
3992 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Serial Butterflies for Non-Power-of-Two
FFT Architectures in 5G and Beyond

Víctor Manuel Bautista , Mario Garrido , Senior Member, IEEE,
and Marisa López-Vallejo, Senior Member, IEEE

Abstract— This paper presents new serial butterflies for non-
power-of-two (NP2) fast Fourier transform (FFT) architectures.
The paper considers radices 2, 3, 4, and 5, which are used
in FFTs for 5G systems. Current designs for non-power-of-two
FFTs are mostly based on the single-path delay feedback (SDF)
architecture. This type of architecture processes data arriving in
series. However, it uses butterflies with several parallel inputs.
This results in low utilization, as the butterflies have to wait
for all the inputs before they start to process them. Conversely,
the proposed approach allows to calculate the butterflies on
data that arrive in series. This removes waiting times and
reduces the number of hardware components such as multipliers
and adders. As a result, the proposed butterflies achieve high
performance and provide a significant reduction in area and
power consumption with respect to parallel butterflies. Thus,
they are an efficient solution when data must be processed in
series in the butterflies.

Index Terms— Fast Fourier transform (FFT), non-power-of-
two (NP2), pipeline architecture, serial butterfly, single-path delay
feedback (SDF), serial commutator (SC).

I. INTRODUCTION

THE Fourier transform [1] is a key component in 5G
communication systems [2]. This mathematical operation

transforms a signal from the time domain into the frequency
domain. The discrete version of the Fourier transform is called
discrete Fourier transform (DFT). To calculate the DFT, the
fast Fourier transform (FFT) algorithm proposed by Cooley
and Tukey [3] reduces the operation complexity from O(N 2)
in the DFT to O(N log N) in the FFT.

In 5G communications, the size of the FFTs is obtained
as a product of powers of 2, 3, and 5, as is detailed in its
physical layer description [2]. This motivates the need for
designing non-power-of-two (NP2) FFTs. During the 20th
century, several algorithms were proposed to make NP2 FFTs
more efficient, such as those by Rader [4] and Winograd [5].
Furthermore, other NP2 algorithms such as the prime factor
algorithm [6], [7], [8] have been proposed.

Manuscript received 22 March 2023; revised 1 July 2023; accepted 19 July
2023. Date of publication 2 August 2023; date of current version
29 September 2023. This work was supported in part by MCIN/AEI/10.13039/
501100011033 and “ERDF-A way of making Europe” under Project PID2021-
126991NA-I00 and in part by MCIN/AEI/10.13039/501100011033 and
“ESF-Investing in your future” under Grant RYC2018-025384-I. This arti-
cle was recommended by Associate Editor J. Di. (Corresponding author:
Víctor Manuel Bautista.)

The authors are with the Department of Electronic Engineering, ETSI
de Telecomunicación, Universidad Politécnica de Madrid (UPM), 28040
Madrid, Spain (e-mail: victor.bautista@upm.es; mario.garrido@upm.es;
m.lopez.vallejo@upm.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2023.3298207.

Digital Object Identifier 10.1109/TCSI.2023.3298207

When the FFT algorithm is implemented in hardware,
pipelined architectures allow for high performance [9], [10],
[11], [12], [13], [14], [15]. In fact, the field of pipelined FFT
hardware architectures has been deeply developed during the
last decades [16]. These designs have reached a high degree
of optimization for power-of-two (P2) sizes [17]. Compared
to them, the architectures that consider NP2 sizes have been
barely explored, due to the higher complexity that algorithms
for NP2 sizes [4], [5], [6], [7], [8] involve. The consequence
of this fact for communication systems is that NP2 FFT
architectures are barely used. Even when the most suitable
FFT size in the system were a non-power-of-two FFT, it is
common to use a higher size that is a power of two instead.

Nowadays, pipelined FFT hardware architectures for NP2
sizes mostly consider single-path delay feedback (SDF) archi-
tectures [18], [19], [20], [21], [22], [23], [24], [25], [26], with
the exception of [27]. However, for NP2 sizes, SDF architec-
tures are not as efficient as could be expected: Although SDF
architectures process data in series at a rate of one sample
per clock cycle, the butterflies that they use operate data in
parallel. This means that the butterflies are only working for
a fraction of the time, whereas the rest of the time they wait
for new data. This leads to a utilization of the butterflies in
SDF FFTs of 1/r , where r is the radix of the butterfly. Thus,
in the best case, the utilization is 50% when using radix-2
butterflies, 33% for radix-3, 25% for radix-4, and 20% for
radix-5. As a consequence, there is room for improving the
butterflies by increasing their utilization and removing waiting
times. In order to achieve this, a feasible approach is to develop
serial butterflies with one input and one output that process one
sample per clock cycle, instead of processing several samples
per clock cycle in parallel. With this aim, previous works
have been proposed in [26], [27], and [28]. In [26], a novel
design for a radix-3 SDF butterfly is presented. This butterfly
distributes the operations along three stages connected in
series. In [27] a 2-parallel radix-3 butterfly is designed, which
processes two simultaneous 3-point FFTs by sharing adders
and multipliers along a pipeline. Finally, in [28], radix-3 and
radix-5 serial butterflies are designed by using a low number
of adders and registers. These butterflies are based on reusing
radix-2 modules.

In this paper, new efficient serial pipelined butterflies for
radices 2, 3, 4, and 5 are proposed. These butterflies reach a
high utilization that allows for achieving low area and high
performance simultaneously. The proposed designs focus on
minimizing hardware-consuming components such as adders
and multipliers. The strategy that has been followed is to

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5077-4210
https://orcid.org/0000-0001-5739-3544

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 3993

divide the complex-valued calculations of the butterflies into
operations with real-valued data. Then, these operations are
distributed along a pipelined circuit. This, combined with a
carefully designed data management, leads to serial butterflies
with a high degree of optimization. The preliminary version
of the serial butterflies proposed in this paper was developed
in the author’s Bachelor Thesis [29]. This paper provides the
scientific publication of that work and completes it with new
implementations, experimental results, and comparison. The
proposed butterflies are suitable for future non-power-of-two
serial commutator (SC) FFT architectures [10], where the
processing elements operate on data that arrive in series in
consecutive clock cycles.

The novelty and contribution of the paper can be observed
at various levels. First, this paper is the first work that deals
in a rigorous way with the design of serial butterflies. Second,
the paper is the first one that highlights and faces one of
the key problems in NP2 FFTs, which is the low utilization
of butterflies. Third, the paper presents efficient solutions to
tackle this problem. Fourth, the challenge of designing the
butterflies in the paper required a thorough analysis of the
data flow in order to obtain an order of operations that reduces
the hardware components. Finally, we have pursued that the
paper is complete, providing any information related to the
proposed butterflies that may be relevant for the reader. The
reason is that the design of optimized butterflies is fundamental
for the design of efficient NP2 FFTs. Without them, future NP2
FFT will not be feasible in communication systems, because
they would still require a large amount of hardware, as they
do nowadays. Thus, the final goal that this work pursues
is to develop NP2 FFT architectures that are as efficient as
power-of-two ones. With this goal, communication systems
will be able to implement NP2 FFTs instead of being forced
to resort to P2 FFT sizes. This ambitious goal of deriving
efficient NP2 FFT architectures will take place in several
steps. In this paper, we set the first stone to build NP2
FFT architecture by developing efficient butterflies for NP2.
In future works, we will present new efficient algorithms for
NP2 FFTs, shuffling circuits to calculate the permutations
in NP2 FFTs, and, finally, the desired efficient NP2 FFT
architectures.

The paper is organized as follows: In Section II, the state-
of-the-art is reviewed. In Section III, the proposed serial but-
terflies are presented and analyzed in detail. In Section IV, the
proposed designs are compared to previous ones. In Section V,
implementation results on FPGA and ASIC are reported and
compared with parallel butterflies. Finally, in Section VI, the
main conclusions of the paper are provided.

II. BACKGROUND

A. The FFT

An N -point discrete Fourier transform (DFT) of a discrete
complex signal x[n] is defined as

X [k] =

N−1∑
n=0

x[n] · W nk
N , k = 0, 1, . . . , N − 1, (1)

Fig. 1. Signal flow graph of the radix-2 butterfly.

Fig. 2. Signal flow graph of the radix-3 butterfly.

where X [k] represents the output at frequency k. The term
W nk

N = e− j 2π
N nk is called twiddle factor and calculates a

rotation in the complex plane. The FFT algorithm divides the
N -point DFT into smaller DFTs whose sizes are factors of
N , being the product of all of these sizes equal to N . The
minimum possible sizes correspond to the case when N is
decomposed into prime numbers. The processing elements
that calculate these small DFTs are called butterflies. In this
paper, we consider butterflies of sizes 2, 3, 4, and 5, which
are relevant sizes in FFTs for 5G.

B. Butterflies

A radix-r butterfly calculates an r -point DFT. Fig. 1 shows
the signal flow graph (SFG) of a radix-2 butterfly. It consists
of an addition and a subtraction according to

X [0] = x[0] + x[1], (2a)
X [1] = x[0] − x[1]. (2b)

It can be observed that these operations correspond to the
calculation of the DFT in (1) for N = 2 points.

Fig. 2 shows the signal flow graph of a radix-3 butterfly
based on Rader’s algorithm [4]. According to (1), it carries
out rotations by 0◦, 120◦ and −120◦. The operations that are
extracted from the flow graph are

X [0] = x[0] + x[1] + x[2], (3a)

X [1] = x[0] −
1
2
(x[1] + x[2]) − j

√
3

2
(x[1] − x[2]), (3b)

X [2] = x[0] −
1
2
(x[1] + x[2]) + j

√
3

2
(x[1] − x[2]). (3c)

The radix-3 flow graph reuses the products that appear in (3b)
and (3c). Thus, only two multiplications have to be calculated
in the flow graph. The multiplication by − j

√
3

2 involves two
real multiplications, whereas the multiplication by 1/2 can be
calculated with a bit shift and, therefore, it does not have any
hardware cost. Additionally, in the radix-3 butterfly, 6 complex
additions are calculated.

Fig. 3 represents the flow graph of the radix-4 butterfly.
The operations that are carried out are

X [0] = (x[0] + x[2]) + (x[1] + x[3]), (4a)

3994 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Fig. 3. Signal flow graph of the radix-4 butterfly.

Fig. 4. Signal flow graph of the radix-5 butterfly.

TABLE I
VALUES FOR THE COEFFICIENTS IN THE RADIX-5 FLOW GRAPH OF FIG. 4

X [1] = (x[0] − x[2]) − j (x[1] − x[3]), (4b)
X [2] = (x[0] + x[2]) − (x[1] + x[3]), (4c)
X [3] = (x[0] − x[2]) + j (x[1] − x[3]). (4d)

The flow graph of the radix-4 butterfly includes a multiplica-
tion by − j , which corresponds to a rotation of −90◦ in the
complex plane. Rotations by 0◦, 90◦, 180, and −90◦ are called
trivial rotations because they can be calculated by changing the
real/imaginary parts of the input and/or changing its sign. This
makes it possible to avoid the implementation of multipliers
in the radix-4 butterfly. Regarding adders, the radix-4 butterfly
requires 8 complex adders.

Fig. 4 shows a signal flow graph of the radix-5 butterfly. It is
based on the Winograd’s algorithm [5]. However, in Fig. 4 we
have reordered the operations of the third stage so that the
first multiplication is by K1 = −1/4. This allows to replace
the multiplier in the Winograd’s algorithm with a bit shift in
hardware. Table I lists the values of the coefficients for the
multiplications. The values of K3 and K5 also change with
respect to the Winograd’s algorithm, because a different order
for the input data is considered. The flow graph in Fig. 4
requires the calculation of 17 complex additions and 8 real
multiplications.

Fig. 5. Stage of a radix-2 SDF FFT.

C. SDF FFT Architectures

SDF FFT architectures are the most common pipelined
architectures used to process NP2 FFTs [19], [21], [22], [23],
[24], [25], [26], [27]. Fig. 5 shows an SDF stage that uses a
radix-2 butterfly. Input data arrive in series during consecutive
clock cycles. The first half of the inputs is streamed to the
buffer. While the buffer is being filled, the butterfly is not used.
When the buffer is full, the output of the buffer is streamed to
the upper input of the butterfly to operate these samples with
the new input data. When the butterfly starts to work, half of
the processed data is streamed to the rotator, while the other
half is stored in the buffer. Finally, the data stored in the buffer
is streamed to the output. This process repeats periodically as
new data arrive at the circuit.

In the general case of radix-r , the stage consists of
r − 1 buffers, a radix-r butterfly, and multiplexers. The higher
the radix, the more buffers the circuit has and the less time the
butterfly is used. As a result, the utilization of each butterfly
in an SDF architecture is reduced to 1/r . Thus, the butterflies
reach 50% utilization in radix-2, 33% in radix-3, 25% in
radix-4, and 20% in radix-5.

III. PROPOSED SERIAL BUTTERFLIES

A. Theoretical Limits

Radix-r butterflies in SDF architectures have r inputs and
they correspond to the direct implementation of the flow
graphs in Figs. 1, 2, 3 and 4. However, as serial FFT
architectures only process one input per clock cycle, there is
no need to use butterflies with several inputs in parallel. Thus,
the proposed designs have only one input and one output, and
process one sample per clock cycle. As a result, it is possible to
reduce the area of the butterflies by serializing the operations
of the signal flow graphs. The minimum number of real adders
and real multipliers that a serial implementation of a butterfly
can reach are

Real addersmin =

⌈
Real additions in SFG

r

⌉
, (5a)

Real multipliersmin =

⌈
Real multiplications in SFG

r

⌉
,

(5b)

where ⌈·⌉ represents a ceiling operation. Table II shows the
number of real operations that appear in the direct implemen-
tation of the signal flow graph and the minimum number of
real multipliers and real adders that a serial implementation
can reach. Therefore, it is theoretically possible to reduce the
number of elements by a factor r or close to r , leading to less
area usage.

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 3995

TABLE II
THEORETICAL MINIMUM NUMBER OF ELEMENTS THAT CAN BE

ACHIEVED IN A SERIAL IMPLEMENTATION OF A BUTTERFLY

Fig. 6. Proposed radix-2 serial butterfly.

B. Proposed Radix-2 Serial Butterfly

In the radix-2 butterfly in Fig. 1, data are complex-valued.
Thus, it calculates

Xr,0 = xr,0 + xr,1, (6a)
Xr,1 = xr,0 − xr,1, (6b)
X i,0 = xi,0 + xi,1, (6c)
X i,1 = xi,0 − xi,1, (6d)

where x[0] = xr,0+ j xi,0 is the upper input, x[1] = xr,1+ j xi,1
is the lower input, X [0] = Xr,0 + j X i,0 is the upper output
and X [1] = Xr,1 + j X i,1 is the lower output. According to
this, Fig. 6 shows the proposed radix-2 serial butterfly. The
design of this butterfly is inspired by the serial commutator
processing element [10] and consists of an adder, a subtractor,
four multiplexers, four registers, and zero multipliers. Note
that the number of real adders and real multipliers correspond
to the minimum values according to Table II. The circuit
processes one sample per clock cycle, which is first separated
into its real and imaginary parts. These parts are sent to
the upper and lower branches of the circuit, respectively.
Before and after the adders, the circuit includes serial-parallel
permutation circuits [30], which consist of two multiplexers
and two registers each. These circuits are used for reordering
data. Finally, the circuit provides the real and imaginary parts
of the data at the upper and lower branches, respectively.

Table III shows the timing diagram of the proposed radix-2
serial butterfly. Each row of the timing diagram corresponds
to a signal of the circuit shown in Fig. 6. Note that letters
are added to Fig. 6 to identify these signals. The first two
signals in Table III represent the values of the control signals
of the multiplexers. The next two rows represent the real and
imaginary parts of the input data, which arrive at the same
clock cycle. Signals A to H represent intermediate nodes of
the circuit. Finally, the last two rows represent the real and
imaginary parts of the output data, which are provided at
the same clock cycle. Pairs of data to be processed in the

TABLE III
TIMING DIAGRAM OF THE PROPOSED RADIX-2

SERIAL BUTTERFLY IN FIG. 6

butterfly arrive in consecutive clock cycles. Thus, the serial-
parallel permutation circuit permutes data so that the real
part of the second sample and the imaginary part of the first
sample are exchanged at C and D. This permutation makes
it possible to operate the real parts of the data first and the
imaginary parts during the next clock cycle, according to the
set of equations (6). Then, the butterfly provides the real and
imaginary parts to the output at the same clock cycle by using
the second serial-parallel permutation circuit. As each serial-
parallel permutation circuit has a latency of one clock cycle,
the butterfly has a total latency of two clock cycles.

C. Proposed Radix-3 Serial Butterfly

Fig. 7 shows the implementation of the proposed radix-3
serial butterfly. As in its flow graph in Fig. 2, the proposed
hardware implementation distributes the required operations
along three stages. The dashed lines placed after the adders
and multipliers represent pipeline registers used during the
implementation to improve the maximum clock frequency.
The number in the upper side of some dash lines indicates
the number of pipeline registers connected in series and dash
lines with no number represent a single pipeline register.
The proposed circuit reaches the minimum number of real
multipliers according to Table II: The multiplication by 1/2 is
implemented by a bit-shift, which does not have any hardware
cost, and only one real multiplier is used in the proposed
radix-3 serial butterfly. Fig. 8 shows the implementation of
the real multiplier using shift-and-add operations. The multi-
plication by

√
3

2 is approximated by
√

3
2

≈
887
1024

=
((8 − 1) · 16 − 1) · 8 − 1

1024
= 0.8662. (7)

As a result, the proposed radix-3 serial butterfly uses 6 real
adders plus a real multiplier that is implemented with 3 real
adders, leading to a total of 9 real adders. The circuit also
includes 12 multiplexers and 8 registers.

Table IV shows the timing diagram of the proposed circuit.
Note that input data arrive in natural order as x[0], x[1], x[2]

in consecutive clock cycles. The intermediate calculations are
detailed in Table V. It can be observed that certain signals do
not need to be operated in the adders in Table V. For them,

3996 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Fig. 7. Proposed radix-3 serial butterfly.

Fig. 8. Shift-and-add multiplier by 887/1024 for the radix-3 serial butterfly
in Fig. 7.

TABLE IV
TIMING DIAGRAM OF THE PROPOSED RADIX-3

SERIAL BUTTERFLY IN FIG. 7

TABLE V
CALCULATIONS IN THE PROPOSED RADIX-3 SERIAL BUTTERFLY

the circuit includes logic gates and multiplexers that are used
to bypass the adders. As for the input data, the outputs are
also provided in natural order. By considering the delays of
the permutation circuits, the proposed radix-3 serial butterfly
has a latency of four clock cycles.

TABLE VI
TIMING DIAGRAM OF THE PROPOSED RADIX-4 BUTTERFLY IN FIG. 9

TABLE VII
CALCULATIONS IN THE PROPOSED RADIX-4 SERIAL BUTTERFLY

D. Proposed Radix-4 Serial Butterfly

The operations required to process a 4-point FFT are
described in the flow graph of Fig. 3. There are two clearly
distinguished stages, which consist of four complex additions
each. Based on it, Fig. 9 shows the proposed radix-4 butterfly.
As in its flow graph, the proposed hardware implementation
distributes the required operations along two stages. These
stages include four real adders and zero multipliers, which
correspond to the minimum values according to Table II.

Table VI shows the timing diagram of the circuit and the
operations are detailed in Table VII. Input data arrive in
natural order as x[0], x[1], x[2], x[3]. As the first sample is

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 3997

Fig. 9. Proposed radix-4 serial butterfly.

Fig. 10. Proposed radix-5 serial butterfly.

operated with the third one, and the second sample is operated
with the fourth one, a serial-parallel permutation circuit is
included at the input of the circuit. This circuit has dual
functionality. First, it permutes the imaginary parts of x[0]

and x[2] with the real parts of x[1] and x[3]. Then, it places
pairs of inputs to be operated together in the same clock
cycle, as can be seen in signals H and I in Table VI. After
the operations of the first stage, the proposed serial butterfly
uses a serial-serial permutation circuit [30] to exchange data
that arrive in consecutive clock cycles through the lower
path. Finally, the output is provided in natural order by using
an additional serial-parallel permutation circuit. As a result,
considering the delays of the permutation circuits, the butterfly
has a latency of 6 clock cycles.

E. Proposed Radix-5 Serial Butterfly
Fig. 10 shows the proposed radix-5 serial butterfly. The aim

of this implementation is to use the minimum possible number
of real multipliers, as well as a number of real adders in line
with the number of stages in the flow graph of Fig. 4. As in the
flow graph, the proposed hardware implementation distributes
the required operations along five stages. These stages include
10 real adders and two real multipliers, which means that the
minimum number of real multipliers according to Table II is
achieved. Table VIII shows the operations that are calculated
at each stage. The multiplier constants of the radix-5 serial
butterfly in Fig. 10, which also appear in Table VIII, are
the ones listed in the first and second columns of Table IX.
Note that the magnitude of these constants is the same as the

3998 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

TABLE VIII
CALCULATIONS IN THE PROPOSED RADIX-5 SERIAL BUTTERFLY

TABLE IX
VALUES FOR THE CONSTANTS OF THE PROPOSED

RADIX-5 SERIAL BUTTERFLY IN FIG. 10

magnitude reported in Table I for the radix-5 parallel butterfly.
However, their phase is different in some cases. Additionally,
both real multipliers have been implemented with shift-and-
add operations as reconfigurable multiple constant multipliers
(RMCM) [31]. The upper multiplier, M0, is shown in Fig. 11
and the lower multiplier, M1, is shown in Fig. 12. The
multiplier M1 has been designed with the heuristics in [31].
The control signals S9 and S10 that appear in these circuits
are the same control signals that appear in Fig. 10. The third
column of Table IX shows the approximated values used in the
shift-and-add circuits. Both shift-and-add circuits use 3 real
adders, which are shared for every constant with the help
of additional multiplexers. As a result, the proposed serial
radix-5 butterfly uses 10 real adders and two real multipliers
implemented with three real adders each.

Table X shows the timing diagram of the circuit. As in
all the proposed serial butterflies, inputs arrive in natural
order and a circuit that reorders the inputs is needed. This
circuit consists of serial-serial permutation circuits linked to
a serial-parallel permutation circuit. The serial-serial permu-
tation circuits exchange data from natural order to x[0], x[1],
x[2], x[4], x[3] at A and B. Then, the serial-parallel permu-
tation circuit places pairs of inputs to be operated together at
C and D in the same clock cycle. Note that one additional
parallel branch has been added to the circuit at the third
stage due to the fact that the flow graph of radix-5 has more
than five branches at stage 3. The real and imaginary parts
of x[0] are bypassed using logic gates during the first two
stages and sent to this additional branch in consecutive clock
cycles, as can be seen in signal T. Once they are operated,

Fig. 11. Shift-and-add multiplier M0 for the radix-5 serial butterfly in Fig. 10.

Fig. 12. Shift-and-add multiplier M1 for the radix-5 serial butterfly in Fig. 10.

there is no need to maintain an additional branch and the first
frequency, X [0], returns to the regular path at G’ and H’. After
the next two stages, the output is provided in natural order by
using an additional serial-parallel permutation circuit linked to
serial-serial permutation circuits, whose functionality is dual
to the input circuits. As a result, considering the delays of the
datapath, the proposed serial radix-5 butterfly has a latency of
13 clock cycles.

IV. COMPARISON

Table XI shows the comparison between the proposed
serial butterflies and previous approaches. Previous works
include radix-3 serial butterflies [26], [28], a 2-parallel radix-3
butterfly [27] and a radix-5 serial butterfly [28].

The table compares the works in terms of real multipliers,
real adders, real multiplexers, registers, throughput in samples
per clock cycle, and latency in clock cycles (cyc.). For the
number of real multipliers it is assumed that a complex
multiplication uses four real multipliers and two real adders,
and a complex multiplication by either a pure complex or a
pure real constant requires two real multipliers.

The proposed radix-2 serial butterfly only requires 2 real
adders, 4 real multiplexers, 4 registers, and no real multiplier.

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 3999

TABLE X
TIMING DIAGRAM OF THE PROPOSED RADIX-5 SERIAL BUTTERFLY IN FIG. 10

TABLE XI
COMPARISON OF BUTTERFLIES IN TERMS OF HARDWARE COMPONENTS

It processes one sample per clock cycle and has a latency of
two clock cycles.

The proposed radix-3 serial butterfly processes one sam-
ple per clock cycle with a latency of four clock cycles.

4000 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

It requires 9 real adders, 12 real multiplexers, 8 registers, and
no real multiplier. Compared to [26], it halves the number
of adders from 18 to 9, which is a significant improvement,
and also reduces the number of multiplexers by two. This
improvement comes at the cost of a slight increase in registers
and latency, which is not significant compared to the large
reduction in adders. Compared to [27], the proposed approach
is more hardware-efficient when processing serial data, as it
halves the number of adders and reduces the number of
multiplexers and registers by 53% and 33%, respectively.
For 2-parallel data, two instances of the proposed butter-
fly could be used, which would require approximately the
same amount of components as [27]. Compared to [28], the
proposed radix-3 butterfly uses 5 more real adders and two
more registers. However, it saves two real multipliers and two
multiplexers. Multipliers are the most hardware-consuming
components, being the area of a multiplier similar to the
area of a number of adders equal to the data word length.
For 16 bits, the two multipliers would require approximately
32 adders, i.e., much more than the adders used in the proposed
design.

The proposed radix-4 serial butterfly only requires 4 real
adders, 14 real multiplexers, 12 registers, and no real multi-
plier. It processes one sample per clock cycle and has a latency
of six clock cycles.

The proposed radix-5 serial butterfly requires 16 real adders,
45 real multiplexers, and 31 registers, and processes one
sample per clock cycle with a latency of 13 clock cycles.
Compared to the radix-5 butterfly in [28], the proposed
implementation uses 6 more real adders, a similar number of
multiplexers, 19 more registers, and takes 7 additional clock
cycles to process the inputs. However, it removes the four real
multipliers in [28], which are the most hardware-consuming
components. For 16-bit data, these multipliers would require
around 64 adders, leading to much more hardware cost than
in the proposed design. Furthermore, contrary to [28], the
proposed approach has the advantage that data are processed
in pipeline without feedback loops in the data path. This
guarantees that any number of pipeline registers can be added
in order to increase the clock frequency.

Compared to the parallel butterflies in Table II, the proposed
serial butterflies in Table XI reduce the number of real
adders and real multipliers. Regarding the proposed radix-2
and radix-4 butterflies, the number of real adders in the
proposed implementations has been reduced by a factor r
with respect to the parallel butterflies. This corresponds to a
reduction of 50% and 75% for radix-2 and radix-4 butterflies,
respectively. Regarding the proposed radix-3 and radix-5 serial
butterflies, the multipliers have been reduced by a factor of r .
Moreover, these multipliers have been replaced by shift-and-
add operations, reducing even more the amount of hardware
components. Even when counting the adders in the shift-and-
add implementation, the proposed radix-3 and radix-5 serial
butterflies reduce the number of real adders by 25% and 53%
with respect to the parallel butterflies, respectively. However,
some additional logic gates, multiplexers, and registers are
included in the proposed serial implementations with respect
to the parallel butterflies. In order to take them into account in

TABLE XII
SQNR OF THE PROPOSED ARCHITECTURES DEPENDING

ON THE WORD LENGTH

the comparison, the next section provides experimental results
on FPGA and ASIC.

V. EXPERIMENTAL RESULTS

The proposed serial butterflies have been implemented on a
Virtex Ultraescale+ HBM XCVU37P-FSVH2892-2L-E. They
have been designed with parameterizable word length (WL).
The quantization noise in the butterflies has been studied and
characterized in Table XII. This table shows the signal-to-
quantization-noise ratio (SQNR) [32] in dB as a function of the
word length of each real and imaginary part of the data, and
assuming that the word length is the same along the circuit.
The SQNR is calculated as

SQNR (dB) = 10 · log10

(
E{|X I D|

2
}

E{|X Q − X I D|2}

)
, (8)

where E{·} represents the expected value, X I D is the output of
the ideal FFT without quantization and X Q is the output of the
quantized FFT obtained by the proposed hardware butterflies.
For each word length, the experiment considers 1000 trials
and uniform distribution of the input data in the full dynamic
range defined by these bits.

The experimental results in Table XII show that the SQNR
grows at a rate of 6 dB per bit for radix-2 and radix-4 but-
terflies. For radix-3 and radix-5, the 6 dB increase occurs for
small word lengths. However, from W L = 14, the quantization
noise of the coefficients in the shift-and-add multipliers starts
to be significant and it becomes dominant after a word length
of 16 bits, where there is a small or no increase in SQNR.
Based on this analysis, a word length of 16 bits has been
considered for the implementation of all the proposed serial
butterflies. Note that W L = 16 means 16 bits for the real part
of the data and 16 bits for the imaginary part.

Table XIII shows the post-implementation results of the pro-
posed serial butterflies (Prop.) and the parallel butterflies (Par.)
in the Virtex Ultrascale+ FPGA. The parallel butterflies have
been designed as the direct implementation of their flow
graphs shown in Section II. For a fair comparison, both
serial and parallel architectures are compared under the same
conditions: Every multiplier is implemented with shift-and-
add operations, inputs, and outputs are registered, and pipeline
registers have been added in order to achieve higher clock
frequency. This entails higher latency in terms of clock cycles

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 4001

TABLE XIII
POST-IMPLEMENTATION RESULTS OF THE PARALLEL BUTTERFLIES (PAR.)

AND THE PROPOSED SERIAL BUTTERFLIES (PROP.)
ON A VIRTEX XCVU37P-FSVH2892-2L-E

than the values reported in Table XI. The figures of merit
included in Table XIII are LUTs, registers, CARRY8s, CLBs,
clock frequency, SQNR, latency, and power consumption. The
power consumption results consider a clock frequency of
650 MHz.

In Table XIII, it can be observed that the proposed radix-
2 serial butterfly uses a larger number of LUTs, a similar
number of registers, 3 more CLBs, and half the number of
CARRY8s. Compared to the parallel radix-2 butterfly, the
proposed one has higher latency than the parallel one and
similar power consumption. Considering all these figures of
merit, both architectures can be considered similar in terms
of hardware resources and performance. However, it is worth
noting that the proposed radix-2 butterfly processes data in
series, whereas the parallel butterflies process two parallel
branches. Therefore, these architectures will be preferable
in different scenarios, depending on how data arrive at the
butterfly.

Regarding radix-3 butterflies, the proposed serial implemen-
tation saves 55 LUTs, 188 registers, and 12 CLBs, and halves
the number of CARRY8 compared to the radix-3 parallel
butterfly. Likewise, it reduces power consumption by 11%.
These improvements in area and power consumption come at
the cost of an increase in latency. This increase in latency is an
expected result, as the serial butterfly has only one data path to
calculate the same operations that a parallel butterfly calculates
in parallel, i.e., in the parallel butterflies the operations are
distributed among the parallel paths, whereas in the serial
butterfly, these operations are distributed in time.

Regarding radix-4 butterflies, the proposed serial butterfly
saves 66 LUTs, 65 registers, and 20 CLBs compared to the
radix-4 parallel butterfly, which corresponds to savings of
25%, 16%, and 32%, respectively. The reduction of real adders
by a factor r = 4 causes a reduction of the number of
CARRY8 by the same factor. The latency of the proposed
approach increases with respect to the parallel radix-4 butterfly
and its power consumption is reduced by 38%.

The proposed radix-5 butterfly has a similar number of
LUTs compared to the radix-5 parallel butterfly. By con-
trast, the registers and CLBs are reduced by 27% and 11%,
respectively. This reduction in registers is caused by the
pipeline registers that are needed in the parallel butterfly
so that it can reach a frequency of 650 MHz. i.e., in the
proposed serial butterfly a lower amount of registers is needed

TABLE XIV
POST-SYNTHESYS ASIC RESULTS OF THE PARALLEL BUTTERFLIES

(PAR.) AND THE PROPOSED SERIAL BUTTERFLIES (PROP.)
USING TSMC 40 NM TECHNOLOGY

to reach a frequency of 650 MHz. The proposed radix-5
serial butterfly reduces significantly the number of real adders
regarding Table XI, which results in a reduction of CARRY8
by 67%. As expected, the latency of the proposed radix-5 serial
butterfly increases and the power consumption decreases with
respect to the radix-5 parallel butterfly, leading to savings of
20% in power consumption.

Finally, the proposed serial implementations have the same
SQNR as the parallel ones, due to the fact that all the
mathematical calculations are the same, including the shift-
and-add calculation of the multiplications.

In order to deeply explore the capabilities of the proposed
serial designs, ASIC results have been extracted. Table XIV
shows the post-synthesis ASIC results for the proposed serial
butterflies (Prop.) and the parallel butterflies (Par.) with the
same conditions as in Table XIII. The figures of merit included
in Table XIV are technology, operating voltage, combinational
cells, sequential cells, cell area, SQNR, latency, and power
consumption. The power consumption results consider a clock
frequency of 800 MHz. The technology used is TSMC of
40 nm. The operational voltage is 1.1 V. The values of SQNR
and latency are the same as the ones reported in Table XIII,
due to the fact that the logic circuit remains equal in both
FPGA and ASIC implementations.

In Table XIV, it can be observed that the proposed radix-2
serial butterfly uses more combinational cells and a similar
number of sequential cells. However, the cell area of the
proposed radix-2 serial butterfly is slightly smaller. Both
implementations have similar power consumption. The exper-
imental results for both radix-2 ASIC implementations are in
line with the FPGA results. Regarding the power consumption
reported in the radix-2 butterflies FPGA implementations, the
radix-2 serial and parallel ASIC implementations reduce the
power by 94%.

Regarding radix-3 butterflies, the proposed serial ASIC
implementation saves 81 combinational cells and 222 sequen-
tial cells, which means a 32% reduction of sequential cells.
The area and power consumption are reduced by 29% and
28%, respectively. Regarding the power consumption reported
in the radix-3 butterflies FPGA implementations, the radix-3
serial and parallel ASIC implementations reduce the power by
92% and 94%, respectively.

4002 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Regarding radix-4 butterflies, the proposed serial ASIC
implementation saves 63 combinational cells and 63 sequential
cells. The cell area and power consumption are reduced by
31% and 23%, respectively. Regarding the power consumption
reported in the radix-4 butterflies FPGA implementations, the
radix-4 serial and parallel ASIC implementations reduce the
power by 94% and 93%, respectively.

Finally, the proposed radix-5 serial ASIC implementation
saves 719 combinational cells and 547 sequential cells, which
means a reduction of 19% and 32%, respectively. The total
cell area and power consumption are reduced by 33% and
31%, respectively. Regarding the power consumption reported
in the radix-4 butterflies FPGA implementations, the radix-4
serial and parallel ASIC implementations reduce the power by
92% and 93%, respectively.

As a result, with the exception of the proposed radix-2 serial
butterfly, it can be observed that the proposed serial butterflies
reduce area and power by around 30% in the ASIC imple-
mentations with respect to the parallel ASIC implementations.
The ASIC results reported are in line with the FPGA results,
supporting the improvement of the proposed serial designs.

VI. CONCLUSION

This work has presented new serial butterflies for NP2 FFTs
in communication systems for 5G and beyond. Contrary to
butterflies in SDF architectures, the serial butterflies proposed
in this paper have only one input and one output, which
improves their utilization when data are processed in series.
Furthermore, the proposed designs distribute efficiently the
operations along a pipeline circuit, which reduces the number
of hardware components. For radix-2 and radix-4, the proposed
serial butterflies achieve the minimum number of real adders
and real multipliers. For radix-3 and radix-5, they achieve the
minimum number of real multipliers. Additionally, the multi-
pliers have been implemented using shift-and-add operations,
which provides further optimization of the circuits.

The proposed circuits have been implemented on an FPGA
and ASIC. Their SQNR has been analyzed as a function of
the word length. Experimental results show that the proposed
serial butterflies achieve a high clock frequency and reduce the
area and power consumption with respect to parallel butterflies
at the cost of an increase in latency.

The proposed butterflies are suitable for future non-power-
of-two serial SC FFT architectures, where the processing
elements operate on data that arrive in series in consecutive
clock cycles.

ACKNOWLEDGMENT

The authors would like to thank Prof. Martin Kumm for
providing the adder graphs of the RMCM multipliers used in
the proposed designs.

REFERENCES

[1] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing.
Upper Saddle River, NJ, USA: Prentice-Hall, 1989.

[2] Physical channels and modulation, document TS 38.211, V16.3.0, 3GPP,
Sep. 2020. [Online]. Available: https://www.3gpp.org/DynaReport/38-
series.htm

[3] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
Apr. 1965.

[4] C. M. Rader, “Discrete Fourier transforms when the number of data
samples is prime,” Proc. IEEE, vol. 56, no. 6, pp. 1107–1108, Jun. 1968.

[5] S. Winograd, “On computing the discrete Fourier transform,” Math.
Comput., vol. 32, no. 141, pp. 175–199, Jan. 1978.

[6] C. Burrus, “Index mappings for multidimensional formulation of the
DFT and convolution,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-25, no. 3, pp. 239–242, Jun. 1977.

[7] S. K. Mitra, Discrete Signal Processing: A Computer-Based Approach,
4th ed. New York, NY, USA: McGraw-Hill, 2011.

[8] H. J. Nussbaumer, The Fast Fourier Transform and Convolution Algo-
rithms, 2nd ed. Berlin, Germany: Springer, 1982.

[9] S.-C. Hsu, S.-J. Huang, S.-G. Chen, S.-C. Lin, and M. Garrido, “A 128-
point multi-path SC FFT architecture,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Oct. 2020, pp. 1–5.

[10] M. Garrido, S.-J. Huang, S.-G. Chen, and O. Gustafsson, “The serial
commutator FFT,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63,
no. 10, pp. 974–978, Oct. 2016.

[11] A. Chinnapalanichamy and K. K. Parhi, “Serial and interleaved architec-
tures for computing real FFT,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2015, pp. 1066–1070.

[12] M. Garrido, F. Qureshi, J. Takala, and O. Gustafsson, “Hardware
architectures for the fast Fourier transform,” in Handbook of Signal
Processing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers,
and J. Takala, Eds., 3rd ed. Berlin, Germany: Springer, 2019.

[13] M. Garrido, R. Andersson, F. Qureshi, and O. Gustafsson, “Multiplier-
less unity-gain SDF FFTs,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 24, no. 9, pp. 3003–3007, Sep. 2016.

[14] A. Cortés, I. Vélez, and J. F. Sevillano, “Radix rk FFTs: Matricial
representation and SDC/SDF pipeline implementation,” IEEE Trans.
Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.

[15] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient locally
pipelined FFT processor,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, no. 7, pp. 585–589, Jul. 2006.

[16] M. Garrido, “A survey on pipelined FFT hardware architectures,”
J. Signal Process. Syst., vol. 94, no. 11, pp. 1345–1364, Nov. 2022.

[17] M. Garrido, “Evolution of the performance of pipelined FFT architec-
tures through the years,” in Proc. 35th Conf. Design Circuits Integr. Syst.
(DCIS), Nov. 2020, pp. 1–6.

[18] I. Cho, T. Patyk, D. Guevorkian, J. Takala, and S. Bhattacharyya,
“Pipelined FFT for wireless communications supporting 128–2048/
1536-point transforms,” in Proc. IEEE Global Conf. Signal Inf. Process.,
Dec. 2013, pp. 1242–1245.

[19] J. Kim, J. Lee, and K. Cho, “A mixed-radix pipeline FFT processor
with trivial multiplications for LTE uplink,” in Proc. IEEE Int. Symp.
Consum. Electron. (ISCE), Sep. 2016, pp. 57–58.

[20] J. Löfgren, L. Liu, O. Edfors, and P. Nilsson, “Improved matching-
pursuit implementation for LTE channel estimation,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 1, pp. 226–237, Jan. 2014.

[21] X.-Y. Shih, H.-R. Chou, and Y.-Q. Liu, “VLSI design and implemen-
tation of reconfigurable 46-mode combined-radix-based FFT hardware
architecture for 3GPP-LTE applications,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 1, pp. 118–129, Jan. 2018.

[22] X.-Y. Shih, H.-R. Chou, and Y.-Q. Liu, “Design and implementation
of flexible and reconfigurable SDF-based FFT chip architecture with
changeable-radix processing elements,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 11, pp. 3942–3955, Nov. 2018.

[23] X.-Y. Shih, Y.-Q. Liu, and H.-R. Chou, “48-mode reconfigurable design
of SDF FFT hardware architecture using radix-32 and radix-23 design
approaches,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 6,
pp. 1456–1467, Jun. 2017.

[24] C.-H. Yang, T.-H. Yu, and D. Markovic, “Power and area minimization
of reconfigurable FFT processors: A 3GPP-LTE example,” IEEE J.
Solid-State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[25] X. Yang, W. Du, Z. Yang, R. Lv, and X. Wang, “Hardware design and
implementation of 3780 points FFT based on FPGA in DTTB,” in Proc.
4th Int. Conf. Appl. Inf. Commun. Technol., Oct. 2010, pp. 1–4.

[26] C. Yu and M.-H. Yen, “Area-efficient 128- to 2048/1536-point pipeline
FFT processor for LTE and mobile Wimax systems,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 9, pp. 1793–1800,
Sep. 2015.

BAUTISTA et al.: SERIAL BUTTERFLIES FOR NON-POWER-OF-TWO FFT ARCHITECTURES IN 5G AND BEYOND 4003

[27] W.-L. Tsai, S.-G. Chen, and S.-J. Huang, “Reconfigurable radix-2k
×3

feedforward FFT architectures,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2019, pp. 1–5.

[28] G.-T. Deng, “A radix-2k multi-path serial conmutator and 2α
·3β

·5γ -
point serial conmutator FFT processor,” M.S. thesis, Inst. Electron., Nat.
Yang Ming Chiao Tung Univ., Hsinchu, Taiwan, Sep. 2021.

[29] V. M. Bautista, “Design and implementation of FFT architectures with
non-power-of-two sizes for 5G,” Bachelor’s thesis, Dept. Electron. Eng.,
Univ. Politécnica de Madrid, Madrid, Spain, Jul. 2021.

[30] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit-
dimension permutations,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 5, pp. 1148–1160, May 2019.

[31] K. Möller, M. Kumm, M. Kleinlein, and P. Zipf, “Reconfigurable
constant multiplication for FPGAs,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 36, no. 6, pp. 927–937, Jun. 2017.

[32] D. Guinart, “Deterministic analysis of the accuracy in FFT hardware
architectures,” M.S. thesis, Dept. Electron. Eng., Linköping Univ.,
Linköping, Sweden, Jun. 2012.

Víctor Manuel Bautista was born in Madrid, Spain,
in 1998. He received the B.E. degree in telecommu-
nication technologies and services engineering and
the master’s degree in electronic systems engineering
(MUISE) from Universidad Politécnica de Madrid
(UPM), Madrid, in July 2021 and July 2022, respec-
tively, where he is currently pursuing the Ph.D.
degree with the Department of Electronic Engi-
neering. His research interests include optimized
hardware design for communication systems, focus-
ing on the design of fast Fourier transform (FFT)
hardware architectures for non-power-of-two sizes.

Mario Garrido (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Universidad Politécnica de Madrid (UPM),
Spain, in 2004 and 2009, respectively.

In 2010, he moved to Sweden to work as a
Post-Doctoral Researcher with the Department of
Electrical Engineering, Linköping University, where
he was an Associate Professor from 2012 to 2019.
In 2019, he moved back to UPM, where he holds a
Ramón y Cajal Research Fellowship. So far, he has
been the author of more than 50 scientific publica-

tions. In 2022, he appeared in the “World’s Top 2% Scientists List” elaborated
by Stanford University. His research focuses on optimized hardware design
for signal-processing applications. This includes the design of hardware archi-
tectures for the fast Fourier transform (FFT), circuits for data management,
the CORDIC algorithm, neural networks, and circuits to calculate statistical
and mathematical operations. His research interests include high-performance
circuits for real-time computation, and designs for small area and low power
consumption.

Marisa López-Vallejo (Senior Member, IEEE)
received the M.S. and Ph.D. degrees from Univer-
sidad Politécnica de Madrid (UPM), Madrid, Spain,
in 1993 and 1999, respectively. From 2015 to 2016,
she was a Visiting Professor with the Microsystems
Technology Laboratory, Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA. She was
with Bell Laboratories, Lucent Technologies, Mur-
ray Hill, NJ, USA, as a Technical Staff Member.
Since 2016, she has been a Full Professor with
the Department of Electronic Engineering, UPM.

Her research interests include low-power, radiation, and PVT-aware design,
computer-aided diagnostic methods and tools, and application-specific high-
performance programmable architectures. In last decade she has focused her
research on the reliability of CMOS circuits and memristive memories as
well as on new architectures to support reliable design beyond 20-nm. She
has been a coordinator of a set of national and international projects in these
areas.

