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Abstract— In this paper, analysis of linear time-variant systems
is applied to incremental Delta-Sigma (I-DS) ADCs with periodic
architectural reconfiguration in the frequency domain. The analy-
sis will then be applied to the example of linear-exponential I-DS
ADCs as a state-of-the-art dynamic reconfiguration technique.
It is shown how a matched reconstruction filter of the recon-
figured linear-exponential incremental Delta-Sigma modulator
(I-DSM) can be mathematically derived. Using the calculated
overall transfer functions of the linear-exponential I-DS ADC,
accurate performance predictions can be given. The proposed
method allows the accurate prediction of performances and gives
insight and understanding of the performance improvements and
trade-offs achieved by reconfiguration techniques in I-DS ADCs
in general and the exponential phase in particular.

Index Terms— Incremental, delta-sigma, transfer function,
reconfiguration, linear-exponential, frequency domain, exponen-
tial phase.

I. INTRODUCTION

THE advances in CMOS scaling over the past decades have
significantly improved digital circuits, leading to efficient

signal processing in the digital domain. However, this shift
has increased the demand for high-performance analog-to-
digital converters (ADCs), which are essential for meeting the
speed and power requirements of modern signal processing.
The traditional Delta-Sigma (DS) ADC, which is based on
oversampling and noise shaping and trades circuit precision
for time, is commonly used in this trend [1]. However, its
averaging behavior makes it unsuitable for applications that
require sample-to-sample conversion. One solution to this
drawback is the incremental Delta-Sigma (I-DS) ADC, which
offers the benefits of Nyquist-rate behavior by applying a
periodic reset [2].
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The I-DS ADC shares the principles of oversampling and
noise-shaping with free-running DS ADCs, but its behavior
differs significantly. This is because of the periodic reset,
which requires the modeling of the I-DS ADC as a linear time-
variant (LTV) system, rather than as a linear time-invariant
(LTI) system. In order to account for this, in most prior
art [1], [3], [4] it was exclusively analysed in the time domain.
A frequency-domain description has been elaborated for I-DS
ADCs in [5] and [6], which regards the incremental Delta-
Sigma modulator (I-DSM) as a finite impulse response filter,
and allows to derive an overall STF and NTF. Thereby, the
effect of discarding an input sample and hold (S/H) on the
signal filtering property was implicitly described. Furthermore,
it was analyzed how the folding of higher Nyquist zones leads
to aliasing of signal and quantization noise. Finally, the method
allows to precisely predict the performance of I-DS ADCs with
respect to the employed reconstruction filter.

Recent research has aimed to overcome the lesser per-
formance offered by I-DS ADCs in comparison to its free-
running counterparts. Several techniques have been proposed
to address these shortcomings, exploiting the finite number
of operating cycles of I-DS ADCs. As a result, dynamic
reconfiguration of the architecture has been proposed as a
solution. The general idea of architectural reconfiguration is
visualized in Figure 1a, where the modulators’ loop filter is
(e.g. periodically) switched between two different filters, HI(z)
and HII(z). Reconfiguration of loop-filter non-idealities and
internal bitwidth have been shown [7], [8], where intrinsically
linear low resolution operation is alternated with high resolu-
tion operation within every conversion cycle. A deactivation
of the input signal as recuperation phase (RP) towards the
end of a conversion cycle was introduced in [9] resulting in
a improved maximum stable amplitude (MSA) and signal-
to-quantization-noise ratio (SQNR). Another reconfiguration
technique – the linear-exponential operation of I-DS ADC
– was introduced by [10], who proposed to switch the
modulator from a 1st order linear to an exponential I-DS
ADC towards the end of each Nyquist conversion cycle.
Because of the exponential feedback of the quantization error
towards the end of each conversion cycle, a boost of the
SQNR was achieved [10]. Even though the operation was
described in the time domain, and its impact both simulated
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Fig. 1. (a) Linear model of a discrete-time (DT) first-order I-DS ADC
switching between the two loop filter functions HI(z) and HII(z) and (b) its
timing diagram including the reset and the reconfiguration signal.

and measured, performance prediction by applying the concept
of frequency-domain description, deriving the overall transfer
function of the I-DSM due to the linear-exponential recon-
figuration, and thereby the gain of a deeper understanding
of the operation of the exponential phase is still missing in
the state of the art (SoA).

This manuscript closes this gap by calculating the transfer
functions of a reconfigurable I-DS ADC and proving its
practicability by applying frequency-domain analysis to the
time-variant linear-exponential reconfiguration. Furthermore,
it is shown how to calculate a matched reconstruction filter to
optimally fit the reconfigured linear-exponential I-DS ADC.

The paper is organized as follows: Section II shortly
reviews I-DS ADC operation and frequency-domain analysis.
Section III introduces the calculation of transfer functions for
reconfigurable I-DS ADCs. Section IV reviews the concept of
the linear-exponential I-DS ADC, and introduces the calcula-
tion of its matched reconstruction filter and transfer functions.
Section V extends the frequency-domain analysis to account
for quantization and thermal noise in the presence of varying
exponential phase parameters. Section VI gives a conclusion.

II. OVERVIEW ON I-DS ADCS

A. Working Principle of I-DS ADCs

The linearized block diagram of a discrete-time (DT) I-DS
ADC is shown in Figure 1a, featuring the I-DSM, the digital
reconstruction filter and the periodically applied reset to both.
Between two resets the I-DS ADC operates for a defined
number of M samples. By assuming an infinitely small reset
length, M corresponds to the oversampling ratio (OSR) of a
free-running Delta-Sigma modulator (DSM), and one Nyquist
cycle ends after M clock cycles. In contrast to free-running
DSM, where the decimation filter is usually assumed an ideal
brickwall filter, the performance analysis of I-DS ADCs has
to take the modulator, the digital reconstruction filter and the
periodic reset into account.

B. Overall Transfer Functions in I-DS ADCs

Through most SoA I-DS ADC were analyzed and described
in the time domain [1], [3], [4], which lacked accuracy

in performance prediction. Due to the applied reset in I-DS
ADCs, they behave like time-variant systems. Therefore, it was
proposed to model the I-DS ADCs as FIR filter, which allows
to consider the time-variant system as LTI system between
two reset signals for a finite number of samples M . This FIR
filter model was initially used for time-domain analysis [11],
and later considered for a frequency-domain analysis for a
first order DT I-DSM [12] or arbitrary DT or continuous-time
(CT) I-DSM [5]. As we largely rely on the theory of this,
the idea is shortly reviewed. For simplicity and readability
a normalized sampling frequency fs = 1 is assumed in all
succeeding equations. The overall STF or NTF of a free-
running DT DS ADC, are

TFfree(z) = TFm(z) · Hrec(z) (1)

with TFm(z) being either the signal transfer function (STF) or
noise transfer function (NTF) of the free-running modulator
and Hrec(z) being the transfer function of the free-running
reconstruction/decimation filter. By multiplying a rectangular
window rectM [k] in the time domain, which models the reset,
it is possible to calculate the transfer functions of the I-DS
ADC. The multiplication of rectM [k] corresponds to a circular
convolution in the frequency domain with its discrete-time
Fourier transform (DTFT):

TFincr( f ) = TFfree(e j2π f ) ⊛ Xrect,M ( f ) (2)

with TFincr( f ) being either STFincr( f ) or NTFincr( f ) of the
I-DS ADC and

Xrect,M ( f ) = DT FT {rectM [k]} (3)

=
sin (Mπ f )

sin (π f )
· e- jπ f ·(M-1). (4)

As decimating causes a folding back of all higher Nyquist
zones into the in-band, it is possible to predict the in-band
noise at the decimated output by integrating the overall
NTFincr( f ) from 0 to fS/2. By omitting an input S/H, the
overall STFincr( f ) shows the attenuation of input signals in
higher Nyquist zones, before they are aliased back into the
in-band of the decimated output.

III. TRANSFER FUNCTION CALCULATION OF
RECONFIGURED I-DS ADCS

Recently, several approaches have been pre-
sented [7], [9], [10] to further improve the performance
of I-DS ADCs by periodically reconfiguring its architecture
during every Nyquist conversion cycle. This reconfiguration
basically causes a change of the systems transfer functions
during one conversion cycle; therefore, the system can not
be described as LTI system between two resets anymore.
This is illustrated in Figure 1a, where the loop filter transfer
function changes after MI samples from HI(z) to HII(z) for
the remaining MII samples. The according timing diagram
is shown in Figure 1b. In the following, an approach is
presented to calculate the transfer functions of reconfigured
I-DS ADCs as LTV system.

In general, LTI systems like free-running or usual I-DS
ADCs, can be fully characterized by only one impulse
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Fig. 2. Time-variant impulse response illustrated for some exemplary excitement time steps. LTV system is reconfigured after MI time steps.

response. In reconfigured systems this is not possible anymore
since the impulse response changes over time and therefore
depends on the time of excitement τe. A (deterministic) LTV
system is only fully characterized if the reactions of the system
to discrete-time unit pulses at all excitation times

τe ∀τe ∈ Z (5)

are known [13]. The time-variant impulse response h0[τe, k]
of an LTV system S , which is dependent on the parameters
1) observation time k and 2) time of excitement τe, is then
defined as

h0[τe, k] def
= S {δ [k − τe]} . (6)

Figure 2 gives a visualization of the excitement at k = τe and
the reactions (exemplary impulse responses) assuming a causal
system. Every unit impulse with a different time of excitement
of the left side corresponds with an impulse response on the
right side after it is applied to the LTV system. It is important
to notice that depending on the time of excitement τe the
impulse response of the LTV system can be different. The
impulse responses in Figure 2 relate to the LTV system of
Figure 1, where the first LTI system is switched to a second
one after MI timesteps resulting in an LTV system. Every unit
impulse with a time of excitement before MI corresponds at
the beginning with the impulse response of the first system
until the reconfiguration is happening. Afterwards the second
system is excited by the set of internal states at the time of
reconfiguration. This may lead to a different impulse response
for each τe before MI. For each excitement after MI the
impulse response corresponds to the impulse response of the
second system.

In case of a reconfigured I-DS ADC with oversampling
M , h0[τe, k] in (6) is a matrix with dimensions M × M ,
representing the impulse responses of the I-DS ADC to
every possible time of excitement τe ∈ [1, M] and time of
observation k ∈ [1, M].

In order to calculate each impulse response, it is necessary
to know the internal states of the I-DSM during the recon-
figuration process. Therefore, it is required to calculate the
internal states of the first system to a Dirac excitement for MI
steps. This can be done in time domain using the state space

Fig. 3. State space representation of a Sigma-Delta modulator (SDM).

representation

x[k + 1] = A x[k] + B
[

u[k]
v[k]

]
y[k] = C x[k] + D

[
u[k]
v[k]

]
(7)

of the modulator. Thereby, the modulator is described in time
domain using the ABC D matrix instead of the loop filter
transfer function. The state space representation of a DSM
is illustrated in Figure 3 [1]. The state space representation
can be used to represent both, a DSM and an I-DSM, with the
only difference being that for the I-DSM the states are reset
after every M-th sample.

In order to calculate the overall impulse response matrix of
the I-DS ADC h0[τe, k] it is necessary to derive the impulse
response matrix of the incremental modulator h0,m[τe, k],
excluding the reconstruction filter, at first. Therefore, the state
space representation ABC DI of the first and ABC DII of
the second system reconfiguration is required. This enables
the computation of the impulse responses for every time of
excitation τe. Before the point of reconfiguration the impulse
response corresponds to the impulse response of the first
system hI[k]

h0,m [τe, k + τe − 1] = hI[k]

{
τe ∈ [1, MI]

k ∈ [1, MI − τe + 1].
(8)

Since only causal systems are considered, all values of h0,m
before the time of excitation τe have to be 0. This leads to the
observation time index k + τe − 1, where hI[k] is inserted in
h0,m.

At the point of reconfiguration, the initial states of the
second system have to be set according to the final states of
the first system at this sampling point

xII[1] = xI[MI − τe + 2]. (9)
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Then, the further points of the impulse response can be
calculated using the state space representation of the second
system ABC DII

xII[k + 1] = AII xII[k] + BII

[
u[k]
v[k]

]
yII[k] = CII xII[k] + DII

[
u[k]
v[k]

]
vII[k] = q · yII[k] k ∈ [1, MII] (10)

leading to

h0,m [τe, k + τe − 1] = vII[k]

{
τe ∈ [1, MI]

k ∈ [MI − τe + 2, MII].

(11)

For every excitation point, which comes later in time than the
reconfiguration point, the impulse response only depends on
the second system and can therefore be calculated from the
impulse response of the second system hII[k].

h0,m [τe, k + τe − 1] = hII[k]

{
τe ∈ [MI + 1, M]
k ∈ [1, M − τe + 1]

(12)

The according algorithm to calculate h0,m[τe, k] can be found
in the Appendix.

After h0,m[τe, k] of the time-reconfigurable I-DSM is
derived, the time-invariant reconstruction filter can be included
by performing a circular convolution of the impulse response
of the reconstruction filter hrec[k] with h0,m[τe, k] for every
excitation point τe. The calculated matrix

h0[τe, k] = h0,m[τe, k]⊛ hrec[k] (13)

now fully characterizes the reconfigured I-DS ADC. Note
that the DTFT of (13) over the observation time k would
yield the delay Doppler-spread function, while the DTFT
over the time of excitement τe actually yields the required
time-variant transfer function TFincr( f ) [13]. It is important
to note here, that the transfer function depends on the time
of observation k and therefore differs for different time of
observations. So far, the reconfigured ADC is still described
by M different transfer functions depending on the time of
observation. Since decimation is applied in an I-DS ADC the
only transfer function of concern to describe the I-DS ADC
is the one where the observation time is set to k = M . This
yields the impulse response vector

h[τe] = h0 [τe, M] (14)

and the resulting transfer function can be derived by doing the
DTFT

TFincr( f ) = F{h[τe]}. (15)

Please note here, that although the final impulse response
h[τe], which characterizes the decimated I-DS ADC, is a
Mx1 Matrix, it is absolutely vital to derive the MxM matrix
h0[τe, k] first. Only the MxM matrix h0[τe, k] is able to fully
describe the undecimated I-DS ADC and allows to include the
reconstruction filter.

The derived analysis can be applied to any reconfiguration
of I-DS ADC, which is periodically applied within every
Nyquist-conversion cycle. To prove its practical applicability,
the method is next used to analyze a reconfigurable, namely
the linear-exponential (LE), I-DS ADC [10].

IV. TRANSFER FUNCTIONS OF THE
LINEAR-EXPONENTIAL I-DS ADC

A. Linear-Exponential Working Principle

The linear-exponential (LE) I-DS ADC described in [10]
consists of a first-order DT modulator that reconfigures the
loop filter into an exponential phase (EP) towards the end
of each conversion cycle. The proposed architecture of the
LE I-DS and its timing diagram are shown in Figure 4:
During the linear phase, it is a simple first-order discrete-
time I-DSM using multi-bit quantization and a first-order
COI reconstruction filter. After MLP samples the exponential
phase is turned on, where an additional feedback path in the
modulator is enabled, which feeds the quantization noise back
to the quantizer input and features an exponential gain (1+kE).
The summation of the error feedback can e.g. be realized by
an active amplifier as used in [10]. This reconfiguration leads
to a change of the modulators’ loop filter transfer function
from

HL(z) =
z−1

1− z−1 (16)

to

HE(z) =
z−1

1− z−1 ·
1

1− (1+ kE)z−1 (17)

for the last MEP samples of each conversion cycle.

B. Linear-Exponential Reconstruction Filter

The digital reconstruction filter for the linear-exponential I-
DS ADC of [10] was implemented in a way that it matches
the structure of the analog modulator, similar to [14], but
it was only shown for a specific set of coefficients. It basi-
cally consists of a first-order accumulator and an exponential
accumulator which is switched on for the samples in the
exponential phase. The reconstruction filter shown in Figure 4
is derived as a generalized version of [10], as it works for
any set of coefficients scaling coefficients of the I-DSM. For
a1 = −1 and c1 = 1 it matches the filter of [10].

Apart from its actual time-variant implementation in
Figure 4, the digital reconstruction filter can be written as a
time-invariant finite impulse response (FIR) filter, since there
is no feedback path in the reconstruction filter. In [10], the
FIR coefficients have again been shown for a specific set of
coefficients; in the following the FIR filter coefficients for the
LE reconstruction filter are generally derived in order to make
the subsequent analysis reproducible to the reader.

The digital reconstruction filter can be chosen to match the
analog I-DSM by choosing its transfer function to 1/N T Fm ,
where N T Fm is the free-running N T F of the analog loopfilter
(LF) [1]. Assuming q = 1, which is usually the case for a
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Fig. 4. (a) Model of the two-phase linear-exponential I-DS ADC and (b) its timing diagram including the reset and the exponential phase signal [10].

multi-bit quantizer, the analog modulators’ NTF of the linear
phase is

N T Fm,L(z) =
1− z−1

1− a1c1z−1 (18)

and

N T Fm,E(z) = N T Fm,L(z) · (1− (1+ kE)z−1) (19)

of the exponential phase. This leads to the matched recon-
struction filters

Hrec,L(z) =
1− a1c1z−1

1− z−1 (20)

and

Hrec,E(z) = Hrec,L(z) ·
1

1− (1+ kE)z−1 . (21)

To derive the FIR filter weights for this reconstruction filter
over the operating time span k ∈ [1, M], we first take the
impulse response for the linear phase

hrec,L[k] = Z−1
{Hrec,L(z)} k ∈ [1, M] (22)

for M samples. To account for the exponential phase, hrec,L[k]
has to be combined with the MEP + 1 samples long impulse
response of the exponential accumulator

hrec,E[k] = Z−1
{

1
1− (1+ kE)z−1

}
k ∈ [1, MEP + 1] (23)

by convoluting the two impulse responses. This leads to the
weights of the linear-exponential reconstruction filter

w[k] = hrec,L[k] ∗ hrec,E[k] k ∈ [1, M]. (24)

Therefore the general weights of the reconstruction filter (with
M = ML P + ME P are

w[k]

=


a1c1(1+ kE)MEP+1

− a1c1

kE
, k ∈ [1, MLP − 1]

(a1c1 − kE)(1+ kE)M−k+1
− a1c1

kE
, k ∈ [MLP, M]

(25)

which are constant during the linear phase and show an expo-
nential characteristic during the exponential phase. With these
weights, the normalized FIR-implemented reconstruction filter
of the linear-exponential I-DS ADC in Figure 4a becomes:

Hrec,LE(z) =
∑M

k=1 w(k)z(k−1)∑M
k=1 w(k)

(26)

C. Linear-Exponential Transfer Functions

To derive the overall transfer functions of the linear-
exponential I-DS ADC, the method of Section III will be
applied. As shown in Figure 4a, the exponential phase only
feeds back the quantization error E(z) into the modulator, if a
multi-bit quantizer is used (q = 1). The overall STF is defined
from the input U (z) to the overall output D(z) for E(z) = 0.
Therefore, the exponential phase has no influence on the STF
of the modulator and the STF of the linear-exponential I-DSM
ADC is determined by the reconstruction filter [5], which was
derived in (26).

The NTF of the free-running modulator on the other hand
changes from the linear phase

N T Fm,L(z) =
1− z−1

1− (1+ qa1c1)z−1 (27)
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to

N T Fm,E(z) =
1− (2+ kE)z−1

+ (1+ kE)z−2

1− (1+ qa1c1)z−1 (28)

after the point of reconfiguration to the exponential phase (EP).
This leads to the impulse responses

hm,L[k] = Z−1
{N T Fm,L(z)} (29)

of the linear phase and

hm,E[k] = Z−1
{N T Fm,E(z)} (30)

of the exponential phase. Furthermore, to combine these trans-
fer functions to the overall NTF of the incremental modulator
the state space representations have to be established first. The
definition of the states

x[k] =
[

x1[k]
xE[k]

]
(31)

can be derived from Figure 4a. Note that only one input,
namely v[k], was defined for the state space representation
because the input signal u[k] = 0 for the NTF calculation.
This leads to the state space representation of the linear phase:

ABC DL =

 1 0 a1
c1 · (1+ kE) 0 −(1+ kE)

c1 0 0

 (32)

and of the exponential phase:

ABC DE =

 1 0 a1
c1 · (1+ kE) 1+ kE −(1+ kE)

c1 1 0

 (33)

Using ABC DL it is possible to calculate the internal states
during the linear phase for the first MLP samples and using an
excitation with a discrete-time Dirac pulse e[k] = δ[k] at the
quantizer:

xL[k + 1] = ALxL[k] + BLv[k]

yL[k] = CLxL[k] + DLv[k]

vL[k] = q · yL[k] + δ[k]

for k ∈ [1, MLP] (34)

Afterwards the impulse response matrix h0[τe, k] of the
linear-exponential I-DS can be derived following the steps
described in Section III by first obtaining the modulators
impulse response h0,m[τe, k] and then combining it with the
impulse response of the reconstruction filter. For excitation and
sampling points before the point of reconfiguration, the mod-
ulators’ impulse response matrix h0,m[τe, k] equals the values
of the linear phase impulse response hm,L[k]. To calculate the
matrix values for an excitation time before but an observation
time after reconfiguration (τe ≤ MLP, k > MLP), ABC DE is
required and the internal states are set to the values of the
linear phase internal states during reconfiguration. To derive
the matrix values for sampling and excitation points after
reconfiguration, only the impulse response of the exponential
phase hm,E[k] is required. Afterwards the modulators’ impulse
response matrix h0,m[τe, k] is convoluted with the impulse

Fig. 5. Overall transfer functions of the linear I-DS at M = 256, exponential
I-DS at M = 10, and reconfigured linear-exponential I-DS ADC at MEP =
10, M = 256, (i.e. MLP = 246). Solid: Calculated STF. Dashed: Calculated
NTF. X-marks: Simulation at distinct single-sinusoidal frequencies.

response of the reconstruction filter from (26) to obtain the
overall impulse response matrix

h0[τe, k] = h0,m[τe, k]⊛ Z−1 {
Hrec,LE(z)

}
(35)

of the linear-exponential I-DS. Decimation leads to setting the
observation time to k = M . Then, the overall NTF is obtained
by performing the DTFT:

N T FLE( f ) = F{h0[τe, M]} (36)

D. Comparison of Analysis to Simulation

To verify the calculations, Figure 5 shows the calculated
TFs together with simulations (x-marks) to assess the NTF and
STF of the linear-exponential I-DS ADC. For the simulations,
sinusoidal test signals are inserted both, at the input of the
I-DSM (STF) as well as at its quantizer (NTF) in the frequency
range f = 0 . . . fs/2; their magnitude and thus attenuation
by the STF/NTF are then calculated from the folded back
versions in the frequency range f = 0 . . . fN /2 after the
decimation filter. Firstly, the transfer functions of the linear
I-DS ADC T FL(z) is shown, then the transfer functions of the
exponential I-DS T FE(z), and finally the transfer functions of
the reconfigured linear-exponential I-DS ADC T FLE(z). The
transfer function of the linear and the exponential I-DS ADC
can be calculated in the same way like the linear-exponential
one, but since no reconfiguration is happening it can be also
calculated using the basic approach outlined in II-B. In the
example in Figure 5, the linear I-DS uses M = 256, the
linear-exponential M = 256 and MEP = 10, which is based
on [10], and the exponential I-DS transfer function is shown
for M = 10. The loop-filter scaling has been chosen with
b1 = b2 = c1 = 1 and a1 = −1 as in [10].

The overall STF of the I-DS ADC is determined by the
reconstruction filter. As seen in Figure 5, the linear phase
STFL( f ) shows the typical behaviour of a 1st order I-DS ADC
with chain of integrators (CoI) filter, i.e. a sinc shape [5];
the exponential phase STFE( f ) resembles the STF seen in
higher order I-DS with CoI filters [5]. The STF of the linear-
exponential I-DS ADC STFLE( f ), whose reconstruction filter
was derived in (26), shows again a sinc shape, but with
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the notches shifted to slightly higher frequencies than the
pure linear I-DS ADC. As seen in Figure 5, calculations and
simulations match excellently for the STF.

The NTFs are also depicted in Figure 5; most importantly,
predictions by the introduced analytical approach for trans-
fer functions of reconfigurable I-DS ADC and simulations
match excellently for the NTF again. The commonly known
noise-shaping of free-running DSM is no longer seen in
incremental operation, as was shown in [6]; despite, the NTF
shows a rather flat course as a result of the used matched
reconstruction filters. This leads to an overall spectral suppres-
sion of the quantization error, before all higher Nyquist bands
are folded into the in-band in the decimating reconstruction
filter. It can be noted that the transfer functions of the non-
reconfigured I-DS ADCs T FL(z) and T FE(z) can also be
calculated using the LTI approach of [6]. But, it can be seen
in Figure 5 that none of them is even close to the reconfigured
linear-exponential transfer functions T FLE(z) and, therefore,
it wouldn’t be possible to predict any performances correctly
without the LTV approach introduced in this paper. Interest-
ingly, although the exponential I-DS is only simulated for M =
10 compared to the linear I-DS with a simulated M = 256,
NTFE( f ) shows significantly more noise suppression than
NTFL( f ). The enormous improvement of quantization noise
(QN) suppression by combining linear and exponential phase
is then clearly seen. At this point it is interesting to ask: if
the exponential phase operates so much better than the linear
phase, why would we not slightly extend the exponential phase
and completely omit the long linear phase? The answer lies
with the sensitivity of the exponential phase to mismatch [10],
which will be further discussed in the next section.

V. FURTHER ANALYSIS OF THE LINEAR-EXPONENTIAL
I-DS ADC BASED ON THE TRANSFER FUNCTIONS

After Section III has derived a general methodology to
derive the transfer function of reconfigurable I-DS ADC
and Section IV has applied this in particular to the linear-
exponential I-DS ADC, this can be used to get a deeper
understanding of the trade-offs of the linear-exponential I-DS.
The influence of the parameters MEP (exponential operation
time) and kE (exponential gain) as well as the operation under
coefficient mismatch have already been discussed in [15] based
on simulations. In the following the influence of these variable
parameters will be further analysed concerning their influence
on the transfer functions; thereafter, the NTF will be used to
predict the SQNR of the LE I-DS ADC, while the STF is
used to predict the thermal noise penalty factor (NPF) [11],
an effect which is known in I-DSM to worsen the input
referred thermal noise over the noise of a free-running DSM.
Finally, analog/digital mismatch will be investigated as well
as reconstruction filters other than the ideal one in Figure 4a.

A. Influence of Parameters MEP and kE on STF and NTF

Calculation and simulation for STF and NTF of the linear-
exponential I-DS with varying parameters MEP and kE are
plotted in Figure 6. As before, b1 = b2 = c1 = 1 and
a1 = −1 are chosen, but the oversampling is changed to

Fig. 6. Overall STFs and NTFs of the linear-exponential I-DS with varying
MEP and kE at M = 100. For the reference transfer functions MEP = 5 and
kE = 0.2 is chosen. For T FMEP , MEP is altered to 25 and for T FkE , kE is
modified to 2.

M = 100. At first, a reference design T Fref with MEP =

5 and kE = 0.2 is chosen. The parameters are chosen under
the condition of a good visualization of the effect of the
changing parameters on the transfer functions. Therefore, the
parameters in the reference design here are changed compared
to the parameters used in earlier sections. For T FMEP , MEP
is changed to 25 while kE is kept to 0.2; for T FkE , kE is
changed to 2, while MEP is kept to 5. In both cases, either
by increasing MEP or increasing kE, the NTF changes in a
similar way; it keeps the same shape but achieves similarly
more noise suppression, though it will be seen next that
excessively increasing kE leads to instability. The STF stays
almost unaltered while kE is increased, but the sinc-shaped
notches are shifted towards higher frequencies while MEP is
increased; it will be seen next that this affects the NPF.

B. SQNR of LE I-DS ADC Based on Its NTF

The SQNR calculation is done with

SQN Rest = 10 · log10

(
Pin

I B Nest

)
(37)

using the integrated in-band noise

I B N est =
12

12
·

1
fs

∫ fs/2

− fs/2
|N T F( f )|2 d f, (38)

with the signal power Pin, the quantizer step size 1 and the
I-DS ADCs’ overall noise transfer function NTF. In case of the
LE I-DS ADC the NTF corresponds to the NTFLE( f ) derived
in (36). The course of the NTF of the I-DS under variable kE
and MEP were already shown in Figure 6, and a respective
change of the SQNR is thus expected.

The predicted and simulated SQNR of the I-DS ADC in
Figure 4a are shown in Figure 7 for 3 different sets of MEP
and kE. As before, b1 = b2 = c1 = 1 and a1 = −1 are
chosen. Again, the reference design SQN Rref with MEP =

5 and kE = 0.2 is shown. For SQN RMEP , MEP is changed to
25 while kE is kept at 0.2; for SQN RkE , kE is changed to 2,
while MEP is kept at 5. It can be seen that the calculated SQNR
using the proposed approach achieves excellent matching with
all simulated results, which validates again the correctness
of the calculated NTF in (36). Furthermore, it is shown that
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Fig. 7. SQNR and MSA simulation and prediction over amplitude for the
linear-exponential I-DS ADC at M = 100. For the reference I-DS ADC
MEP = 5 and kE = 0.2 is chosen. For SQN RMEP MEP is altered to 25 and
for SQN RkE kE is modified to 2.

the SQNR can be similarly boosted by both parameters MEP
and kE, as expected from the NTF in Figure 4a. Concerning
stability and MSA, it can also be seen in Figure 7 that
an increase of kE reduces the MSA. Generally it is known
that the conditional stability of DSM depends on the input
amplitude, the loopfilter scaling and the number of quantizer
levels. During the exponential phase, stability (and MSA) are
additionally highly influenced by the factor kE. This is since kE
determines the amplification of the fed back quantization error,
and more kE or larger quantization error (i.e. lower number
of bits) can lead to quantizer overload. Thus, stability and
MSA are co-defined by the inter-dependency of kE and the
number of quantizer levels during EP in an I-DS ADC. This
is also why a multi-bit quantizer is absolutely necessary for
stable operation during EP. On the contrary, as also seen in
Figure 7, stability and MSA are independent of the number of
EP samples MEP.

It is also worth noting that large kE (as e.g. kE = 2 in
Figure 7) does not yield in an abrupt drop of SQNR for larger
amplitudes, cf. Figure 7, as the instability only occurs during
the exponential phase, while the linear phase is still stable for
the higher amplitudes.

C. Noise Penalty Factor of LE I-DS ADC Based on Its STF

It is known from literature that I-DS ADCs suffer from
a NPF [11], which describes the effect that input referred
thermal noise of an I-DS ADC appears amplified towards the
output of the reconstruction filter. The NPF is dominated by
the choice of the reconstruction filter and worse for higher
order I-DS ADCs [11]; as the exponential phase appears like
an increased order, it is interesting to analyze the NPF for the
linear-exponential I-DS ADC.

The noise at the output of an I-DS due to an input referred
thermal noise and the NPF βnpf can be calculated by

PN,out = PN,in
βnpf

M
(39)

with

βnpf =
PN,out,actual

PN,out,min
=

M
fs

∫ fs/2

− fs/2

|ST F( f )|2 d f (40)

TABLE I
NPF VALUES OF THE LE I-DS ADC FOR DIFFERENT

SETS OF PARAMETERS

being the noise penalty factor of the I-DS ADC [11].
PN,out,actual describes the actual thermal noise power at the
output of the I-DS ADC and PN,out,min the minimal one.
In [10] it was already mentioned that the NPF becomes
worse for the linear-exponential I-DS, but the reason was not
assessed nor the effect generally quantified. But having derived
the analysis for the STF of the linear-exponential I-DSM in
Section IV-C, it is possible to calculate the NPF from (40).

When looking at simulation and analysis of STF in Figure 5,
we saw that the notches of STFLE( f ) were slightly shifted
towards higher frequencies compared to STFL( f ); this con-
sequently leads to a larger integral over the STF and thus to
worse NPF in (40). Further investigating the simulation and
analysis over parameter kE and MEP in Figure 6, we could
observe that an increase in kE had only minor influence,
whereas the increase in MEP was actually responsible for
the shift of the STF-notches. This leads, in the extreme case
of an only exponentially operating I-DS, to the largely flat
course of STFE( f ) in Figure 5, which consequently yields
the worst NPF behaviour. The NPF values of the parameter
set from [10], the reference set, the MEP and kE parameter
set can be seen in Table I. A more detailed simulation based
analysis of the NPF in dependency of MEP and kE can be found
in [15]. Considering this finding, an increase of kE instead of
MEP seems preferable for higher SQNR. On the other hand,
we have seen that excessively increasing kE leads to a decrease
in stability, which was seen in Figure 7. Therefore, setting
the parameters MEP and kE of the exponential phase is a
compromise between boosting the SQNR while keeping the
NPF low, and the modulator stable.

D. Mismatch Limitations of Performance Increase During
Exponential Phase

As it was already shown by simulation in [15], given a
certain analog/digital mismatch in the linear-exponential I-DS
ADC in Figure 4a, the possible performance improvement of
the exponential phase is limited. This limitation is caused by
the mismatch between the analog loopfilter coefficients (like
kE) and the digital reconstruction filter during the exponential
phase. This is not the case during the linear phase, where mis-
matches between analog loopfilter and digital reconstruction
filter are highly tolerated. Since a certain target SQNR is firstly
based on the linear phase to achieve a base-resolution, whereas
the exponential phase boosts the SQNR to a final value, under
mismatch a longer linear phase is needed, and the duration of
the useful exponential phase is reduced.

This effect is illustrated with an exemplary coefficient mis-
match in the LE NTF in Figure 8. There, the overall transfer
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Fig. 8. Overall transfer functions of the linear I-DS at M = 256 and MEP =
10 without coefficient mismatch (green) and with a mismatch for kE of 1%
between the analog modulator and the digital filter (red).

functions of the LE I-DS are again simulated and calculated
at M = 256 and MEP = 10, and all scaling coefficients as
in Section V-B: firstly, without coefficient mismatch in green,
and secondly using an analog-digital mismatch in red; thereby,
the exponential-phase gain kE has been varied by +1% in the
analog I-DSM over its digital counterpart in the reconstruction
filter in Figure 4a, which causes the most significant mismatch
between the analog modulator and the digital filter. Since
the exponential phase has no effect on the modulators STF,
a mismatch of kE has no impact on the STF. On the other
hand, the suppression of the NTF drops by almost 20dB for
the given example even for the small mismatch. Comparing the
mismatch affected transfer functions in Figure 8 with the ideal
transfer functions in Figure 5, it can be seen that while the
ideal LE transfer function gives a significant boost to lowering
the NTF, the mismatch-affected boost is compromised. The
large 1% coefficient variation in Figure 8 was chosen for better
visualization of the impact of analog vs. digital mismatch on
the transfer functions in the linear-exponential I-DS ADC;
especially for switched-capacitor (SC) based loopfilter imple-
mentations, much better relative capacitor and thus coefficient
matching can be achieved. E.g., the original implementation of
the linear-exponential I-DS ADC in [10] reports a coefficient
variation of 0.2%. Thus, 0.2% will also be used for further
analysis and simulations in the following as an exemplary but
realistic assumption.

This mismatch-affected boost is further simulated and com-
pared to analytical prediction in Figure 9; there, the achievable
SQNR of the LE I-DS ADC is simulated and calculated
for a Gaussian distributed random mismatch of all analog
coefficients with σcoeff = 0.2% over 200 Monte Carlo runs; the
mean SQNR is plotted for both the simulation (x-marks) and
calculation from the underlying transfer functions (solid). The
grey curves and x-marks depict the simulated and predicted
ideal SQNR without coefficient mismatch for comparison. The
simulation and analysis is thereby performed over the length of
the exponential phase MEP for different durations of the linear
phase MLP as parameter, using a 16-level quantizer, kE = 1,
and again all other scaling coefficients as in Section V-B.

Firstly, it can be seen that the predictions with (color) and
without (gray) coefficient mismatch show excellent matching
to the simulation points. Furthermore, it can be seen that for

Fig. 9. Achievable SQNR values of the LE I-DS ADC over the length
of the exponential phase MEP for different duration of the linear phase MLP
and a 16-level quantizer. Simulated (x-marks) and predicted (solid), calculated
using the transfer functions, SQNR values. The SQNR values in color are the
derived mean values for a coefficient mismatch of 0.2% over 200 Monte Carlo
runs and the SQNR values in gray are derived without mismatch.

Fig. 10. Maximum achievable SQNR boost 1SQNR (blue) and required
exponential phase duration MEP,sat (red) of the LE I-DS ADC over different
coefficient mismatch values σcoeff. The SQNR values are calculated with
the transfer functions with all I-DSM coefficients varied using a standard
distribution with standard deviation σcoeff. MEP,sat is defined as the length
of the exponential phase, where the mean SQNR value is closer than 3dB to
its final mean settling value. Accordingly, 1SQNR is defined as the boost of
the SQNR achieved by the exponential phase at MEP,sat.

a specific coefficient mismatch the achievable SQNR settles
towards a maximum and cannot be further boosted by an
increase of the duration of the exponential phase MEP. Interest-
ingly, the possible performance boost by the exponential phase
appears to be approximately constant for a given mismatch,
e.g. 1SQNR ≈ 60dB for the chosen 0.2% mismatch, and
the only way to achieve a certain SQNR is by choosing an
appropriately larger duration of the linear phase MLP.

This can be further explored over a larger parameter space
by using the SQNR predictions via transfer functions without
relying on more simulations. Therefore, in Figure 10 it is
analysed how the possible SQNR boost of the exponential
phase 1SQNR, as well as the useful length of the exponential
phase to achieve this SQNR boost (MEP,sat) depend on coeffi-
cient mismatch. MEP,sat is thereby defined as the length of the
exponential phase, where the mean SQNR value is closer than
3dB to its final mean settling value. Accordingly, 1SQNR is
defined as the boost of the SQNR achieved by the exponential
phase at MEP,sat. The results are calculated from the transfer
functions, where all analog loopfilter coefficients are varied
with a standard distribution and the standard deviation σcoeff.
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Fig. 11. Overall STFs and NTFs of the linear-exponential I-DS ADC at
MEP = 10, M = 256, kE = 1 and with different reconstruction filters (first
order CoI, second order CoI and matched filter). Solid: Calculated STF.
Dashed: Calculated NTF. X-marks: Simulation at distinct single-sinusoidal
frequencies.

All parameters are chosen as for Figure 9. It can be seen that
there is a linear correlation between 1SQNR and the coefficient
mismatch σcoeff: the higher the coefficient mismatch is, the
lower is the achievable 1SQNR by the exponential phase, and
therefore the shorter is the length of the exponential phase
until the performance can’t be increased anymore.

E. Influence of Reconstruction Filters on STF and NTF

Throughout Section IV and the derivation so far, the descrip-
tion and analysis of the linear-exponential I-DS ADC has
been based on a matched reconstruction filter as shown in
Figure 4a. One might raise the question how other commonly
used reconstruction filters as e.g. a CoI filter perform. The
shown derivation obviously allows to also include this into
the analysis, and simulations and calculations of the overall
transfer functions of the LE I-DS ADC using a first order
CoI, a second order CoI and a matched reconstruction filter
are exemplary shown in Figure 11. The first order CoI filter
shows - similar to the matched reconstruction filter - a sinc
shaped STF with the notches of the matched filter slightly
shifted to higher frequencies (solid lines). On the contrary, the
overall NTF shows completely distorted shapes (dashed lines)
and it becomes clear why the matched filter is necessary to
get the desired SQNR performance boost: only the matched
reconstruction filter yields a powerful suppression of the NTF
leading to a SQNR of about 139dB. The first order CoI only
gives a SQNR of 63dB. Even moving to a higher order CoI
filter, the exponential phase still yields no actual improvement
and the SQNR = 88dB. This SQNR degradation is not really
surprising as already a tiny mismatch between the analog and
digital filter caused a large drop in SQNR, cf. Section V-D,
and thus ideal exponential phase QN suppression is only seen
for an ideally matched filter.

VI. CONCLUSION

This manuscript intends to close a gap in the state of
the art, which is the calculation of transfer functions of
reconfigured I-DS ADCs. The newly derived calculation
method is explained and then exemplarily applied to the

linear-exponential I-DS ADC leading to a detailed analy-
sis of the exponential phase as a dynamic reconfiguration
technique in I-DS ADCs. Accurate performance predictions
are possible and influence of non-idealities can be included.
Furthermore, the mathematical derivation of the reconfigured
matched reconstruction filter could be shown. Such analysis
allows to accurately predict simulation results of dynamically
reconfigured I-DS ADC and help to understand the underlying
mechanisms of performance improvements and trade-offs. The
analysis can be applied to any other dynamically reconfig-
urable I-DS ADC.

APPENDIX A
ALGORITHM TO CALCULATE IMPULSE RESPONSE MATRIX

To calculate the impulse response matrix h0,m[τe, k] of
the reconfigured DSM it is required to have the state space
representation of the two systems ABC DI and ABC DII, the
impulse response of the first system hI[k] k ∈ [1, MI], of the
second system hII[k] k ∈ [1, MII] and the internal states
of the first system during the impulse response calculation
xI[i, k] i ∈ [1, n], k ∈ [1, MI] with n being the order of the
modulator. This information enables the usage of the following
algorithm to calculate the impulse response matrix h0,m[τe, k].

Algorithm 1 Calculate Impulse Response Matrix
Require: ABC DI, ABC DII, xI[i, k], hI[k], hII[k]

for τe = 1 : M do
if τe ≤ MI then

h0,m[τe, τe : MI] ← h I [1 : MI − τe + 1]
x I I [:, 1] ← x I [:, MI − τe + 2]
for k = 1 : MII do

y[k] ← C I I × x I I [:, k] + DI I × u[k]
x I I [:, k + 1] ← AI I × x I I [:, k] + BI I × u[k]

end for
h0,m[τe, MI + 1 : M] ← y

else
h0,m[τe, τe : M] ← h I I [1 : M − τe + 1]

end if
end for
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