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Abstract— Recently, the posit number system has demon-
strated a higher accuracy over standard floating-point arithmetic
for many scientific applications. However, when it comes to
implementing accelerators for these applications, the tool support
for this arithmetic format is still missing, especially during the
high-level synthesis (HLS) step. In this paper, we incorporate
the posit data type into the high-level synthesis (HLS) design
process, so that we can generate the register-transfer level (RTL)
implementation directly from a given behavioral specification,
but using posit numbers instead of the classical floating-point
notations. Our evaluations show that, even if posit-based cir-
cuits require more area than their floating-point counterparts,
they offer higher accuracy when using the same bitwidth. For
example, using posit arithmetic can reduce computation errors
by about two orders of magnitude when compared to using
standard floating-point numbers. Our approach also includes
an alternative to mitigate the high overheads of the posits and
broadening the potential use of this format. We also propose a
hybrid scheme that uses posit numbers only in the private local
memory, while the accelerator operates in the classic floating-
point notation. This solution is useful when the designers want
to optimize local memories and data transfers, but still use legacy
HLS tools that only support traditional floating-point notations.

Index Terms— HLS, computer arithmetic, posit, floating-point.

I. INTRODUCTION

N RECENT years, data-intensive applications have per-
meated many areas of computing due to the rise of
deep learning and the increasing demand for resolution in
physical simulations (e.g., molecular dynamics and weather
forecasting). The exceptional performance achieved by these
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applications over the last few years has been possible mainly
due to the large increase in available datasets and compu-
tational resources to analyze them. However, this trend of
increasing computational models clashes with the end of
Moore’s law and Dennard scaling. Therefore, maintaining
performance improvement nowadays to enable new software
capabilities, such as physical simulations, is both important
and challenging. According to recent studies [1], an inter-
esting research direction in computer architecture is the use
of domain-specific architectures (DSAs), a class of proces-
sors tailored to a specific domain or class of applications,
or even more specialized processors such as GPUs, field-
programmable gate arrays (FPGAs) and application-specific
integrated circuits (ASICs) (also known as accelerators) [2].
Such accelerators are closely tailored to the needs of a given
application and can therefore achieve higher performance and
higher energy efficiency than general-purpose CPUs [3], [4],
[51, [6].

The use of FPGA accelerator cards has become more com-
mon in the last years thanks to the progress and availability of
integrated tool flows based upon HLS, which allow generating
highly-optimized hardware starting from a source code with
a higher level of abstraction [7], [8]. Nowadays, most of the
algorithms are written in high-level programming languages
like C/C++, where the functional execution of the program is
much faster and simpler than the counterpart register-transfer
level (RTL) simulation. Therefore, the HLS has boosted the
hardware/software co-design, making it possible to automate
the synthesis of new accelerators and to map complex work-
loads onto domain-specific architectures [9].

Alongside the development of DSAs, new arithmetic for-
mats have also emerged recently in an attempt to mitigate the
effects of the end of Moore’s law and Dennard scaling [10],
[11], [12], [13]. In the area of scientific and high-performance
computing (HPC), the IEEE 754™ standard for floating-
point arithmetic [14] has been for decades the format used
for representing real numbers in this kind of applications.
Nonetheless, the appearance of the disruptive posit™ arith-
metic [15] in 2017 has shaken the board. This novel way of
representing real numbers mitigates some of the shortcomings
that the IEEE 754 standard presents (such as dealing with
signed zero, the multiple-bit patterns wasted for indicating Not
a Number (NaN) exceptions, or the fact that reproducibility
of results is not guaranteed), but is also able to represent a
wider range of values and provide more accurate computations
than floating-point numbers using the same number of bits.
However, these benefits come at a cost—when implemented

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0003-0204-0797
https://orcid.org/0000-0002-6769-1200
https://orcid.org/0000-0002-0848-2636
https://orcid.org/0000-0001-9315-1788

MURILLO et al.: GENERATING POSIT-BASED ACCELERATORS WITH HIGH-LEVEL SYNTHESIS

in hardware, posits require more hardware resources, time,
and power than the corresponding floating-point units [16],
[17]. The real advantage of using posit arithmetic comes from
using fewer bits, thereby saving storage, memory bandwidth,
and energy without sacrificing accuracy. Changing arithmetic,
however, affects the entire hardware-software stack from chip
design to the application.

Prior studies have extensively examined the hardware costs
associated with posit arithmetic in the context of individual
arithmetic operations; however, there remains a dearth of
information regarding the interconnection and integration of
these components as a whole. In this paper, we present a
proof-of-concept implementation of an end-to-end method-
ology that leverages the properties of posit arithmetic to
create FPGA-based systems and accelerate numerical kernels
in scientific computations. The major contributions of our
work can be summarized as follows:

« We design an RTL library of posit operators that adds
support for all the basic operations required in HLS.
The library is parameterizable for multiple bitwidths,
including 32 and 64 bits, and target frequencies.

« We integrate the proposed posit library into an open-
source HLS flow, so accelerators based on this arithmetic
format can be automatically generated from the same
source code as floating-point applications.

o We perform an evaluation of the proposed solutions
at both single operator and application-level with Poly-
Bench. Experimental results demonstrate that, under the
same bitwidth, posit arithmetic reduces the error of
computations around two orders of magnitude, with an
overhead of about 75% more area and 50% more latency
with respect to floating-point arithmetic. In terms of
hardware resources, the proposed 32-bit posit designs
require, on average, 1.46x more LUTs, 1.73x more FFs,
and 1.30x more cycles than the corresponding floating-
point designs. Similar figures are found for the 64-bit
case.

« We implement a hybrid scheme that uses posit arith-
metic in memory, while the accelerator logic remains
in floating-point format. This allows legacy HLS tools
without support for alternative formats to leverage posit
arithmetic; data can be stored in memory using a lower
bitwidth posit format while preserving the accuracy of
computations. Evaluation results show that this approach
allows for reducing the error of computations with a small
area overhead and a negligible increase in latency.

« We compare the proposed HLS flow with previous
works. FPGA synthesis results show that the proposed
posit designs provide lower overhead than those pro-
posed in previous works when compared to corresponding
accelerators designed for floating-point arithmetic.

The remainder of this paper is organized as follows:
Section II presents the basics of posit arithmetic and HLS.
The proposed methodology and strategies for integration of
posit operators into an HLS tool are presented in Section III.
Section IV explains the integration of the posit RTL library
into the tool, while the necessary changes in the design
flow related to memory allocation and integration of new
data formats are detailed in Section V. The application
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Fig. 1. Generic n-bit posit binary encoding.

benchmarks, implementation results and analyses are pre-
sented in Section VII. Finally, Section VIII concludes this

paper.

II. BACKGROUND
A. Posit Notation

Posit arithmetic [15] was introduced in 2017 as an alter-
native to the ubiquitous IEEE 754 floating-point standard to
represent and operate with real numbers. Posit numbers (posits
in short) provide reproducible results across platforms and very
few special cases. Furthermore, they do not support overflow
or underflow, which reduces the complexity of exception
handling.

A posit number configuration is usually defined by two
parameters (n,es )—the total bitwidth n and the exponent
size es, i.e., the number of bits reserved for the expo-
nent field. Although in literature [15], [18], [19] the most
widespread posit formats have been Posit(8, 0), Posit(16, 1)
and Posit(32,2), in the latest version of the Posit Stan-
dard [20], the value of es is fixed to 2. This has the advantage
of simplifying the hardware design and facilitates the con-
version between different posit sizes [21]. Therefore, such a
configuration will be used in the rest of the paper, denoting it
as PositN, with N being the total size and the length of the
exponent field fixed to 2 bits.

Posit arithmetic only distinguishes two special cases: zero
and Not a Real (NaR), which are represented as 0...0 and
10...0, respectively. The rest of the bit patterns are used to
represent different real values, which are composed of four
fields as shown in Fig. 1: a sign bit (s), several bits that encode
the regime value (k), up to es = 2 bits for the exponent (e),
and the remaining bits for the normalized fraction (f). The
regime is a sequence of / identical bits (r) finished with a
negated bit () that encodes an extra scaling factor k given

by (1),
k=[4
I—1

As this field does not have a fixed length, it may cause the
exponent to be encoded with less than 2 bits, even with no
bits if the regime is wide enough. The same occurs with the
fraction, which must be normalized with respect to the size
of the fraction field (27). The variable length of the regime
allows posit arithmetic to have more fraction bits for values
close to =1 (which increases the accuracy within that range),
or to have fewer fraction bits for the sake of more exponent
bits for values with large or small magnitudes (increasing this
way the range of representable values).

The real value p of a generic posit is given by (2). The main
differences with the IEEE 754 floating-point format are the

ifro=0
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existence of the regime field, the use of an unbiased exponent,
and the value of the fraction hidden bit. Usually, in floating-
point arithmetic, the hidden bit is considered to be 1. However,
in the case of posits, it is considered to be 1 if the number is
positive, or —2 if the number is negative [21], [22].

p=(1—=3s+ f) x 2(172)x@kets), )

In posit arithmetic, NaR has a unique representation that
maps to the most negative 2’s complement signed integer.
Consequently, if used in comparison operations, it results
in less than all other posits and equal to itself. Moreover,
the rest of the posit values follow the same ordering as
their corresponding bit representations. These characteristics
allow posit numbers to be compared as if they were 2’s
complement signed integers, eliminating additional hardware
for posit comparison operations [22]. Another interesting
feature of posit arithmetic is that it includes fused operations.
In operations of this kind, which take more than two operands,
intermediate results are accumulated in a larger register called
quire, avoiding intermediate roundings and thus providing
even more accurate results [23], [24].

Although posit arithmetic was designed to have similar
circuitry to the floating-point format, the variable length of
the fields and the signed hidden bit of the fraction requires
redesigning some of the logic when implementing posit oper-
ators. However, such an effort might be compensated by the
benefits of using posit arithmetic—its higher accuracy, when
compared with standard floating-point, can reduce the bitwidth
of the data and operations of scientific computations without
sacrificing the accuracy of the results, with all the benefits this
entails at the hardware level [25].

B. High-Level Synthesis

HLS is an automated design process that, starting from the
high-level description of an application, an RTL component
library, and specific design constraints, finds an RTL structure
that implements the given behavior [7], [8]. The main steps
an HLS tool executes are the following:

1) Compilation. HLS always begins with the compilation
of the functional specification. This first step transforms
the high-level input description (typically ANSI C/C++)
into a formal representation. Usually, it includes several
code optimization, such as data dependency solving,
dead-code elimination, or loop transformations.

2) Allocation. The type and the number of hardware
resources (such as functional units (FUs), storage,
or connectivity components) are defined according to
the design constraints. Such components are selected
from the RTL component libraries. The use of numerical
representations with lower bitwidth has a direct impact
on the hardware resources of the final design, since less
memory and smaller FUs will be allocated instead.

3) Scheduling. All operations required in the specification
model must be scheduled into control steps. This is done
considering the functional components and the operation
priorities and dependencies. Operations can be chained,
or can be scheduled to execute in parallel provided
there are no data dependencies and sufficient available
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resources. Again, different numerical representations
might result in different scheduling results. Typically,
reducing the bitwidth of the signals also reduces the
datapath delay, yielding faster circuits.

4) Binding. Within the computed schedule, each variable
that carries values across control steps must be bound to
a storage unit or register. Variables with non-overlapping
life intervals may share the same register. In a similar
manner, operations must be bound to the capable FUs,
preventing those that execute concurrently from sharing
the same resource instance. Register and FU binding also
depends on interconnection binding, which introduces
the steering logic or connection units (such as buses or
multiplexers) to perform transfers from component to
component. As one may guess, the impact of numerical
representation in the previous steps directly affects the
binding stage. Smaller data might require smaller or
fewer FUs, registers and hardware resources, in general.

5) Netlist generation. The final architecture obtained from
the tasks of allocation, scheduling, and binding is trans-
lated in an RTL model of the synthesized design in a
hardware description language (HDL) like Verilog or
VHDL. This process accesses the resource library, which
embeds the RTL implementation of each resource, and
is target-dependent, so hardware descriptions may differ
for different technologies.

C. Related Work

Our work is focused on the integration of posit arithmetic
into the HLS flow. For that purpose, we start from the
implementation of the required RTL components and then
certain steps of the synthesis process are modified to accom-
modate such an arithmetic format. At the time of writing this
paper, there are few published works exploring the use of
posit arithmetic in HLS. Authors in [16] introduced MArTo,
a C++ library for posit arithmetic compliant with Xilinx
Vivado HLS. It is built on a custom internal representation,
and supports addition, subtraction and multiplication of posit
datatypes, as well as the exact accumulation of posit products.
Although this library is designed from a higher abstraction
level, it requires adapting the source codes to use it, and its
usage is currently limited to the aforementioned operations.
Moreover, experiments in [16] evaluated just the performance
of standalone posit operators, but no results on posit-based
accelerators generated from HLS are given. Similarly, previous
works [17], [18], [26], [27] also compare standalone posit and
floating-point operators. They all conclude that even posits
provide more accurate results under the same bitwidth, posit
units are almost twice as large and twice as slow as the
corresponding IEEE units.

On the other hand, some works [28], [29], [30] have
evaluated the effects of using posit arithmetic not for compu-
tation, but just for data storage in many different applications,
including deep learning or climate modeling. Since posits can
be as accurate as floats with a fewer number of bits, data can be
compressed in a lower-precision posit format with negligible
effect on the accuracy. This results in less memory storage
required per operand, so higher computing bandwidths can be
achieved, or hardware requirements can be reduced this way.
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Fig. 2. HLS flow with support for posit arithmetic and memory customization.

III. PROPOSED APPROACH

In this paper, we consider Bambu, an open-source HLS
research framework [31], [32]. The tool receives as input a
behavioral description of the specification, written in C/C++
language, and generates the HDL description of the cor-
responding RTL implementation as output, which is com-
patible with commercial RTL synthesis tools. In addition,
it is designed in an extremely modular way and supports
floating-point operations through FloPoCo, a generator of
arithmetic floating-point cores [33]. The choice of Bambu
as HLS tool for this work is motivated by its open-source
philosophy and its integration with FloPoCo.

A scheme of the proposed tool flow is depicted in
Fig. 2. To add support for posit arithmetic to the HLS flow,
we designed an RTL library of posit operators based on
FloPoCo, and integrated it within Bambu. The design flow
of the tool was extended to handle such an additional library
without the need of modifying the C/C++ source code. From
the point of view of the programmer, the use of posit arithmetic
for the computation of real numbers should be as transparent
as selecting between single or double-precision floating-point.

Although certain implementation aspects of the proposed
approach are closely tied to the aforementioned software
technologies, the fundamental concepts of our approach can
be extended and potentially applied to other HLS tools. This
would require 1) providing a posit operators library that
provides equivalent functionality to floating-point operations
(either at the RTL or software level), and 2) implementing
an arithmetic back-end selection/substitution mechanism that
preserves the memory infrastructure of the device.

Furthermore, prior research has demonstrated that storing
data in posit format can lead to reduced memory requirements
while preserving accuracy [18], [28]. Such an approach is also
useful when the designers want to customize communication
by reaping the benefits of posits but they still want to use
legacy HLS tools that do not support non-standard formats.
In light of this observation, this study also aims to investigate
the implications of adopting such a design alternative, specif-
ically examining the impact of employing posit numbers in
memory with accelerators that do not inherently support this
arithmetic format. By doing so, we intend to gain insights into
the potential benefits and challenges associated with incor-
porating posit-based memory in systems utilizing non-posit
arithmetic accelerators. Fig. 3 illustrates the different strategies
we evaluated in this work. Case #1 represents the classical

JcruE
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Data R Hard
VErer » ardware
Y G Accelerator
Data
Device Case #1 Case #2 Case #3
Memory Float Posit Posit
Accelerator Float

Fig. 3.  Scheme of the different approaches that use float and/or posit
arithmetic in memory and hardware accelerator.

floating-point approach, and it serves as a reference point. It is
important to note that in case #3, where just floats are used
in the accelerator, certain data conversion processes would
be necessary to ensure compatibility with the data originally
stored in posit format. For each case, we consider both 32 and
64-bit precisions.

IV. LIBRARY OF POSIT OPERATORS

HLS tools transform a high-level specification into an
RTL design. Realistic hardware implementation thus requires
the conversion of floating-point and integer variables into
bit-accurate data types of a specific length (not a standard
byte or word size, as in software) with acceptable computation
accuracy. This is done in the resource allocation step of the
HLS process (see Fig. 4 below), and usually requires RTL
libraries to map the variables and structures in higher abstrac-
tion level to specific hardware components. Bambu has sup-
port for floating-point operators through FloPoCo [33], [34],
an open-source C++ framework that generates floating-point
arithmetic datapaths in synthesizable VHDL from the operator
specifications.

Using FloPoCo, we implemented a library of posit opera-
tors that includes the basic arithmetic operations—addition,
subtraction, multiplication and division—, as well as units
to perform the comparison of operands and conversion with
integer arithmetic. More precisely, we rely on the posit arith-
metic units designed in our previous works [17], [35], [36],
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which have empirically demonstrated to be efficient in terms
of performance and energy. The advantage of designing posit
operators with FloPoCo is that this tool can generate such
operators for any given bitwidth. In this work, we generate
32 and 64-bit accelerators, so the same design is used for
the different bitwidths; FloPoCo automatically adjusts the size
of internal wires and signals according to the specified data
width. The tool also allows pipelining the FUs automatically
according to the specified parameters and target frequency.

In order to verify that the proposed architectures are correct,
exhaustive tests were generated with the reference software
library Universal [37] for 8, 10 and 12-bit posits, as well as
random/corner case tests for 16, 32 and 64-bit posits. All these
tests were successful.

The implementation of parameterizable designs with
FloPoCo makes the creation of the library of posit oper-
ators independent from the design of the final accelerator.
After the compilation step, Bambu detects all the arithmetic
operations that are required in the source code. When a
floating-point operation is detected, Bambu calls FloPoCo with
the corresponding parameters to generate the required operator
according to the design constraints. At this point is were we
can select a different implementation from the IP library, for
example, a posit adder instead of a floating-point adder circuit.
However, the HLS tool must be aware of the latency of such a
component in order to properly generate the entire accelerator,
as will be discussed in Section VI.

Previous works also used the reference tool FloPoCo
to design basic adders and multipliers [17], approximate
FUs [27], or even fused operations with accumulator [16],
[23]. However, such works just focus on the design and
performance of each individual component. In this work,
we additionally developed comparison and conversion units.
Thus, the HLS flow of a program involving basic arithmetic
operations (such as addition, multiplication, division, and
square root) can rely solely on the proposed posit RTL library,
eliminating the need for additional floating-point operations
within the HLS flow.

In addition, we made sure that each of the operators that
constitute the proposed library is at least as efficient as those
proposed by previous works in terms of performance and
hardware resources.

V. MEMORY CUSTOMIZATION

Bambu allows using a wide variety of memory allocation
policies and memory accesses. The HLS tool automatically
infers the memory infrastructure according to the constraints,
commands and types of the operands (e.g., integer, float, etc.).
However, the posit data type is neither available in high-level
languages nor commercial hardware devices, so some extra
effort is needed to customize the memory with posit format.
In this work, we consider the 32-bit and 64-bit precisions of
the different arithmetics. Therefore, float (32-bit) and double
(64-bit) C types are used as replacements for Posit32 and
Posit64, respectively, as they have the same bitwidth, and
therefore memory accesses do not change. Using a different
number of bits would require changing either the memory
inside the accelerator or the compiler (so that it understands
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Algorithm 1 Posit to IEEE 754 float conversion

Require: x € PositN
Ensure: y € Float(E, M)

1: sign < x[N — 1]

2: val < x[N —2:0]

3: if val = 0 then

4: if sign = 0 then

5: ‘ y<«0

6: else

7: L y < NaN

8: else

9: if sign = 0 then

10: | abs_val < val

11: else

12: L abs_val < —val

13: regime, exp, frac < extract_fields(abs_val)
14:

15: biased_exp < {regime, exp} + bias
16: y < {sign, biased_exp, frac}

17:

18: return y

a different kind of floating-point operation), which is out of
scope.

Posit arithmetic claims to have higher accuracy using the
same number of bits, or sufficient accuracy using fewer bits.
When storing data in fewer bits, the total memory footprint
is reduced, reaching lower power and energy consumption.
But also, when transferring data from an external memory
to devices such as FPGAs, using smaller bitwidths might
allow transferring more data simultaneously under the same
bandwidth, increasing the SIMD vectorization and achieving
higher throughput.

In this paper, we compare the effects of using 32-bit posits
in memory with regard to 64-bit floats. While this clearly
halves the size of the external memory, it is important to
evaluate its impact on the accuracy of the results.

In addition to this, we propose a hybrid scenario in which
the memory is customized with posit format while the acceler-
ator logic is kept unchanged in floating-point. The usefulness
of this approach lies in storing the data in a posit format
with a smaller bitwidth than the floating-point format in which
the computations are performed. From the memory point of
view, this is not different from the case when all data is in
posit format. However, under this approach, the input data
must be converted into floating-point format before performing
computations in the accelerator, and the results must be stored
in memory using posit format. The conversion between N-bit
posits and floating-point numbers with E exponent bits and
M fraction bits is depicted in Algorithm 1, and the reverse
analogous process is done for float-to-posit conversion.

VI. PoSIT-AWARE HIGH-LEVEL SYNTHESIS

Performing HLS with a custom arithmetic format such as
posit is not straightforward, since the data format and the RTL
components interfere in multiple steps of the HLS design flow.
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As mentioned in Section II, the synthesis process starts with
the compilation of the C/C++ source code. However, the posit
data type is not supported in such programming languages
or compilers, in contrast to the float or double types. For
that reason, we decided to keep unchanged that part of the
process and perform further modifications in the subsequent
stages of the synthesis. More precisely, we included an option
within Bambu that indicates whether floating-point data in the
high-level specification must be considered as posit arithmetic.
To accomplish this, it is necessary to modify the allocation and
scheduling stages of the HLS flow, as indicated in Fig. 4.
Regarding the allocation stage, we made modifications to
incorporate the posit RTL library. This involved ensuring that
the appropriate library, whether it is the float or posit library,
is called based on the specified configuration of the HLS.
To facilitate the usage of different back-end arithmetic libraries
for end users, we introduced the option —flopoco=posit
within Bambu. When this posit flag is activated, floating-
point operations in the source code are translated in the
corresponding RTL for posit operations defined in FloPoCo.
The allocation step maps them on the set of available FUs:
their characterization includes information, such as latency,
area, and the number of pipeline stages. The pipeline of
the operators is automatically driven by FloPoCo according
to the specified design constraints such as the clock period.
In addition to FUs, also memory resources are allocated, in this
case as detailed in Section V. Along the entire HLS process,
especially during resource allocation and scheduling, it is
necessary to have certain information about each component
in order to perform synthesis optimizations. For this reason,
Bambu adopts a pre-characterization approach. The latency
and resource occupation of every posit FU are obtained by
synthesizing them for multiple combinations of bitwidths,
frequencies and target devices. This has a direct impact on the
scheduling stage of the HLS design flow, and is a common
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approach adopted by other HLS tools such as LegUp [38].
It is worth noting that this pre-characterization needs to
be performed only once, and allows performing aggressive
optimizations. Then, such characterizations are used to select
the most appropriate configuration for each posit FU and
schedule the operations according to the design constraints.
As a result of this work, from the user perspective, performing
HLS in posit arithmetic with Bambu just requires activating
the posit flag, without modifying the C/C++ source codes that
use floating-point data.

As already mentioned, this work also proposes the use of
posit arithmetic in memory (second case in Fig. 3), while
keeping the logic of the accelerator in floating-point. Using
posits as lossy compressed information storage (in 32-bit
precision) can reduce the amount of data transferred up to a
factor 2 with respect to the double-precision accelerator while
maintaining decent accuracies. Also, such an approach is com-
patible with commercial HLS tools that do not support posit
arithmetic. When the data in memory is in a different format
or precision with respect to the logic of the accelerator, data
conversion must be performed before and after performing
computations in the accelerator. For that reason, posit-to-float
and float-to-posit units are designed to convert input data and
output results from the accelerator, respectively. Such FUs are
implemented in FloPoCo (as well as the rest of the units of
the proposed library), so the same parameterized design is
used for different bitwidths. In Bambu, it is possible to map
C functions to hand-written HDL modules, which makes this
process straightforward. What is more, such modules could be
also appended to accelerators generated using floating-point,
which makes this a suitable option for those HLS tools without
support for posit arithmetic. However, when using this hybrid
approach, the corresponding conversions must be considered
in the HLS scheduling stage, as data are converted before and
after the real computation.

One may notice that 32-bit posits have higher accuracy
(or precision bits) than 32-bit floats, but lower than 64-bit
floats. Thus, conversion from a more accurate format to
a less accurate one requires handling proper rounding to
mitigate error. Reducing the number of bits in memory has
clear benefits in the design of accelerators—higher computing
bandwidths can be achieved while reaching lower power and
energy consumptions—, but this comes at a cost—additional
hardware is necessary for data conversion, and error might
increase due to rounding.

VII. HARDWARE EVALUATION

While previous works have already analyzed the hardware
cost of posit arithmetic in the context of individual arithmetic
operations, there is not much information about how all these
pieces fit together. In this section, we analyzed the impact
of the different arithmetic formats in the design of hardware
accelerators for real applications.

A. Experimental Setup

The effects that each of the schemes depicted in Fig. 3 has
in terms of hardware resources and latency when performing
HLS, were evaluated. It is also important to have an under-
standing of the accuracy of each approach. For cases #1, #2
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and #3, both 32 and 64-bit precision were considered. When
the memories and accelerator logic have different represen-
tations, 32-bit posit format (Posit32) is used on the memory
side.

To compare the performance of the different approaches,
we extracted a series of numerical benchmarks from the
PolyBench 4.2 suite,' which includes many common algo-
rithms in fields such as linear algebra, data mining, and
image processing. In particular, we have chosen the following
representative benchmarks:

« 3mm: Linear algebra kernel that consists of three matrix
multiplications G = ((AB)(CD)).

o cholesky: Cholesky decomposition of a positive-definite
matrix A into a lower triangular matrix L such that
A=LLT.

« covariance: Computes the covariance of N data points,
each with M attributes.

« fdtd-2d: Simplified finite-difference time-domain method
for 2D data. It models electric and magnetic fields based
on Maxwell’s equations.

o gemm: General matrix-matrix product from BLAS,
C =aAB+ BC.

e ludemp: LU decomposition followed by forward and
backward substitutions to solve a system of linear
equations.

PolyBench implements each benchmark in a single file, with
some header parameters and a series of compile-time direc-
tives, including the data format and dataset size. We configured
PolyBench to use 32-bit and 64-bit precision for all our exper-
iments. For numerical accuracy evaluation, the code structure
was kept unchanged, including the initialization phase which
populated the input data to the algorithms, just modifying the
data format and test size for different experiments.

For hardware evaluation, the focus is on the HLS generated
accelerators for main kernel computation. Thus, we eliminate
the initialization phase when performing synthesis, while the
kernel core remains unchanged. Instead, we add a wrapper
around the kernel that creates a local copy of the data in the
accelerator. This has two consequences. First, when working
with arrays, it is faster to access the accelerator’s local memory
rather than the host machine’s memory, which significantly
reduces the latency of the accelerators. On the other hand,
in case #3, where the memory data is assumed to be in
posit format but the computation is performed in floating-
point, it is necessary to convert the data to the latter format
before operating, and back to the former at the end of the
computation. Although this conversion could be applied each
time an operation is performed, in cases such as gemm,
where the same piece of data is used for several intermediate
computations, this approach has a negative impact on operator
latency. However, performing this conversion only once per
single datum and storing it in local memory allows to reduce
the number of conversions (and clock cycles), at the cost
of higher hardware resource cost. To have a fair comparison
across the proposed approaches, this approach is considered
in all the experiments. Performing data conversions at every
single operation might reduce the amount of memory required

1 https://sourceforge.net/projects/polybench/
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in the FPGA at the cost of increasing the data transfers
between the accelerator and the host device, but such a study
is out of the scope of this work.

We performed HLS of each application with Bambu target-
ing a Xilinx Artix-7 (XC7A100T-1CSG324C) FPGA device.
In particular, for the HLS with Bambu we included the options
-no—iob (so primary ports from the IOB are disconnected,
and large arrays can be instantiated in the target device)
and -experimental-setup=VVD (which provides sim-
ilar settings for RTL synthesis as the commercial solution
Vivado HLS). Under this approach, all objects and internal
variables that need to be stored in memory are allocated on
BRAMs rather than on external memory. To select a suitable
target frequency for the HLS, we conducted detailed tests for
individual arithmetic operators targeting different maximum
clock frequencies, which allow us to obtain more details in
this regard. Xilinx Vivado 2021.2 was used to perform the
logic synthesis for the comparison of hardware resources.

To generate floating-point logic for the accelerators, the
option ~flopoco=float was used, so the floating-point
FUs are the ones provided by FloPoCo. However, such units
are non-compliant with the IEEE 754 standard: although the
memory format is in IEEE 754 format, subnormals are flushed
to zero to save resources. This could produce inaccurate
results in applications that make use of such small-magnitude
data. Also, exceptions are handled in a much simpler way
as required by the standard, and just a single rounding mode
is implemented (round to nearest, ties to even), rather than
the five rounding rules defined in the standard. Therefore,
it should be kept in mind that a fully IEEE 754-compliant
implementation would incur a much higher overhead than the
current one. On the other hand, we extended Bambu with the
option —flopoco=posit to allocate posit FUs in the final
accelerator. Such units are fully compliant with the current
posit standard [20].

Lastly, it is important to mention that all programs in this
evaluation were compiled with the —O3 optimization option,
which applies a standard set of optimizations. By adopting
this approach, the focus is placed squarely on the capabilities
and limitations of the HLS tool itself, without introducing
additional custom optimization strategies. This allows for
a clear assessment of the baseline performance achievable
through compiler optimizations alone.

B. Numerical Error

Prior to the synthesis evaluation, it is important to ascertain
the benefit of each of the encodings proposed in this work
in terms of numerical accuracy. In order to evaluate the
error of each approach, we performed software simulations
of each experiment for multiple dataset sizes ranging from
MINI to LARGE. The error is computed by the Frobenius
(or element-wise) norm against the result obtained with an
extended precision format. Such a metric becomes useful
when comparing the precision of different arithmetic formats,
as it effectively measures how much two simulations deviate
from each other by penalizing large errors and giving less
importance to minor differences. In fact, it can be used for
either scalars or matrices and vectors, which is the case in the
PolyBench applications.
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Fig. 5. PolyBench benchmarks error comparison for different number formats.

To obtain these metrics, we compared the results of the three
cases depicted in Fig. 3 (under both 32 and 64-bit precision)
to the same algorithm computed using the double extended
80-bit format present in x86 processors. The relative error
results (with respect to the norm of the baseline) are shown
in Fig. 5. Note the logarithmic scale on the Y-axis. The trend
in every benchmark is a significantly lower error when using
posit numbers. This is up around one order of magnitude for
32 bits, and between two and three orders less in the case of
64 bits, depending on the benchmark.

Case #3, which mixes both arithmetic formats reveals that
using Posit32 in memory rather than Float64 and performing
computations in the former precision can be a useful option
when posit circuitry is not available, and provides less error
than using Float32 and even Posit32. On the other hand, results
show that, from the point of view of accuracy, there is no
benefit in performing computations with a less accurate format
than the stored data.

Once the error of the different proposed formats and
approaches has been characterized, we will evaluate the per-
formance of specific accelerators using HLS.

C. Operation-Level Evaluation

Prior to the HLS of the PolyBench applications, a synthesis
evaluation of the basic arithmetic operators has been conducted
as the initial step in our assessment of the FPGA imple-
mentation results. This evaluation aimed to provide a more
fine-grained and detailed analysis of the outcomes, isolating
as much as possible the library of posit arithmetic operators
from the rest of the HLS tool. By focusing on individual
operations within the hardware design, we were able to gain
in-depth insights into the performance, efficiency, and potential
bottlenecks at a granular level. The findings and observations
obtained from this operation-level evaluation will guide the
subsequent evaluation of complete applications.

The synthesis results for each arithmetic unit, as well as the
clock cycles obtained by the RTL simulation, are reported in
Fig. 6. Posit adders require about 1.5x hardware resources
(LUTs and FFs) than the corresponding float units, while
this overhead is between 2x and 6x for the rest of the
operators. Nonetheless, the amount of resources required by
Posit32 is always fewer than by Float64 units. Regarding
the frequency, all the functional units except the Float64
multiplier satisfy the timing target conditions up to 150 MHz.
For a target frequency of 200 MHz a few operators violate
the timing constraint, and none of them reach 300 MHz.
Therefore, 150 MHz is a clear candidate as the target fre-
quency for the HLS of complex applications. Finally, it must
be noted how the iterative algorithm used for division and
square root has a direct impact on the latency of such units
as the target frequency increases, especially for the Posit64
format.

In addition to the resources shown in Fig. 6, HLS results
show that, independently of the target frequency, the 32 and
64-bit floating-point multipliers require 2 and 9 DSPs, respec-
tively, and the corresponding posit multipliers make use
of 2 and 12 DSPs, respectively. Also, the design of the
floating-point division includes a table for fast computation,
which requires 7 and 14 extra BRAMs when synthesizing the
32 and 64-bit designs, respectively.

Case #3 proposed in this work considers input data to be
in Posit32 format, while the computation done within the
accelerator is in floating-point. For this hybrid scenario, input
and output data conversion must be done, so it is important to
evaluate separately the hardware overhead of such conversions.
Synthesis results are reported in Fig. 7. As can be seen, the
library of posit converters can be synthesized with Bambu
up to 300 MHz seamlessly. In addition, the units exhibit
quite low latency (3 cycles or less) when targeting up to
150 MHz.
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1) Comparison With Previous Works: To the best of our
knowledge, MArTo [16] is the only library that provides
posit arithmetic support for HLS up to date. It consists of a
templatized C++ library compliant with Vitis HLS. It currently
offers standalone posit adders, subtracters, and multipliers,
but does not support operations such as division, square root,
or comparison, unlike the proposed work. We use Vitis HLS
2021.2 to perform HLS of the designs, targeting the same
device (Artix-7) and frequency (150 MHz). The RTL synthesis
is performed by Xilinx Vivado with the default configura-
tion. Although the focus of this work is posit arithmetic,

50 100 150 200 250 300 50 100 150 200 250 300
Target Frequency (MHz) Target Frequency (MHz)

(d) Square root

floating-point designs are generated as well for better compar-
ison and understanding of the results. It is worth mentioning
that while MArTo provides arithmetic units designs for posit
arithmetic, the floating-point units are from the proprietary
Xilinx Floating-Point Operator IP.

In the same manner as with Bambu, we first conduct exper-
iments for single arithmetic operators. Note that, in this case,
we are not only using a different posit operator library, but also
the HLS tool changes. Therefore, such an operator-level eval-
uation allows us to isolate as much as possible the differences
between different HLS tools and to be able to analyze in more
detail the differences between the two posit operator libraries.
The synthesis results for posit addition and multiplication
units provided by MArTo under different target frequencies
are depicted in Fig. 8.

In contrast with the proposed library of posit operators,
in this case, the Posit32 units require even more area than
the corresponding Float64 operators. When compared with
Fig. 6, on average the 32-bit floating-point adders generated
with FloPoCo/Bambu require up to 1.5x more LUTs and
1.33x more FFs than the ones generated with MArTo/Vitis
(respectively, 1.26x and 1.36x for 64-bit adders). However,
the situation is very different with respect to posit adders. The
units generated with the latter tools require on average 4.14x
more LUTs and 2.66x more FFs than the proposed 32-bit
units (respectively, 3.7x and 2.25x for 64-bit posit adders).
The same behavior is observed in the multiplier units, which
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Fig. 8. Vitis HLS results for basic arithmetic MArTo [16] operators.

also make use of DSP units, again with an overhead for those
multipliers defined at the MArTo library.

If comparing the latency of the operators, noticeable differ-
ences are found between the posit libraries. The 32-bit adders
from MArTo require 1.74x more cycles, on average, than
the proposed units (1.54x more for 64-bit adders), and for
the 32-bit multipliers, the overhead is 1.36x more cycles,
on average (1.25x for the 64-bit units).

Overall, we can conclude that at the operation level, the
library of posit operators for HLS proposed in this work
presents more efficient units in terms of both area and per-
formance than those proposed in previous works.

D. Application-Level Evaluation

By considering the behavior of a diverse range of applica-
tions, we aim to assess the suitability and efficacy of utilizing
floating-point and posit formats in accelerators for real-world
applications. The chosen PolyBench programs were synthe-
sized with Bambu. This evaluation leverages the frequency
results obtained from the operation-level analysis. In consid-
eration of the above results, a target frequency of 150 MHz
has been set for all experiments.

Synthesis results for the multiple benchmarks under the
MINTI dataset size are depicted in Fig. 9. Larger sizes mainly
affected the latency of the accelerators, in the same proportion
for all the cases. Although each benchmark yields different
results, similar patterns can be found in each of the metrics.
In addition, the geometric mean across the proposed bench-
marks is included for the sake of comprehension.

As can be seen, when comparing LUTs and FFs between
cases #1 and #2, there are two patterns clearly distinguishable.
For the applications that only require addition and multi-
plication, the posit overhead is slightly higher than for the
floating-point case, between 1.06x and 1.45x. On the other
hand, for cholesky, covariance and ludcmp benchmarks, the
overhead of posit accelerators ranges from 1.58x to 3.96x.
This corresponds to the applications using division and square
root. As shown in Fig. 6, those posit operators required much
more hardware resources in comparison with the floating-point
ones, especially in the case of Posit64. Such a discrepancy
suggests that the posit division and square root operators are
not optimized as well as the corresponding floating-point units.

50 100 150 200 250 300 50 100 150 200 250 300
Target Frequency (MHz) Target Frequency (MHz)

(b) Multiplication

Overall, the Posit32 accelerators have an average overhead of
1.46x and 1.72x in terms of LUTs and FFs, respectively, and
similarly, for the 64-bit case, the LUTs and FFs overhead is
1.73x and 2.12x, respectively.

As for the use of DSPs, all benchmarks show exactly the
same result, which in turn is the same as the one requiring a
single multiplier unit, as mentioned above. This reveals that
the amount of floating-point or posit multipliers is constant
(and equal to one) across the experiments. This is in line with
the behavior of Bambu, which allocates a single instance of
each function/floating-point operation.

For BRAMs evaluation, again two different patterns can
be distinguished between the applications that use division
and those that do not. As has been mentioned, floating-point
division units require 7 and 14 extra BRAMs for 32 and
64-bit designs, respectively. For the rest of the applications,
the amount of BRAMs required by posit-based accelerators is
the same as that used by floating-point kernels since they are
encoded with the same number of bits.

Although the target frequency is set at 150 MHz, as shown
in Fig. 9 this cannot be satisfied by all benchmarks. In par-
ticular, only 32-bit benchmarks satisfy this timing condition
in most cases. The other time-related metric, latency, presents
more differences between number formats. Posit32 requires
between 1.09x up to 1.56x more cycles than Float32 accel-
erators (1.30x more on average), while the overhead for 64-bit
formats ranges from 1.29x to 1.98x (1.59x more on average).
Again, the higher increments are on the benchmarks that make
use of division and square root operators.

Case #3 is worth mentioning separately. The amount of
DSPs and BRAMs is exactly the same as their floating-point
counterpart, since the arithmetic units employed in this hybrid
scenario are the same as for case #1. However, as depicted
in Fig. 7, such conversions introduce certain hardware over-
head (about 10-15% more LUTs for 32-64 bits, and about
18-19% more FFs for 32-64 bits, respectively). In addition, the
posit-float conversion also requires some extra clock cycles,
but this is just 1 or 2 cycles per conversion, which results
in less than 3% of overhead when considering any of the
PolyBench programs.

1) Comparison with Previous Works: For a further compar-
ison, we used MArTo to generate posit-based accelerators for
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Fig. 10. Vitis HLS results for PolyBench benchmarks.

the aforementioned PolyBench applications supported by this
tool, i.e., excluding cholesky, covariance and ludcmp because
they use division and square root, which is not supported.
Within MArTo, posit multiplications return an internal data
format that must be converted back into posit, and subtractions
must be re-written as additions with negative numbers, among
other changes that must be done in the source code. Again,
we use Xilinx Vitis to perform the HLS of the designs.

As can be seen in Fig. 10, the designs obtained with Vitis
HLS lead to very different synthesis results than the ones
generated with Bambu. At first glance, it can be seen that in
this scenario the Posit32 accelerators generally require more
LUTSs and FFs than the Float64 accelerators, and also exhibit
higher latency than the latter. In contrast to the previous
case, the synthesis results for Vitis vary considerably between
the benchmarks. Although there are important differences

in the floating-point case, let us focus on the comparison in
the posit designs between the two HLS tools. Comparing the
Vitis accelerators with the one generated by Bambu, it can
be seen that, except for the fdtd-2d application (where the
posit designs do not use any DSPs), the designs generated
by Vitis generally require more hardware resources (between
2.6x and 8.8x more LUTs, 2.1x and 16.3x more FFs, and
0.91x and 8.5x more DSPs, depending on the application and
format). On the other hand, the number of BRAMs used for
Vitis designs is half that of Bambu designs.

This hardware overhead has certain advantages in terms of
frequency, as the designs generated with MArTo and Vitis
meet the target frequency in all the benchmarks, even for the
64-bit scenario. The latency is also lower than for the Bambu
accelerators. This may seem to contradict the conclusions of
the previous operator-level comparison. However, there are
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two aspects that need to be highlighted here. First, as can
be seen, not only is the latency of the posit-based accelerators
lower, but so is that of the floating-point accelerators. Also,
according to the official Xilinx documentation [39], the default
operation of Vitis HLS is to first maximize performance,
while Bambu generates a single instance of each function or
floating-point operation (even if there are multiple call points
in the program), thus providing more area-efficient designs.

The reason for this discrepancy in results is therefore
the scheduling and binding algorithms used by the different
HLS tools, rather than differences in RTL design. However,
it should be remembered that the purpose of this study is to
analyze the impact of the different encodings, rather than to
compare the performance of different HLS tools. In this sense,
the results obtained with Vitis for the PolyBench application
follow the same patterns observed in the previous analysis for
the basic arithmetic operations, i.e., the use of posit arithmetic
requires higher latency and more hardware resources than even
Float64.

Despite the potential benefits of Vitis HLS, our evaluations
indicate that our posit library leads to higher performance and
lower area under the same HLS tool. Specifically, our exper-
iments show that the Posit32 (respectively, Posit64) designs
produced by MArTo require, on average, 1.57x (respectively,
1.64 x) more clock cycles than the corresponding float designs.
However, the same set of Posit32 (respectively, Posit64)
accelerators proposed in this work exhibits a lower latency
overhead of 1.15x (respectively, 1.40x) compared to the float
designs. Also, in terms of area requirements, the posit designs
from MArTo present a higher increment factor with respect
to the corresponding designs in floating-point. For example,
the Posit32 designs from previous work use on average 3.1x
more LUTs and 2.67x more FFs than the Float32 designs,
while the increment in the proposed work is just of 1.15x
and 1.19x for LUTs and FFs, respectively. Similar figures are
obtained for 64-bit precision.

VIII. CONCLUSION AND FUTURE WORK

This paper presented an end-to-end HLS flow with support
for posit arithmetic to create custom accelerators that exploit
the higher accuracy of such arithmetic format. Additionally,
a memory customization approach that uses posit numbers
in memory while keeping the logic of the accelerators in
floating-point is proposed, leveraging the benefits of posits
in situations where there is no support for this alternative
format. These solutions are implemented on top of open-source
tools like FloPoCo (for implementation of the RTL library
of posit operators) and Bambu (for the HLS). To illustrate
the capabilities of the proposed workflow, as well as analyze
the effects of the different arithmetic formats, floating-point
and posit kernels for computer-intensive applications were
deployed. The results showed that posit arithmetic consis-
tently outperforms classical floating-point notations in terms
of accuracy, without increasing memory usage or requiring
additional bits for numerical representation. This finding could
be particularly valuable in scenarios where memory is a
critical resource or where the cost of expanding memory
outweighs the benefits of improved accuracy. However, such
extra accuracy has an associated cost. The 32-bit posit-based
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accelerators require about 1.46x more LUTs, 1.73x more
FFs, and 1.30x more cycles than the corresponding floating-
point accelerators. The proposed HLS flow was compared
with previous works that rely on commercial HLS tools. The
FPGA synthesis outcomes demonstrate that, when compared
to the corresponding accelerators devised for floating-point
arithmetic, the proposed posit designs exhibit reduced over-
head than those from previous works. Overall, the findings
of this paper demonstrate a clear trade-off between precision
and hardware resources in posit arithmetic. Consequently, the
decision to utilize and implement a specific format should be
left to the discretion of the hardware designers, taking into
consideration their specific requirements and constraints.

In the future, integration of posit fused arithmetic (using
the quire accumulator) in the HLS flow will be explored,
which will provide even more accurate results. The proposed
workflow will be further optimized to reduce the current gap
between posit and floating-point arithmetic.
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