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Abstract— Nonlinear calibration allows enhancing the per-
formance of analog and radiofrequency circuits by digitally
correcting nonlinearities. Often, calibration is performed in
the complex baseband domain, and Volterra models are used.
These models have hundreds of coefficients, and easily become
computationally unfeasible. This is worse in complex Volterra
models, because high-order Volterra terms require summing
multiple products of the input signal. We propose a generalized
complex Volterra model based on one relaxation of Volterra
theory: all the nonlinear monomial terms in the model are
considered separately, even if they correspond to a single real
coefficient in complex Volterra theory. This produces more
accurate models, though with a larger number of coefficients.
We thus extensively prune the model by means of OMP and
OBS techniques. The resulting models have fewer coefficients
and/or better accuracy than conventional Volterra models,
resulting in a significantly improved accuracy-complexity trade-
off. These results are validated in the experimental calibration
of a commercial IF amplifier. The resulting model achieves the
same accuracy, with 9 free parameters and 34 multiplications,
as the standard Volterra model with 12 parameters and
266 multiplications, resulting in a 25% reduction in the number
of parameters, and an 87% reduction in the number of
multipliers.

Index Terms— Digital calibration, nonlinear models, complex-
ity reduction, amplifiers, analog circuits, optimal brain surgeon,
orthogonal matching pursuit.

I. INTRODUCTION

MODERN electronic systems heavily rely on digital
signal processing. The digital conversion of the signal

allows calibration in the digital domain, enabling the so called
digitally-assisted analog electronics, where digital algorithms
improve the performance of analog blocks [1], [2]. Power
amplifiers [3], [4], [5], [6], IQ mixers [7], [8] and ADCs [9],
[10], [11], [12], [13] can be digitally enhanced. Calibration can
correct linear errors, as in time-interleaved (TI) ADCs [14],
[15], [16], but can also be exploited to reduce the nonlinearity
of system components [12], and of the system as a whole [11],
[12], [13].
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Volterra models are often used to describe weakly nonlinear
continuous systems where memory effects have to be taken
into account [17]. However, depending on their maximum
order of nonlinearity and memory depth, these models often
require a huge number of parameters, resulting in high
computational complexity and estimation problems.

These issues are particularly significant for Volterra models
in the complex domain [18], because these models have
much higher computational cost, as each high-order Volterra
coefficient multiplies the sum of multiple delayed, phase
shifted and eventually frequency modulated product terms,
which need to be computed in real time. Hence, setting
up a complex Volterra model is computationally expensive.
Furthermore, the theory is restrictive, yielding models that are
not very accurate despite the huge resource cost.

In this paper we propose a generalized class of complex
Volterra models based on the removal of one key assumption:
each monomial term in high-order Volterra kernels is assumed
to be independent from the others, with a separate coefficient.
The removal of this hypothesis yields a class of models
which is more accurate than conventional complex Volterra
models, at the cost of a significantly larger number of
coefficients.

Hence, computational costs are increased and estimation
is more cumbersome. To compensate for this problem,
pruning is used to reduce the computational complexity
of the generalized complex Volterra models, yielding much
more compact models with comparable linearity. Pruning is
performed using a combination of the Orthogonal Matching
Pursuit (OMP) [18], [19], [20] and Optimal Brain Surgeon
(OBS) [18], [21], [22] techniques.

The resulting pruned model can be either more accurate or
simpler than the original model after pruning, and much easier
to set up: in fact, a pruned Volterra model would require the
computation of many polynomial basis functions, including
phase shifts and frequency modulations, whereas generalized
Volterra models only use monomials. Hence, the proposed
model is more general, and thus more accurate, but also
more flexible, and thus more easily pruned to a computational
cost which is much lower than that of conventional complex
Volterra models. It is thus possible to improve the accuracy-
complexity trade-off to obtain nonlinear models that are at the
same time more accurate, computationally simpler, and easier
and faster to estimate, owing to a lower number of nonlinear
coefficients.
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This important result is verified experimentally in the
calibration of an IF amplifier: a 25% reduction in the number
of free parameters to estimate, and an 87% reduction in the
number of complex multipliers required to correct the output,
is achieved with respect to the conventional complex Volterra
model.

The contributions of this paper can thus be summarized as
follows:

• We propose a novel class of complex Volterra models
which improves the accuracy-complexity trade-off. The
new class of models is obtained by removing a hypothesis
from conventional complex Volterra theory and is
therefore a generalization of the latter.

• The new class of models is validated experimentally
for the calibration of an IF amplifier. A performance
comparison between the generalized and the conventional
Volterra model is carried out, before and after pruning.

It should be remarked that the generalized class of models
includes Volterra models as a special case, and thus cannot be
less accurate than Volterra models: it is in fact more accurate,
as experimentally shown in this paper. The problem of the
increased number of free coefficients can be effectively solved
by extensive pruning, with experimental evidence that the
generalized models are more accurate for the same number
of free coefficients. The main reason for the significantly
reduced computational complexity is that a single term of
order P in conventional Volterra theory requires the sum of
2P−1 monomials of order P , whereas in the generalized model
only one monomial needs to be computed.

The paper is organized as follows. Section II summarizes
Volterra models in the real and complex domains. Section III
proposes a new generalized Volterra model, and summarizes
the pruning technique employed to reduce its complexity.
Section IV describes the experimental setup and discusses the
experimental results. Section V concludes.

II. VOLTERRA MODELS IN THE REAL
AND COMPLEX DOMAINS

Nonlinear calibration techniques attempt to correct linear
and nonlinear errors arising in electronic systems owing to
active devices. There is no standard model for nonlinearities,
especially for dynamic nonlinearities, i.e., nonlinear effects
with memory: Volterra series are often used, but these models
easily become unmanageable owing to the large number of
coefficients.

In this paper we define a subclass of linear-in-the-
parameters (LIP) feedforward models, a class of models
which also includes feedforward Volterra models, FIR
filters, polynomial nonlinear models, but also functional link
artificial neural networks (FLANN) models with linear output
layers [23], Hammerstein models [24], and others. Since they
are linear in the parameter space, such models allow using
linear estimation techniques, which are convex, numerically
simple, and well-posed [25].

As we assume the system is sampled, we model the block
under calibration as a discrete-time system. The input signal
is x [n], sampled at a rate fS , and produced by a DAC whose
linearity and noise are assumed to be better than that of the

amplifier under calibration. The output of the device to be
calibrated is y [n], which is sampled, at the same rate, by an
ADC, whose accuracy is also supposed to be better than that
of the device to be calibrated. The input is considered to be
an IF signal of bandwidth BW around the carrier fC , with
0 < fC −

BW
2 < fC +

BW
2 <

fS
2 .

In general, the nonlinear function describing the device will
not be known, but it will be nonlinear and with memory, so that
the output of the system is a nonlinear function of the present
and past values of the input. Of course, noise shall also be
considered.

Digital calibration consists in approximating the inverse
function of the system in the digital domain, so that the
calibrated output z [n] will be as close as possible to the
(known) input x [n]. In this way, the deterministic errors
affecting y [n] will ideally be removed, if the system is
invertible:

z [n] = g (y [n] , . . . , y [n − M]) ≈ x [n] (1)

Since such a model is unworkable, we focus on models
which are linear-in-the-parameters and feedforward:

z [n] =

∑L−1

0
βl gl

[
y [n] , . . . , y [n − M]

]
(2)

This model has L unknown parameters, βl , which are the
coefficients of the linear combination of the known linear and
nonlinear functions gl (·) of the input signal, including its past
values, up to a delay M . The use of LIP models ensures that a
wide array of estimation algorithms for linear models can be
employed: batch least squares, recursive least squares (RLS),
least mean squares (LMS) [25], etc. In fact, linear estimation
techniques, which are well known, numerically efficient and
stable, and globally optimal, can be used to estimate any LIP
model.

Another assumption implicit in (2) is that the output only
depends on the input, i.e., it does not depend on the past
values of the output. Such models are called feedforward,
as there is no feedback of the output toward the input, and are
a generalization of finite impulse response (FIR) linear filters.
For instance, if gl

[
y [n] , . . . , y [n − M]

]
≡ y [n − l], and

L = M +1, the model in (2) becomes a FIR filter, which is the
workhorse of linear equalization techniques in telecommunica-
tions. On the other hand, if gl

[
y [n] , . . . , y [n − M]

]
≡ yl [n],

the model in (2) becomes a standard polynomial model with
static nonlinearities. Volterra models are an example of LIP
feedforward models.

A. Real Volterra Models

The Volterra model is the sum of kernels of degree
p = 1, . . . , P , where monomials of order p are obtained
from the input y [n] using lagged terms up to a delay
M (p), where the memory length can be a function of the
degree, to minimize model complexity. Since products are
commutative, delays can be put in non-decreasing order.
Hence, we focus on non-decreasing tuples, and write the
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output of the kernel of degree p as:

z p [n]=
∑Mp

i1=0
· · ·

∑
i p=i p−1

M
p βi1...i p y [n − i1] · · · y

[
n − i p

]
(3)

Finally, the output of the Volterra model is the sum of the
outputs of the Volterra kernels, up to the highest order P:

z [n] =

∑P

p=1
z p [n] (4)

The model may include a term of order 0, which represents
the dc offset.

The main problem with Volterra models is the number
of coefficients: a 5th-order model with M = 4 would have
126 free parameters. The computational cost of Volterra
models depends on the number of free parameters which
need to be estimated, plus a setup cost to compute all
the monomials in the Volterra kernels. The number of free
parameters to estimate has a direct impact on the complexity
of the estimation technique, on estimation convergence time,
and on the stability of estimation algorithms. Hence, model
pruning is of the essence to reduce model complexity and
improve numerical stability and convergence time, i.e., the
number of known samples required to identify the system.

Furthermore, real-time correction, even with fixed (already
identified) parameters, requires a fixed cost per sample,
comprising the computation of the basis functions which
form the Volterra kernels and the calculation of the linear
combinations of basis functions which allow computing the
corrected output, as in Eq. 2.

B. Complex Volterra Models

Usually, equalization in communication systems is per-
formed in the complex domain [26], after demodulation and
carrier and timing recovery. The goal is to minimize the
linear and nonlinear Inter-Symbol Interference (ISI) and allow
symbol decision with the lowest Error Vector Magnitude
(EVM) and Symbol Error Rate (SER). Hence, we define
the intermediate frequency (IF) and baseband frequency
(BF) signals, where ω0 is the normalized carrier frequency
ω0 = 2π fC TS , with fC the carrier frequency in Hz, and TS
the sampling period:

yI F [n] = ℜ

{
yB F [n] e jω0n

}
(5)

A FIR filter can be written in the IF domain as:

z I F [n] =

∑L−1

l=0
hl yI F [n − l]

= ℜ

{∑L−1

l=0
hl yB F [n − l] e jω0(n−l)

}
(6)

If we rewrite the second expression, we obtain:

zB F [n] =

∑L−1

l=0
hl yB F [n − l] e− jω0l (7)

Hence, a linear filter in the IF domain is equivalent to a
linear filter in the BF domain, with the same (real) coefficients
hl , if the BF samples are phase rotated by e− jω0l and delayed
by l.

Similar calculations hold for Volterra kernels of higher
degrees. For instance, a generic quadratic term can be written
as:

x I F [n − l] x I F [n − m]

= ℜ

{
xB F [n − l] e jω0(n−l)

}
ℜ

{
xB F [n − m] e jω0(n−m)

}
(8)

Using the identity ℜ {x} =
1
2 (x + x∗), we get Eq. (9), as

shown at the bottom of the next page.
Hence, a second-order kernel is the sum of two second-order

monomials, one frequency modulated by e jω0n , the other by
e− jω0n , which correspond to the terms around 2 fC and dc,
respectively.

Similar relations can be obtained for higher-order kernels.
Hence, IF kernels can be expressed in terms of the BF
components, and the Volterra coefficients remain real and have
the same value. The higher-order terms can be modulated
around frequencies 0, ω0 or multiples.

From the above equations we notice several important
aspects. First, the complex Volterra kernel has the same
number of (real) parameters than the real Volterra kernel,
with the same coefficient values, because they are equivalent
models. But complex Volterra kernels of the second-order
require the sum of two complex products (9) to compute
the basis functions, and these products also require phase
shifting and frequency translation. This is even worse in
higher-order kernels: third-order kernels require the sum of
four terms, and fifth-order terms the sum of sixteen terms:
the product of P terms such as ℜ {x} =

1
2 (x + x∗) creates 2P

products, which are paired into 2P−1 terms when the final real
value is computed. Hence, complex Volterra models are more
expensive to set up, requiring more operations to compute all
the basis functions.

Some of these terms are modulated around carriers different
from fC and may be removed in narrowband systems, but in
general this is not possible in wideband systems.

These issues are solved in the next Section, where
generalized Volterra kernels are defined, which are more
general, and thus more accurate, and can be pruned to smaller
models, and thus are less expensive in terms of resources
(after pruning). Their higher accuracy is due to their higher
generality, whereas the lower computational cost depends
on two factors: first, the setup cost is significantly reduced
because each parameter of the model is only multiplied by a
monomial, instead of the sum of 2P−1 monomials; second, the
number of coefficients which remain after pruning is lower, for
the same accuracy.

III. GENERALIZED VOLTERRA MODELS

Complex Volterra models are equivalent to real Volterra
models but operate on the baseband complex components
instead of the intermediate frequency signal.

There is one hypothesis behind the derivation of complex
Volterra model: all the monomials of the basis functions are
multiplied by the same parameter. To keep the explanation
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simple, we consider a third-order Volterra model with no
delays:.

zB F [n] =

∑3

p=1
z p

B F [n] (10a)

z1
B F [n] = β1

0 y [n] (10b)

z2
B F [n] =

1
2
β2

00

(
y2 [n] e jω0n

+ |y [n]|2 e− jω0n
)

(10c)

z3
B F [n] =

1
4
β3

000

(
y3 [n] e j2ω0n

+ 3 |y [n]|2 y [n]
)

(10d)

Three of the four terms in the third-order kernel are
equivalent for 0 lags, but are in general different. Also, all
phase shifts are 0 for 0 lags, but in general will not be so.
This simple model has 1 first-order term, 2 second-order terms
and 2 third-order terms (instead of 4), plus three frequency
modulators. The model has only three unknowns, β

p
{0}

, because
M (p = {1, 2, 3}) = 0. Of course, such model would be much
more complex for larger delays and orders.

The hypothesis in complex Volterra theory is that the
polynomial terms for the same kernel and lag shall be
multiplied by the same coefficient. By removing this
hypothesis we obtain a new generalized model, that has
2p−1

− 1 more free coefficients for each term of degree p.
In our toy example (Eq. 10), there would be 1 additional
term for the 2nd-order kernel, and 3 for the third-order kernel
(actually, for zero lags two such terms are identical).

This relaxation will yield a more complex model with better
accuracy, because it has more degrees of freedom: the original
model can be obtained by constraining the related coefficients
to be equal. The fact that the obtained model is more general
implies that it will be more accurate, if there are no estimation
problems due to the larger number of free parameters. Such an
issue will be tackled through pruning in the next sub-section.
In the same simplified assumptions seen above, the proposed
model will be:

zB F [n] =

∑3

p=1
zi

B F [n] (11a)

z1
B F [n] = β1

0 y [n] (11b)

z2
B F [n] = β2

00a y2 [n] e jω0n
+ β2

00b |y [n]|2 e− jω0n (11c)

z3
B F [n] = β3

000a y3 [n] e j2ω0n
+ β3

000b |y [n]|2 y [n] (11d)

There are now five unknown terms instead of three. The
original model can be obtained if β3

000a =
1
3β3

000b =
1
4β3

000
and β2

00a = β2
00b =

1
2β2

00.
The generalized model will have a much larger number

of free parameters. Because of the large increase in model
coefficients, pruning is required to reduce model complexity.

A. Pruning via OMP and OBS

Though pruning of the model is of the essence to reduce
model complexity, there is another approach that is widely

exploited in the literature for the same reason: restricting the
Volterra models with a priori hypotheses on the structure of
the nonlinear kernels.

For instance, forcing MP = 0 will yield a model with
static nonlinearities, which is the simplest (though usually
inaccurate) nonlinear model which can be used: the number
of nonlinear coefficients would be P − 1, one for the
2nd-order term, one for the 3rd-order term, and one for each
order up to P . A static nonlinear model is a subset of Volterra
models, but based on very restrictive hypotheses on the nature
of nonlinearities.

A less restrictive class of models are memory polynomial
(MP) models [27], which force distortions terms to have the
same delay, so that i1 = i2 = . . . = i p for each kernel of
order p, with i1 = 0, . . . , Mp. Hence, there would be Mp
terms of order p, instead of a number of terms which grows as
M p

p /p! as in Volterra kernels. Also these models are included
in Volterra theory, though they represent a small subset of
Volterra models, given the strong restrictions on the delay
indexes.

Generalized memory [28] polynomials are even less
restrictive because they allow products with the leading and
lagging terms of the samples.

Other models lift the hypothesis of linear dependence of the
parameters and are thus not LIP, such as modified generalized
memory polynomials (MGMP) [27], and are not considered
in this paper.

Pruning uses a different approach: the choice of the
parameters to consider is not made a priori, as in restricted
Volterra models, but results from some algorithm which
chooses the most promising subset of parameters from the
data.

The desired response of the system, x [n], can be recorded
in a column vector V of size N ×1. The L linear and nonlinear
functions of the system output y [n], which correspond to the
monomials of the Volterra kernels, can be put in a design
matrix X of size N × L , and the unknown parameters β are
a column vector of size L × 1. Hence:

V = Xβ ↔ e = V − Xβ (12)

Model estimation consists in minimizing the energy of the
error vector e, choosing the parameter vector β optimally. Such
an estimation problem can be performed using conventional
least squares techniques, under the assumption that the model
is well specified: N ≫ L , and the columns of X are not
linearly dependent. If these hypotheses fail, β cannot be
robustly estimated.

Orthogonal Matching Pursuit (OMP) is the standard
technique for model pruning from the simplest to the
most complex model: the algorithm is greedy, and thus
suboptimal, and iterative, choosing one additional input vector

x I F [n − l] x I F [n − m] =
1
2
ℜ

{
xB F [n − l] xB F [n − m] e jω0(2n−l−m)

+ xB F [n − l] x∗

B F [n − m] e jω0(−l+m)
}

=
1
2
ℜ

{(
xB F [n − l] xB F [n − m] e jω0(n−l−m)

+ xB F [n − l] x∗

B F [n − m] e jω0(−n−l+m)
)

e jω0n
}

(9)
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per iteration [19], [20]. The OMP algorithm computes the
correlations between the desired output V and the columns
of X , and selects the column with the highest correlation: this
provides the optimal model of size 1, i.e., the model with
only one parameter which minimizes the error energy. Once
a first parameter is obtained, the selected column is used to
regress both the desired output and all the remaining columns
of X . This regression makes both V and X orthogonal to
the selected variable (the new X will have L − 1 columns).
The algorithm can be reiterated Lomp ≤ L times, and selects
a model with one additional parameter at each iteration.
There is no guarantee that the algorithm will select the
optimal model with Lomp parameters, because the algorithm
is greedy and optimal only for one step. However, OMP is
robust, easy to use, and usually effective. Moreover, there
is no computationally feasible alternative, because there are
(L+Lomp)!

L!Lomp !
possible subsets of Lomp columns of the L columns

of X , and it is unfeasible to try all the combinations, though
a brute force method would yield the optimal model by
exhaustive search.

On the other hand, the Optimal Brain Surgeon (OBS)
algorithm [18], [21], [22] starts from the full model and
removes one variable at the time, selecting the one that
influences the residual error the less. The impact of each
variable on the error depends on the curvature of the error
curve and the value of the parameter, and variables which are
either small or have small curvature are removed first. The goal
is to reiterate the algorithm many times, to obtain a model of
complexity Lobs ≪ L while retaining accuracy.

The two techniques operate in opposite directions: the OMP
from the simplest to the most complex model, and the OBS
from the complete to the simplest model. The best technique
is the one that selects the minimum-error pruned model for
a given complexity: in general, none of the two techniques
outperforms the other for all desired pruning levels, and
combining the two allows finding a better approximation of
the complexity-accuracy trade-off [18].

To the extent that Lomp, Lobs ≪ L , and that the pruned
model is not much less accurate than the full model, the
new pruned model will have much lower computational
cost, lower estimation time, and better numerical stability
and accuracy properties. Since heavily correlated columns
are never selected, the resulting pruned models are usually
well behaved: if a column were linearly dependent on the
previously chosen ones, its residual would be zero, and it
would be discarded.

B. Estimating Complex Models

Estimation in the complex domain always yields complex
desired vectors V and design matrices X , but in the
conventional Volterra model the unknown parameters β remain
real. We use the subscripts R and I for the real and imaginary
parts of the vectors, respectively. The error is e = y − Xβ =

(yR − X Rβ)+ j (yI − X I β). The Euclidean norm of the error
is eT e = eT

ReR+eT
I eI , where the superscript T is the transpose

operator: minimizing the error implies minimizing the sum of
the error on the real and imaginary terms. Hence, the optimal

Euclidean norm model is:

β =

((
X T

R X T
I

) (
X R
X I

))−1 ((
X T

R X T
I

) (
VR
VI

))
(13)

Hence, complex models with real coefficients can be estimated
as real models with real coefficients. In the case of
Equation (13) the real equivalent model has L unknowns and
2N equations.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This Section describes the experimental setup and discusses
the results. A commercial IF amplifier has been measured
with QAM-64 input waveforms, and calibrated with and
without pruning, using both the conventional and the proposed
generalized Volterra models.

A. Experimental Setup

The ZX60-100VH+ amplifier [27] has been tested. The
setup includes 3dB of attenuation before the amplifier, and
30dB of attenuation [28] after the amplifier. The nominal
gain of the amplifier is 36dB, hence the overall chain has an
expected gain of about 3dB. The full-scale value of the DAC
is 1Vpp and the input waveform has a peak-to-peak swing of
900mVpp. The full-scale value of the ADC is 2Vpp, so that
the expected output swing of the received waveform is about
32% of the full swing of the ADC. The amplifier is driven
close to the back-off input power, to make distortions evident.

The experimental setup is composed of an FPGA board
connected to an ADC-DAC FMC150 board [29]. The board
has two 250MS/s 14-bit ADCs and two 500MS/s 16-bit DACs.
Only one DAC and ADC are used, and both are clocked
synchronously at 250MS/s. A file containing 16.384 samples
is sent to the FPGA and then to the DAC, whereas the ADC
records 131.072 samples, i.e., 8 copies of the same input
(the DAC repeats the same waveform continuously). Several
QAM-64 waveforms have been acquired to allow averaging
and investigate noise performance.

The DAC includes a built-in 82MHz filter, and both the
ADC and the DAC are AC-coupled, with a low cut-off
frequency of 3 and 0.4MHz, so that the effective bandwidth
of the system is about 3-80MHz. The measurement chain
includes an anti-aliasing lowpass SLP-100 filter by Mini
Circuits, with 100MHz bandwidth [30]. The DAC-ADC chain,
including both filters, has an EVM of less than 0.4%,
an order of magnitude lower than those of the amplifier under
calibration, so that the error – nonlinear and stochastic – due
to the setup is negligible.

B. Characterization of the IF Amplifier

Figure 1 shows the transmitted and received signal spectra.
The input has 50MHz bandwidth around a 50MHz carrier
frequency, and spectral regrowth is clearly evident in the
output spectrum (red) with respect to the input spectrum
(black).

The output spectrum has about 3dB gain loss at 80MHz,
compatibly with the 80MHz pulse-shaping lowpass filter after
the DAC. The nonlinear spectral regrowth after the amplifier
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Fig. 1. Input (black) and output (red) spectrum. Spectral regrowth is clearly
visible at the output. Attenuation after 100MHz is due to the antialiasing filter.

Fig. 2. EVM (top) and SER (bottom) after equalization with 9 linear
coefficients and offset correction. Transmission errors are evident, and the
EVM is too large. Longer linear filters do not improve accuracy.

is attenuated after 100MHz by the anti-aliasing lowpass filter
before the ADC.

Figures 2 and 3 show the EVM, SER and constellation
after equalization with 9 coefficients. A linear model with
9 coefficients only corrects linear errors, and it is evident that
equalization alone is not enough for reliable reception of the
QAM-64 waveforms. Longer filters do not reduce the EVM,
because most errors are nonlinear, and the frequency response
of the setup is rather flat over the 50MHz bandwidth.

The residual error is not due to noise, because a total
of 14 waveforms have been acquired and averaged (with a
theoretical process gain of 11.5dB), but no difference between
the averaged and non-averaged EVM have been observed.
Hence, most of the EVM is due to residual nonlinear ISI,
and not to noise, otherwise the EVM would have fallen with
averaging.

Hence, nonlinear models are required to improve EVM and
SER, as the residual error is neither stochastic nor linear.

Fig. 3. Received constellation after equalization. The QAM-64 constellation
should form a square of 8 dots per dimension. Noise is limited (the central
dots are small), but heavy distortion occurs at the corners, owing to nonlinear
effects. Such distortions produce transmission errors, as evidenced in Fig. 2.

Fig. 4. EVM (top) and SER (bottom) after calibration with the conventional
Volterra model. No transmission errors are present, and EVM is 2.8%.

C. Calibration With the Conventional Volterra Model

Figures 4 and 5 show the SER, EVM and constellation
after calibration with a conventional Volterra model with lag
structure (8, 4, 4, 2, 2). This means that the linear section has a
maximum delay of 8, the quadratic and cubic parts a maximum
delay of 4, and the 4th- and 5th-order sections a maximum
delay of 2. The model has 96 coefficients and needs pruning
to reduce its computational cost, but EVM falls to 2.8% and
SER to 0.

Figure 6 shows the pruning of the conventional Volterra
model using the OMP and OBS methods. Figure 7 shows the
constellation after pruning to 22 coefficients. EVM is 3.1%
and no transmission errors are present.

D. Calibration With the Generalized Volterra Model

Figures 8 and 9 show the impact of calibration with the
generalized Volterra model. The lag structure of the 5th-
order model is (8, 4, 4, 2, 2), so that there are 9 linear
coefficients, but many more nonlinear ones. The total number
of coefficients before pruning is 636, making the model
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Fig. 5. Received constellation after calibration with the conventional Volterra
model. The QAM-64 constellation should form a square of 8 dots per
dimension. Noise is limited (the central dots are small), and distortion is
still evident at the corners, but overall the symbols are well spaced.

Fig. 6. Pruning of the conventional Volterra model using the OMP and OBS
methods.

Fig. 7. Received constellation after calibration with the conventional Volterra
model after pruning to 22 coefficients, 10 linear and 12 nonlinear.

completely impractical. The resulting error is 2%, significantly
lower than in the conventional Volterra model (Fig. 4), but at a
much larger computational cost. The constellation in Fig. 9 is
much better spaced and closer to the ideal square of 8 symbols

Fig. 8. EVM (top) and SER (bottom) after calibration with the generalized
Volterra Model with 636 coefficients. No transmission errors are present, and
EVM is 2.0%. However, the model is expensive and impractical.

Fig. 9. Received constellation after calibration with the generalized Volterra
model. The QAM-64 constellation should form a square of 8 dots per
dimension. Noise is limited (the central dots are small), and some distortion
is still evident at the corners, but overall the symbols are well spaced.
Unfortunately, the model has 636 coefficients and is impractical without
pruning.

per dimension than with the conventional Volterra model
(Fig. 7), implying that the model is significantly more accurate.
Pruning is of the essence, however, to make it practical.

Figure 10 shows the effect of pruning with the OMP and
OBS methods, while Fig. 11 shows the constellation after
pruning to 18 coefficients, 10 for the linear part and 8 for
the nonlinear part. EVM is 3.1% and SER is 0, though the
constellation is again distorted.

Pruning to 9 nonlinear coefficients of the generalized
Volterra model yields the same EVM as pruning to 12 of the
conventional Volterra model. Furthermore, the basis functions
of the generalized Volterra model are cheaper to compute,
because they are just monomials, and not the sum of 2p−1

monomial terms for the conventional Volterra kernel of order
p. Hence, there is a great advantage in terms of computational
complexity, and also an advantage in terms of estimation time
and numerical stability, as both depend on the number of the
parameters to estimate.
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Fig. 10. Pruning of the generalized Volterra model.

Fig. 11. Constellation after pruning to 19 coefficients (10 linear and
9 nonlinear).

Fig. 12. Comparison of pruning for the two models in terms of number
of coefficients: conventional (black) and generalized (red) models. The
generalized model is much more accurate for the same number of coefficients,
yielding a significantly smaller model for the same accuracy.

Figures 12 and 13 compare the results of pruning of the
two models. The conventional Volterra model starts with
96 coefficients, while the generalized Volterra model with 636.

Fig. 13. Comparison of pruning for the two models in terms of setup costs:
conventional (black) and generalized (red) models. For the same accuracy,
the generalized model has much lower computational complexity, if the setup
costs are also included. With a few tens of complex multiplications per sample,
the generalized model has the same accuracy as the conventional model,
requiring hundreds of complex multiplications.

However, pruning is much more effective in the generalized
Volterra model, resulting in a more accurate and cheaper
model after extensive pruning. The two figures differ because
Fig. 12 considers complexity as the number of coefficients to
estimate, whereas Fig. 13 reports the setup cost required to
compute all the basis functions, as the number of complex
products required to compute each of them. The setup cost in
Fig. 13 is paid for each calibrated output (once per sample),
whereas the number of coefficients in Fig. 12 influences the
cost of the estimation algorithm to compute the optimal model
coefficients.

After pruning to 9 nonlinear coefficients (and 10 linear
coefficients), only 1 of the 2nd-order term remains, plus 6
3rd-order terms, and 2 5th-order terms. Hence, the setup cost
consists in computing 9 monomial terms, most of them of the
3rd-order.

Compared with the conventional model, which achieves the
same EVM and SER with 12 coefficients, 4 of the 2nd-order,
6 of the 3rd-order, and 2 of the 5th-order, the setup cost is
much lower, because there are 9 monomials to be computed,
instead of 64 (2p−1 for each p-order term).

Hence, not only 9 coefficients instead of 12 are to be
estimated, but 9 monomial terms (of various orders) instead of
64 are to be computed for each sample to perform the real-time
computation of the calibrated output.

Considering that the computation of each monomial of order
p requires p complex multiplications (p − 1 for the lagged
input terms, and one for the phase shifter), plus eventually
another complex multiplication for the terms that are frequency
modulated, the setup cost of the conventional model pruned
to 12 coefficients is 266 complex multiplications. On the
other hand, the setup cost of the generalized model with
9 coefficients is only 34 complex multiplications: an 87%
reduction in setup cost is thus obtained.

E. Comparison With Other LIP Feedforward Models

The generalized Volterra model with 9 coefficients,
requiring 34 complex multiplications, achieves a residual EVM
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of 3% and shows no SER in the dataset. We use the static
nonlinear model, the MP model [27], a trigonometric [33] and
polynomial [34] FLANN model as a comparison.

Neural network models [35] typically involve multiple
layered nonlinearities that make the models nonlinear in the
parameter space, so that the LIP hypothesis is not fulfilled.
An exception are FLANN models with a linear output layer,
including the random vector variant [36], but also radial basis
function (RBF) models [37]. However, RBF models require a
choice of the centers and width of the kernels which cannot
be performed with linear estimation, whereas random vector
functional link (RVFL) models have a random layer (chosen
a priori) whose effectiveness depends on the choice of the
random values. Hence, these models are out of scope for our
comparison.

Restricted Volterra models are subsets of Volterra mod-
els, and thus their extension to complex-valued data is
straightforward. For FLANN models, we consider the real
and imaginary parts of the input and output signals as
two separate channels, thus losing the structure of complex
arithmetic. Hence, trigonometric FLANN models have 8 real
coefficients for each delay m and order p, with basis functions
cos (πpx [n − m]) and sin (πpx [n − m]). For polynomial
FLANN models, terms are multiplied together alternating
conjugated and non-conjugated complex terms to keep the
terms around the carrier [38], [39].

As expected, static and restricted Volterra models are
much less accurate, and though relatively simple, they are
outperformed by pruned Volterra models. No such models
achieve zero SER and EVM is larger. Static polynomials are no
more effective than mere linear equalization. MP polynomials
cause EVM to fall from 5.4% (equalization only) to 3.9%, at a
cost of 26 parameters: hence, the models are more complex
and less accurate. Trigonometric and polynomial FLANN
models fare no better (EVM of 4.6 and 4.3%, respectively),
with lower accuracy and larger complexity than the MP model.
All these models have been tested with kernels up to the fifth
order, and delays up to 4 terms.

The lower accuracy of these models is likely due to their
relatively simple time structure, because there are no product
terms derived from different input samples, unlike in Volterra
models. The problem of complexity in Volterra models is thus
better solved by extensive pruning than by a priori restrictions.

V. CONCLUSION

A novel model for nonlinear systems has been proposed
and experimentally validated. The model is a generalization of
complex Volterra models, and provides better accuracy and/or
lower computational cost after pruning with the OMP and OBS
methods. Hence, the model provides a significant improvement
in the accuracy-complexity trade-off for the calibration of
nonlinear systems.

The main idea is to perform calibration in the complex
baseband domain with a model that is more general,
more accurate, but more computationally expensive than the
conventional Volterra model, and then prune the model to
a much lower computational cost, though with the same
accuracy as the pruned conventional Volterra model.

The fact that the generalized Volterra model is more general
than the conventional one, as conventional Volterra models are
a subset of the proposed class od models, implies that the
model is more accurate, but also more complex. However,
pruning is more effective in the generalized model than
in the conventional Volterra model, and the computational
complexity of the proposed model is significantly lower.

The computational cost advantage is due to two reasons: the
number of free coefficients is lower for the same accuracy, and
the setup cost is much lower. This is due to the fact that in the
conventional Volterra model, a term of order 3 is computed
as the time delayed, phase shifted and eventually frequency
modulated sum of 4 different monomial terms, whereas in the
generalized model there are 4 different coefficients, that are
then pruned: hence, instead of computing four monomials of
order 3, only one is needed. For 4th- and 5th- order kernels, the
advantage is even more significant, as 8 and 16 monomials,
respectively, are to be computed and summed together for
every nonlinear coefficient, whereas the generalized Volterra
model only uses one monomial.

The experimental results prove that the same accuracy
(in terms of EVM) can be obtained with 9 coefficients in
the generalized Volterra model, requiring the calculation of
34 complex products to compute all the basis functions. The
conventional Volterra model requires 12 coefficients, but with a
setup cost of 266 complex products. Hence, a 25% reduction
in terms of number of coefficients to estimate, and an 87%
reduction of setup costs, have been obtained. Such a large
reduction in computational costs is mostly due to the fact
that only one monomial term of degree p shall be computed
for each coefficient of order p, instead of the sum of 2p−1

monomial terms of order p required in the conventional
Volterra model for the same coefficient.
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