
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023 5275

Novel Low-Power Floating-Point Divider
With Linear Approximation and
Minimum Mean Relative Error

Gennaro Di Meo , Antonio Giuseppe Maria Strollo , Senior Member, IEEE,
and Davide De Caro , Senior Member, IEEE

Abstract— Floating-point division involves the computation of
the ratio (1 + Mx)/(1 + My), where Mx and My represents
the mantissas of the input values. In this paper, we propose
a new method for approximating this operation using a linear
function of Mx, with coefficients that depend on My. The
coefficients are calculated to minimize the Mean Relative Error
Distance (MRED) of the approximation. To this end, the range
of My is partitioned in N sub-intervals where the minimization
of MRED is formulated as a linear programming problem,
whose solution gives optimal coefficient values. The hardware
implementation requires a small lookup table, two multipliers
and an adder. An aggressive coefficients quantization is exploited
to further optimize the design. Obtained MRED improves by
increasing N , ranging from 1.4% to 0.33%. Implementation
results in a 28nm CMOS technology show that the proposed
design outperforms the state-of-the-art, offering the best trade-
off between hardware complexity and accuracy. Results for
two image processing applications, change detection and JPEG
compression, demonstrate remarkable performance, with SSIM
very close to 1 and PSNR values exceeding 50dB.

Index Terms— Floating-point divider, approximate computing,
low-power technique, error minimization.

I. INTRODUCTION

ARITMETIC circuits play a key role in the design of
digital signal processing (DSP) algorithms, ubiquitous in

daily electronic applications. The arise of artificial intelligence
and big data processing, which demands for operations as
recognition, classification, or machine learning, calls for an
intensive usage of arithmetic operations [1]. Recent systems
based on Internet of Things (IoT) paradigm also need to
process, store, and transmit massive amount of data, making
the design of electronic devices with low-power features
challenging [2], [3].

Since adders, multipliers, and dividers are energy-
consuming circuits, the adoption of suitable design strategies
has become a priority in order to realize target tasks with
acceptable power consumption.

Manuscript received 19 May 2023; revised 25 July 2023;
accepted 30 August 2023. Date of publication 5 October 2023; date
of current version 18 December 2023. This article was recommended by
Associate Editor X. S. Zhang. (Corresponding author: Gennaro Di Meo.)

The authors are with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II, 80125 Naples, Italy
(e-mail: gennaro.dimeo@unina.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2023.3312974.

Digital Object Identifier 10.1109/TCSI.2023.3312974

In this scenario, Approximate Computing (AC) constitutes a
valuable solution allowing to reduce area and power at the cost
of accepting errors in the computation [4], [5]. In addition,
the limit of human senses and the error-tolerant nature of
many practical applications (as image and audio processing,
or adaptive filtering) make the AC approach very effective [6],
[7], [8].

Several works have been dedicated to the design of fixed-
point approximate adders and multipliers, proposing a plethora
of techniques able to optimize power and area. For instance,
the papers [9], [10], [11] show a decomposition method that
divides the adder in atomic fast sub-adders, each one working
on a portion of the input signals, while [12], [13], [14] exploit
an approximate carry-skip architecture able to reduce the
critical path delay. In [15] the speculation method is applied
to parallel-prefix adders, while [16], [17] present approximate
full-adders both at gate and transistor level.

In case of multipliers, reducing the complexity of the
partial product matrix (PPM) compression stage generally
leads to remarkable power benefits. Again, several techniques
have been proposed, ranging from approximate compression
[18], [19], [20], [21], [22] to truncation [23], [24] or
input segmentation [25], [26], [27], [28], [29], and suitable
correction techniques are also described for accuracy recovery
(see [20], [23], [26] for reference).

Unlike adders and multipliers, dividers have received less
attention in literature. However, in the design of several
commercial microprocessors and products [30], [31], [32],
hardware dividers are preferred to software realization of the
division.

The division between two fixed-point numbers gen-
erally exploits iterative algorithms based on subtrac-
tions/multiplications in order to compute the quotient starting
from an initial estimate [33], [34], [35], [36], [37], [38].
In this case, latency and power consumption are primary
concerns in the design. Algorithms as the Sweeney-Robertson-
Tocher (SRT) try to reduce the number of iterations involving
high-radix coding and redundant representations of the
quotient [38]. Further approaches achieve power improvements
approximating the subtractor [39], [40] or applying signal
segmentation [41]. The realization of non-iterative dividers
constitutes a further solution able to compute the quotient with
low energy and reduced latency. In this case, the logarithmic

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9652-8541
https://orcid.org/0000-0001-5737-1783
https://orcid.org/0000-0003-0204-0949

5276 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

number system (LNS) is a valuable means since it allows
to express the division as two-operand subtraction followed
by a shift [42]. In [43], the divisor y is recoded in order
to employ only a multiplication and a left-shift, while [44]
exploits a linear approximation for the term 1/y. LNS with
mean-error compensation is proposed in [45], whereas [46]
devises a rounding-based approach to simplify the divider.

Floating-point arithmetic, which represents numbers with
sign, exponent, and mantissa, offers both large dynamic range
and fine accuracy [47]. These properties make floating-point
divider design important for many practical DSP applications.

In a hardware divider, sign and exponent computation are
simple to implement, involving only a XOR and a subtraction.
On the other hand, the mantissa computation is much more
complex, requiring a fixed-point division: (1 + Mx)/(1 + My),
where Mx and My are the mantissas of dividend and divisor,
respectively. A two-step approximate technique is proposed
in [48] to perform the mantissa division by means of shift-
and-add operations. In this case, the amount of shift and
the number of additions, defined at design time, allow to
tune the tradeoff between precision and hardware complexity.
In [49] a piecewise constant approximation is exploited.
Like [48], different levels of accuracy can be achieved by
properly choosing the number of ranges in which the constant
approximation is applied. In [50] the mantissa division
is approximated by means of subtractions and a variable
correction term, stored in a LUT, is employed to recover
precision. In this case, the number of bits of the correction
term is a critical design parameter, since it impacts both the
accuracy and the LUT size. In [51] the division is revisited
as a two-variable function and best-fitting planes are used to
approximate the surface of the quotient.

In this paper, we propose a novel approximate floating-point
divider (named FPDME in the following), that is non-iterative
and has minimal error. In our approach we start by considering
the exact operation (1 + Mx)/(1 + My), and we express
the division as a linear function of the mantissa Mx, with
coefficients depending on My.

The choice of coefficients affects the accuracy of the divider.
In our approach, the coefficients are determined in order to
minimize the Mean Relative Error Distance (MRED) of the
approximation. To this end, the range of My is partitioned in
N sub-intervals and in each sub-interval the minimization of
MRED is formulated as a linear programming problem, whose
solution gives optimal coefficient values. While we considered
MRED minimization, it is worth noting that our proposed
approach can be easily modified to target error metrics, such
as mean absolute error, for example.

Mantissa truncation and coefficient quantization are also
exploited to further optimize the design.

From a hardware perspective, the proposed divider requires
only a lookup table (LUT), used to store the coefficients, and
two multipliers and an adder, fused in a unique carry-save
arithmetic structure. Suitable choice of N and of parameter
quantization allow to tune at design-time the tradeoff between
hardware complexity and accuracy.

The proposed FPDME allows to achieve MRED comparable
or better than previously proposed approximate floating-point

Fig. 1. Floating-point single-precision representation of the real number A.

dividers. Synthesis results in TSMC 28nm CMOS technology
also highlight an improvement of hardware performances
with respect to the state-of-the-art, measured in terms of
power-delay product (PDP) and area-delay product (ADP).
We present results for two image processing applications:
change detection and JPEG compression. Both applications
further remark the advantages of the proposed technique,
exhibiting competitive performances in terms of peak
signal-to-noise ratio (PSNR) and Mean Structural Similarity
Index (SSIM).

The paper is organized as follows. Section II introduces
the floating-point notation and main steps used to perform the
division. Section III describes our approach for approximating
the division, while the Section IV shows the hardware
implementation. Afterwards, the results are discussed in
Section V in terms of error metric and hardware assessment,
whereas Section VI presents the achieved performances in
change detection and JPEG compression applications. Finally,
Section VII concludes the paper.

II. FLOATING-POINT DIVISION

In floating-point notation, a real number A is represented
as follows:

A = (−1)S
· 2E−bias

· (1 + M) (1)

where S, E , and M are sign, exponent, and mantissa of A,
respectively, whereas bias is a constant term used to shift the
exponent. While one bit is used for the sign, the bit-width of
E and M and the value of bias change in accordance with
the desired precision. The Fig.1 shows the single precision
IEEE-754 format [47]. The representation of A requires
32 bits, with E and M that are unsigned numbers expressed
on 8 and 23 bits (highlighted in blue and green, respectively).
The exponent E lies in the range [0, 255], whereas the
mantissa M varies in the range [0, 1). In addition, bias is
set to 127 in order to shift the overall exponent of (1) in the
range [−127, 128].

In the following we assume that divider inputs are single-
precision floating-point numbers, but the proposed technique is
general and can be applied equally well to other floating-point
formats such as IEEE half-precision or BFloat16.

In order to show the floating-point division, let us consider
the two operands:

X = (−1)Sx
· 2Ex−bias

· (1 + Mx)

Y = (−1)Sy
· 2Ey−bias

· (1 + My) (2)

where Sx, Ex, and Mx are sign, exponent, and mantissa of the
dividend, X , while Sy, Ey, My are sign, exponent, and mantissa
of the divisor Y .

The division Z = X /Y has a similar representation:

Z = (−1)Sz
· 2Ez−bias

· (1 + Mz) (3)

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5277

where the mantissa Mz is normalized, assuming values
in [0, 1). It is also worth noting that the quantity (1 + Mz)
lies in the range [1, 2). The sign Sz of the division is simply
the XOR of the sign bit of the operands, whereas the modulus
of Z can be written as:

|Z | = 2Ez−bias
· (1 + Mz) = 2Ex−Ey

·
1 + Mx
1 + My

(4)

Let us consider the term (1 + Mx)/(1 + My). Its maximum
value is obtained for My very close to zero and Mx very close
to one, resulting (slightly) less than 2. The minimum value is
obtained in the opposite case and is (slightly) larger than 0.5.
Therefore, the following inequality holds:

0.5 <
1 + Mx
1 + My

< 2 (5)

In addition, it is worth noting that the factor (1 + Mx)/(1
+ My) is larger than 1 when the condition Mx > My is true.
Then, starting from (4) and (5), the following two cases are
considered for the computation of Ez and Mz: Ez − bias = Ex − Ey

(1 + Mz) =
1 + Mx
1 + My

i f Mx ≥ My (6)

 Ez − bias = Ex − Ey − 1

(1 + Mz) = 2
1 + Mx
1 + My

i f Mx < My (7)

Indeed, the quotient (1 + Mx)/(1 + My) is naturally in
the interval [1, 2) when Mx ≥ My (see (6)). Conversely,
(1 + Mx)/(1 + My) is in the range [0.5, 1) when Mx < My.
Therefore, in order to have (1 + Mz) in [1, 2), the
normalization process imposes to double (1 + Mx)/(1 + My)
and to subtract a ‘1’ from the exponent for compensation as
shown in (7).

Anyway, in both cases the mantissa computation requires
the division (1 + Mx)/(1 + My).

III. PROPOSED FLOATING-POINT DIVIDER

In this section we describe the technique used to
approximate the divider. Firstly, we express the division
(1 + Mx)/(1 + My) as a linear function of the mantissa
Mx, with coefficients that depend on My. Next, we obtain
the coefficient values that optimize the MRED by solving
a minimization problem formulated as a linear constrained
programming problem. In a subsequent step, we perform an
aggressive quantization of the coefficients to further optimize
the design. To that purpose, we reformulate the optimization
problem as an integer linear programming problem.

A. Division Approximated as a Linear Function of Mx

In order to show the proposed technique, let us first define
the exact ratio as f (Mx, My) = (1 + Mx)/(1 + My) and the
approximate one as φ(Mx, My). The relative error distance
(RED) between f (Mx, My) and φ(Mx, My) is

RE D =

∣∣∣∣ f (Mx, My) − φ(Mx, My)

f (Mx, My)

∣∣∣∣ (8)

while the MRED is the average value of RED.

Fig. 2. Partition of the mantissas’ plane in N stripes.

Let us also rewrite the division between mantissas as
follows:

f (Mx, My) =
1 + Mx
1 + My

=
1

1 + My
+

1
1 + My

· Mx (9)

As shown in (9), f (Mx, My) is linear with respect to
Mx with coefficients that depend on My. Starting from this
observation, we can write f (Mx, My) as follows:

φ(Mx, My) = g(My) + c(My) · Mx (10)

From (9)-(10) we should select g(My) = c(My) =

1/(1 + My)) to make the error equal to zero. However, c(My)
is to be multiplied by Mx to obtain the final result. Therefore,
from the hardware implementation perspective, it makes sense
to use two different approximations for g(My) and c(My),
using a rougher approximation for c(My).

With the above consideration in mind, we partition the range
of My in N subintervals, each one having a width of 1/N . This
corresponds to divide the mantissas’ plane Mx − My in N
horizontal stripes as shown in Fig.2. Note that we choose N
as a power of two, so that each stripe can be easily identified
by means of h = log2(N) most significant bits (MSBs) of My.

In the k-th stripe (k − 1)/N ≤ My < k/N we approximate
c(My) with a constant: c(My) = ck , while g(My) is
approximated with a linear function of My as follows:
g(My) = ak + bk My.

Using the above assumptions, the equation (10) in the k-th
stipe becomes:

φk(Mx, My) = ak + bk · My + ck · Mx (11)

This equation requires a total of 3 · N coefficients ak , bk
and ck to approximate the quotient and our goal becomes to
compute the coefficients which minimize the MRED.

B. Obtaining the Optimal Coefficients

To obtain the values of the coefficients ak , bk and ck ,
we discretize each stripe by considering nx × ny equally
spaced points (highlighted in red in Fig. 2), in which the
relative error distance is computed. Then, in a generic point

5278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

Fig. 3. 2D representation of RED in the mantissas’ plane with (a) N = 4, (b) N = 8, and (c) N = 16.

of coordinates (Mxi, Myj), the relative error distance REDi,j is
expressed as:

RE Di, j =

∣∣∣∣ f (Mxi , My j) − φk(Mx i , My j)

f (Mx i , My j)

∣∣∣∣
=

∣∣∣∣ f (Mxi , My j) − ak − bk · My j − ck · Mxi

f (Mx i , My j)

∣∣∣∣
(12)

with: i = 0, 1, . . . nx − 1 and: j = 0, 1, . . . ny − 1. Our
problem can be formulated as follows: find the coefficients
ak, bk, ck in each stripe in order to minimize the following
objective function:

nx−1∑
i=0

ny−1∑
j=0

RE Di, j min! (13)

It is worth noting that the summation in (13) corresponds
to the MRED in the k-th stripe, except for a scaling factor.
Therefore, minimizing (13) in each stripe allows to minimize
the overall MRED of the divider. We also underline that other
error metrics, not just MRED, could also be considered as a
cost function in (12), (13), as an example the mean absolute
error.

The optimization (13) can be further formulated as a linear
programming problem by introducing some auxiliary variables
uij such that:∣∣∣∣ f (Mxi , My j) − ak − bk · My j − ck · Mxi

f (Mx i , My j)

∣∣∣∣ ≤ ui j (14)

Then, posing fij = f (Mxi, Myj) for conciseness, (13) can
be rewritten as:

nx−1∑
i=0

ny−1∑
j=0

ui j min!

subject to:

−ak − bk · My j − ck · Mxi − ui j · fi j ≤ − fi j

ak + bk · My j + ck · Mxi − ui j · fi j ≤ fi j

f or i = 0, 1, . . . , nx − 1, j = 0, 1, . . . , ny − 1 (15)

where the constraints are derived from (14) after some
algebra. The problem (15) takes the form of a standard linear
programming problem of the form:

cT x min!

subject to: Ax ≤ b (16)

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5279

Fig. 4. MRED with respect to LSBc for L SBa = 2−7 and L SBb = 2−1, 2−3 in the cases (a) N = 4, (b) N = 8, (c) N = 16, (d) N = 32.

where the unknown vector x is composed by 3 + nx · ny
elements (that are ak, bk, ck and uij for i = 0, 1, . . .

nx − 1 and j = 0, 1, . . . ny − 1) and the number of constraints
is 2 · nx · ny.

Figure 3a, 3b and 3c show the contour plot of RED
for N = 4, 8 and 16, respectively, with the minimization
problem solved in MATLAB using the linprog command.
In the following, we assume nx = 100 and ny = 20. As shown,
increasing N allows to achieve low values of RED in large
regions of the mantissas’ plane, as demonstrated by the blue
sections that expand from N = 4 to N = 16. Accordingly, the
MRED also improves by increasing the N value.

In addition, Fig. 3 suggests also to properly choose N in
order to meet the desired accuracy constraints (dependent on
the adopted floating-point format as an example).

C. Quantization of Coefficients

In order to realize the mantissa division in hardware,
quantized values of the coefficients ak, bk, ck are required.
To that purpose, we rewrite ak, bk, ck as follows:

a′

k = aint,k · L SBa

b′

k = bint,k · L SBb

c′

k = cint,k · L SBc (17)

where LSBa, LSBb, LSBc are the weights of the less-significant
bits (LSB) of the coefficients (defined at design time), while
aint,k, bint,k, cint,k are integer variables, to be found.

It is worth noting that the choice of LSBa, LSBb, LSBc can
be properly tailored depending on the adopted floating-point
format in order to meet the target accuracy.

By substituting a′

k, b′

k, c′

k to ak, bk, ck in (15), we obtain a
mixed-integer linear programming problem that can be solved
in MATLAB with intlinprog command, giving the values of
quantized coefficients that minimize the MRED.

Figure 4 shows the behavior of MRED when coefficients
are quantized. In the figure, the MRED is function of LSBc
for N varying between 4 and 32, with LSBa fixed to 2−7

and LSBb equal to 2−1 or 2−3. We report also the error
obtained with real (non-quantized) coefficients (see the black
dashed line). In these simulations, the MRED is computed
by considering 106 divisions, performed with 106 couples of
uniform distributed numbers, expressed on 23 bits.

As shown in Fig. 4, the MRED exhibits a remarkable
dependence on LSBc in all the cases. Indeed, a decrease
in the values of LSBc, corresponding to finer resolutions
of coefficients c′

k , leads to an improvement in precision,
as expected.

On the other hand, a weaker dependence on LSBb is
observed, particularly for N ≥16, as shown in Fig. 4c and 4d.

5280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

Fig. 5. a) Block diagram of the proposed FPDME and b) carry-save arithmetic structure with N = 8, L SBa = 2−7, L SBb = 2−1, L SBc = 2−4, nt = 16.

TABLE I

COEFFICIENTS FOR N = 4, LSBA = 2−7 , LSBB = 2−1 , AND LSBC = 2−3

In this case, in fact, the MRED achieved for LSBb = 2−3 is
very close to the one achieved for LSBb = 2−1.

In addition, a proper choice of LSBa also leads to
satisfactory performances while being less critical for the
design. In this case, we found that LSBa = 2−7 is reasonable
to achieve acceptable MRED for fine values of LSBc.

The results in Fig. 4 indicate that selecting LSBc as 2−3

for N = 4 and in the range 2−4-2−7 for N ≥ 8 results in
acceptable error. Likewise, choosing LSBb = 2−1 is also a
reasonable option. Based on these observations, we focus our
attention on the following test cases, with the aim to get both
accurate results and moderate hardware complexity:

(i) N = 4, LSBa = 2−7, LSBb = 2−1, LSBc = 2−3

(ii) N = 8, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4

(iii) N = 16, LSBa = 2−7, LSBb = 2−1, LSBc = 2−4

(iv) N = 32, LSBa = 2−7, LSBb = 2−1, LSBc = 2−5.
Tables I-IV collect the obtained values for the coefficients

aint,k, bint,k, cint,k, in the four considered cases.

IV. PROPOSED FLOATING-POINT DIVIDER

The hardware implementation of the proposed FPDME
is depicted in Fig. 5a. The sign Sz is computed by XOR-
ing Sx and Sy, whereas a multi-operand adder computes the
exponent Ez. The approximate mantissa division is performed
in the ApprxDiv block. The h MSBs of My index lookup
table (LUT) that stores the quantized coefficients, while two
multipliers and an adder compute the quotient. Since bint,k
is always negative, we store in the LUT its absolute value

TABLE II

COEFFICIENTS FOR N = 8, LSBA = 2−7 , LSBB = 2−1 , AND LSBC = 2−4

TABLE III

COEFFICIENTS FOR N = 16, LSBA = 2−7 , LSBB = 2−1 , AND LSBC = 2−4

|bint,k| in order to minimize LUT size. In any case, as shown
by Tables I-IV, the LUTs are very small and do not require
custom ROM. They have been described in Verilog HDL

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5281

Fig. 6. a) PDP and b) ADP with respect to the MRED for minimum power and area implementations. c) PDP and d) ADP with respect to the MRED with
a 750ps constraint on the maximum delay. The black line represents the pareto front.

and synthesized targeting a standard-cell library as detailed
in Section V.

The approximate quotient φk is computed by multiplying
cint,k and bint,k with the mantissas and by adding aint,k to
the products. With the aim to reduce the complexity of
multipliers, nt LSBs of mantissas are truncated, obtaining
the signals Mxnt and Mynt. We underline that nt can be
carefully chosen in dependence on the used floating-point
format, and, accordingly, in dependence on the desired
precision.

Moreover, the multipliers and the adder are organized in
a fused carry-save arithmetic structure, named CSAS in the
figure, to further optimize hardware.

The Figure 5b shows details of the CSAS in the case N = 8,
L SBa = 2−7, L SBb = 2−1, L SBc = 2−4 and nt = 16.
Here, aint,k, |bint,k| and cint,k are expressed on 8, 2 and 4 bits,
respectively, whereas Mxnt, Mynt are on 23 − nt = 7 bits.
Then, the first 4 blue rows are due to Mxnt · cint,k, whereas
the other 2 orange rows are related to Mynt · |bint,k|. The term
aint,k is depicted in green. In addition, having Mxnt, Mynt a
LSB of weight 2−(23−nt)

= 2−7, the products Mxnt · cint,k,
Mynt · bint,k have LSBs of weight 2−11 and 2−8, respectively.
It is also worth noting that the CSAS computes only 12 bits
of the quotient instead of 24, thus allowing to reduce the
hardware complexity of the normalization process (detailed

in the following). In general, the number of bits computed by
CSAS is nφ = 24 − nt + |log2(LSBc)|.

Finally, the Normalization block in Fig. 5 rearranges φk in
the interval [1, 2) to extract the mantissa Mz. As stated in
Section II, the quotient varies in [0.5, 2), and, accordingly,
its MSB (indicated as φk[nφ−1] in the figure) has a weight
20. If φk[nφ−1] = 0, then φk is in the range [0.5, 1) and
the normalization process provides to add a zero at the least
significant position in order to double the quotient (see the
signal φ1 in the Normalization block). Moreover, ∼φk[nφ−1]
is subtracted to the exponent for compensation, with “∼”
representing the inversion operator.

Conversely, if φk[nφ − 1] = 1, then φk is already in [1, 2)
and no further operation is required. In this case, the fractional
part of φk corresponds to Mz (see the signal φ2 in the figure).
In the architecture of Fig. 5, a multiplexer selects between φ1
and φ2, and the result is expressed on 23 bits by adding zeros
at the least significant position.

V. ASSESSMENT OF PERFORMANCES

A. Error Metrics

Let us indicate the exact and the approximate quotients as
Q and Qapprx, respectively. We define the approximation error
E = Q − Qapprx, while the Relative Error Distance and the

5282 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

TABLE IV

COEFFICIENTS FOR N = 32, LSBA = 2−7 , LSBB = 2−1 , AND LSBC = 2−5

Mean Relative Error Distance are RED = |E /Q| and MRED =

avg(RED) as shown in Section II, where avg(·) is the average
operator. We also compute the Error Bias defined as EB =

avg(E /Q) [49], and the probability of having RED larger than
2% (referred as PRED in the following).

The error metrics are computed by performing 106

divisions, with 106 couples of random, uniformly distributed,
floating-point single-precision numbers.

In the following, we consider the cases (i), (ii), (iii), and
(iv) presented in Section III-C for realizing the mantissas
division, and name the corresponding floating-point dividers
FPDME4(7, 1, 3), FPDME8(7, 1, 4), FPDME16(7, 1, 4), and
FPDME32(7, 1, 5), respectively. We also vary the number of
discarded LSBs nt and report the case without truncation for
reference.

For the sake of comparison, the performances of dividers
[42], [44], [48], [49], and [50] are also shown. The divider
[42], named ALD in the following, subtracts mantissas in
the LNS representation, processing only the first q MSB
of Mx and My, with q = 8 in our trials. The work [49]

TABLE V
ERROR METRICS OF THE PROPOSED

DIVIDER AND THE STATE-OF-THE-ART

approximates 1/(1 + My) using 2d values, with d that is
2 or 3, and exploits a truncated multiplier with t preserved
columns. In the following, the divider [49] will be presented as
LPCAD(d, t), with t = 4, 8. The work [50], named CADE in
the following, divides the mantissas’ plane in 2P

× 2P square
regions and computes, for each section, an error compensation
term expressed on L bits. For our study, we consider
L = 8 and P = 3, 4. The design [44], referred as TruncApp,
exploits linear approximation for the term 1/(1 + My), and
employes only r bits for computing the quotient, with r = 4 in
our trials. Finally, the work [48] involves 2α possible shift-
and-add operations for realizing the division, with α defining
the approximation level. Moreover, each operation involves
β adders, whose addends are truncated on 5 bits. In the
following, we refer to [48] as FPAD LαAβ.

Table V collects the error metrics for both the proposed
divider and the state-of-the-art, with MRED and EB reported
in percentage values. As expected, the performance of the
architecture proposed in this paper depends on the number
of partitions N , with the MRED improving from 1.5% (for
N = 4) to 0.33% (for N = 32). PRED also exhibits a marked
dependance, passing from 2.4 × 10−1 to 3.2 × 10−4, whereas
EB results almost constant. In addition, also nt has an effect on
the accuracy of the divider, with best approximation achieved
when the number of truncated LSBs is low.

As for the other implementations, only LPCAD(2, 8),
LPCAD(3, 8), and CADE are able to offer error metrics
comparable with the proposed FPDME, with CADE P = 4,

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5283

TABLE VI
HARDWARE PERFORMANCES OF THE PROPOSED DIVIDER AND THE STATE-OF-THE-ART SYNTHESIS WITH MINIMUM AREA AND POWER

L = 8 that achieves MRED of 0.65%. The other dividers
exhibit poorer accuracy, with MRED in the order of 2% or
larger. In this case, ALD and TruncApp show worst results,
with MRED around 4% and PRED of about 7 × 10−1.

B. Hardware Performances

We have described the proposed dividers and the state-of-
the-art dividers in Verilog HDL and synthesized the circuits
in TSMC 28nm CMOS technology using a physical flow in
Cadence Genus.

For the proposed FPDME architecture, we have imple-
mented FPDME4(7, 1, 3) with either nt = 15, and nt = 17,
while FPDME8(7, 1, 4), FPDME16(7, 1, 4), and FPDME32(7,
1, 5) have been implemented with nt = 16. As mentioned, the
LUTs are described by means of procedural blocks and are
implemented during the synthesis process with the standard
cells of the library.

In a first experiment, we have imposed a very loose
constraint on the maximum delay of the circuits (10ns),
so that the synthesizer is able to implement minimum area
and minimum power versions of the dividers. In this case we
also synthesized the exact floating-point divider, chosen from
the ChipAware library of the synthesizer.

In a second experiment, we have imposed a tighter
constraint on the maximum delay (750ps), to investigate the
performance when a higher operating frequency is required.
In this second experiment, we have opted to exclude the
exact divider due to the complexity of the circuit, making it
impractical to meet the timing constraint.

In both experiments the power consumption is obtained by
simulating the synthesized netlists with 105 random inputs,
with path delays annotated in standard delay format (SDF)
file and switching activity annotated in toggle count format
(TCF) file.

Table VI collects the results for the first experiment. The
last two columns report the power-delay product (PDP) and
the area-delay product (ADP).

All the investigated architectures drastically reduce the PDP
with respect to the exact divider. Best results are shown by
ALD and TruncApp, with PDP in the order of 3fJ. These
architectures, however, are also the one with the largest error.
The proposed architecture shows good tradeoff between error
and PDP. For instance, FPDME4(7, 1, 3) nt = 17 exhibits a
lower PDP compared to all versions of LPCAD, CADE, and
FPAD, and it also has lower error (with the sole exception
of CADE P = 4 L = 8, LPCAD(2, 8) and LPCAD(3, 8)).
A similar behavior is also shown for the ADP.

Likewise, Table VII collects results for the second
experiment. As shown, our dividers offer PDP and ADP
comparable to LPCAD, CADE P = 3, L = 8, and FPAD, with
best results achieved by FPDME4(7, 1, 3) nt = 17. ALD and
TruncApp show best hardware complexity, whereas CADE
P = 4, L = 8 exhibits worse PDP and ADP.

In order to have a joint assessment of electrical and
accuracy performances, Fig. 6 depicts the PDP and the
ADP with respect to the MRED for both experiments.
Here, implementations closer to the bottom-left corner exhibit
low PDP/ADP with high accuracy, thus defining the Pareto
front.

As shown in Fig. 6a, the proposed dividers offer the best
trade-off between PDP and MRED and are all on the Pareto
front (highlighted by the black dashed line). Only LPCAD(3,
8) is close to the optimal curve, whereas other implementations
show worse behaviors, with the only exception of ALD and
TruncApp showing, however, a large MRED. The proposed
FPDME are on the pareto front also in Fig. 6b, determining
the best trade-off between ADP and MRED. Again LPCAD(3,
8) results competitive as well as ALD and TruncApp for low
accuracy. A similar trend is shown also in Fig. 6c and 6b for

5284 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

TABLE VII
HARDWARE PERFORMANCES OF THE PROPOSED DIVIDER AND THE STATE-OF-THE-ART SYNTHESIS

WITH A 750ps CONSTRAINT ON THE MAXIMUM DELAY

TABLE VIII
PERFORMANCES OF THE PROPOSED DIVIDER AND THE STATE-OF-THE-ART IN CHANGE DETECTION APPLICATION

the faster implementations, where the proposed dividers define
or are very close to the pareto front.

VI. APPLICATIONS

A. Change Detection

Change detection is often employed in computer vision to
highlight motion in subsequent frames. The division between
pixels is suitable to detect differences between images. Indeed,
if objects do not move, their pixels are practically constant
among the frames and, accordingly, their division is very close

to 1. Conversely, division is far from 1 in case of a change,
thus highlighting a motion.

In this paragraph, we analyze the performances of the
proposed divider and the state-of-the-art when changes are
detected in the frames Walter Cronkite, Chemical Plant (far
and close view), and Toy Vehicle, from the database [52].
For our assessments, we report the peak signal-to-noise ratio
(PSNR), expressed in dB, and the mean structural similarity
index (SSIM), commonly used to qualify algorithms in image
and video processing. In addition, we also report for each
investigated divider the average PSNR and the average SSIM
among the four experiments.

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5285

TABLE IX
PERFORMANCES OF THE PROPOSED DIVIDER AND THE STATE-OF-THE-ART IN JPEG COMPRESSION

Fig. 7. Change detection for Walter Cronkite image with proposed dividers and the state-of-the-art.

As shown in Table VIII, our proposal is competitive with
the state-of-the-art and offers remarkable results, with SSIM
very close to 1 in all the cases, and average PSNR in the
range 46.5dB/53.6dB for N ≥ 8. In addition, FPDME32(7, 1,
5) overcomes 50dB in all the trials and achieves the highest
PSNR (58.7dB) with Toy Vehicle. The implementations ALD,
TruncApp and FPAD show poorer performances, with an
average PSNR lower than 40dB and an average SSIM of
0.938 in the case of TruncApp. Accuracy of LPCAD depends
on the approximation parameters, with PSNR varying between
35dB and 48dB, whereas CADE performs better, showing
PSNR slightly less than 50dB. Figure 7 represents the

image obtained by dividing the frames of Walter Cronkite.
As shown, results obtained with LPCAD(2, 4), LPCAD(3, 4),
and TruncApp exhibit a visible degradation in the background,
whereas the proposed dividers allow to get images practically
unchanged with respect to the exact case.

B. JPEG Compression

As further example, we assess the accuracy of approximate
dividers in JPEG image compression. The JPEG compression
exploits cosine transformation and variable quantization to
approximate images. The compression algorithm roughly

5286 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

Fig. 8. JPEG compressions in the case of Peppers image with the exact and the proposed dividers, Q = 100.

quantizes the high frequencies of an image, whereas employes
a finer quantization step to approximate the low frequencies.
In this way, the compression algorithm reduces the size of
images in memory at the cost of a worse representation
of the high frequencies, which are less evident to human
eye. In addition, an approximation factor Q, laying in the
range [0, 100], allows to define the overall amount of
compression by modifying the quantization steps, with Q = 0
and Q = 100 indicating worst and finest quantization,
respectively. In our case, we employ the approximate dividers
in the quantization phase since a division between the pixels
and the variable quantization steps is required. Three test
images, Lena, Cameraman, and Peppers, are considered for
our simulations, compressed with factors Q = 40, Q = 70 and
Q = 100. For each Q and for each image, we compute the
PSNR and SSIM comparing the approximate and the exact
results. Then, we average the PSNR and SSIM computed
for each Q, reporting the respective values in Table IX.
In addition, the overall average PSNR and SSIM are also
shown in the last two columns of the table.

As observable, the proposed dividers are competitive with
the state-of-the-art, exhibiting both high values of PSNR and
SSIM. Best results are achieved in the case Q = 100,
with PSNR larger than 55dB for N = 16, 32. In addition,
FPDME32(7, 1, 5) is the only one able to achieve an average
PSNR of 50dB. Figure 8 confirms these observations since the
images compressed with the proposed and the exact dividers
are practically undistinguishable.

Among the other implementations, only LPCAD(3, 8)
and CADE P = 4, L = 8 offer results comparable to
FPDME16(7, 1, 4) and FPDME32(7, 1, 5), with PSNR around
48dB/49dB and SSIM very close to 1. FPAD L4A2 achieves
44.7dB PSNR, whereas ALD exhibits worst performances,
with average PSNR of 36dB and average SSIM of 0.964.

VII. CONCLUSION

In this paper, we have proposed a novel non-iterative
approximate floating-point divider based on linear
approximation.

In our divider, we have approximated the quotient (1 + Mx)/
(1 + My) as a linear function of Mx with coefficients

dependent on My. The coefficients have been calculated
to minimize the Mean Relative Error Distance (MRED)
of the approximation. To this end, the range of My has
been partitioned in N sub-intervals and in each sub-
interval the minimization of MRED has been formulated
as a linear programming problem, whose solution gives
optimal coefficient values. Mantissa truncation and coefficient
quantization have also been exploited to further optimize the
design.

The hardware structure of the whole floating-point divider
has been described in detail, and the performance of the
proposed architecture has been compared with previously pro-
posed approximate dividers. Our analysis shows that the
proposed architecture overcomes the state of the art, offering
the best trade-off between PDP/ADP and accuracy for a
wide range of mean relative error distance values. We have
also presented results for two image processing applications
that both remark the advantages of the proposed technique,
exhibiting competitive performances in terms of peak signal-
to-noise ratio (PSNR) and Mean Structural Similarity Index
(SSIM).

REFERENCES

[1] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proc. IEEE, vol. 108, no. 12, pp. 2108–2135, Dec. 2020, doi:
10.1109/JPROC.2020.3006451.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi:
10.1016/j.future.2013.01.010.

[3] F. Spagnolo, S. Perri, and P. Corsonello, “Approximate down-sampling
strategy for power-constrained intelligent systems,” IEEE Access,
vol. 10, pp. 7073–7081, 2022, doi: 10.1109/ACCESS.2022.3142292.

[4] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur.
Test Symp. (ETS), Avignon, France, May 2013, pp. 1–6, doi:
10.1109/ETS.2013.6569370.

[5] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Analysis and characterization of inherent application resilience for
approximate computing,” in Proc. 50th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Austin, TX, USA, May 2013, pp. 1–9, doi:
10.1145/2463209.2488873.

[6] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: A systematic survey,” IEEE Trans. Image Process.,
vol. 14, no. 3, pp. 294–307, Mar. 2005, doi: 10.1109/TIP.2004.838698.

http://dx.doi.org/10.1109/JPROC.2020.3006451
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/ACCESS.2022.3142292
http://dx.doi.org/10.1109/ETS.2013.6569370
http://dx.doi.org/10.1145/2463209.2488873
http://dx.doi.org/10.1109/TIP.2004.838698

DI MEO et al.: NOVEL LOW-POWER FLOATING-POINT DIVIDER 5287

[7] D. Esposito, G. Di Meo, D. De Caro, A. G. M. Strollo, and E. Napoli,
“Quality-scalable approximate LMS filter,” in Proc. 25th IEEE Int.
Conf. Electron., Circuits Syst. (ICECS), Bordeaux, France, Dec. 2018,
pp. 849–852, doi: 10.1109/ICECS.2018.8617858.

[8] G. Di Meo, D. De Caro, G. Saggese, E. Napoli, N. Petra, and
A. G. M. Strollo, “A novel module-sign low-power implementation for
the DLMS adaptive filter with low steady-state error,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 69, no. 1, pp. 297–308, Jan. 2022,
doi: 10.1109/TCSI.2021.3088913.

[9] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy, “Design of
voltage-scalable meta-functions for approximate computing,” in Proc.
Design, Automat. Test Europe, Grenoble, France, 2011, pp. 1–6, doi:
10.1109/DATE.2011.5763154.

[10] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in Proc. Design Autom. Conf., San Francisco, CA,
USA, Jun. 2012, pp. 820–825, doi: 10.1145/2228360.2228509.

[11] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic
accuracy configurable adder,” in Proc. 52nd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), San Francisco, CA, USA, Jun. 2015, pp. 1–6, doi:
10.1145/2744769.2744778.

[12] K. Du, P. Varman, and K. Mohanram, “High performance reliable
variable latency carry select addition,” in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Dresden, Germany, Mar. 2012, pp. 1257–1262,
doi: 10.1109/DATE.2012.6176685.

[13] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder
with carry skip for error resilient neuromorphic VLSI systems,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, Nov. 2013, pp. 130–137, doi: 10.1109/ICCAD.2013.6691108.

[14] L. Li and H. Zhou, “On error modeling and analysis of approximate
adders,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), San Jose, CA, USA, Nov. 2014, pp. 511–518, doi:
10.1109/ICCAD.2014.7001399.

[15] D. Esposito, D. De Caro, and A. G. M. Strollo, “Variable latency
speculative parallel prefix adders for unsigned and signed operands,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 8, pp. 1200–1209,
Aug. 2016, doi: 10.1109/TCSI.2016.2564699.

[16] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas,
“Bio-inspired imprecise computational blocks for efficient VLSI
implementation of soft-computing applications,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 57, no. 4, pp. 850–862, Apr. 2010, doi:
10.1109/TCSI.2009.2027626.

[17] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
XOR/XNOR-based adders for inexact computing,” in Proc. 13th IEEE
Int. Conf. Nanotechnol., Beijing, China, Aug. 2013, pp. 690–693, doi:
10.1109/NANO.2013.6720793.

[18] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, and G. D. Meo,
“Comparison and extension of approximate 4–2 compressors for
low-power approximate multipliers,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 67, no. 9, pp. 3021–3034, Sep. 2020, doi:
10.1109/TCSI.2020.2988353.

[19] Z. Yang, J. Han, and F. Lombardi, “Approximate compressors for
error-resilient multiplier design,” in Proc. IEEE Int. Symp. Defect
Fault Tolerance VLSI Nanotechnol. Syst. (DFTS), Amherst, MA, USA,
Oct. 2015, pp. 183–186, doi: 10.1109/DFT.2015.7315159.

[20] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and
error recovery modules,” IEEE Embedded Syst. Lett., vol. 10, no. 1,
pp. 6–9, Mar. 2018, doi: 10.1109/LES.2017.2746084.

[21] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Dual-
quality 4:2 compressors for utilizing in dynamic accuracy configurable
multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 4, pp. 1352–1361, Apr. 2017, doi: 10.1109/TVLSI.2016.
2643003.

[22] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, “A majority-
based imprecise multiplier for ultra-efficient approximate image
multiplication,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66,
no. 11, pp. 4200–4208, Nov. 2019, doi: 10.1109/TCSI.2019.
2918241.

[23] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. G. M. Strollo,
“Truncated binary multipliers with variable correction and minimum
mean square error,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,
no. 6, pp. 1312–1325, Jun. 2010, doi: 10.1109/TCSI.2009.2033536.

[24] J. M. Jou, S. R. Kuang, and R. Der Chen, “Design of low-error fixed-
width multipliers for DSP applications,” IEEE Trans. Circuits Syst. II,
Analog Digit. Signal Process., vol. 46, no. 6, pp. 836–842, Jun. 1999,
doi: 10.1109/82.769795.

[25] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and
N. S. Kim, “Energy-efficient approximate multiplication for digital
signal processing and classification applications,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184,
Jun. 2015, doi: 10.1109/TVLSI.2014.2333366.

[26] A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G. Saggese, and G. Di
Meo, “Approximate multipliers using static segmentation: Error analysis
and improvements,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69,
no. 6, pp. 2449–2462, Jun. 2022, doi: 10.1109/TCSI.2022.3152921.

[27] G. Di Meo, G. Saggese, A. G. M. Strollo, and D. De Caro, “Design
of generalized enhanced static segment multiplier with minimum mean
square error for uniform and nonuniform input distributions,” Electron-
ics, vol. 12, p. 446, Jan. 2023, doi: 10.3390/electronics12020446.

[28] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic
range unbiased multiplier for approximate applications,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX,
USA, Nov. 2015, pp. 418–425, doi: 10.1109/ICCAD.2015.7372600.

[29] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM:
An energy-efficient truncation- and rounding-based scalable approximate
multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 5, pp. 1161–1173, May 2019, doi: 10.1109/TVLSI.2018.2890712.

[30] N. Burgess and C. N. Hinds, “Design of the ARM VFP11 divide and
square root synthesisable macrocell,” in Proc. 18th IEEE Symp. Comput.
Arithmetic (ARITH), Jun. 2007, pp. 87–96.

[31] G. Gerwig, H. Wetter, E. M. Schwarz, and J. Haess, “High performance
floating-point unit with 116 bit wide divider,” in Proc. 16th IEEE Symp.
Comput. Arithmetic, Mar. 2003, pp. 87–94.

[32] S. F. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7T M microprocessor,” in Proc. 14th IEEE
Symp. Comput. Arithmetic, Apr. 1999, pp. 106–115.

[33] D. W. Sweeney, “Divider device for skipping a string of zeros or radix-
minus-one digits,” U.S. Patent 3 145 296, Aug. 18, 1964.

[34] J. E. Robertson, “A new class of digital division methods,” IRE Trans.
Electron. Comput., vol. EC-7, no. 3, pp. 218–222, Sep. 1958, doi:
10.1109/TEC.1958.5222579.

[35] K. D. Tocher, “Techniques of multiplication and division for automatic
binary computers,” Quart. J. Mech. Appl. Math., vol. 11, no. 3,
pp. 364–384, 1958, doi: 10.1093/qjmam/11.3.364.

[36] M. J. Flynn, “On division by functional iteration,” IEEE Trans.
Comput., vol. C-19, no. 8, pp. 702–706, Aug. 1970, doi: 10.1109/T-
C.1970.223019.

[37] R. E. Goldschmidt, “Applications of division by convergence,”
Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA,
1964.

[38] J. Ebergen and N. Jamadagni, “Radix-2 division algorithms with
an over-redundant digit set,” IEEE Trans. Comput., vol. 64, no. 9,
pp. 2652–2663, Sep. 2015, doi: 10.1109/TC.2014.2366738.

[39] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing,” in Proc.
25th Great Lakes Symp. VLSI, May 2015, pp. 51–56.

[40] L. Chen, J. Han, W. Liu, and F. Lombardi, “On the design of
approximate restoring dividers for error-tolerant applications,” IEEE
Trans. Comput., vol. 65, no. 8, pp. 2522–2533, Aug. 2016, doi:
10.1109/TC.2015.2494005.

[41] S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in Proc. 53rd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Austin, TX, USA, Jun. 2016, pp. 1–6, doi:
10.1145/2897937.2897965.

[42] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Trans. Electron. Comput., vol. EC-11, no. 4,
pp. 512–517, Aug. 1962, doi: 10.1109/TEC.1962.5219391.

[43] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and
M. Pedram, “SEERAD: A high speed yet energy-efficient rounding-
based approximate divider,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Dresden, Germany, Mar. 2016, pp. 1481–1484.

[44] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z.
Navabi, “TruncApp: A truncation-based approximate divider for energy
efficient DSP applications,” in Proc. Design, Autom. Test Eur.
Conf. Exhib., Lausanne, Switzerland, Mar. 2017, pp. 1635–1638, doi:
10.23919/DATE.2017.7927254.

[45] H. Saadat, H. Javaid, and S. Parameswaran, “Approximate integer
and floating-point dividers with near-zero error bias,” in Proc. 56th
ACM/IEEE Design Autom. Conf. (DAC), Las Vegas, NV, USA,
Jun. 2019, pp. 1–6.

http://dx.doi.org/10.1109/ICECS.2018.8617858
http://dx.doi.org/10.1109/TCSI.2021.3088913
http://dx.doi.org/10.1109/DATE.2011.5763154
http://dx.doi.org/10.1145/2228360.2228509
http://dx.doi.org/10.1145/2744769.2744778
http://dx.doi.org/10.1109/DATE.2012.6176685
http://dx.doi.org/10.1109/ICCAD.2013.6691108
http://dx.doi.org/10.1109/ICCAD.2014.7001399
http://dx.doi.org/10.1109/TCSI.2016.2564699
http://dx.doi.org/10.1109/TCSI.2009.2027626
http://dx.doi.org/10.1109/NANO.2013.6720793
http://dx.doi.org/10.1109/TCSI.2020.2988353
http://dx.doi.org/10.1109/DFT.2015.7315159
http://dx.doi.org/10.1109/LES.2017.2746084
http://dx.doi.org/10.1109/TVLSI.2016.2643003
http://dx.doi.org/10.1109/TVLSI.2016.2643003
http://dx.doi.org/10.1109/TCSI.2019.2918241
http://dx.doi.org/10.1109/TCSI.2019.2918241
http://dx.doi.org/10.1109/TCSI.2009.2033536
http://dx.doi.org/10.1109/82.769795
http://dx.doi.org/10.1109/TVLSI.2014.2333366
http://dx.doi.org/10.1109/TCSI.2022.3152921
http://dx.doi.org/10.3390/electronics12020446
http://dx.doi.org/10.1109/ICCAD.2015.7372600
http://dx.doi.org/10.1109/TVLSI.2018.2890712
http://dx.doi.org/10.1109/TEC.1958.5222579
http://dx.doi.org/10.1093/qjmam/11.3.364
http://dx.doi.org/10.1109/T-C.1970.223019
http://dx.doi.org/10.1109/T-C.1970.223019
http://dx.doi.org/10.1109/TC.2014.2366738
http://dx.doi.org/10.1109/TC.2015.2494005
http://dx.doi.org/10.1145/2897937.2897965
http://dx.doi.org/10.1109/TEC.1962.5219391
http://dx.doi.org/10.23919/DATE.2017.7927254

5288 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 12, DECEMBER 2023

[46] M. Vaeztourshizi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “An
energy-efficient, yet highly-accurate, approximate non-iterative divider,”
in Proc. Int. Symp. Low Power Electron. Design, New York, NY, USA,
Jul. 2018, pp. 1–6, doi: 10.1145/3218603.3218650.

[47] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2019,
Jul. 2019, doi: 10.1109/IEEESTD.2019.8766229.

[48] C. K. Jha, K. Prasad, V. K. Srivastava, and J. Mekie, “FPAD: A multi-
stage approximation methodology for designing floating point approxi-
mate dividers,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Seville,
Spain, Oct. 2020, pp. 1–5, doi: 10.1109/ISCAS45731.2020.9180768.

[49] Y. Wu et al., “An energy-efficient approximate divider based on
logarithmic conversion and piecewise constant approximation,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 7, pp. 2655–2668,
Jul. 2022, doi: 10.1109/TCSI.2022.3167894.

[50] M. Imani, R. Garcia, A. Huang, and T. Rosing, “CADE: Configurable
approximate divider for energy efficiency,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019, pp. 586–589, doi:
10.23919/DATE.2019.8715112.

[51] L. Wu and C. C. Jong, “A curve fitting approach for non-iterative divider
design with accuracy and performance trade-off,” in Proc. IEEE 13th
Int. New Circuits Syst. Conf. (NEWCAS), Grenoble, France, Jun. 2015,
pp. 1–4, doi: 10.1109/NEWCAS.2015.7182097.

[52] The USC-SIPI Image Database. [Online]. Available: https://sipi.usc.
edu/database/

Gennaro Di Meo received the M.S. degree (cum
laude) in electrical engineering and the Ph.D. degree
in information technology and electrical engineering
from the University of Naples Federico II, Italy,
in 2018 and 2022, respectively. He is currently a
Post-Doctoral Researcher with the Department of
Information Technology and Electrical Engineering,
University of Naples Federico II. His research
interests include design of digital VLSI circuits for
telecommunications, LSM filters, and approximate
computing.

Antonio Giuseppe Maria Strollo (Senior Member,
IEEE) received the M.S. (cum laude) and Ph.D.
degrees in electronic engineering from the Uni-
versity of Napoli Federico II, Italy. Since 2002,
he has been a Full Professor with the University of
Napoli Federico II, where he was the Head of the
Department of Electronic and Telecommunication
Engineering from 2005 to 2008. He has published
more than 150 papers on international journals and
conferences. His current research interests include
arithmetic circuits, approximate computing, and low-

power digital signal processing circuits. He has been a Technical Program
Committee Member of international conferences, including PRIME, ICECS,
and ESSCIRC/ESSDERC. He and his coauthors were a recipient of the
2021 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR
PAPERS Guillemin-Cauer Best Paper Award. From 2009 to 2012, he served
as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS—I: REGULAR PAPERS. He is currently an Associate Editor of
Integration, the VLSI Journal.

Davide De Caro (Senior Member, IEEE) received
the M.S. degree (Hons.) in electronic engineering
and the Ph.D. degree in electronic engineering and
computer science from the University of Naples
Federico II, Italy, in July 1999 and February
2003, respectively. He has worked in the area of
digital integrated VLSI circuit design for the last
14 years. He is currently an Associate Professor
with the Department of Electrical Engineering
and Information Technology, University of Naples
Federico II. He is the author of more than

80 technical papers in international journals and refereed international
conferences.

Open Access funding provided by ‘Università degli Studi di Napoli "Federico II"’ within the CRUI CARE Agreement

http://dx.doi.org/10.1145/3218603.3218650
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/ISCAS45731.2020.9180768
http://dx.doi.org/10.1109/TCSI.2022.3167894
http://dx.doi.org/10.23919/DATE.2019.8715112
http://dx.doi.org/10.1109/NEWCAS.2015.7182097

