
4004 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Low-Latency 64-Parallel 4096-Point
Memory-Based FFT for 6G
Zeynep Kaya and Mario Garrido , Senior Member, IEEE

Abstract— This paper presents a novel 64-parallel 4096-point
radix-2 memory-based fast Fourier transform (FFT) architecture
for 6G. This approach is the first one to use 64 parallel branches
in memory-based architectures. The challenge of designing a
memory-based FFT with such a high parallelization has been
accomplished by paying special attention to the large number
of memories in parallel. Their control has been simplified by
using the same read and write address for all of them thanks
to the perfect shuffle permutation, and they are organized in
groups to eliminate unnecessary registers. Likewise, a novel
design for the rotation memories allows for reusing rotation
coefficients among parallel rotators, and a new design for the
circular counter that controls the architecture is presented. The
proposed FFT architecture has been implemented on a Virtex
7 field-programmable gate array (FPGA). Experimental results
reveal that the proposed architecture achieves the lowest latency
in clock cycles and the highest throughput in samples per clock
cycle among memory-based FFT architectures so far.

Index Terms— Memory-based, parallel architecture, FFT,
radix-2, low latency, 6G.

I. INTRODUCTION

THE communication technologies are undergoing revolu-
tionary changes with the quick growth of communication

applications. Although 5G offers significant improvements
with respect to previous technologies, 6G will provide a
superior experience for everyone through ultra-high connec-
tivity including both humans and machines, and hundreds of
billions of devices [1], [2], [3]. This will require improvements
in many applications such as autonomous vehicles [4] or
telesurgery [5], which demand ultra-reliable and low-latency
communications (URLLC), with latencies below 100 µs [6].
This makes latency a critical factor for 6G systems.

To achieve the low latency expected for 6G, it is crucial to
reduce the latency of all the components of the communication

Manuscript received 18 April 2023; revised 20 June 2023; accepted 19 July
2023. Date of publication 1 August 2023; date of current version
29 September 2023. This work was supported in part by MCIN/AEI/
10.13039/501100011033 and “ERDF A way of making Europe” under Project
PID2021-126991NA-I00; in part by MCIN/AEI/10.13039/501100011033 and
“ESF Investing in your future” under Grant RYC2018-025384-I; and in
part by the Scientific and Technological Research Council of Turkey
through the International Postdoctoral Fellowship Program under Grant
1059B192200354. This article was recommended by Associate Editor
X. S. Zhang. (Corresponding author: Zeynep Kaya.)

Zeynep Kaya is with the Department of Electricity and Energy, Osmaneli
Vocational School, Bilecik Şeyh Edebali University, 11500 Bilecik, Turkey
(e-mail: zeynep.kaya@bilecik.edu.tr).

Mario Garrido is with the Department of Electronic Engineering, ETSI de
Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: mario.garrido@upm.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2023.3298227.

Digital Object Identifier 10.1109/TCSI.2023.3298227

system. Reducing the latency of any of the components will
lead to a reduction of the total latency and have a direct impact
on the quality of the 6G applications. For instance, a faster
response of an autonomous vehicle will increase the likelihood
of preventing an accident.

Among the components of a communication system, the
fast Fourier transform (FFT) is a key element used to cal-
culate the modulation/demodulation of the symbols in the
physical layer [7]. Given the low-latency demand for 6G,
the design of low-latency FFT architectures has become
nowadays an important research topic and the success of
future 6G technologies will depend on it. As a consequence,
in the last years, researchers have been trying to reduce the
latency of FFT architectures and new advances for memory-
based [8], [9] and pipelined [10], [11], [12] FFTs have been
proposed.

In memory-based FFT architectures, one of the approaches
to reduce the latency is to use high-radix algorithms [8], [13],
[14]. High-radix algorithms reduce the latency by decreasing
the number of iterations of the FFT and the number of clock
cycles needed to calculate these iterations. This results in a
shorter processing time.

Another approach to reduce the latency in both
memory-based and pipelined FFTs is to increase the
parallelization of the architecture. In fact, this approach
has been widely used for pipelined FFTs, where highly
parallel [15], [16], [17], [18], [19] and fully-parallel [20],
[21], [22] FFT architectures have been presented.
Nevertheless, the area of these architectures is extremely
large.

Regarding memory-based FFT architectures, a high par-
allelization is generally related to the radix, and current
architectures that allow for 16-parallel data use a radix-16
butterfly [8], [13], [14], [23]. A higher radix would increase
the parallelization further, but it would also increase the area
of the FFT considerably. In fact, a parallelization larger than
16 has only been observed in the column FFT [24], which has
a parallelization equal to the FFT size, N . However, this high
parallelization is not feasible for FFTs of medium or large
sizes due to the extremely large amount of resources that it
needs.

Another reason why high parallelization is a challenge in
memory-based architectures is the fact that a high paralleliza-
tion requires a large set of memories, as these architectures
use one memory per parallel branch. Thus, the control of
these memories could be complex and require a large circuit
area.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9831-6246
https://orcid.org/0000-0001-5739-3544

KAYA AND GARRIDO: LOW-LATENCY 64-PARALLEL 4096-POINT MEMORY-BASED FFT FOR 6G 4005

This work presents a 64-parallel 4096-point decimation-in-
frequency (DIF) memory-based FFT, intended for low-latency
applications in 6G. To the best of the authors’ knowledge,
the proposed architecture is the first one to achieve a paral-
lelization of 64 so far. In order to solve the latency challenge
for memory-based FFTs, the proposed approach uses a highly
parallel radix-2 architecture that avoids high radixes and,
therefore, removes the need for extremely large circuits. Fur-
thermore, all the parallel memories are reduced to only four,
which is achieved by making groups of memories with the
same read and write addresses, and embedding each group in a
single memory. This not only reduces the number of memories
significantly but also provides a drastic simplification of the
control circuit. In fact, grouping the memories also allows
for removing registers that appear in the parallel paths. Given
the high parallelization of the architecture, the elimination of
registers in multiple parallel paths has a significant impact on
the total area of the circuit. In order to control the architectures
and provide conflict-free access, read and write addresses are
generated by a circular counter. In this work, a novel and more
advanced design than the circular counter in [25] and [26]
is presented, which avoids combinational loops. As a result,
the proposed architecture achieves the lowest latency in clock
cycles and the highest throughput in samples per clock cycle
among 4096-point memory-based FFTs so far, which makes
it a valuable design for 6G communications.

We have structured the rest of the paper as follows: In
Section II, we review previous concepts needed to under-
stand the proposed approach. In Section III, we present the
derivation of 64-parallel memory-based FFT architecture and
describe the design of the different parts of the architecture.
In section IV, we provide the experimental results and com-
pare our design to the previous state-of-the-art FFTs. Finally,
in Section V, we summarize the main conclusion of this paper.

II. BACKGROUND

The N -point discrete Fourier transform (DFT) of an input
complex signal x[n] is calculated as

X [k] =

N−1∑
n=0

x[n] · W nk
N , k = 0, . . . , N − 1, (1)

where X [k] is the output at frequency k, and W nk
N = e− j 2π

N nk .
To calculate the DFT faster, different fast Fourier transform
(FFT) algorithms have been proposed. One of them is the
Cooley-Tukey algorithm [27]. For power-of-two FFT sizes,
this algorithm calculates the FFT along n = log2 N stages
and reduces the complexity from O(N 2) in the DFT to
O(N log2 N) in the FFT. Each FFT stage, s = 1, . . . , n,
consists of butterflies, which calculate sums and subtractions,
and rotations in the complex plane. In memory-based FFTs,
butterflies and rotators are usually grouped into processing
elements (PEs) [26], which are the part of the architecture
where the mathematical operations of the FFT are calculated.

In order to identify data along the FFT stages, an index

I ≡ bn−1, . . . , b1, b0, (2)

can be defined [17], where (≡) is used throughout the paper
to relate a number with its binary representation. Based on
this index, it has been observed that, at each stage of the FFT,
butterflies operate on pairs of data that differ in bn−s [28].

A. Bit-Dimension Permutations

Bit-dimension permutations are used to reorder data along
FFT stages. A bit-dimension permutation considers a set of
N = 2n data, whose position in the data flow is defined from
0 to 2n

− 1 according to [29]

P =

n−1∑
i=0

xi 2i , (3)

where xn−1, xn−2, . . . , x0 are called dimensions.
A data flow where P data arrive in parallel at different

terminals has p = log2 P parallel dimensions that correspond
to x p−1, . . . , x0. The remaining n − p dimensions are serial
and define data arriving in series to the terminals. These
serial dimensions correspond to xn−1, . . . , x p. Note that the
character P is used for the position, whereas P corresponds
to the number of parallel branches in the architecture.

For P = 2p parallel branches, the terminals are defined in
the range T = 0, . . . , 2p

−1 and are related to the dimensions
by

T =

p−1∑
i=0

xi 2i , (4)

being its binary representation is

T ≡ Tp−1, . . . , T0 = x p−1, . . . , x0. (5)

Likewise, the arrival time is defined as the clock cycle where
a certain datum arrives relative to the clock cycle when the
first P data arrive. The arrival time is defined in the range
t = 0, . . . , 2n−p

− 1 and is calculated as

t =

n−1∑
i=p

xi 2i−p, (6)

being its binary representation

t ≡ tn−p−1, . . . , t0 = xn−1, . . . , xn−p. (7)

Thus, we can represent the position as

P = t |T ≡ tn−p−1, . . . , t0|Tp−1, . . . , T0. (8)

Note that a vertical bar (|) is used to separate serial and parallel
dimensions.

In this context, a bit-dimension permutation σ permutes data
in an input position un−1, . . . , u p|u p−1, . . . , u0 into an output
position u′

n−1, . . . , u′
p|u

′

p−1, . . . , u′

0, i.e.,

σ(u) = σ(un−1, . . . , u p|u p−1, . . . , u0)

= u′

n−1, . . . , u′
p|u

′

p−1, . . . , u′

0. (9)

The perfect shuffle permutation [24] is a type of
bit-dimension permutation that shifts dimensions circularly by
one bit to the left, i.e.,

σP S(un−1, un−2, . . . , u0) = un−2, . . . , u0, un−1. (10)

4006 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

If the data flow includes parallel data, (10) may be written as

σP S(un−1, . . . , u p|u p−1, . . . , u0)

= un−2, . . . , u p−1|u p−2, . . . , u0, un−1. (11)

B. Memory-Based FFT Based on the Perfect Shuffle

In memory-based FFTs, memories are not only used to
store the data but also to permute the data based on the read
and write addresses [26]. To achieve this, it must be ensured
that, at any iteration, data are written in the addresses that
are emptied in the previous iteration, i.e., Wi = Ri−1 [25],
[30]. This guarantees conflict-free access without using a total
memory larger than the number of data.

In our previous approach [26], we presented a conflict-free
access strategy based on the perfect shuffle permutation. This
strategy provides the expected bn−s bit at the PE inputs at
each iteration. To achieve this, the approach applies three bit-
dimension permutations: a serial-serial (ss) permutation, σss ,
a parallel-parallel permutation (pp) σpp, and a serial-parallel
permutation, σsp. The perfect shuffle permutation, represented
by σP S in (10), is calculated as the composition of these three
permutations, i.e., σP S = σsp ◦ σpp ◦ σss .

The permutation σss is defined as

σss(un−1, . . . , u p|u p−1, . . . , u0)

= un−2, . . . , u p, un−1|u p−1, . . . , u0. (12)

This permutation is calculated in the memories and works
for all memories in the same way. This means that the read
and write addresses are the same for all memories. These
addresses are obtained from the bits of a circular counter,
cn−p−1, . . . , c0. The write address for the first FFT iteration
is WA1 = cn−p−1, . . . , c0. The read address for the first FFT
iteration is obtained by rearranging the bits of the circular
counter as RA1 = c0, cn−p−1, . . . , cn−p−2. After the calcula-
tions in the PE, data are written in the same memory addresses
that were emptied, being WA2 = RA1 . Likewise, subsequent
read and write addresses are obtained as

WA1 = cn−p−1, cn−p−2, . . . , c0,

WA2 = RA1 = c0, cn−p−1, cn−p−2, . . . , c1,

WA3 = RA2 = c1, c0, cn−p−1, . . . , c2,

...

WAn−p = RAn−p−1 = cn−p−2, . . . , c0, cn−p−1. (13)

The permutation σpp is defined as

σpp(un−1, . . . , u p|u p−1, . . . , u0)

= un−1, . . . , u p|u p−2, . . . , u0, u p−1. (14)

This permutation routes the data from a certain terminal at
the input of the permutation to another terminal at the output.
As the permutation only routes the data with wires, it does
not require any additional hardware component.

The permutation σsp is defined as

σsp(un−1, . . . , u p|u p−1, . . . , u0)

= un−1, . . . , u p+1, u0|u p−1, . . . , u1, u p. (15)

Fig. 1. 64-parallel 4096-point memory-based FFT architecture.

This permutation exchanges the lowest serial dimension and
the lowest parallel dimension. It needs P registers and P mul-
tiplexers controlled with a simple signal that toggles between
0 and 1 at each clock cycle.

III. PROPOSED 64-PARALLEL 4096-POINT
MEMORY-BASED FFT ARCHITECTURE

Fig. 1 shows the proposed 64-parallel memory-based FFT
architecture. It consists of four parts, A to D, separated by
dashed lines. From A to D, these parts include a memory
bank with 64 parallel memories, a parallel-parallel permutation
circuit, a serial-parallel permutation circuit, and PEs that
consist of radix-2 butterflies, coefficients (T W0, . . . , T W31),
and rotators (⊗), respectively. The numbers at the left and right
of the architecture represent the terminal numbers, which are
defined in the range T = 0, . . . , 63. Each terminal T after D
is connected with a wire to the terminal with the same number
before A, creating the feedback connections of the memory-
based architecture. These wires are not depicted, so that the
figure does not become too complicated.

A. Derivation of the Memory-Based FFT Architecture for
64-Parallel Data and 4096 Points

Initially, data are stored in memories from M0 to M63 in
natural order, i.e., x[0] to x[63] are stored in the in the first
addresses of memories M0 to M63, x[64] to x[127] in the
second addresses, etc.

To formalize it mathematically, for N = 2n
= 4096 data,

the index is defined as I ≡ b11, b10, . . . , b0 and the initial
position of the data in memory is

P0 ≡ b11, b10, . . . , b6︸ ︷︷ ︸
serial (address)

| b5, . . . , b0︸ ︷︷ ︸
parallel (memory)

, (16)

KAYA AND GARRIDO: LOW-LATENCY 64-PARALLEL 4096-POINT MEMORY-BASED FFT FOR 6G 4007

where b11, b10, . . . , b6 is the address and M ≡ b5, b4, . . . , b0
is the memory where any datum with index I ≡

b11, b10, . . . , b0 is stored.
After saving data in position P0, the data has to be provided

in the correct order to the inputs of the PEs at each stage of the
FFT. Therefore, the permutation circuits and the conflict-free
read and write operations must ensure that these data are in the
expected order by calculating the perfect shuffle permutation.
Consequently, by applying (11), we obtain the positions of the
data at the PE inputs at the first stage, i.e.,

P1 ≡ b10, . . . , b5|b4, . . . , b0, b11. (17)

This is fulfilled in three steps according to

σP S = σsp ◦ σpp ◦ σss . (18)

In the part A of Fig. 1, the serial-serial permutation (12) is
applied to (16), being

σss(u11, . . . , u6|u5, . . . , u0)

= u10, . . . , u6, u11|u5, . . . , u0. (19)

This changes the order of the data read from memory with
respect to the order how they were written, being the order at
the input of the part B

P0B ≡ b10, . . . , b6, b11|b5, . . . , b0. (20)

Note that, since the permutation permutes data only in time,
there is no change in the terminals. This permutation is carried
out by choosing the appropriate read and write operations of
the memories according to (13). For N = 4096 and 64-parallel
data, the circular counter has n − p = 12 − 6 = 6 bits. In this
highly parallel architecture, the fact that the same read and
write addresses are used for all the memories provides the
great advantage of a simple control circuit. This also provides
some simplifications for the design that are discussed later in
Section III-C.

In part B of Fig. 1, the parallel-parallel permutation is
carried out. Fig. 2 shows the parallel-parallel permutation
circuit and the paths that data flow between terminals, T =

0, . . . , 63. This permutation is calculated after the memories
according to

σpp(u11, . . . , u6|u5, . . . , u0)

= u11, . . . , u6|u4, . . . , u0, u5. (21)

This permutation only shuffles the parallel dimensions. There-
fore, σpp only routes input data to different terminals.
By applying (21) to (20), the order at the input of the part
C becomes

P0C ≡ b10, . . . , b6, b11|b4, . . . , b0, b5. (22)

In the part C of Fig. 1, the permutation σsp is applied and
corresponds to

σsp(u11, . . . , u6|u5, . . . , u0)

= u11, . . . , u7, u0|u5, . . . , u1, u6. (23)

The data are interchanged through registers and multiplexers
controlled by the least significant bit (LSB) of a counter. To do

Fig. 2. Parallel-parallel permutation structure.

the swapping by the multiplexers, data in odd branches are
delayed by one clock cycle. After multiplexing operations, data
at even-numbered branches are delayed one clock cycle to
align the data. By applying (23) to (22), the data order at
the input of part D becomes P1, according to (17), which is
the expected order at the input of the PEs for the first FFT
iteration.

For the second iteration, the same perfect shuffle permuta-
tion is carried out, leading to the position

P2 ≡ b9, . . . , b4|b3, . . . , b0, b11, b10, (24)

at the input of the butterflies. Likewise, for any stage s the
position at the input of the butterflies can be generalized as

Ps ≡ bn−s−1, . . . , bn−s−6︸ ︷︷ ︸
t

| bn−s−7, . . . , b0, bn−1, . . . , bn−s︸ ︷︷ ︸
T

.

(25)

It can be observed that bn−s always appears in the LSB, which
means that inputs to any butterfly always differ in bn−s , as is
required.

To clarify the data flow of the proposed approach, Fig. 3
shows an example of the data management for a 32-point
8-parallel FFT. Initially, samples are received in natural order
as stated in the position P0 ≡ b4b3|b2b1b0. They are written
in the memories M0 to M7 in natural order, being WA1 =

c1c0 according to (13). To start FFT operations, the first read
operation is carried out according to RA1 = c0c1. Note that
the reading address is the same for all the memories and
is obtained according to (13). By performing read and write
operations, the permutation σss is carried out and leads the data
position P0B ≡ b3b4|b2b1b0 at the input of part B. It should
be noted that, so far, data are only permuted in series, i.e.,
data from different parallel paths are not mixed.

Position P0C ≡ b3b4|b1b0b2 shows the positions of the
data at the input of part C obtained by applying the σpp
permutation. As can be observed in the figure, the data differ
only in terminals without any change in the time dimension.
This has no hardware cost, as there is nothing more than
shuffling circuits that route the data to the relevant terminals.
Finally, σsp, provides the expected order P1 ≡ b3b2|b1b0b4
at the input of the butterfly. The combination of all the

4008 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Fig. 3. Data management example for a 32-point memory-based FFT using the proposed approach.

permutations so far results in the perfect shuffle permutation
of all the data in the first iteration of the FFT, i.e., σP S . After
butterfly and rotation operations, σP S is carried out for the
second iteration in the same way. The figure shows the second
write (WA2 = c0c1) and read (RA2 = c1c0) operations that
lead to σss . This results in P1B, at the input of part B for
the second iteration. Note that data are written in the same
memory addresses that were emptied in the first iteration,
i,e., as WA2 = RA1 = c0c1, the writing order is the same
as the reading order in the first iteration. This guarantees the
conflict-free access, as data are only written in addresses that
are already empty.

B. Design of the Rotators

At each stage of the FFT architecture, data after the but-
terflies must be rotated by different angles. This requires to
generate the sine and cosine coefficients of the angles. Each
rotation is represented by a number, φ, that corresponds to a
multiplication by

W φ
N = e− j 2π

N φ . (26)

For a radix-2 DIF FFT algorithm, the rotation values at any
FFT stage, s, are calculated as a function of the index I in (2)
as [31],

φs(I) = bn−s · [bn−s−1, . . . , b0] · 2s−1, (27)

where [·] is used to indicate that the values inside are the digits
of a binary number. Therefore, for the proposed architecture,
the rotation values are calculated as

φ1(I) = b11 · [b10, . . . , b0] · 20,

φ2(I) = b10 · [b9, . . . , b0] · 21,

φ3(I) = b9 · [b8, . . . , b0] · 22,

...

φ11(I) = b1 · [b0] · 210,

φ12(I) = 0. (28)

To design the rotators of the architecture, we have to
express the previous equations in terms of the terminal and
the arrival time of the data. For instance, for the first iteration,
the position of the data is provided as (17). By taking into
account (17) and (8), we can observe that tn−p−1, . . . , t0 =

t5, . . . , t0 = b10, . . . , b5 and Tp−1, . . . , T0 = T5, . . . , T0 =

b4, . . . , b0, b11. Therefore, by substituting the bi bits by the

corresponding ti and Ti bits in (28), we obtain φ1(I) = T0 ·

[t5t4t3t2t1t0T5T4T3T2T1] for the first iteration. The application
of the same procedure to all the iterations results in

φ1(I) = T0 · [t5t4t3t2t1t0T5T4T3T2T1],

φ2(I) = T0 · [t5t4t3t2t1t0T5T4T3T20],

φ3(I) = T0 · [t5t4t3t2t1t0T5T4T300],

φ4(I) = T0 · [t5t4t3t2t1t0T5T4000],

φ5(I) = T0 · [t5t4t3t2t1t0T50000],

φ6(I) = T0 · [t5t4t3t2t1t000000],

φ7(I) = T0 · [t5t4t3t2t1000000],

φ8(I) = T0 · [t5t4t3t20000000],

φ9(I) = T0 · [t5t4t300000000],

φ10(I) = T0 · [t5t4000000000],

φ11(I) = T0 · [t50000000000],

φ12(I) = T0 · [00000000000]. (29)

Note that φ12(I) = 0, so no rotation has to be calculated at
the last stage.

In (29), the ti bits only have information about the time
of arrival of the data, whereas Ti only have information about
the terminal. This allows us to draw several conclusions. First,
all the φ values multiply a number by T0. Thus, if T0 = 0,
no rotation must be carried out. As T0 is the LSB of the
terminal, it distinguishes even and odd terminals, being T0 =

0 for even ones. Therefore, in even terminals, no rotation
must be calculated. This is why in part D of Fig. 1 rotators
only appear in odd terminals. This is relevant for the area
of the architecture, as rotators are only needed in half of the
64-parallel branches.

Second, for stages 1 to 5 the value φ depends on the
terminal, so it is different for different rotators. However, for
stages 6 to 11, all the rotators receive the same coefficients.
In fact, in stage 1 all the 32 rotators have different rotation
values. In stage 2, there will be 16 different configurations,
as φ2(I) depends on 4 Ti bits, and not on T1. Likewise, for
any stage s = 1, . . . , 5, there are 26−s different configurations.
Additionally, the configuration of the upper rotator, for which
T ≡ T5, . . . , T0 = 000001, can be used for several rotators
at stages 2 to 5. For instance, at stage 4 it can be used for
any rotator for which T5, . . . , T0 = 00XXX1, where the Xs
can take any value 0 or 1. By generalizing this idea, it can
be observed that the 32 sets of coefficients needed in the first
stage can provide the rotations for any rotator at any other

KAYA AND GARRIDO: LOW-LATENCY 64-PARALLEL 4096-POINT MEMORY-BASED FFT FOR 6G 4009

Fig. 4. Generation of rotation coefficients.

Fig. 5. Generation of the selection signals in Fig. 4.

stage. Each of these sets of coefficients is stored in a read-only
memory (ROM) and Fig. 4 shows the circuit that routes the
data from the memories to the rotators. This routing is done by
the selection signals S2, S1 and S0. For simplicity, the circuit
considers the case of 8 rotators, but it is generalized easily to
the case of 32 rotators for the proposed architecture, where
five signals S4, . . . , S0 are used.

Fig. 5 shows the generation of the selection signals used in
Fig. 4. For stage 1, all the signals are equal to 0. Thus, each
rotator takes the rotation coefficients from a different ROM
memory. For stage 2, S0 = 1 and the remaining selection
signals are equal to zero. This makes pairs of consecutive
rotators take the same rotation coefficients. In general, for a
stage s, the selection signals Ss−2, . . . , S0 are set to 1 whereas
the other selection signals are set to 0. This way, each rotator
receives the coefficient that it requires at each iteration.

The selection signals are generated by a simple shift register
(reg) that is initialized with zeros for the first stage. At each
successive stage, a left shift operation is carried out and a 1 is
added to the LSB.

Third, each rotation memory has to store 64 rotation coeffi-
cients. This is due to the fact that the φ values depend on the
6 bits of the arrival time, being 64 = 26. For stages 1 to 6,
a different value is read from the memories at each clock cycle,
as all the ti bits are used to generate the φ values. For stages
7 to 11, the φ values only depend on some of the bits of ti .
Therefore, only some of the addresses of the memory must be
read.

Considering the rotation values in (29), the values Ti dis-
tinguish the memories and the values ti distinguish the time
when the memories are read. Thus, the latter lead to different

Fig. 6. Data path with memories and delay registers.

addresses of the memories. As a consequence, the coefficients
stored in address a of memory m are[

cos
(

2π

N
(32a + m)

)
, − sin

(
2π

N
(32a + m)

)]
, (30)

where a ranges from 0 to 63 and m ranges from 0 to 31, which
refers to the 32 coefficient memories of the architecture.

It is worth noting that the read address for all the rotation
memories is the same, so they can be embedded in a single
memory, which simplifies the hardware.

As a result, this strategy of reusing the rotation memory
among different stages and rotators, not only simplifies the
control but also allows to use only a total rotation memory
size of 64 · 32 = 2048, which corresponds to N/2.

Finally, for the implementation of the rotators we have
used the low-area complex multiplier proposed in [32]. This
implementation uses only 3 DSP slices and no slice, and
calculates the rotation in only 4 clock cycles.

C. Reduction of the Registers by Adapting Read
and Write Addresses

In our design, 64 memories are used in parallel, and the read
and write addresses are generated according to (13). Although
all the read and write addresses are the same, some delay
registers on the paths cause differences in read and write times
for data that arrive at different memories.

Fig. 6 shows all delay registers before and after memories.
These delays are caused by the rotators and the serial-parallel
circuits. On the one hand, rotators are included in odd-
numbered paths, which are the paths that follow the lower
outputs of the butterflies. This takes 4 clock cycles and
causes delays on paths 1, 3, 5, . . . , 63. To equalize delays
among paths and be able to perform write and read operations
simultaneously in all memories, it is required to add 4 registers
in the even-numbered paths, 0, 2, 4, . . . , 62, which do not have
rotators. These registers used to equalize the timing are shown
to the left of the memories in Fig. 6. This demands to use of

4010 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

Fig. 7. Data management of memory groups.

Fig. 8. Timing of read and write addresses to the different memory groups.

4 × 32 = 128 additional registers of 16 + 16 = 32 bits each.
On the other hand, there are 1-delay registers on the paths 32 to
63 that come from the serial-parallel circuits. Note that these
registers appear in odd branches in part C of the architecture.
However, after moving them back through the parallel-parallel
permutation circuit, they end up in branches 32 to 63 close to
the memories. This demands to use 1 × 32 = 32 registers of
16 + 16 = 32 bits each. As a result, the total number of 1-bit
registers equals (128 + 32) × 32 = 160 × 32 = 5120. This
increases the hardware cost significantly. Note that in an FFT
with small parallelization, the impact of these registers would
not be high. However, as the parallelization of our architecture
is high, the total amount of registers becomes significant.

To mitigate the excess of hardware due to the registers
before and after memories, we have classified the mem-
ories into groups. Fig. 7 shows the groups of memories,
G0, G1, G2, G3, and the data paths with delay registers. Thus,
the memories are simply placed in 4 groups where each group
includes memories with the same characteristics. The groups
of memories G0 and G2 have 4-delay registers at the input.
Likewise, G2 and G3 have 1-delay registers at the outputs.
We propose to remove these delay registers by changing the
timing of the read and write addresses.

Fig. 8 shows the read and write times of each memory
group. The “Addr” signal is generated by a circular counter
and provides relevant addresses for each clock cycle. Note
that read and write addresses (RA, WA) are the same for all
groups, but they have different timing. The exact time for each
read and write address is achieved by 1 + 3 + 4 = 8 registers.
Considering that the memory addresses have 6 bits, the circuit
in Fig. 8 only requires 6 × 8 = 48 1-bit registers. Thus, with
this approach, we reduce the number of 1-bit registers from
5120 to 48 and reduce the area considerably.

Fig. 9. Proposed circular counter.

Fig. 10. LSB adder of the circular counter.

Besides the advantage of removing registers and, thus, sav-
ing hardware, this approach has another advantage. By group-
ing memories in 4 groups and using each group as a single
memory, the design only requires 4 memories in parallel
instead of 64. Furthermore, the total data memory size is equal
to the FFT size, N , which in our architecture is 4096.

D. Circular Counter

In this work, we propose an evolution of the circular counter
previously used in [25] and [26]. The previous version of the
circular counter had the advantage of a simple design that
removed the need for large multiplexers to select the bits of
the counter. However, this counter has a feedback connection
without registers that creates a combinational loop. This is
not a problem for the design, because the logic itself impedes
that the signals propagate through one entire loop. However,
in digital circuits, it is preferable to avoid combinational loops,
and the new circular counter is designed with this goal.

A way to remove a combinational loop is to include a
register in the loop. However, this can not be done in a
straightforward way in the circular counter, because the bit
that acts as the LSB changes for different stages of the FFT.
Thus, placing the register between two bits of the circular
counter would break the result at this point. To solve this issue,
the solution that we have adopted consists in calculating part
of the new value of the count in a previous clock cycle and
another part in the current clock cycle.

Fig. 9 shows the structure of the proposed circular counter.
At each clock cycle, the value of the count is provided at the
output signal. The counter is controlled by the register “ctr”,
which has the same size as the counter. All the bits of “ctr”
are zero except one of them, which indicates the bit that acts
as LSB.

The calculation of the next output is carried out in two steps.
First, “ctr” is added to the “output” signal that has the current

KAYA AND GARRIDO: LOW-LATENCY 64-PARALLEL 4096-POINT MEMORY-BASED FFT FOR 6G 4011

Fig. 11. Timing diagram of the proposed memory-based FFT architecture.

Fig. 12. Data load operation.

value of the count. This creates a sum in the most significant
bits (MSBs) of the counter. As all the bits of “ctr” are zero
except one, all the bits to the right of the bit that is equal to
‘1’ will not be affected. The addition of “ctr” to the MSBs is
registered in the “register” to break the combinational loop.
As the counter is circular, the carry of the MSB sum must
be added to the LSBs. This is done in the LSB adder. The
LSB adder is a regular adder with the exception that it only
adds values until it reaches the “ctr” bit set to ‘1’. This can be
observed in Fig. 10, which shows the LSB adder. This way, the
addition of the LSB adder does not propagate to the MSBs.
As a result, the combination of the MSB and LSB adders
covers all the bits of the counter and, therefore, implements
a circular counter where the LSB bit is indicated by the “ctr”
register.

E. Timing

Fig. 11 presents the timing diagram of the proposed archi-
tecture related to stages. FFT calculations are completed in
log2 N stages, which is indicated in the diagram as 1 to 12.
Each stage takes 2n−p

= 64 clock cycles. At stage 0, new data
(ND0) are loaded into memories before the start of the FFT
operations. From stage 1 to 12, data are processed iteratively.
The processing times are indicated as PD1, . . . , PD12. It can
be observed that the FFT results (DO0) can be provided during
the last processing stage. As there is no need to save the data
in the memory at the last stage, FFT results are obtained at the
same time, without the need for extra time. After the results of
an FFT are provided at the output, the same procedure repeats
for the next FFT.

Fig. 12 shows the data load operation. This operation is
controlled with a control signal, S. This signal is activated at
the beginning of the stage 0 so that new data are written into
the memories. Note that, in this case, data are written in all
memories simultaneously, being the writing address the same
for all of them. Therefore, only one address is used for writing
data during the loading phase.

The latency and throughput are key performance indicators
for FFTs. The latency is defined as the number of clock
cycles that the architecture needs to calculate the FFT of an
input sequence, whereas the throughput indicates the average
number of samples per clock cycle that are processed. If we
denote the loading time as TL O AD , the processing time as
TP ROC , and the time to output results as TOU T , then, the
latency is calculated as

TL AT = TL O AD + TP ROC + TOU T . (31)

In the proposed approach, TOU T = 0, because the output
results are provided during the last processing stage. Likewise,
TL O AD = N/P and TP ROC = N/P(log2 N). Therefore, the
latency of the proposed architecture in clock cycles is

TL AT =
N
P

+
N
P

log2 N , (32)

and the latency in µs can be obtained as

TL AT (µs) =
TL AT

fC L K (MS/s)
, (33)

where fC L K is the clock frequency.
The throughput in samples per clock cycle is calculated as

the number of samples processed in an FFT, N , divided by
the time difference between two consecutive FFTs, i.e.,

Th =
N

1TF FT
. (34)

In the proposed architecture, 1TF FT = TL O AD + TP ROC ,
which is the time between the beginning of ND0 and ND1.
By substituting it in (34), we obtain

Th =
P

1 + log2 N
. (35)

The throughput in megasamples per second (MS/s) is then
calculated as

Th(MS/s) = Th × fCLK(MS/s). (36)

F. Hardware Components

The proposed 64-parallel 4096-point radix-2 memory-based
FFT architecture uses a total memory size of 4096 + 32 for
data. This includes four memory groups that implement
16 memories of 64 addresses each, and 32 registers that
correspond to those after the multiplexers in the serial-parallel
permutation circuit of part C in Fig. 1. Note that the registers
previous to the multiplexers in the serial-parallel circuit have
been removed by changing the timing of the addresses of the
memory groups, as explained in Section III-C.

The rotation memory consists of 32 memories with
64 addresses each, where all of them are embedded in a single
memory thanks to the fact that the reading address is the same
for all of them. This results in a total of memory size of
2048 addresses for rotation coefficients.

The proposed architecture also uses 64 multiplexers to
permute data in the serial-parallel permutation circuit. Fur-
thermore, 64 complex adders and 32 complex multipliers are
used to carry out the calculations in the PEs.

4012 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

TABLE I

COMPARISON OF 4096-POINT MEMORY-BASED FFT ARCHITECTURES

TABLE II

COMPARISON OF 4096-POINT MEMORY-BASED FFTS ON VIRTEX 7 FPGA

G. Generalization for Other FFT Sizes and Parallelization

By following the same derivation as for the 4096-point
64-parallel FFT, the proposed approach can be generalized to
any number of parallel branches, P = 2p, and any power-of-
two FFT size, N = 2n .

A P-parallel architecture consists of P memory banks for
data in parallel. Each of them has N/P addresses. This results
in a total memory of N for data. As rotators only appear in odd
branches, the coefficient memory includes P/2 banks. Each of
these banks has N/P addresses, leading to a total coefficient
memory of size N/2. By taking into account the P/2 registers

that come from serial-parallel permutation circuits, the
total size for registers and memory in the architecture is
3N/2 + P/2.

Besides, the architecture has P multiplexers and P/2 PEs.
Each PE consists of a butterfly that includes one complex
adder and one complex subtractor, which have the same
complexity and are counted as adders, followed by a complex
rotator. This results in P complex adders and P/2 complex
rotators for the entire architecture.

Finally, the total processing time is N/P(log2 N), and
the latency and throughput are calculated according to (31)
and (34), respectively.

IV. EXPERIMENTAL RESULTS AND COMPARISON

The proposed architecture has been implemented on a
Virtex 7 XC7VX330T -1 FFG1157 FPGA using Vivado
2021.2. It works at 300 MHz, has a latency of 832 cycles
and its throughput is 4.92 samples per cycle. Additionally, the
signal-to-quantization-noise ratio (SQNR) is 44.8 dB.

In Table I, we compare the proposed architecture to pre-
vious 4096-point memory-based FFT architectures. Some
approaches in the table are implemented on a Vir-
tex 7 FPGA [26], [33], including the proposed approach,
whereas other approaches are implemented on ASICs [8], [13],
[23]. To make the works comparable, the table includes figures
of merit that are independent of the technology. Compared to
the 16-parallel high-radix architectures in [8] and [23], the
proposed approach achieves a latency 26% and 21% lower,
respectively. In addition, we obtain 26%, 58% and 84% higher
throughput compared to [8], [13], and [23], respectively. More-
over, if we examine the 4-parallel radix-2 approaches [26],
[33], it can be observed that the proposed architecture has at
least 14.7 times lower latency and 13.6 times higher through-
put, at the cost of a larger number of hardware components.

KAYA AND GARRIDO: LOW-LATENCY 64-PARALLEL 4096-POINT MEMORY-BASED FFT FOR 6G 4013

TABLE III

AREA AND POWER BREAKDOWN OF THE SUBCOMPONENTS

IN THE PROPOSED ARCHITECTURE

Regarding signal-to-quantization-noise ratio (SQNR), the
proposed approach achieves an SQNR of 44.8 dB. This is a
typical value for a word length of 16 bits. Other approaches in
the comparison report higher SQNR. In the case of [23] higher
SQNR is achieved by using a larger word length. In the case
of [8] and [13], the higher SQNR is the result of using block
floating-point (BFP) representation for the numbers.

Table II provides the experimental results of the pro-
posed approach in terms of clock frequency (fCLK), latency,
throughput (Th.), area, and power consumption. These results
are compared to previous 4096-point FFTs implemented on
Virtex 7 FPGAs. The proposed architecture works at a clock
frequency of 300 MHz with a latency of 2.7 µs and a through-
put of 1476 MS/s. The architecture uses a total of 96 DSP
slices for rotations, 32 BRAMs to store the data and coeffi-
cients, 2319 slices, and its power consumption is 1754 mW.

To compare the area-time trade-off we have considered
the reduction in latency of the proposed architecture and the
increase in area with respect to previous approaches. Com-
pared to [33], the proposed architecture reduces the latency
by a factor of 11.1, whereas the area is increased by a factor
of 2.3 in LUTs and FFs, and 4 in DSP Slices and BRAMs.
Therefore, the reduction in latency is much more significant
than the increase in area. Likewise, compared to [26], the
proposed architecture reduces the latency by a factor of 14.4,
whereas the area is increased by a factor of 11 in Slices, 12 in
DSP Slices, and 5.3 in BRAMs. Thus, the latency reduction
is again more significant than the increase in area.

Regarding power, the power consumption of the proposed
architecture is higher than that in [26]. This comes from
the extremely high throughput that the architecture achieves.
However, it can be observed that the efficiency of the proposed
architecture is 0.84 MS/s/mW, whereas the efficiency in [26] is
0.50 MS/s/mW, which is obtained as the throughput in samples
per clock cycle divided by the power. Therefore, despite its
higher power consumption, the proposed architecture is 68%
more efficient than that in [26].

Even with lower clock frequency and more area than the
other memory-based architectures [26], [33], the proposed
one gets significantly better results in terms of latency and
throughput, which sets it closer to the requirements of 6G
technologies.

Finally, Table III shows the detailed area and power con-
sumption report of the proposed architecture extracted from
Vivado. The report presents the number of slices, LUTs,
FFs, DSP slices, and BRAMs of each subcomponent, i.e.,

butterflies, memories, rotations (Rot.), which include rota-
tors and rotation memories, permutation circuits (Perm.) and
control circuits. The table shows that most of the slices are
used by rotations and butterflies. Likewise, LUTs and FFs are
occupied most by butterflies. Besides, DSP slices are used
in only rotations, and BRAMs are only used for memories.
As a consequence, the highest power consumption is due to
memories and rotations, which reach 41% and 33% of the
total, respectively.

V. CONCLUSION

In this paper, we have proposed a 64-parallel 4096-
point radix-2 memory-based FFT architecture. This approach
decreases the latency and increases the throughput by increas-
ing the parallelization to 64, being the first time that this high
parallelization is suggested for memory-based architectures.

The proposed architecture includes an efficient management
of the rotations, eliminates registers before and after data
memories, presents a novel circular counter, and provides a
detailed analysis of the timing in the architecture.

Experimental results show that the proposed design achieves
the lowest latency in terms of clock cycles and the highest
throughput in samples per clock cycle among memory-based
architectures so far.

ACKNOWLEDGMENT

The authors would like to thank P. Paz for providing
the implementation of the rotators used in the proposed
architecture.

REFERENCES

[1] C.-X. Wang et al., “On the road to 6G: Visions, requirements, key
technologies and testbeds,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 905–974, 2nd Quart. 2023.

[2] D. C. Nguyen et al., “6G Internet of Things: A comprehensive survey,”
IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.

[3] C. D. Alwis et al., “Survey on 6G frontiers: Trends, applications,
requirements, technologies and future research,” IEEE Open J. Commun.
Soc., vol. 2, pp. 836–886, 2021.

[4] S. Hakak et al., “Autonomous vehicles in 5G and beyond: A survey,”
Veh. Commun., vol. 39, Nov. 2022, Art. no. 100551.

[5] S. Nayak and R. Patgiri, “6G communication technology: A vision
on intelligent healthcare,” in Health Informatics: A Computational
Perspective in Healthcare. Singapore: Springer, Jan. 2021, pp. 1–18.

[6] N. Rajatheva et al., “White paper on broadband connectivity in 6G,” 6G
Res. Vis., Univ. Oulu, Oulu, Finland, Tech. Rep. 10, Jun. 2020.

[7] 3GPP. (Sep. 2020). 3GPP TS 38.211—Physical Channels and Modula-
tion V16.3.0. [Online]. Available: https://www.3gpp.org/DynaReport/38-
series.htm

[8] S. Liu and D. Liu, “A high-flexible low-latency memory-based FFT
processor for 4G, WLAN, and future 5G,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 3, pp. 511–523, Mar. 2019.

[9] J. Hazarika, M. T. Khan, and S. R. Ahamed, “Low-complexity
continuous-flow memory-based FFT architectures for real-valued sig-
nals,” in Proc. Int. Conf. VLSI Design Int. Conf. Embedded Syst.,
Jan. 2019, pp. 46–51.

[10] H.-J. Lin and C.-A. Shen, “The architectural optimizations of a low-
complexity and low-latency FFT processor for MIMO-OFDM commu-
nication systems,” J. Signal Process. Syst., vol. 93, no. 1, pp. 67–78,
Jan. 2021.

[11] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A low latency FFT/IFFT
architecture for massive MIMO systems utilizing OFDM guard bands,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 7, pp. 2763–2774,
Jul. 2019.

4014 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 70, NO. 10, OCTOBER 2023

[12] G. Prasanna Kumar, B. T. Krishna, and K. Pushpa, “Optimized pipelined
fast Fourier transform using split and merge parallel processing units
for OFDM,” Wireless Pers. Commun., vol. 117, no. 4, pp. 3067–3089,
Apr. 2021.

[13] S. J. Huang and S. G. Chen, “A high-parallelism memory-based FFT
processor with high SQNR and novel addressing scheme,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2016, pp. 2671–2674.

[14] S.-J. Huang and S.-G. Chen, “A high-throughput radix-16 FFT processor
with parallel and normal input/output ordering for IEEE 802.15.3c
systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 8,
pp. 1752–1765, Aug. 2012.

[15] J. Wang, C. Xiong, K. Zhang, and J. Wei, “A mixed-decimation MDF
architecture for radix-2k parallel FFT,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 1, pp. 67–78, Jan. 2016.

[16] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT processor for
OFDM-based WPAN applications,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 57, no. 6, pp. 451–455, Jun. 2010.

[17] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23–32, Jan. 2013.

[18] M. Garrido, M. Acevedo, A. Ehliar, and O. Gustafsson, “Challenging
the limits of FFT performance on FPGAs,” in Proc. Int. Symp. Integr.
Circuits (ISIC), Dec. 2014, pp. 172–175.

[19] J. K. Jang, H. K. Kim, M. H. Sunwoo, and O. Gustafsson, “Area-efficient
scheduling scheme based FFT processor for various OFDM systems,”
in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Oct. 2018,
pp. 338–341.

[20] J. Hazarika, S. R. Ahamed, and H. B. Nemade, “Low-complexity,
energy-efficient fully parallel split-radix FFT architecture,” Electron.
Lett., vol. 58, no. 18, pp. 678–680, Aug. 2022.

[21] M. Garrido, K. Möller, and M. Kumm, “World’s fastest FFT architec-
tures: Breaking the barrier of 100 GS/s,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 66, no. 4, pp. 1507–1516, Apr. 2019.

[22] G. Polat, S. Ozturk, and M. Yakut, “Design and implementation of
256-point radix-4 100 Gbit/s FFT algorithm into FPGA for high-speed
applications,” ETRI J., vol. 37, no. 4, pp. 667–676, Aug. 2015.

[23] Y. Guo, Z. Wang, Q. Hong, H. Luo, X. Qiu, and L. Liang, “A 60-
mode high-throughput parallel-processing FFT processor for 5G/4G
applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31,
no. 2, pp. 219–232, Feb. 2023.

[24] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans.
Comput., vol. COM-20, no. 2, pp. 153–161, Feb. 1971.

[25] M. Garrido and P. Pirsch, “Continuous-flow matrix transposition using
memories,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 9,
pp. 3035–3046, Sep. 2020.

[26] Z. Kaya, M. Garrido, and J. Takala, “Memory-based FFT architecture
with optimized number of multiplexers and memory usage,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, early access, Feb. 16, 2023, doi:
10.1109/TCSII.2023.3245823.

[27] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
Jan. 1965.

[28] M. Garrido, “A survey on pipelined FFT hardware architectures,”
J. Signal Process. Syst., vol. 94, no. 11, pp. 1345–1364, Nov. 2022.

[29] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit-
dimension permutations,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 5, pp. 1148–1160, May 2019.

[30] M. Garrido, “Efficient hardware architectures for the computation of
the FFT and other related signal processing algorithms in real time,”
Ph.D. dissertation, Dept. Signals, Syst. Radiocommunications, Univer-
sidad Politécnica de Madrid, Madrid, Spain, Dec. 2009.

[31] M. Garrido, “A new representation of FFT algorithms using triangular
matrices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 10,
pp. 1737–1745, Oct. 2016.

[32] P. Paz and M. Garrido, “Efficient implementation of complex multipliers
on FPGAs using DSP slices,” J. Signal Process. Syst., vol. 95, no. 4,
pp. 543–550, Apr. 2023.

[33] Z.-G. Ma, X.-B. Yin, and F. Yu, “A novel memory-based FFT architec-
ture for real-valued signals based on a radix-2 decimation-in-frequency
algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 9,
pp. 876–880, Sep. 2015.

Zeynep Kaya received the M.Sc. and Ph.D.
degrees in electrical and electronics engineering
from Eskisehir Osmangazi University, Turkey, in
2015 and 2021, respectively.

Since 2021, she has been an Assistant Profes-
sor with Bilecik Şeyh Edebali University. Since
September 2022, she has also been with Universidad
Politénica de Madrid (UPM), Spain, as a Post-
Doctoral Researcher. Her current research interests
are optimized hardware architectures for the fast
Fourier transform (FFT) including data management

and memory addressing schemes. Her research interests include high-
performance circuits, designs for small area, low latency, and low power
consumption.

Mario Garrido (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in electrical engineer-
ing from Universidad Politénica de Madrid (UPM),
Madrid, Spain, in 2004 and 2009, respectively.

In 2010, he moved to Sweden to work as a
Post-Doctoral Researcher with the Department of
Electrical Engineering, Linköping University, where
he was an Associate Professor from 2012 to 2019.
In 2019, he moved back to UPM, where he holds
a Ramón y Cajal Research Fellowship. So far,
he has been the author of more than 50 scientific

publications. His research focuses on optimized hardware design for signal
processing applications. This includes the design of hardware architectures
for the fast Fourier transform (FFT), circuits for data management, the
CORDIC algorithm, neural networks, and circuits to calculate statistical
and mathematical operations. His research interests include high-performance
circuits for real-time computation, and designs for small area and low power
consumption. In 2022, he appeared in the “World’s Top 2% Scientists List”
elaborated by Stanford University.

http://dx.doi.org/10.1109/TCSII.2023.3245823

