we evaluate the trade-off of runtime
precision setting with a ResNet-20 model executed with and
without data-gating, and with different bit-widths. The average
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TABLE IV
RESNET-20 MULTIPLIER POWER WITH AND WITHOUT DATA-GATING
Activations | Weights | Avg mult pow | Avg mult pow | Absolute | Relative
precision precision | full precision reconfigured accuracy | accuracy
8 8 239.15 W 237.93 uW 91.50% 100%
6 4 227.85 pW 170.09 pW 91.43% 99.92%
4 4 225.85 pW 125.35 pW 89.87% 98.22%
TABLE V

PERFORMANCE AND AREA COMPARISON FOR EXACT AND APPROXIMATE
RISCY AND THEIR RELATIVE MULTIPLIER UNITS

Exact RISCY [ Approx RI5CY
Exact mult 14842.8 (10k)
Area [um?] (GE) [ Approx mult - 4737.2 (3k)
Total 60621.1 (42k) 67006.8 (47k)
Timing [rs] Exact mult 4.45
Approx mult - | 4.41

full precision power is evaluated with the multiplier configured
to execute 9 x 9 bit multiplications, although input operands are
quantized to lower precision. The average reconfigured power
is evaluated when the masking signal p is set to match the
input operand precision.

B. Approximate RISC-V Core Characterization

The RISCY core featuring the approximate extension is
synthesized to extract area, delay, and power estimations using
Synopsys DC and the UMC 65 nm library. The clock period
is set to Sns. The timing constraints were relaxed with respect
to the ones for the multiplier alone to also accommodate in
the cycle time the four-operand 32-bit adder that follows it,
as can be observed in Figure 6. As a matter of fact, the
approximate multiplier instance in the core has a delay of
around 1.9 ns, which makes its implementation mapping and,
therefore, its energy contribution consistent with the analysis
previously performed with a 2.0ns clock period. The two
cores with exact and reconfigurable approximate operators
are both synthesized using the command: compile_ultra
-no_autoungroup - no_boundary_optimization
-timing —-gate_clock. Table V compares area and tim-
ing values obtained. The delay constraints are satisfied by
both designs, and from the fourth column of Table V it
can be observed that our multiplier does not interfere with
the microprocessor critical path which remains in the exact
multiplier unit. The area overhead caused by the approximate
unit alone is 7.8%, while the total overhead, considering the
additional control part and the approx CSR, is 10.5%. The
extra area cost is mainly due to the allocation of four recon-
figurable multipliers in order to manage 8-bit dot products.
We consider this overhead acceptable as this is the first proto-
type of this architecture; however, it could be significantly
decreased if our four multipliers replaced the exact ones,
which is possible since they also feature a non-approximate
mode.

The RTL model of the RISCY is replaced by the gate-level
netlist for all cores in the PULP cluster to enable post-synthesis
simulation and power estimation on a demonstrative use-case.
A simple NN model is designed with PyTorch and used as a
benchmark on MNIST dataset to verify the correct behavior of

TABLE VI
CUSTOM NN ARCHITECTURE DESCRIPTION
Layer name Output size Kernel size Output channels # Mult
convl 28x28 Tx7 3 115224
conv2 28x28 5x5 8 470400
max pool 14x14 3x3 8 0
conv3 14x14 3x3 10 141120
conv4 14x14 3x3 16 282240
max pool 7x7 3x3 16 0
convs X7 3x3 24 169344
max pool 3x3 3x3 24 0
linear 1x10 9x24 1 2160
TABLE VII

POWER CONSUMPTION AND ENERGY SAVING OF THE MULTIPLYING UNIT
WITH DIFFERENT LAYER-WISE CONFIGURATIONS FOR
THE TARGET NN

Test Average Relative Relative
Configuration Acc | RISCY mult RISCY mult NSGA-II
[%] | power [uW] | energy saving | energy saving

Exact 98.7 10.46 0% 0%
[0, 0, 0, 0, 0] 98.7 2.606 75% 42%
[59, 31, 15, 12, 3] 98.7 2.509 76% 46%
[59, 31, 15, 31, 31] 98.5 2474 76% 48%
[255, 63, 15, 31, 11] | 97.8 2412 77% 50%
[255, 126, 3, 63, 63] | 91.3 2.403 77% 53%

the entire framework and to collect power metrics. It comprises
five convolutional layers, each followed by a ReL.U activation
function, and a final linear layer. The entire structure is
depicted in Table VI. The model is trained for 30 epochs, with
a batch size of 32, an initial learning rate of 3 - 1073, with a
step factor of 0.3 every 5 epochs. Stochastic gradient descent
with momentum 0.9 is used with a weight decay of 1073, The
designed NN is run on the PULP platform for a single input
image. For this model, the overhead of the CSR instructions
execution can be quantified, according to Algorithm 2, in the
worst case, which is the first convolutional layer, as one CSR
set instruction every 403 instruction (0.25%). In the best case,
which is the last convolution, the extra cost is 0.026%. This
results in a negligible performance overhead due to the CSR
switching, and thus of reconfiguration, on the overall pro-
cessing. Through Siemens QuestaSim, the VCD dumps of the
entire core and the approximate and exact multiplying units are
collected. They are used as inputs for Synopsys Power Shell
to extract power metrics based on the actual switching activity.
Simulations are performed using the multipliers configurations
obtained from the NSGA-II run that achieve accuracy over
90% with no retraining. For every configuration, an example
for each of the ten possible categories is fed to the network,
meaning numbers from zero to nine for MNIST. The exact
post-synthesis RISCY core is simulated with the same inputs,
and the power of the accurate multiplier unit is collected; all
results are averaged. Table VII reports, for the configurations
listed in the first column, the NN test accuracy and, in the
third column, the power of the multiplier unit (the exact one
for the exact configuration in the first row, the approximate
one for all other cases) averaged over the ten simulations.
The fourth column contains the relative energy saving of the
multiplier unit measured post-synthesis, the last column shows
the relative energy saving estimated at the end of the NSGA-II
search, as described in Section III-B. The first row of Table VII
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contains the power estimation of the exact RISCY multiplier
unit, where all operators, including the multipliers computing
dot8 instructions, are described behaviorally, thus leaving the
architecture selection to Synopsys DW. Consequently, for a
meaningful comparison, the reference model for the NSGA-II
relative estimation is the average energy consumed by a
behavioral 9-bit multiplier synthesized by Synopsys DC, with
the same settings of the approximate multiplier. Although
the exact multiplier always executes housekeeping operations,
these are a negligible fraction of its overall workload when all
NN multiplications are mapped on it; thus, their contribution to
the average power is minimal. Therefore, since the number of
multiplications of the NN model is fixed, and so is the time
the multiplier stays active, the relative energy is considered
equivalent to the ratio between the average power of the
approximate unit in the modified RISCY and that of the exact
one in the unmodified core.

The fourth column of Table VII shows that the obtained
average energy saving on the multiplier unit is at least 75%
when comparing the exact core and the approximate one with
all multipliers configured as accurate (first and second row
in Table VII). The maximum saving is 77%, which is more
than 20% higher than the high-level estimation performed
in NSGA-II. However, the advantage of adopting different
approximate configurations is heavily reduced compared to
the initial evaluation. This can be observed by rescaling the
energy results in the fourth and fifth columns of Table VII
with respect to the exact configuration of our multiplier. The
highest estimated energy reduction, with respect to the model
using the exact configuration of our multiplier for all layers,
is 7.7%, with an accuracy loss of 7.4%, while the predicted
saving was 20.1%. The cause of the gain drop, obtained by
configuring the multiplier with a higher approximation, has to
be addressed to the chosen task for the network. When the
average power of the multiplier is estimated, 100000 random
values with uniform distribution are used as inputs to the
multiplier. However, the MNIST dataset is composed of black
numbers on a vast white background, which means that the
network inputs and, consequently, those of the multipliers are
not uniformly distributed. Both input images and intermediate
activations show a high concentration of zeros, contrary to
the initial assumption. The main consequence of most values
being zero is that data-gating, which is the primary source
of power saving when approximation is applied, becomes
ineffective as the operands are already zeros and have a low
switching probability themselves. A higher sensitivity of our
multiplier to zero input operands, compared to the DW one,
could also explain the increased relative energy saving in the
example with respect to the estimates used during the NSGA-II
search. Even acknowledging the difference in the statistics of
the operands, we run the optimization algorithm using the
estimated average energy computed with uniformly distributed
inputs, keeping it data-agnostic, as commonly done in state-
of-the-art optimization frameworks, where performance met-
rics are estimated independently from the statistics of the
dataset [3], [10], [11], [12]. The latter enables our search
algorithm to generalize to new data and thus demonstrate the
efficacy of our method, an approach that was also used in
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TABLE VIII
NEURAL NETWORKS USED IN THE EXPERIMENTS

Neural # Conv. FP32 INTS8 Design space
network layers # Mult accuracy | accuracy size
ResNet-8 7 122M 85.33% 85.43% 72-1015
ResNet-14 13 264M | 90.17% | 90.32% 20-1039
ResNet-20 19 40.6M | 91.77% | 91.50% 57-10%*
ResNet-32 31 68.9M | 92.65% 92.58% 45.1074
ResNet-50 49 111.3M | 92.88% | 92.60% 10-10117
Resnet-56 55 1255M | 93.14% | 93.11% 28-10131

[15], [16], [17], and [24] to estimate the energy reduction with
approximate multipliers.

C. Benchmark With CIFAR-10

We used 6 variations of the ResNet model architecture [43]
to experiment with shallow and deep NNs for image classifi-
cation, testing the effectiveness of MARLIN with CIFAR-10
[44], a more challenging dataset than MNIST. We based the
implementation of our ResNet models on the original paper
and used the same model architecture and hyper-parameters,
with 44k iterations instead of 64k, substituting the original
multi-step scheduling of the learning rate with a cyclical
scheduler [45], ranging between 10~! and 10~*. We opted for
a cyclical learning rate instead of a stationary one to achieve
faster convergence with fewer training iterations during the
genetic search. We carried out separate quantization-aware and
full precision training for the INT8 and FP32 models. All the
experiments with approximate multipliers use the INT8 quan-
tized models; the FP32 results are presented only to provide
a comparison with full precision. We used scale quantization
with the straight-through-estimator for the weights [13], while
the activations are quantized using PACT [46]. Table VIII
reports the NNs used in the experiments.

The INT8 accuracy results are evaluated using the approxi-
mation level O of the proposed multiplier, which provides exact
results, for all the layers of each network. The multiplications
reported in Table VIII are evaluated for the inference of one
32 x 32x3 input image from the CIFAR-10 dataset. The design
space size reported in the rightmost column is evaluated as
the number of unique approximate layer-wise configurations,
evaluated as AL, with A, being the number of approximation
levels of the reconfigurable multiplier, in our case 256, and L
the number of layers that can be approximated.

For ResNet-8, ResNet-14, and ResNet-20, we ran the
genetic search for 80 generations with a population of 70 indi-
viduals, whereas for ResNet-32, ResNet-50, and ResNet-56,
we increased the generations to 120. We set both the mutation
probability P, and the crossover probability P. to 0.8. During
the search phase, every approximate NN is retrained with
10% of the training set and the accuracy is evaluated with
the validation set (5000 unseen images from the training set).
We did not use the test set during the search phase as it
would have biased the results and negatively affected the
genetic algorithm. In this phase, the NN accuracy influences
the evolution of each individual’s configuration, i.e., the layer-
wise approximation; therefore, to obtain NN models that can
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Fig. 9. Top 1% accuracy and normalized energy variation with different ResNet configurations. The Pareto valid. blue marks represent the validation

accuracy evaluated during the genetic search, whereas the Pareto test orange marks represent the corresponding approximate configuration tested after the

final retraining.

generalize on new unseen data and prove the effectiveness of
our methodology, we removed any correlation with the final
test results. Finally, once the Pareto front has been computed,
the approximate NNs are retrained for one full epoch and
evaluated using the test set.

The accuracy and energy results of only the dominant
solution after the full retraining of the Pareto front are reported
in Figure 9, providing a visual representation of the energy-
accuracy trade-offs our methodology offers. For every NN
under test, the absolute accuracy difference between Pareto
valid. and Pareto test marks of each configuration is usually
smaller than 1.5%, with even smaller values for deeper models.
Therefore, the validation accuracy could represent a good
approximation of the final results, justifying the choice of
using it in the proposed search strategy. Figure 10 depicts
the utilization of approximation levels for each NN layer.
It is possible to notice the presence of peaks around lev-
els with an index equal to or smaller than 2/ — 1, €
[0,1,2,3,4,5,6,7,8], corresponding to the Pareto optimal
points of Figure 8. In Figure 10, it is shown how the majority
of approximation levels are used in the Pareto front, justifying
the choice to maintain power and MRED-dominated configu-
rations as the most efficient levels might not be optimal ones
to achieve a high task accuracy. Moreover, when concatenated
appropriately, some approximation levels, even the Pareto-
dominated ones, might mitigate the effect of computation
errors on the final results, a strategy used in [20] to reduce
the accuracy degradation. However, Figure 10 also highlights
that some approximation levels are never used in this use
case. Future development should add the possibility of pruning
the search space removing unused solutions or those with
the lowest utilization. In these experiments, to prove that our
methodology is effective with an ample search space, low-
and zero-usage solutions are deliberately kept to test the search
algorithm in a worst-case scenario with the highest complexity.

Table IX compares our approach with ALWANN [15] to
understand how MARLIN stands against the state-of-the-art.
To make a fair comparison, we compare approximate NNs
with weights updated after a single epoch retraining for MAR-
LIN and weight fine-tuning for ALWANN. Our method can

TABLE IX

COMPARISON WITH ALWANN [15] WITH 0.5% AND 1% RELATIVE
ACCURACY DEGRADATION

This work ALWANN

Neural Absolute | Relative Absolute | Relative
Energy Energy

network accuracy | accuracy accuracy | accuracy
ResNet-8 0.5% 85.21% 99.74% 77.62% 83.16% 99.88% 84.31%

ResNet-8 1% 84.59% 99.02% 69.80% Same solutions as ResNet-8 0.5%

ResNet-14 0.5% 89.98% 99.63% 73.32% 85.42% 99.85% 74.34%
ResNet-14 1% 89.50% 99.09% 71.64% 84.77% 99.09% 70.85%
ResNet-50 0.5% 92.14% 99.50% 80.67% 89.08% 99.92% 78.47 %
ResNet-50 1% 91.70% 99.03% 76.67% 88.58% 99.36% 70.02 %

achieve better results for shallower NNs such as ResNet-8 and
maintain the same relative gains for ResNet-14, whereas it was
not able to achieve higher energy efficiency than ALWANN for
ResNet-50. Comparing the absolute accuracy of the NN mod-
els, the approximate ResNet-14 within 1% relative accuracy
degradation outperforms all the ResNet-50 models presented
by ALWANN in top-1 accuracy and, by extension, in energy
efficiency, as ResNet-14 has 76.3% fewer multiplications than
ResNet-50. Our methodology is competitive, considering that
the multipliers used in ALWANN have better area and power-
MRED metrics, but are not reconfigurable [15], [28]. The
main advantage of a reconfigurable multiplier against several
arrays of fixed multipliers is that it is possible to improve
the energy efficiency of arithmetic operations with lower area.
This approach extended to a systolic array, would require a
single array with the same multiplier architecture, whereas
ALWANN requires N separate sub-arrays in order to support
N approximation levels.

Table X compares MARLIN with the results presented
in [17], without including absolute accuracy metrics, as they
are not reported. We consider approximate NNs with one-
epoch retraining for MARLIN, and approximate NNs with
weight fine-tuning with and without additional bias for [17].
Compared to the NNs with no additional bias, the approx-
imate NNs configurations found with MARLIN require up
to 13.1% less energy for ResNet-20, up to 13% less energy
for ResNet-32, and up to 15.1% for ResNet-56. When an
additional error correction bias is added to the convolutional
layer in [17], MARLIN can still achieve up to 9,8% less energy
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Fig. 10. Approximation levels utilization for all the configurations found for each ResNet model.

NORMALIZED ENERGY COMPARISON WITH [17] WITH 0.5%, 1%,

TABLE X

AND 2% ACCURACY DEGRADATION

TABLE XI
MARLIN’S AREA AND COMMUNICATION OVERHEAD APPLIED TO

OTHER HW ACCELERATORS

for ResNet-20, 8.6% for ResNet-32, and 7,3% for ResNet-56,
without increasing the number of parameters and operations.
Using more approximation levels proved to be an effective way
to further reduce the inference energy, as we had 256 configu-
rations against the 3 used in [17]. We justify these results with
the traditional weight-update strategy used in this work and the
presence of more approximate configurations. Retraining each
configuration is slower and more computationally expensive
than the multiplier-specific fine-tuning of [17], but allows a
better adjustment of the NN parameters to compensate the
computation errors, resulting in higher accuracy.

D. Compatibility With Other Accelerator Architectures

Two important modifications are necessary to port MARLIN
to other platforms: adapting the hardware architecture and the
mapper to include the multiplier and the configuration instruc-
tions. The former would require an additional 8-bit control
signal from the PE control unit to set the approximation level.
The elongated critical path delay due to the approximation
logic could be a problem for some accelerators, but it is not
for [8] and [9], which have a critical path compatible with the
proposed multiplier. For what concerns the mapper, recalling
the discussion of Section II-A, a modification similar to what
has been done in Section III-E can be implemented, inserting
custom instructions to configure the multiplier, with negligible
impact on the execution time. Since the scheduling does not
change, the number of computation cycles would also be
unaffected. Table XI reports the area and the energy overheads
of including and controlling the approximate multipliers in
three accelerators, mapping the 19 convolutional layers of the

Normalized energy Eyeriss [9] DianNao [7] Simba [8]
Neural o 7 7] # PEs 256 256 1024
network urs w/o bias with bias PE conf. comm. energy [pl] 2138 1997 2369
ResNel20 05% | 7591% | 86.1% 1% (relative) 0.001% 0.001% 0.002%
) k . . .
R 58 v (OB, |50 (00 |_Tits O [ 167 (07
ull. area ¢ X. |
ResNet-20 2% | 74.46% | 85.1% 82.5% (helative) (4+35%) (+35%) (+35%)
ResNet-32 0.5% | 77.21% | 85.1% 81.7%
ResNet-32 1% | 74.50% | 85.1% 81.7%
ResNet-32 2% | 74.39% | 85.5% 81.4%
ResNet-56 0.5% | 79.87% | 94.0% 83.0% . .
ReNer 36 1% T o7 8617 0% ResNet-20 with 1% accuracy degradation apd 74'1.46% energy
ResNet-56 2% | 77.04% | 86.1% 83.0% of Table X. We used the power model in Timeloop [10]

to evaluate the energy used to communicate to the PEs the
approximation level of each layer, assuming one off-chip
to on-chip memory transfer, and then #P Es transfers from
the on-chip memory to the PEs’ registers. The configuration
energy of the entire NN is always below 0.002% of the total
energy evaluated with Timeloop. The area overhead of 35%
against exact multipliers can be negligible, considering that
they account for less than 10% of the PE area in [8] and [9].

E. Discussion

The optimization approach of Section III-B allowed MAR-
LIN to outperform previous works that relied on parameter
fine-tuning [15], [17], leveraging partial retraining. MARLIN
was run on a 32-thread Ryzen 5950X CPU with 64GB
DDR4 RAM and an Nvidia Quadro RTX A5000. The GPU
was used only during the initial training of the FP32 and
exact INT8 NNs presented in Table VIII, while the CPU
was used to simulate the approximate convolutional layers
during the training, validation, and test done during the search,
as AdaPT only supports CPU computation [33]. The number
of threads used during the computation was set to 16 for every
experiment to compare how MARLIN execution time scales
with different NNs depths. Table XII reports the execution time
for the search phase and the training of the last Pareto front of
Figure 9. On average, partial retraining is ~6x faster than full
retraining. An alternative implementation that leverages the
GPU processing power, based on [47], is in development, with
the objective of reducing the search time with more complex
NN models, allowing for a broader search space analysis.
Compared to [15], the iteration time during the search phase
is reduced by 72.8% for ResNet-8, 92.3% for ResNet-14, and
85.4% for ResNet-50. This speed-up is due to the increased



GUELLA et al.: MARLIN: A CO-DESIGN METHODOLOGY FOR APPROXIMATE RECONFIGURABLE INFERENCE

TABLE XII
MARLIN’S AVERAGE EXECUTION TIME WITH 16 THREADS

Search phase Final trainin
Neural network One iter. 5 Total One iter. Tital
ResNet-8 6.8 sec. 10.6 hours 40.9 sec. 24.6 min.
ResNet-14 7.7 sec. 12 hours 79.4 sec. 35.7 min.
ResNet-20 19.6 sec. 30.5 hours 115.7 sec. | 90.6 min.
ResNet-32 30.3 sec. 70.7 hours 189.0 sec. | 81.9 min.
ResNet-50 47.1 sec. 109.9 hours | 296.2 sec. | 69.1 min.
ResNet-56 56.9 sec. | 132.8 hours | 329.2 sec. | 93.3 min.

utilization of CPU threads, as our training loop processes more
images during each iteration compared to [15].

A limitation in finding the optimal trade-off between energy
and accuracy is the dimension of the search space, which
determines the search time and requires a carefully tuned
search strategy. This problem is also found in mixed precision
layer-wise quantization, in which the search space is g2,
with g quantization levels for weights and activations, for L
layers [11], [12]. Future work should focus on pruning the
search space after a number of experiments (i.e., NSGA-II
generations) to reduce its size, possibly reducing the time to
converge. A further improvement over layer-wise approxima-
tion can be proposed by looking at past works on quantization.
In AutoQ [3] channel-wise quantization is used to reduce the
inference energy with less accuracy degradation than [11],
[12], proving that NN resilience to quantization errors has an
intra-layer dependency besides the inter-layer one. Therefore,
achieving an optimal energy-accuracy trade-off is possible by
extending approximate computing in the channel dimension.
In AutoQ [3], a bit-serial accelerator is required to support
channel-wise quantization, whereas with MARLIN the only
necessary modification, to enable it with the proposed RISC-V
core, would be to adapt the CSR instructions inserted by our
modified version of DORY. Nonetheless, the main challenge
would be the efficient exploration of a wider search space.

V. CONCLUSION

In this paper, we presented MARLIN, a layer-wise approxi-
mation methodology leveraging a single multiplier architecture
that can be configured runtime with 256 approximation levels
to achieve an optimal trade-off between the inference energy
and the task accuracy. In this work, a prototype based on a
modified RISCY core is proposed to test our methodology
on a low-power IoT platform. The PULP toolchain has been
adapted to automatically include the runtime approximation
level selection alongside the instructions executed while pro-
cessing convolutional layers. MARLIN can evaluate thousands
of different NNs, leveraging NSGA-II to find the optimal
configuration by generating a Pareto front that contains a set
of layer-wise approximate NNs with reduced inference energy,
without a significant accuracy loss.
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