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The Mismatch Performance of Pseudo Digital Ring
Oscillators Used in VCO ADCs: PSRR and CMRR
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Abstract— In this work, we focus on the Power Supply
Rejection and Common Mode Rejection performance of inverter
based ring oscillators intended for use in VCO ADCs. We show
that they are closely related to the circuit’s mismatch behavior of
which we perform a systematic analysis. To this end, we construct
a theoretical mismatch model for these ring oscillators, based
on Pelgrom’s mismatch model. In addition, we generalize this
model to include the mismatch in a generic tuning circuit. In this
broad analysis, we show that, next to the obvious transistor
size dependence, the mismatch is inversely proportional to the
number of stages and hence, in theory, can always be suppressed
up to the desired level in a VCO ADC, provided that the tune
circuit is sized adequately. Furthermore, we demonstrate that the
mismatch is dependent on the biasing of the ring, which becomes
even more apparent when taking into account the influence of a
tuning circuit. More specifically, strong inversion is almost always
better than weak inversion, and current control is preferred
over voltage control. Finally, we perform extensive Monte Carlo
simulations, with a commercially available 65nm CMOS process,
which match our analytical predictions nearly perfectly.

Index Terms— VCO-based ADC, ring oscillator, mismatch,
PSRR, CMRR.

I. INTRODUCTION

VOLTAGE-Controlled Oscillator (VCO)-based Analog-to-
Digital Converters (ADCs) or VCO ADCs have been

established as a viable technology for oversampling A/D
conversion in a wide range of applications [1], [2], [3], [4],
[5], [6], [7], [8], [9]. Advantages of this approach include
inherent first-order noise shaping, intrinsic anti-aliasing as
well as the fact that the circuits are digital-friendly, enabling
enhanced design portability and shorter design cycles [10],
[11], [12], [13]. Based on previous work [14], we can
distinguish four main performance metrics with respect to
VCO ADC systems: linearity, noise, power consumption and
sensitivity to interference (e.g. on the power rails) [12], [15],
[16]. Linearity issues in VCO ADCs can be tackled by
employing proper architectural techniques (e.g. feed-forward,
feedback) [12], [17], [18]. Circuit-level improvements also
exist in prior art [19], [20] and as a last resort, digital
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calibration can be used. With all these techniques in mind,
linearity is not discussed further. The noise and the associated
power consumption were already discussed in [14].

The remaining issue is thus the sensitivity to interference:
e.g. inverter based ring oscillators have notoriously bad
performance with regard to power supply interference. In VCO
ADCs this is commonly tackled by using a pseudo-differential
configuration [12]. A study of the effectiveness of this
approach, however, has not yet been performed and is exactly
the focus of this work. Below, we will show that the Power
Supply Rejection (PSR) in a pseudo-differential VCO ADC
configuration is closely linked to its mismatch performance.
Moreover, a similar link with the Common Mode Rejection
(CMR) will also be established.

There are already numerous publications on the mismatch
performance of CMOS devices [21], [22], [23], [24]. In this
work, we will build on these results and perform a systematic
analysis of the mismatch in three important inverter based ring
oscillators.

For this, we will rely on the VCO model proposed in [14].
Based on this VCO model, and Pelgrom’s mismatch model
proposed in [21], we construct our own theoretical VCO
mismatch model in Section II. Afterwards, in Section III,
we study the effect of adding a tune circuit to the VCO and
its influence on the overall mismatch. This study allows us
to analyze the connection between this mismatch behavior
and the Power Supply Rejection (PSR) and Common-Mode
Rejection (CMR) of VCO ADCs in a pseudo-differential
configuration, which is described in Section IV. To assess
the proposed models in the preceding sections, numerous
Monte Carlo simulations were performed and are discussed
in Section V, with a commercially available 65nm CMOS
process. Finally, we present our conclusions in Section VI.

II. MISMATCH IN VCO DELAY CELLS

Before starting our actual discussion on mismatch, the
following notation is introduced:

X = Xn + �X = Xn · (1 + εX ) (1)

In other words, a parameter can be represented by its actual
value X , its nominal value Xn , the deviation �X from the
nominal value due to mismatch and its relative deviation εX .

Fig. 1 shows a simple ring oscillator. The analysis of [14]
for such ring oscillators form a very simple dynamic model
for every cell: i.e. every kth cell has a falling edge delay, τd f,k

and a rising edge delay τdr,k . Then the oscillation period can
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Fig. 1. Schematic of a simple inverter based ring oscillator VCO and its
phase readout for use in a VCO ADC.

be written as:

T =
N∑

k=1

(τd f,k + τdr,k) (2)

In most VCO ADC designs, all unit cells will be designed
(matched) to be nominally equal. Unavoidably, there will be
mismatches εr,k and ε f,k , both on the rising edge delay as
well as on the falling edge delay, making them deviate from
their nominal values τdr,n and τd f,n . With this in mind, we can
rewrite Eq. (2) to include these mismatches:

T =
N∑

k=1

(τd f,n(1 + ε f,k) + τdr,n(1 + εr,k))

= N(τd f,n + τdr,n) +
N∑

k=1

(τd f,nε f,k + τdr,nεr,k) (3)

Now, we introduce the average nominal cell delay τd,n:

τd,n = τd f,n + τdr,n

2
(4)

Such that the weighted average delay mismatch per cell εk is:
εk = τd f,nε f,k + τdr,nεr,k

2τd,n
(5)

This approach, from a mismatch standpoint, can also be
extended to the effective frequency, which is defined as [14]:

feff = 2N

T
= 2N

2 Nτd,n + 2τd,n
∑N

k=1 εk

≈ 1

τd,n︸︷︷︸
feff,n

(
1 − 1

N

N∑
k=1

εk

)
(6)

Here feff,n stands for the nominal effective VCO frequency,
which is equal to 1/τd,n [14]. Now we obtain the relative VCO
frequency error ε f :

ε f = − 1

N

N∑
k=1

εk (7)

Since mismatch parameters are random parameters that are
nominally equal to zero (i.e. their expected value E [εk] = 0),
the relative frequency error will also be a random parameter
with an expected value E

[
ε f

] = 0. We will now investigate
the case where these mismatch parameters are independent

Fig. 2. Switching in a single cell of a simple ring oscillator VCO: (left)
falling edge, (right) rising edge.

and are the result of similar random processes and hence their
rms value will be the same. This way we can write:

σ 2
ε f

= σ 2
εk

N
(8)

This equation adds an important element to the system level
considerations. While N does not affect the VCO power,
input-referred thermal noise (to a 1st-order approximation)
or SQNR [11], [14], it does impact the frequency matching,
which will be improved by increasing N , the number of
VCO unit elements. We will demonstrate below that this also
directly translates into improved PSR Ratio (PSRR) and CMR
Ratio (CMRR) performance. Note that in [25], [26], [14], [12],
and [13] a similar observation was made for the input-referred
1/ f noise of a ring oscillator. It is important to realize that the
number of delay cells, N , also affects the readout performance
of the VCO in a VCO-ADC system substantially [27].

We will start our analysis below for the case of ideal voltage
control: i.e. the case where the tune circuit drives a fixed
voltage Vring on the ring. Later, in section III-B, the analysis
will be extended to include current control and an arbitrary
tune circuit impedance.

A. Single-Ended VCO Delay Cell

Before proceeding with the mismatch analysis of the
single-ended VCO delay cell, the expression of its cell delay
is reprised here from [14], based on Fig. 2.

τd f = Vring · CL

2 · Ifall
(9)

In this expression, τd f is the time needed to toggle the next
inverter and Ifall is the discharge current, which is assumed
constant during the discharge [25]. CL is the load capacitance
seen by the cell and consists of the cell’s output capacitance,
the input capacitance of the next cell, the input capacitance of
the readout buffer and the interconnect capacitance. Finally,
Vring is the voltage over the ring, given by:

Vring = Vdd − Vtune (10)

Based on the theory presented above and the simple expression
obtained for the delay of the single-ended VCO delay cell in
Eq. (9), we can proceed with its mismatch analysis. In order to
simplify it, we presume that the effect of mismatch is mainly in
the cell’s discharge current Ifall and not in the load capacitance
CL . Additionally, we will adhere to Pelgrom’s model [21],
rather than resolving to more accurate (but less intuitive)
models [23], [24], [28]. According to Pelgrom’s model [21],
for an NMOS device, both βN = CoxμWN /L N and the
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threshold voltage VT ,N are subject to random mismatch errors
with respective variances σ 2

βN
and σ 2

VT ,N
:

σ 2
βN

β2
N

= E

[(
�βN

βN

)2
]

≈ A2
βN

WN · L N
(11)

σ 2
VT ,N

= E
[(

�VT ,N
)2

]
≈

A2
VT ,N

WN · L N
(12)

where A2
βN

and A2
VT ,N

are technological mismatch parameters
(Pelgrom parameters) and WN · L N corresponds to the
transistor gate area. From this, the relative mismatch error
on the transistor current can be elaborated into the following
expression by simple Taylor expansion:

�Ifall

Ifall
= �βN

βN
+ gm

Ifall
· �VT ,N (13)

Based on Eq. (9), we obtain the inverter falling delay mismatch
as meant in Eq. (3), in terms of the current mismatch:

εfall,k = �τd f

τd f
= −�Ifall

Ifall
(14)

Then, by a similar reasoning we obtain the relative error εr,k

due to mismatch in the rising delay as:

εrise,k = �τdr

τdr
= −�Irise

Irise
(15)

�Irise

Irise
= �βP

βP
+ gm

Irise
· �VT ,P (16)

In most ring oscillators the NMOS and PMOS transistors will
be ratioed in such a way that the rising and falling delays are
matched (Ifall = Irise = Im). Then the weighted average delay
mismatch per cell εk , as defined in Eq. (5) can be written as:

εk = −1

2
·
[(

�βN

βN
+ �βP

βP

)
+ gm

Im

(
�VT ,N + �VT ,P

)]
(17)

By substituting Pelgrom’s Model we hence obtain:

σ 2
εk

= 1

4

[(
A2

βN

WN · L N
+ A2

βP

WP · L P

)

+
(

gm

Im

)2
(

A2
VT ,N

WN · L N
+

A2
VT ,P

WP · L P

)]
(18)

And finally, the overall relative frequency error σε f can be
obtained by substituting this in Eq. (8). In conclusion, next
to the well-known dependence on the transistor size, and the
dependence on the number of stages (N) established in Eq. (8),
the frequency mismatch is also clearly dependent on the bias-
ing of the ring

(
σ 2

εk
∼ (gm/Im)2 ∼ (

1/Vring − VT
)2

)
, with a

ring biased in strong inversion substantially outperforming one
in weak inversion. This behavior was also observed in [8]
and [9], and is backed up here by Eq. (18).

Fig. 3. Schematic of a three-stage voltage-controlled ring oscillator based
on the direct cross-coupled delay cell.

B. Differential VCO Delay Cell With Direct Cross-Coupling

Before applying our mismatch model on the differential
delay cell with direct cross coupling displayed in Fig. 3,
we reprise its expression for the delay here [14]:

τd f = τd f + + τdr−
2

, τdr = τdr+ + τd f −
2

(19)

where the quantities in the expressions above are given by:

τd f + = Vring · CL

2 · Ifall
, τdr+ = Vring · CL

2 · Irise
(20)

Due to symmetry, the same analysis is valid for the negative
half cell, leading to similar expressions for τd f − and τdr−.

By combining Eqs. (4, 5) and Eq. (19), a similar analysis
as for the single-ended cell based on Pelgrom’s model, yields
the following:

σ 2
εk

= 1

8

[(
A2

βN

WN · L N
+ A2

βP

WP · L P

)

+
(

gm

Im

)2
(

A2
VT ,N

WN · L N
+

A2
VT ,P

WP · L P

)]
(21)

where WN , L N , WP and L P stand for the widths and
lengths of the NMOS and PMOS transistors respectively of
the main inverters. Remark here that this expression for the
mismatch is an approximation. The approximation implies that
the auxiliary inverters do not affect the mismatch, which is
justified by the study in [20]. This study states that the only
sensible sizing of these auxiliary inverters is to make them
relatively small w.r.t. the main inverters, which implies that in
a good design the assumption is always valid.

If we size the main inverter in this differential circuit equal
to the inverter in the single-ended circuit, we can compare the
resulting mismatch. By comparison with Eq. (18), we see that
with such a sizing, the mismatch variance is a factor 2 better.
This makes sense, since the delay cell occupies an area that
is roughly a factor 2 larger (neglecting the overhead of the
auxiliary inverters).

C. Differential VCO Delay Cell With Feed-Forward
Cross-Coupling

Finally, the delay for the delay cell showcased in the ring
oscillator in Fig. 4, is again defined by Eq. (19), where now
the quantities in the expression are given by:

τd f + = Vring · CL

2 · (IM,N + IA,N )
(22)
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Fig. 4. Schematic of a three-stage voltage-controlled ring oscillator based on
feed-forward cross-coupled delay cells. Note: A-A’ and B-B’ are implicitly
connected.

Fig. 5. Current waveform for voltage control of the simple ring oscillator
circuit of Fig. 1 based on a case study in [14].

Similar equations can be set up for the rising edge delay τdr+
as well as for the negative half cell delays τd f − and τdr−.

By subjecting this expression for the delay to the same
method as the differential VCO delay cell with direct cross-
coupling, we obtain for this cell:

σ 2
εk

= 1

8(1 + κ)

[(
A2

βN

WN · L N
+ A2

βP

WP · L P

)

+
(

gm

Im

)2
(

A2
VT ,N

WN · L N
+

A2
VT ,P

WP · L P

)]
(23)

where κ stands for the ratio of the auxiliary inverter strength
over the main inverter strength as in [18], [19], and [20].
For the advocated case in [20] where κ = 1 (as in Fig. 4),
we see that for identically sized main inverters, the matching
performance has improved with a factor 2 relative to the other
differential delay cell with direct cross coupling (Fig. 3). Again
this is very intuitive, since the overall active area is again
increased roughly by a factor 2.

III. ADDING THE TUNE CIRCUIT

A. The Link to the VCO’s Analog Behavior

Until now, we considered ideal voltage control of the VCO.
However, in almost all ring oscillator configurations, it is
not driven by an ideal voltage source, but instead by a tune
circuit. Hence, the ring current and voltage are set by the
electrical interaction of this tune circuit with the ring. To help
understand how this works, a diode model was introduced
in [14]. Here, the instantaneous ring current iring(t) was split
in two components: a ripple at very high frequency and a
quasi-static baseband component Iring, as illustrated in Fig. 5.

Fig. 6. Iring vs. Vring plots for the sizing of Eq. (74). Left: the simple ring
VCO, right: the differential VCOs.

Similarly, the quasi-static ring voltage Vring is obtained
by removing the voltage ripple. Essentially, it was shown
in [14] that the relevant electrical behavior is linked only
to the quasi-static components Vring and Iring. Thus, the
electrical behavior of the ring is entirely described by its
I-V characteristic, illustrated in Fig. 6. This I-V curve is
the core characteristic of the ring and can be simulated or
approximated analytically. In this work, we have simulated
this characteristic and consider it to be known throughout the
rest of the manuscript. The effective frequency of Eq. (6) can
then be linked to the overall ring current Iring and voltage
Vring [14]:

feff = 2 · Iring

Vring · CL
(24)

In this work, we will convince the reader that also
the mismatch behavior is linked only to the quasi-static
components Vring and Iring, consolidating the diode-model
from [14].

When there is mismatch in circuit, this will lead to a shift
in the I-V characteristic. For the case of voltage control, this
will lead to a current error εI which from Eq. (24) can be
understood to be equal to the frequency error of Eq. (7), or:

σεI = σεk√
N

(25)

When we now add the tuning circuit, mismatch in the ring
will shift the operating point of the ring and hence there
will be both a deviation �Vring of the ring voltage as well
as a deviation of the ring current �Iring. With a Taylor
approximation of Eq. (24), we obtain the corresponding
frequency error:

ε f,tune = �Iring

Iring,n
− �Vring

Vring,n
(26)

B. Tune Circuit Without Mismatch

We will now analyze the shift in the operating point of
the ring, when including the tune circuit. To analyze this,
the generic tune circuit in Fig. 1 is replaced by its Thévenin
equivalent in Fig. 7. The current is now the result of a set of
two equations. On the one hand, we have the I-V characteristic
of the ring, and on the other hand, we have the load line of
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Fig. 7. Simple inverter based ring oscillator VCO (a) with the tune circuit’s
Thévenin equivalent, and (b) diode model of [14] with the indication that
Vring will deviate due to �Iring.

Fig. 8. Influence of the tune circuit on the behavior of the ring current for
an arbitrary value of Vthev. (Left) Shift of nominal operation point (OP) to
real OP, (Right) Associated ring current and voltage mismatch, �Iring and
�Vring.

the tune circuit. When mismatch is introduced in the VCO,
we can write this set as equations as displayed below:{

Iring(Vring) = In(Vring) + �I (Vring) Ring I-V char.

Vdd = Iring · Rthev + Vthev + Vring Load line

(27)

In this expression we have written the ring current Iring as the
sum of its nominal value In , based on the I-V characteristic of
the ring and the mismatch with respect to this nominal value
�I . Remark that both the nominal and the mismatch current
are written as function of Vring, see Eqs. (18, 21, 23).

For further investigation, we use a graphical representation
of this set of equations in Fig. 8. Now, we can write:

�I = (
gring + Gthev

) · (−�Vring
)

�Iring = −Gthev · �Vring

⇐⇒ �Iring = �I · Gthev

gring + Gthev
(28)

In this set of equations, gring = r−1
ring represents the derivative

of the VCO I-V characteristic which, as already established
in Section III-A, is a prerequisite for further analysis of the
ring. On the other hand, Gthev represents the conductance of
the Thévenin resistance, Rthev. Taking into account that �I
and �Iring both represent an error on the same nominal value
Iring,n (the intersection of the nominal ring I-V characteristic
and the load line), the relative error on the ring current, with
a tune circuit applied to the ring, can be expressed as:

εIring,tune = εI · Gthev

gring + Gthev
(29)

where we have added subscript tune, which denotes that
the current mismatch introduced by the VCO (studied in

Fig. 9. Simple inverter based ring oscillator VCO (a) with a Thévenin
equivalent as input, (b) and with mismatch.

Section II, for which we use the symbol εI ) is affected by
the tune circuit. Its variance can now be written as:

σ 2
εIring,tune

= σ 2
εI

(
Gthev

gring + Gthev

)2

= σ 2
εk

N

(
rring

rring + Rthev

)2

(30)

Hence, we can conclude that the tune circuit actually reduces
the current mismatch error from the VCO. However, because
of the tune circuit, there is now a shift �Vring in the ring
voltage as well, which can be obtained from Eq. (28):

εVring,tune = −εIring,tune · Rthev · Iring,n

Vring,n
(31)

From Eqs. (26), (29) and (31), the corresponding overall
mismatch in the frequency is obtained:

ε f,tune = εIring,tune ·
(

1 + Rthev · Iring,n

Vring,n

)
︸ ︷︷ ︸

αtune

(32)

Here αtune is introduced, which is monotonously rising in
function of Vring. Now we can calculate the overall relative
frequency error variance σ 2

ε f,tune
:

σ 2
ε f,tune

= σ 2
εIring,tune

· α2
tune

= σ 2
εk

N
·
(

rring

rring + Rthev

)2

· α2
tune, (33)

where the cell mismatch variance σ 2
εk

can be obtained for each
respective type of delay cell using Eq. (18), (21), or (23).
It is imperative to realize that Eq. (33) is valid for any tune
circuit. More specifically, in the case of ideal voltage control
(Rthev = 0), Eq. (33) reduces to Eq. (8). In the case of ideal
current control (Rthev = ∞), Eq. (33) can be simplified to:

σ 2
ε f,tune

∣∣∣
Rthev=∞ = σ 2

ε f,CC
= σ 2

εk

N
·
(

rring · Iring,n

Vring,n

)2

(34)

By comparing this to the expression for voltage control,
Eq. (8), we can conclude that the current control will always
lead to better mismatch performance than the voltage control.
This can be seen from the fact that the factor rring · Iring,n

Vring,n
is

always smaller than 1. This will be confirmed below by the
simulation results in Section V-C.
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Fig. 10. Influence of mismatch in the tune circuit on the ring current, (left)
with mismatch in Rthev or (right) mismatch in the open circuit voltage Vthev.

C. Tune Circuit With Mismatch - Thévenin as Input

We continue our analysis by introducing mismatch in the
tune circuit, which is displayed in Fig. 9. To simplify the
analysis, we will consider the case that the VCO is ideal, and
hence does not exhibit any mismatch itself. This implies that
�Iring and �Vring in Fig. 9 are the result of variations in the
tune circuit. Just as in the previous section, we start with an
intuitive graphical representation resulting in Fig. 10. Based
on the figure, we can write for both the mismatch in Rthev and
the mismatch in the open circuit voltage Vthev that:

�Iring = gring · �Vring (35)

Next, by analysis of the circuit in Fig. 9, we obtain:
�Vring + εV Vthev,n = −Rthev,n

(
�Iring + εZ Iring,n

)
(36)

Solving Eq. (36) for εIring,thev = �Iring
Iring,n

gives:

εIring,thev = −εZ · Rthev,n

rring + Rthev,n
− εV ·

Vthev,n
Iring,n

rring + Rthev,n
(37)

where we have added subscript thev, which denotes that it
refers to the current mismatch introduced by mismatch in the
tune circuit (for which we use the symbols εZ and εV ), not by
mismatch in the VCO (which was indicated by the subscript
tune, and depends on εk). Note that the mismatch error in
Eq. (37) is independent of the number of VCO delay cells (N).
The mismatch in Vring can again be written in function of the
mismatch in Iring, based on Eq. (35):

εVring,thev = εIring,thev · rring · Iring,n

Vring,n
(38)

Now, we obtain the overall frequency mismatch due to
mismatch in the tune circuit, by substituting the results from
Eqs. (37–38) in Eq. (26):

ε f,thev = εIring,thev ·
(

1 − rring · Iring,n

Vring,n

)
︸ ︷︷ ︸

αring

(39)

In this expression αring is introduced, which could be inter-
preted as a non-linearity parameter of the I-V characteristic
(= 0 if perfectly linear). As mentioned before in Section III-A,
since the I-V characteristic is known, this αring is also known,
and is displayed in Fig. 11.

Considering the case where the mismatch in Rthev and the
open circuit voltage Vthev are independent from each other,

Fig. 11. αring vs. Vring plot, derived from the simulated I-V characteristics
in Fig. 6.

Eq. (39) yields the relative error on the frequency:
σ 2

ε f,thev
= σ 2

εIring,thev
· α2

ring

= σ 2
εZ

·
(

Rthev,n

rring + Rthev,n

)2

· α2
ring

+ σ 2
εV

·
(

Vthev,n

Iring · (rring + Rthev,n
)
)2

· α2
ring (40)

Clearly this is a quite complex expression. Without going into
too much detail, it should be noted that αring is independent
of the ring oscillator type and moderately decreases with
increasing values of Vring, see Fig. 11. Note that this is
in contrast to the rising behavior of αtune. Later on, the
simulations in Section V-D will show that a more pronounced
rising characteristic in function of Vring is obtained for the
influence of σεZ and a falling characteristic for σεV , which
match our predictions of Eq. (40) almost perfectly.

Finally, we can now add the effect of VCO mismatch
according to Eq. (33). In the case that the mismatch in
the VCO, mismatch in Rthev and mismatch in Vthev are
independent, the total relative frequency error σε f is obtained:

σ 2
ε f

= σ 2
ε f,tune

+ σ 2
ε f,thev

(41)

Remark that it is unlikely that, in a typical Thévenin
equivalent, the mismatch in Rthev and mismatch in Vthev are
uncorrelated. In that case, Eq. (37) should be evaluated taking
this correlation into account.

D. Tune Circuit With Mismatch - Norton as Input

For instance, consider that a Thévenin equivalent is
generated for a current controlled configuration. In this
situation, the mismatch in the open circuit voltage will not be
independent from the mismatch in the equivalent resistance.
As a consequence, Eq. (40) will not be valid. In this section
we explore the complementary case of a Norton equivalent
as input, displayed in Fig. 12. Again we consider the VCO
to be ideal, and hence does not exhibit any mismatch itself.
Applying the graphical approach from the previous sections
results in a similar figure w.r.t. Fig. 10, displayed in Fig. 13.
Based on Fig. 13, we can again write for both the mismatch
in Rthev and in the short circuit current Inort that:

�Iring = gring · �Vring (42)
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Fig. 12. Simple inverter based ring oscillator VCO (a) with a Norton
equivalent as input, (b) and with mismatch.

Fig. 13. Influence of mismatch in the tune circuit on the ring current, (left)
with mismatch in Rthev or (right) mismatch in the short circuit current Inort .

Next, by analysis of the circuit in Fig. 12 we obtain:
�Vring = Rthev,n

(
εInort Inort,n − �Iring

)
+ εZ Rthev,n

(
Inort,n − Iring,n

)
(43)

Solving this equation again for εIring,nort = �Iring
Iring,n

gives:
�Iring

Iring,n
= −εZ · Rthev,n

rring + Rthev,n
· Iring,n − Inort,n

Iring,n

+εInort · Rthev,n

rring + Rthev,n
· Inort,n

Iring,n
(44)

Now we can link this behavior to an equivalent
Thévenin circuit using Eqs. (37,44), and considering
that Vthev = −Inort · Rthev in Fig. 13:

�Iring

Iring,n
= −εZ · Rthev,n

rring + Rthev,n
− (εZ + εInort︸ ︷︷ ︸

εV

) ·
Vthev,n
Iring

rring + Rthev,n

(45)

This means that both approaches are equivalent and
interchangeable, as long as the correlation between the errors
is taken into account, which will be crucial in Section V-
C. Now, to obtain the overall cell mismatch, we substitute
Eq. (44) into Eq. (39) which yields the following overall
relative frequency error in function of σεZ and σεInort

:

σ 2
ε f,nort

= σ 2
εIring,nort

· α2
ring

= σ 2
εZ

·
(

Iring,n − Inort,n

Iring,n
· Rthev,n

rring + Rthev,n

)2

· α2
ring

+ σ 2
εInort

·
(

Inort,n

Iring,n
· Rthev,n

rring + Rthev,n

)2

· α2
ring (46)

Assuming again that the different mismatch contributions are
independent from each other, using Eqs. (33,46), the total

Fig. 14. Pseudo differential VCO ADC configuration.

relative frequency error σε f can again be written as:
σ 2

ε f
= σ 2

ε f,tune
+ σ 2

ε f,nort
(47)

IV. PSRR AND CMRR IN NON-IDEAL VCO ADCS

We have now finished our mismatch story, where we have
shown that the relevant mismatch errors can be written as a
function of εIring , which is the sum of a contribution from the
VCO (shifted by the tune circuit), εIring,tune , and a contribution
from the tune circuit itself, either εIring,thev (for the Thévenin
equivalent) or εIring,nort (for the Norton equivalent). For the sake
of simplicity and clarity, a Thévenin equivalent is chosen as
input for the remaining part of this work. Now, we apply
this analysis to VCO ADC yielding the PSRR and CMRR
in non-ideal VCO ADCs.

We now know that the VCO frequency will deviate from its
nominal frequency due to mismatch in the VCO delay cells,
according to Eq. (33), and due to mismatch in the tune circuit,
according to Eq. (40), or equivalently, Eq. (46). If we now
consider the tuning behavior of the VCO, we know that the
VCO frequency will depend on the intentional input signal
Vin. Unfortunately, by simple inspection of Fig. 1, we can
immediately see that the power supply terminals (Vdd in the
figure) also act as a tuning input for the oscillator. In a common
linear approximation of a VCO this can be written as:

fVCO = f0 + KVVin + KVPVP, (48)

where KV is the VCO gain and KVP denotes the ring oscillator
sensitivity to disturbances on the power line (represented here
by VP). If the VCO is used as a VCO ADC, fVCO will be
converted into a digital output value, leading to:

Dsingle,out = D( f0 + KVVin + KVPVP) (49)

A. Power Supply Rejection Ratio (PSRR)

In most cases, KV and KVP are of the same order of
magnitude. E.g. for the case of voltage control they are equal
KV = KVP. Hence, in its basic form, a ring oscillator has poor
robustness against interference coupling into the power supply
line, as the power terminal also acts as a tuning input for the
oscillator. However in a VCO ADC application, the circuit is
nearly always operated in a pseudo differential configuration
as shown in Fig. 14. The overall ADC output is obtained as
the difference D1 − D2 of both channel outputs D1 and D2.
Hence the PSRR will now only be due to mismatch effects
between both channels.

For this reason, it is always recommended to use a
pseudo-differential configuration where two ring VCO ADCs
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share the same power line and are driven by a differential input
signal:

Dout = D1 − D2

= D( f0,1 − f0,2 + (KV1 + KV2) Vin

+ (KVP1 − KVP2) VP) (50)

If we now focus on the (undesired) contribution of the power
line disturbance signal, and refer this error component to the
input (without offset component), we get:

VP,in,Eq = (KVP1 − KVP2)

(KV1 + KV2)
VP (51)

Now we can introduce the mismatch parameter εP as:

εP = (KVP1 − KVP2)

(KVP1 + KVP2)
≈ εKVP1 − εKVP1

2
(52)

And the signal vs. power sensitivity ratio γP :

γP = (KVP1 + KVP2)

(KV1 + KV2)
≈ KVP,n

KV,n
(53)

Then we can rewrite Eq. (51) as:
VP,in,Eq = εPγP VP (54)

From this equation we see that the PSRR = 1
|εP γP | . If both

channels are perfectly matched, then εP = 0 and the PSRR
will be infinity. Now the question remains how the εP in
Eq. (52) relates to the mismatch errors calculated in the
previous section. To find this relation, we start with the
definition of the VCO gain w.r.t. the ring voltage [14], where
no tune circuit is applied:

KVring = ∂ f

∂Vring
= f ·

[
1

Vring
− d Iring

dVring
· 1

Iring

]

= − f ·
1 − rring · Iring

Vring

rring · Iring
(55)

When adding the tune circuit, the VCO gain w.r.t. the supply
rail, or alternatively w.r.t. the open circuit voltage Vthev (see
Fig. 7), can be obtained:

KVP = KVring · rring

rring + Rthev
= − f

Iring
·

1 − rring · Iring
Vring

rring + Rthev
(56)

With the analysis in Section III in mind, the relative error on
the VCO gain with respect to the supply rail, εKVP , can be
found by a straightforward application of Eq. (56):

KVP = KVP,n · (1 + εKVP)

= − fn · (1 + ε f )

Iring,n · (1 + εIring)

·
1 − rring,n · (1 − εgring,n) · Iring,n·(1+εIring)

Vring,n·(1+εVring)

rring,n · (1 − εgring,n) + Rthev,n · (1 + εZ )
(57)

Now, by applying a multivariate first-order Taylor approxi-
mation, and after a straightforward calculation an estimate of

εKVP is obtained:
εKVP ≈ ε f

− εIring · 1

αring

+ εVring · 1 − αring

αring

+ εgring · rring

rring + Rthev
· αtune

αring

− εZ · Rthev

rring + Rthev
(58)

In order to further elaborate Eq. (58), we write all mismatch
contributions

(
ε f , εVring and εgring

)
in function of the mismatch

in the ring current εIring . If we now first focus on the
contribution of mismatch in the VCO (which is connected to
a tune circuit without mismatch), we have to write everything
as a function of εIring,tune , see Eq. (29). Now, by combining
Eq. (58) with Eqs. (31–32), we obtain:

εKVP,tune = εIring,tune · αtune

− εIring,tune · 1

αring

+ εIring,tune · (1 − αtune) · 1 − αring

αring

+ εgring,tune · rring

rring + Rthev
· αtune

αring
(59)

And if we focus on mismatch in the tune circuit (Thévenin
version) with no mismatch in the VCO, we have to combine
Eqs. (37–39) and Eq. (58) to obtain:

εKVP,thev = εIring,thev · αring

− εIring,thev · 1

αring

+ εIring,thev · (1 − αring
) · 1 − αring

αring

+ εgring,thev · rring

rring + Rthev
· αtune

αring

− εZ · Rthev

rring + Rthev
(60)

In order to evaluate Eqs. (59–60), εgring should still be deter-
mined. This is done in Appendix A. Finally, by considering the
case that the different mismatch contributions are independent
from each other, the total relative error on KVP can be
calculated by evaluating the following expression:

σ 2
εKVP

= σ 2
KVP,tune

+ σ 2
KVP,thev

(61)

With the help of Eq. (61), the PSRR = 1
|εP γP | can

now be calculated. Assuming that the error εP has a
normal distribution, then |εP | will exhibit a half-normal
distribution [29] and the expected value of the inverse PSRR
can be written as:

E
[
PSRR−1

]
= |γP | ·

√
2

π
· σP = |γP | ·

√
1

π
· σεKVP

(62)

Remark that the PSRR itself will follow a reciprocal half-
normal distribution, for which an analytical expression for the
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expected value and standard deviation does not exist. For this
reason, we will use the expected value of the inverse PSRR
in order to characterize the actual PSRR of the circuit.

Unfortunately, as evidenced by Eqs. (59–62), the analytical
expression for σεKVP

is quite convoluted. Fortunately, when
combining these analytical expressions with simulation results
in Section V-E below, we will be able to come to simple
and clear-cut conclusions. At this point, for instance, it is
already clear that decreasing the mismatch in the ring current
Iring is always beneficial to reduce the PSRR. This means
that, according to Eq. (33), the contribution from the VCO
mismatch in the PSRR can be reduced by the usual suspects,
the transistor dimensions (W , L) and the number of VCO
delay cells (N) and also by biasing the ring in strong
inversion (i.e. a relatively high Vring). Similarly, mismatch
in the tune circuit directly affects the PSRR and should be
carefully considered, and e.g. can be improved by increasing
its area [22].

B. Common Mode Rejection Ratio (CMRR)

When the VCO ADC is operated in a pseudo differential
configuration, the CMRR will also only be due to mismatch
effects between both channels. For its calculation, a similar
reasoning can be done as for the PSRR:
Dout = D( f0,1 − f0,2 + (KV1 + KV2) Vin

+ (KV1 − KV2) VCM) (63)

Here, VCM depicts the common mode offset between the
two oscillators in a pseudo-differential configuration. Again,
we can refer this error component to the input (without the
offset component due to the mismatch in f0):

VCM,in,Eq = KV1 − KV2

KV1 + KV2
· VCM (64)

Now we can introduce the mismatch parameter εC again,
related to the CMRR in this case.

εC = KV1 − KV2

KV1 + KV2
≈ εKV1 − εKV2

2
(65)

We can now use this to rewrite Eq. (64):

VCM,in,Eq = εC · VCM (66)

In this equation, the CMRR = 1
|εC | is easily recognized, and

thus, exactly like the PSRR, when the channels are perfectly
matched (εC = 0) the CMRR will be infinity. Now to calculate
the mismatch parameter εC , we can exploit the fact that the
VCO gain w.r.t. the supply rail is closely related to the VCO
gain w.r.t. the input voltage:

KV = ∂ f

∂Vin
= ∂ f

∂Vthev

∂Vthev

∂Vin

= −KVP · ∂Vthev

∂Vin
= − KVP

γ
(67)

In Eq. (67), γ represents the ratio between the input voltage
Vin and the open circuit voltage Vthev and is dependent on the
tune circuit. Note that its nominal value (γn) is approximately
equal to the power to sensitivity ratio (γP ), see Eq. (53):

γP ≈ KVP,n

KV,n
= γn (68)

Now to write the mismatch in KV:

KV = − KVP,n · (1 + εKVP)

γn · (1 + εγ )
(69)

The relative error on KV can thus be written as:
εKV ≈ εKVP − εγ (70)

With Eq. (70), the expected (inverse) CMRR can be calculated:

E
[
CMRR−1

]
=

√
1

π
· σεKV

(71)

Based on the theory presented above, it is clear that the
PSRR and CMRR are very closely related in the case of
a pseudo-differential configuration of ring oscillators. More
specifically, in the case of εKVP � εγ (i.e. the tune circuit
exhibits a very good mismatch performance) the PSRR and
CMRR are proportional to each other, defined by γP :

PSRR = 1

|εPγP | , CMRR = 1

|εC |
εKVP � εγ ⇒ CMRR ≈ |γP | · PSRR (72)

In conclusion, this means that, in the case of a well-matched
tune circuit, a pseudo-differential ring oscillator configuration
with a good PSRR will usually also exhibit a good CMRR.

V. SIMULATION RESULTS

To assess the theory elaborated above, we performed
extensive Monte Carlo simulations with a commercially
available 65nm CMOS process, which includes more complex
statistical models (such as in [23] and [24]) than the simple
Pelgrom Model used in the analysis above. To numerically
evaluate our theoretical predictions, we estimated the Pelgrom
Parameters based on [22] (p258, p261) as:

AV T ≈ 2mV · μm Aβ ≈ 0.0035 μm (73)

In our simulation study, the core inverter used in the delay cell
had the following drawn1 sizing:

WN = 8 μm WP = 2 · WN L N = L P = 60 nm (74)

A. Frequency Characteristics

In a first batch of simulations, all three ring oscillator
configurations (simple, direct cross-coupled, feed-forward
cross-coupled) were evaluated with respect to their respective
effective oscillation frequency as a function of the ring voltage
Vring. The result is shown in Fig. 15, where ideal voltage
tuning was used to sweep Vring, using ring oscillators with
9 delay elements (N = 9). From the plot it can be seen that the
direct cross-coupled differential circuit is slightly slower than
the reference single-ended oscillator while the feed-forward
cross-coupled differential circuit is remarkably faster. This is
in agreement with the results of [14], [20]. The simulations
were repeated for varying values of N and it was verified that,
for all three circuits, the results were independent of N .

1The actual design is scaled to a gate length of 65 nm.
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Fig. 15. The nominal effective frequency for the three different VCO types
as a function of the ring voltage Vring. The markers highlight where a Monte
Carlo run is done.

Fig. 16. The relative error on the mean frequency, due to VCO mismatch
vs. the ring voltage Vring. The dashed lines represent the calculated values
based on our models.

B. Standard Deviation of the Relative Frequency Error -
VCO Mismatch - No Tune Circuit

In a second batch of simulations, 1000-point Monte Carlo
simulations were done for the three considered oscillator
circuits as a function of Vring for the case of N = 9 cells in
the ring. Fig. 16 shows the simulated standard deviation of the
relative frequency error, together with our predictions based on
Eq. (8) and Eqs. (18), (21) and (23). Despite the simplicity of
the models, we can see that there is a very good qualitative
matching between the simulation and the theoretical model.
Note that the main difference between the three curves is due
to the difference in size of the delay cells, and that strong
inversion is clearly preferred over weak inversion.

In a third batch of simulations, again 1000-point Monte
Carlo simulations were done but now for varying number N
of cells at a fixed ring voltage Vring = 1V. The result, together
with the theoretical prediction, is shown in Fig. 17. Again,
the plot matches very well with the theoretical prediction.
In particular, the predicted 1/

√
N trend is confirmed. Again,

the main difference between the curves is determined by the
difference in size of the delay cells.

C. Standard Deviation of the Relative Frequency Error -
VCO Mismatch - With Tune Circuit

In a fourth batch of simulations, 1000-point Monte Carlo
simulations were done, where this time the input voltage was
applied through an arbitrarily chosen output resistance Rthev =
70 � to the same three oscillator circuits, see Fig. 9. In order
to properly evaluate the theory presented in Section III-C,

Fig. 17. The relative error on the mean frequency, due to VCO mismatch
vs. the number of delay cells N. The dashed lines represent the calculated
values based on our models.

Fig. 18. The relative error on the mean frequency due to VCO mismatch,
affected by the tuning circuit, vs. Vring. The dashed lines represent the
calculated values based on our models.

first the tune circuit was made ideal, such that only the VCO
exhibited mismatch. The result, together with the theoretical
prediction in Eq. (33), is shown in Fig. 18. Due to the resistive
divider in the circuit (Rthev and rring), when sweeping the input
from rail to rail, the mismatch curve is restricted to a smaller
range, determined by the value of rring w.r.t. the value of Rthev.
In these limited ranges, the theory matches very well with
the simulations. Remark that σ 2

ε f
in Eq. (33) is a inversely

proportional with Rthev, which is indicated by the arrow in
Fig. 18.

In order to further illustrate the influence of the output
resistance of the tune circuit (Rthev) and to demonstrate the
performance difference between voltage control and current
control, the same batch of simulations was repeated, only
for the simple ring oscillator, for six different cases. Three
cases where a Thévenin drive circuit was used, with Rthev =
0, 70, 420 � and three cases where a Norton equivalent
was used, with Rthev = 420, 7k,∞ �. The result of these
simulations is plotted in Fig. 19 which clearly confirms the
advantage of using current control when considering the
mismatch performance of the VCO, see Eq. (34). Finally,
remark the difference in available operating regions of the ring.

D. Standard Deviation of the Relative Frequency Error -
Tune Circuit Mismatch - With Tune Circuit

In a fifth batch of simulations, the influence of an error
on the open circuit voltage Vthev and mismatch in the resistor
is tested. To this end, a 1000-point Monte Carlo simulation is
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Fig. 19. The relative error on the mean frequency due to VCO mismatch,
affected by different tuning circuits, vs. the ring voltage Vring for the simple
ring oscillator. The dashed lines represent the calculated values based on our
models.

Fig. 20. Resistive tuning circuit achieving a very linear VCO.

executed on the circuit in Fig. 20 with a resistive tuning circuit.
In this example, the VCO is exempted from mismatch, and
mismatch is only applied to the resistors. As a consequence,
mismatch will affect the output resistance of the tune circuit
Rthev and Vthev. The expression for Rthev and Vthev can be
obtained by solving the circuit for its Thévenin equivalent:

Vthev = R2

R1 + R2
· Vin, Rthev = R1 R2

R1 + R2
(75)

In this batch of simulations, we arbitrarily choose R1 = R2 =
70�, which exhibited a total variance of σ 2

εZ
= σ 2

εV
= 0.022

2
(according to our SPICE models, for this particular resistor
sizing, WR = 2 μm, LR = 845 nm) on both the open circuit
voltage Vthev and the output resistance of the tune circuit
Rthev, equal to half the variance on the individual resistors.
Since both εZ and εV are determined by the mismatch error
on the resistances, they are not independent from each other
and should be added to each other linearly, see Eqs. (37,39).
Additionally, note that this variance depends on the actual
sizing of the resistor. Similar to transistors, the mismatch in
the resistance is inversely proportional its area [22].

From the simulation results displayed in Fig. 21, it is clear
that the predictions again match very well with the simulation
results. Opposing trends in function of Vring are present.
Additionally, we can conclude that the mismatch due to an
error on the open circuit voltage Vthev (dotted lines) will be
dominant for low values of Vring, and a good choice for the
biasing is critical. For higher values of Vring, the mismatch
contribution from the mismatch in the output resistance of the
tune circuit (dashed lines) becomes dominant.

It is interesting to remark that by scaling the inverters in
the simple and the direct cross-coupled ring oscillator cells to

Fig. 21. The relative error on the mean frequency, due to mismatch in the
resistive driver circuit of the VCO vs. the ring voltage Vring. The dashed lines
represent the calculated values for the impedance mismatch (εZ ), the dotted
lines represent the calculated values for the mismatch in Vthev (εV ).

Fig. 22. A similar simulation experiment as displayed in Fig. 21, where the
inverters of the simple and direct cross-coupled ring oscillator were scaled
to exhibit identical I-V characteristics (not identical active area). The FF-CC
characteristic was used as a reference.

match the I-V curve of the feed-forward cross-coupled based
ring oscillator, the mismatch curves in Fig. 21 all collapse
onto the yellow curves, and are visually indiscernible. This
is shown in Fig. (22) which shows the calculated mismatch
performance for all three ring oscillators. This can also be
verified analytically using Eqs. (37,39). Remark that this
scaling does not result in identical VCO area, and thus
there will be a difference in mismatch performance w.r.t. the
contribution of mismatch in the VCO (cfr. Eq. (18)).

E. Expected Value of PSRR−1 - all Mismatch Contributions

In our sixth batch of simulations, the expected value of
PSRR−1 is evaluated in order to characterize the power supply
rejection of the three ring oscillator types. Again, a 1000-point
Monte Carlo simulation is executed on the circuit in Fig. 20
with a resistive tuning circuit. This resistive tuning circuit
is identical to the one in Section V-C. The only difference
here is that the supply voltage is varied, instead of the input
voltage. Remark that, when using the tune circuit displayed in
Fig. 20, KVP,n is a factor two higher than the nominal signal
gain (KV,n) due to the voltage division over the two matched
resistors R1 and R2 in the nominal signal path. This leads to a
PSRR of −6 dB for a single-ended configuration with a signal
vs. power sensitivity ratio γn = ∂Vthev,n

∂Vin,n
= 2. As mentioned

before, however, we will use a pseudo-differential setup, where
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Fig. 23. The expected value of the inverse PSRR w.r.t. the ring voltage Vring. The calculated values for the mismatch due to mismatch in the resistive driver
circuit of the VCO (dashed line), due to an error on the open circuit voltage (dash-dotted line), due to mismatch in the VCO (dotted line) and the combination
of the three (solid line) are also displayed.

Fig. 24. The expected value of the inverse CMRR w.r.t. the ring voltage Vring. The calculated values for the mismatch due to mismatch in the resistive
driver circuit of the VCO (dashed line), due to an error on the open circuit voltage (dash-dotted line), due to mismatch in the VCO (dotted line) and the
combination of the three (solid line) are also displayed.

the PSRR is due to mismatch effects between both channels
as analyzed and simulated above, see Eq. (62).

In order to include the mismatch due an error on the
open circuit voltage, a common mode voltage of VCM =
Vdd
2 = 0.6 V is applied at the input (Vthev 	= 0 V), and

the supply voltage Vdd was swept to vary the bias point
Vring. Finally, instead of isolating the different mismatch
contributions, mismatch is introduced in every component. The
result of these simulations is displayed in Fig. 23. Remark that
applying the common voltage at the input, limits the range of
Vring in Fig. 23.

From the results displayed in Fig. 23, we can conclude that
similar trends are observed in function of the ring voltage
Vring w.r.t the previous simulations. Upon closer investigation
it was observed that the influence of the VCO mismatch and
the influence of an error on Vthev was alleviated, whereas
the influence of mismatch in the output resistance of the
Thévenin was exacerbated slightly. With the sizing used for
these simulations it is clear that the influence of an error
on Vthev continues to be dominant for lower values of Vring,
and that the influence of εZ takes over for larger values of
Vring. It is remarkable that in all three cases, for the chosen
sizing, the influence of mismatch in the VCO is negligible.
This implies that increasing the dimensions of the tune circuit
resistors (decreasing εZ and εV ) would be beneficial to
improve the overall mismatch performance. Thus, when the
PSRR is a critical specification in the design, or when the
supply voltage can not be controlled reliably, the tune circuit

should be carefully designed and cover a large area. When
this is the case, the biasing Vring can be increased to improve
the mismatch contribution from the VCO. Alternatively, the
overall dimensions of the VCO (W ,L), or the number of VCO
delay cells (N) can be increased to improve the PSRR.

F. Expected Value of CMRR−1 - all Mismatch Contributions

In the seventh batch of simulations, the expected value
of CMRR−1 is evaluated in order to characterize the
common-mode rejection of the three ring oscillator types.
Once more, a 1000-point Monte Carlo simulation is executed
on the circuit in Fig. 20 with a resistive tuning circuit. The
result of these simulations is displayed in Fig. 24.

The only difference between the mismatch in KV and in
KVP, when the tune circuit displayed in Fig. 20 is used, is an
additional contribution to the total mismatch due to εV :

εγ = −εV (76)

Remark that by sweeping the common mode of the input,
instead of Vdd, another range of Vring will be valid.
Additionally, due to the additional contribution of εγ the
influence of the error on Vthev on the overall mismatch
becomes dominant over the entire range of Vring, with a very
flat characteristic as a result, apart from a very narrow notch.
Note that in this case εKVP � εγ is not valid. In conclusion,
for a good design, the tune circuit should be carefully designed
to limit its mismatch contribution (e.g. by using large devices),
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TABLE I

REFERENCE CASE FOR COMPARISON OF THE MISMATCH

TABLE II

SCALED CASE FOR THE COMPARISON OF THE MISMATCH

TABLE III

SCALED CASE FOR THE COMPARISON OF THE MISMATCH

such that the VCO ADC performance is not limited by σεV .
As a demonstration, in the following section we will explore
a case study where the VCO ADC performance is not limited
by the tune circuit.

G. Overall Performance Comparison

In a final batch of simulations, all cells were evaluated in
terms of typical performance measures for VCO ADCs. For
simplicity, and to emulate a case where the tune circuit does
not limit the VCO-ADC performance, ideal voltage-control
was chosen as a case study. Note that this means that the PSRR
and CMRR are equal, with a signal vs. power sensitivity ratio
γ = 1 and that mismatch in the tune circuit is not present.
Table I shows the power consumption and input referred noise
performance, next to the area, effective oscillation frequency
and mismatch performance at a ring biasing level of Vring =
1 V. For the interpretation of these simulation results, it is
important to realize that they are obtained for the same sizing
of the core inverter. However, each of the circuits has a very
different area, power consumption as well as very different
input referred white noise, which was obtained according to
the methodology described in [26] and [14].

In order to get a more realistic comparison, the unit cells
of every VCO circuit were scaled, to obtain the same active
area. The resulting performance is wrapped up in Table II.

Finally, the same circuits as in Table II are evaluated at
Vring = 0.4 V in order to properly evaluate the influence of
biasing the ring in weak inversion. This is shown in Table III.

At first glance, from the mismatch data in Tables I–III,
we can conclude that for the same active area the direct
cross-coupled is the worst option, due to the overhead of
the auxiliary inverters. The mismatch performance of the
simple and the feed-forward based ring oscillator are virtually
identical with the same active area, with the feed-forward
solution consuming more power, but providing a better noise

performance and faster oscillation frequency. Additionally, the
data in Table III also confirms the fact that strong inversion
significantly outperforms (by ∼ 20 dB) weak inversion in
terms of mismatch, a fact which was also observed in [8]
and [9]. Remark that this is in stark contrast with the advocated
biasing for noise efficiency for a ring oscillator with ideal
voltage control [14], which was optimal in weak inversion.

VI. CONCLUSION

We have performed a systematic analysis of the mismatch
in three types of important inverter based ring oscillators.
We have started this analysis by constructing a mismatch
model for these ring oscillators, based on the intuitive
Pelgrom mismatch model for CMOS devices. This model
was generalized, by including the effect of adding a generic
tuning circuit on the mismatch. Using this novel mismatch
model, we concluded that, next to the obvious transistor
size dependence, the mismatch is inversely proportional to
the number of stages and hence in theory can always
be suppressed up to the desired level in a VCO ADC.
Furthermore, we demonstrated that the mismatch is dependent
on the biasing of the ring, which is even more apparent
when taking into account the influence of a tuning circuit.
More specifically, it was shown that ring oscillators in
strong inversion outperform those in weak inversion, and ring
oscillators with current control perform substantially better
than those with voltage control. The tune circuit should also
be designed with large enough devices, in order for the
VCO-ADC performance not to be limited by mismatch in
this tune circuit. Finally, we established a link between this
mismatch model and the PSRR, and the closely related CMRR
when using a pseudo differential VCO ADC configuration.
From these results, we concluded that, in order to get adequate
values for the PSRR and CMRR, it is crucial to design a large
enough tune circuit and to bias the ring in strong inversion.
Our systematic analysis was consolidated through extensive
Monte Carlo simulations using a design kit of a commercially
available 65nm CMOS process, which match the predictions
of our novel mismatch model nearly perfectly.

APPENDIX

A. Determining εgring , the Relative Error on gring

Remember that we advocate that, in any VCO design,
the I-V characteristic of the ring should be determined
upfront [14]. Since for the entire I-V characteristic, the
transistors’ region of operation goes from weak inversion,
into strong inversion into velocity saturation, an analytical
approach is not viable and hence the I-V characteristic
should be available in a numerical form. Hence all its partial
derivatives should also be available (in a numerical form).
Since gring is the derivative of the I-V characteristic of the
ring, we can write:

gring = gring,n · (
1 + εgring

) = ∂ Iring

∂Vring

= ∂
(
Iring,n · (1 + εIring

))
∂Vring,n

(
∂

(
Vring,n · (

1 + εVring

))
∂Vring,n

)−1
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This leads to:
εgring ≈ εIring + Iringrring · ∂εIring

∂Vring,n
− εVring − Vring · ∂εVring

∂Vring,n

This equation is correct both for the case of mismatch in the
VCO as well as for the case of mismatch in the (Thévenin
equivalent of the) tune circuit. If we focus on the mismatch
in the VCO (connected to a tune circuit without mismatch),
we have to add the subscript tune to the error contributions
in the above equation and collect the corresponding values
of εIring,tune and εVring,tune from Eqs. (29) and (31). However,
we also need the corresponding partial derivatives ∂

∂Vring,n
.

In this work we decided to evaluate this also numerically
(e.g. in MATLAB by using the ‘gradient’ function). The
contribution of mismatch in the (Thévenin equivalent of the)
tune circuit is determined similarly, where now the values
of εIring,thev and εVring,thev should be collected from Eqs. (37)
and (38).
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