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Challenges and Prospects of Machine Learning
in Visible Light Communication

Nan Chi, Junlian Jia, Fangchen Hu, Yiheng Zhao, Peng Zou

Abstract—Visible light communication (VLC) is a
promising research field in modern wireless communica-
tion. VLC has its irreplaceable strength including rich
spectrum resources, no electromagnetic disturbance, and
high-security guarantee. However, VLC systems suffer
from the non-linear effects that exist in almost every part
of the system. As a part of artificial intelligence, machine
learning (ML) is showing its potential in non-linear
mitigating for its natural ability to fit all kinds of transfer
functions, which may dramatically push the research
in VLC. This paper introduces the application of ML
in VLC, describes five recent research of deep learning
applications in VLC, and analyses the performance.

Keywords—visual light communication, machine learn-
ing, artificial intelligence, deep learning, neural network

I. INTRODUCTION

Visible light communication (VLC) is an emerging wire-
less communication method that uses visible spectrum

for communication[1]. As the wide promotion of light emitting
diodes (LEDs), LEDs have attracted more and more attention
from scholars due to the unique function of combining light-
ing and communication[2]. VLC has many advantages, includ-
ing rich spectrum resources between 400∼800 THz, high anti-
electromagnetic interference, and high confidentiality. In the
field of underwater communication, VLC has become the best
method to achieve the wireless communication with both high
speed and long distance by now.

However, in many VLC research works, the transmitted
signal always suffers from linear and nonlinear distortion, es-
pecially for the case with complex channel and high output
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signal power[3]. Nonlinear effect will strongly damage system
performance and cause the rise of bit rate error. The nonlin-
ear effect in VLC systems mainly comes from the nonlinear
response of LEDs, channel, and the photodiode (PD) at the
receiver[4,5]. Most of the current equalization scheme can only
compensate some simple nonlinear effect without the ability
to handle complex nonlinear effect.

Machine learning (ML) related algorithms have been suc-
cessfully applied in prediction, classification, pattern identi-
fication and data mining, etc[6]. Firstly, many useful algo-
rithms in ML have been demonstrated to solve some issues
related to nonlinearity in optical communication field, such as
estimating parameters from noise, determining the complex
mapping relationship between input signal and output signal,
inferring the probability distribution of received signals and
estimating output values based on input samples, etc[6,7]. Sec-
ondly, ML algorithms can be utilized to monitor communica-
tion performance, such as neural network and K-means algo-
rithm that can help estimate various channel impairments and
manage optical network efficiently[8]. In addition, ML algo-
rithms, such as support vector machine (SVM) and K-means
algorithm, can accurately identify modulation formats and bit
rate. Because machine learning algorithm can fit and model
the relationship between inputs and outputs according to sam-
ples and labels without accurately analyzing the complex re-
lation between each feature, ML algorithms are potential tools
to be applied in VLC systems and improve their transmission
performance.

In this paper, we will first introduce the structure of VLC
systems and analyse some classical applications of ML tech-
niques in VLC systems. Some recent contributions about deep
neural networks (DNNs) are also given. Our goal is to assist
the readers in refining the motivation, structure, performance
and cost of some typical ML techniques for future VLC sys-
tems to tap into hitherto unexplored applications and services.

II. THE PRINCIPLE AND THE MECHANISM
OF ML IN VLC

A. The Architecture of ML Enhanced VLC System
The typical structure of an ML enhanced VLC system is

illustrated in Fig. 1. The entire system can be divided into 5
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parts by their function: the VLC transmitter, the driving cir-
cuit, the VLC channel, the receiver circuit, and the VLC re-
ceiver. The transmitter and the receiver are usually the ML
enhanced parts.

The VLC transmitter covers the digital signal processing
processes, including the coding of the transmitting binary
data, the modulation, the pre-equalization if required, the up-
conversion, and finally the generation of the digital signal that
can be sent to the transmitter circuit.

The driving circuit consists of the arbitrary waveform gen-
erator (AWG), the electronic amplifier (EA), the hardware
pre-equalizer, the bias tee, and of course the LED. The AWG
finishes the task of converting the generated digital signal to
the analogue signal; the hardware pre-equalizer broadens the
usable bandwidth in the VLC system; the bias tee mixes the
bipolar zero-mean signal with the direct current bias and thus
drives the LED.

The channel in a VLC system can be either free space or
underwater. The characteristic of the light attenuation through
the channel is complicated, confusing the channel model and
bringing the challenges in VLC systems.

The light with signal is collected by the receiver circuit,
which includes the PD, the trans-impedance amplifier (TIA),
the EA, the attenuator and the oscilloscope. The TIA ampli-
fies the weak electrical signal converted from light by the PD
together with the EA. The attenuator adjusts the amplitude of
the amplified signal to fit the proper dynamic range of the os-
cilloscope, which acts as the analogue-to-digital converter.

The VLC receiver undertakes the digital signal process-
ing at the receiver side with the help of a series of processes

like the differential operation, the down-conversion, the post-
equalization, the demodulation and finally the decoding. The
decoded binary data stream can be used to calculate the bit-
wise error rate, indicating the performance of the entire trans-
mission system.

B. ML Applications in VLC

ML is a multidisciplinary cross-discipline involving statis-
tics, probability, optimization theory, and algorithm complex-
ity theory. As shown in Fig. 2, the application of ML in VLC
can be divided into the following 4 categories.
• Nonlinear mitigation. Nonlinearity is a unique challenge

in VLC, which exists almost everywhere in the VLC systems.
The voltage-current (VI) characteristic of the emitting compo-
nent, LED, is not linear, which means the power of the emit-
ting light is not linear proportional to the controlling signal.
Furthermore, the VLC channel is highly complicated. The
nonlinearity in the VLC channel causes a severe fading both
in the time domain and in the frequency domain. Last but not
least, the receiving photoelectronic components, such as PD
and avalanche PD, have a saturation effect that may cause the
cutting of the receiving signal.

In recent years, artificial neural networks (ANNs) have
been widely used in VLC systems to compensate for non-
linear damage of signals. By using a part of the transmit-
ted signal as the label, the ANNs can learn the characteristics
of the system through its powerful nonlinear mapping ability,
thereby compensating for the nonlinear damage of the system.
In Refs. [9-11], the utilization of DNNs in the faster-than-
Nyquist VLC system, the implementation of Gaussian kernel
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Figure 3 The schematic for (a) original data pre-processing; (b) general function link artificial neural networks

based DNN (GK-DNN) and long short-term memory (LSTM)
in the phase-amplitude modulation (PAM) based VLC system
have proved the superiorities of deep learning in nonlinear
compensation.
• Jitter compensation. In VLC systems, the system jit-

ter will cause signal distortion, and utilizing the traditional
decision strategy will cause misjudgment of the signal. In
Refs. [12-14], the authors use 2 dimensional density-based
spatial clustering of applications with noise (2D-DBSCAN)
and 3D-DBSCAN algorithms to blindly equalize PAM and
quadrature amplitude modulation (QAM) signals, effectively
eliminating false decisions caused by signal jitter and effec-
tively improved system performance.
• Modulation format identification. The nonlinearity

in VLC systems will cause a mismatch of constellation
points, resulting in the misjudgement of the receiving sig-
nal. In Refs. [15,16], cluster algorithm of perception decisions
(CAPD) can be generated by using K-means, thereby improv-
ing the performance of VLC systems. Similarly, in Ref. [17],
the author uses Gaussian mixture model (GMM) to regenerate
the decision boundary for QAM signals, which effectively al-
leviates the misjudgement caused by constellation mismatch.
• Phase estimation. In VLC systems, the nonlinearity will

cause phase deviation in the receiving signal. By using ML
algorithms such as SVM, K-means[18], and GMM[19], the non-
linear deterioration of the VLC systems caused by phase de-
viation can be effectively compensated.

With the substantial improvement of computer computing
power and data storage capacity in recent years, the power

of deep learning in dealing with nonlinear problems in com-
munication systems has been widely explored. In this paper,
we review the specific application of functional linked artifi-
cial neural network (FLANN), GK-DNN, dual-branch multi-
layer perception post-equalizer algorithm (DBMLP), and joint
time-frequency post-equalizer deep neural network (TFDNet)
in the VLC system to show the great potential of ML in VLC
systems. These 5 applications have good performances on the
nonlinear mitigation.

III. DEEP LEARNING IN VLC

A. Function Link Artificial Neural Network
There exists various linear and nonlinear noise in VLC sys-

tems, and an efficient equalizer is indispensable for high spec-
tral efficiency. As traditional full-connected neural networks
have been demonstrated to be powerful for equalization, their
training blindness and the great complexity restrain the prac-
tical implementation. Due to the addition of prior knowledge
and the simplified network structure, the FLANN has been
verified as an efficient equalizer that has the impressive im-
provement on complexity and the similar equalization perfor-
mance in many research works[20,21]. It was utilized as a post-
equalizer in VLC systems for the first time in 2019. In this
section, we briefly introduce the structure and principle of the
FLANN for the VLC[22].
• Step 1: data pre-processing. The received signal from

OSC is usually serial symbols suffering from linear and non-
linear distortions. Let us consider a one-dimensional received
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signal X = [x1,x2, · · · ,xm,xm+1, · · · ,xn] and the correspond-
ing labels Ŷ = [ŷ1, ŷ2, · · · , ŷm, ŷm+1, · · · , ŷn]. As illustrated in
Fig. 3(a), the long received-signal is converted to several short
sample symbols by a sliding window with a certain length m
(the value of m must be odd) and the sliding step length of
1. The first column of the sample symbols (from right to left)
is [x1,x2, · · · ,xm], and the ith column is [xi,xi+1, · · · ,xi+m−1].
The corresponding label for every column of the sample sym-
bols is the ŷi+m−1

2
for the [xi,xi+1, · · · ,xi+m−1]. The objection

of this pre-processing operation is to equalize one received
symbol considering the contribution of its adjacent symbols.
• Step 2: FLANN equalization. The input sam-

ple symbols are expanded by function link layer us-
ing one certain f (·). For example, if the r-order
polynomials expansion is utilized, the output pattern
of function link layer for [xi,xi+1, · · · ,xi+m−1] is S =

[xi,x2
i , · · · ,xr

i ,xi+1,x2
i+1,x

r
i+1, · · · ,xi+m−1,x2

i+m−1, · · · ,xr
i+m−1]

to add the consideration of high-order nonlinearity for ANNs.
Similarly, the function can also be Gaussian, Fourier basis
functions and other trigonometric polynomials (e.g. Legen-
dre, Chebyshev, etc). Then the output pattern of function
link layer is connected to the output node by weights defined
by W = [w1,w2, · · · ,wk]

T. The k is the length of output
pattern. Therefore, for the input [xi,xi+1, · · · ,xi+m−1], the
corresponding output is given by yi+m−1

2
= Ws, thus the

equalized signal Y is given by concatenating all the outputs
with the serial of inputs. The FLANN is trained by the
back-propagation algorithm to minimax the mean square
error between predicted received signals and transmitted
signals.

B. Gaussian Kernel Aided Post-Equalization Algorithm
The DNN based post-equalization and decision algorithm

can effectively reduce the influence of nonlinear distortion
on the performance of underwater visible light communica-
tion (UVLC) systems. However, due to the slow convergence
rate of the DNN training process, the post-equalization and
decision algorithm based on DNN is difficult to apply to ac-

Algorithm 1 Algorithmic description of GK-DNN

Input:
Feature sets: xm = [I1+m, I2+m, · · · , In f−1+m, In f +m],
Amplitude coefficient vector: k = [k1,k2, · · · ,kn f−1,kn f ],
The number of feature sets: M,
Weights of the GK-DNN at the lth hidden layer: W l ,
Bias of the GK-DNN at the lth hidden layer: bl .

Output:
The predicted signal l= [I1, I2, · · · , IM−1, IM ].

1: L= [−7,−5,−3,−1,1,3,5,7]
2: for m = 0 to M−1 do
3: g(x) = xm ◦k = [I1+mk1, I2+mk2, · · · ,xn f−1+mkn f−1,xn f +mkn f ]

4: O =W 3ReLU(W 2ReLU(W 1g(x)+b1)+b2)+b3

5: for j = 0 to 7 do
6: P(y = L j|xm) j = eO j/∑

n
i=1 eOi

7: end for
8: lm = argmax(P )

9: end for
10: return Predicted signal l

tual UVLC systems. To accelerate the DNN training process,
Ref. [10] pre-converged the input feature values of the DNN
through Gaussian kernels, and proposed a Gaussian kernel
aided post-equalization algorithm to reduce the training time
by 47%. Consequently, under a 1.2 m underwater wireless
transmission, the PAM8 modulated UVLC system achieved
1.5 Gbit/s underwater high-speed optical wireless communi-
cation for the first time. The application potential of DNN al-
gorithm in underwater optical communication field is proved.
Fig. 4 provided the structure of GK-DNN. The expression of
the Gaussian kernel is

k(t, t ′)i = e−(
π(t−t′)

a )2
= e−(

π((i)−(i+1)/2)
a )2

=

e−(
π(i−1)

2a )2
, i = 1,2, · · · ,n f−1,n f , (1)

a =
1
β

√
log2

2
, (2)

where a is a parameter that controls the scope of the Gaus-
sian kernel, which is related to 3 dB bandwidth 1/β . The
process of GK-DNN based signal equalization and decision is
described in Algorithm 1.

C. Dual-Branch Multi-Layer Perception Post-
Equalization Algorithm

Although GK-DNN can effectively compensate the nonlin-
ear distortion in UVLC systems and accurately judge the PAM
signal, its high space complexity occupies extensive comput-
ing resources. To solve the problem that the deep neural net-
work post-equalization algorithm has high complexity and is
difficult to be applied in actual UVLC systems, Ref. [23] re-
constructed the structure of multilayer perceptron (MLP) post-
equalization algorithm based on the structure of Volterra se-
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Algorithm 2 Algorithmic description of DBMLP

Input:
Feature sets: xm = [I1+m, I2+m, · · · , In f−1+m, In f +m],
The number of feature sets: M,
Weights of the DBMLP at the lth hidden layer: W l ,
Bias of the DBMLP at the lth hidden layer: bl .

Output:
The predicted signal l= [I1, I2, · · · , IM−1, IM ].

1: for m = 0 to M−1 do
2: y1 =W

1x+b1

3: y2 =W
2,2 tanh(W 2,1hw(xm)+b

2,1)+b2,2

4: lm = y1 + y2

5: end for
6: return Predicted signal l

ries post-equalization algorithm as a template, and proposed a
dual-branch MLP post-equalization algorithm, which is pro-
vided in Fig. 5. DBMLP combines the advantages of lin-
ear adaptive filters and MLP, which could reduce the algo-
rithm complexity by 74.1% and improves the algorithm’s bit
error rate (BER) performance. Consequently, 3.2 Gbit/s high-
speed underwater communication has been realized in UVLC
systems based on carrierless amplitude and phase (CAP) 64
modulation, which could be the highest rate of UVLC sys-
tems based on single-chip LED in the world at that time. The
process of DBMMLP based signal equalization is described
in Algorithm 2. The hollow layer could be expressed as

hw
([

xn− L−1
2
,xn− L−1

2 +1, · · · ,

xn−1,xn,xn+1,xn+ L−1
2 −1,xn− L−1

2

])
=[

xn− L−1
2
,xn− L−1

2 +1, · · · ,xn−1,xn+1,xn+ L−1
2 −1,xn− L−1

2

]
. (3)

D. Frequency Slicing Deep Neural Network (FSDNN)
Another variation of DNN based equalizer is FSDNN for

the application with low complexity toleration. It can be used
in high-speed VLC systems based on CAP modulation. In
addition, it has been demonstrated that it has the ability to
decrease computation complexity of the traditional MLP[24].

The specific principle for FSDNN is briefly introduced as fol-
lows.

For the CAP transmitter, the frequency spectrum is shown
in Fig. 6, which will suffer frequency fading issue after going
through the VLC channel. If an MLP is intended to equal-
ize such a received signal and try to mitigate the frequency
fading issue, lots of layers and nodes are needed due to sev-
eral amplitude attenuation in high-frequency domain. How-
ever, such a complex MLP structure is unnecessary for low-
frequency domain with low amplitude attenuation. In this re-
gard, the frequency spectrum of the received signal is split into
two sub-bands using two root-raised cosine filters. Two sub-
bands signals are respectively fed into two MLPs that have
been trained individually. Once the MLPs are finished train-
ing and their weights are fixed, the sum of output signal from
two MLPs is the equalized and recovered signal. It is clearly
observed that frequency fading issue is successfully solved.
Meanwhile, the total computation complexity of FSDNN is
verified to be lower than that of one MLP when the similar
equalization performance is achieved in Ref. [24].

E. Joint Time-Frequency Post-Equalizer Deep Neural
Network

All the networks introduced in the previous sections are
based on the time-domain signal only. However, in the exper-
iments, it is non-negligible that the spectrum of those signals
processed by time-domain neural networks has a noticeable
difference with the spectrum of the original signals, which
means the signal in time domain itself does not contain full
information for the learning of the neural network. Therefore,
more information should be provided to the network directly
for a better performance in the distortion compensation.

The TFDNet[25], inspired by the image processing process,
takes both the data in time domain and frequency domain,
and therefore has an enhanced performance. The short time
Fourier transformation (STFT) is used in TFDNet to combine
the information in the two domains. The STFT matrix is de-
noted by

Y = STFT(y(n)), (4)

where y(n) ∈ R denotes the received signal in time domain
with a total length of N. Each row of the STFT matrix Y is a
vector of a certain frequency f , defined as

Y ( f ) = [Y1( f ),Y2( f ), · · · ,YC( f )], (5)

and the kth element of Y ( f ) is

Yk( f ) =
∞

∑
n=−∞

y(n)g(n− kR)e−j2π f n, (6)

where g(n) denotes the selected window function with length
M avoiding the spectral ringing, and R = M − L denotes
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Algorithm 3 Algorithmic description of TFDNet

Input:
Received signal: y(n),

Select window function: g(n),

The trained network: L,

The network parameters: Θ.

Output:
The reconstruct signal x̂(n).

1: Y = STFT(y(n),g(n))

2: Ŷ =L(Y ,Θ)

3: x̂(n) = ISTFT(Ŷ )

4: return Reconstructed signal x̂(n)

stride between each adjacent pair of discrete Fourier trans-
form (DFT) in the STFT, with M denoting the window length
and L denoting the overlap at the window edges.

The STFT matrix Y is similar to an image with the size of
2D×

⌊ N−L
M−L

⌋
, where D is the DFT points. The network takes

the columns in Y one by one. And finally, the reconstruct
signal x̂(n) is obtained by the inverse STFT (ISTFT) as

x̂(n) =
∫ 1

2

− 1
2

∞

∑
k=−∞

Ŷk( f )ej2π f nd f =
∞

∑
k=−∞

x̂k(n). (7)

The working procedure of the TFDNet can be described as
Algorithm 3.

IV. DISCUSSION

Fig. 7 shows the detailed structures of the introduced five
networks: FLANN, GK-DNN, DBMLP, FSDNN and TFD-
Net. Noticing that the data pre-processing parts of FLANN
and TFDNet are not illustrated, the network structures of these
two networks are the most simple ones.

Inspired by the understanding of VLC systems, each net-
work shows a novel optimizing perspective. The design of
FLANN is to enhance the functionality of the simple ANN.
With ANN itself, the equalizing performance is poor for that
the network is too brief. FLANN introduces the data pre-
processing layer with the prior knowledge of VLC systems,
and thus improve the ANN accuracy.

GK-DNN is proposed to reduce the training iteration num-
ber, which is driven by the practical analysis in the experi-
ments. It shows that though the inter-symbol interference (ISI)
exists between the symbols, the larger the distance between
two symbols is, the less the ISI will be. Thus, a Gaussian
kernel function is applied to the input data, and reduces the
number of training iterations by 47% with the similar perfor-
mance.

The system transfer function model can be divided into
the linear part and the nonlinear part. However, neural net-
works are more likely to learn the nonlinear part, causing that
the linear part is treated as nonlinear part as well. DBMLP
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processes the data with two sub-networks in parallel. One
of the sub-networks, which is a convolutional neural network
(CNN) without activation functions, takes only the linear por-
tion, while the other one, which is an MLP with activation
functions, takes the nonlinear portion.

FSDNN pays attention to the frequency domain. In a VLC
channel, the low frequency part of the signal is well trans-
ferred, but the high frequency part is dramatically attenuated
with the frequency going up. Therefore, it is not reasonable to
use a same network to learn both the low frequency part and
the high frequency part. With two sub-networks learning each
part of the signal, FSDNN has a good performance among the
entire frequency domain.

TFDNet, as introduced in section III.E., takes both time-
domain information and frequency-domain information. With
the help of Fig. 7, it is clear that the structure of TFDNet is not
complex compared with the other networks listed. Further-
more, Fig. 8 shows an experimental comparison among the
classical methods of Volterra equalizer, GK-DNN and TFD-
Net when the data rate is 2.85 Gbit/s. ML based methods have
a significant improvement in the BER performance, and TFD-
Net shows the best performance with a 0.98 dB improvement
in Q factor at the point with the signal’s peak-to-peak voltage
being 0.8 V.

It is clear that ML technologies have greatly enhanced the
performance of VLC systems in terms of nonlinear mitigation.
The universal approximation theorem describes that a neural
network has the capability of fitting any complex nonlinear
functions with proper parameters and structures. Furthermore,
the VLC system model has not been established due to the
complex nonlinear effect. Therefore, neural networks could
be a solution to these challenges. However, neural networks
need a lot of training data with enough randomness in order to
avoid the over-fitting, as well as the computing power for both
training and testing. Particularly, in the practical deployment,
the communication terminals might have limited computing
ability. The design of the network is critical for the network,
determining whether it can be easily deployed.

V. CONCLUSION

In this paper, five latest ML applications in VLC are intro-
duced, including FLANN, GK-DNN, DBMLP, FSDNN and
TFDNet. By the time, TFDNet is the ML application in VLC
with the best performance. GK-DNN and FLANN have the
simplest structure with a moderate performance for the com-
pact systems with less computing power. DBMLP and FS-
DNN show novel ideas about slicing the network into two
parts for different features based on the understanding of VLC
systems. As a newly developed subject, neural network has
shown its power in fitting arbitrary combination of linear or
nonlinear transfer function models. Compared with other re-
search fields like image processing, the application of ML in
VLC has just reached the initial stage by now. It is convincing
that with the further research on ML in VLC, it will show its
extraordinary talents, and thus carry forward the performance
of VLC systems.
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