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Communication Networks: A Survey
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Abstract—Physical layer security (PLS) in wireless
communication systems has attracted extensive research
attentions in recent years. Unlike cryptography-based
methods applied in upper-layer in network, PLS meth-
ods are applied in physical layers and can provide
information-theoretic security by utilizing the random-
ness of signals and wireless channels. In this survey, we
provide a comprehensive review in the domain of physical
layer authentication (PLA) in wireless communication
systems, including the concepts, several key techniques
of typical PLA architectures as well as future challenges
and research trends in more sophisticated communication
systems. The survey begins with an overview of the
background and basic concepts of PLA, such as the
general model of wireless security communication system,
typical frameworks of key-based/less PLA systems, and
the common attack models. We then discuss the major
concerns and key techniques that are applied in PLA
systems, where three types of authentication schemes
are considered, i.e., the authentication based on channel
information, radio-frequency and identity watermarks.
Basic models and representative research results about
key approaches and techniques applied to the authenti-
cation systems above are subsequently covered. Finally,
the associated challenges and potential research trends of
PLA in future communication systems are presented at
the end of the survey paper.
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I. INTRODUCTION

A. Physical Layer Security in Wireless Communication
Systems

While various of efficient wireless transmission tech-
niques have been proposed to meet the demand of high

throughput and reliability in communication, the security has
also become a critical issue as people sometimes have to trans-
mit important/private information in wireless networks (such
as in unmanned aerial vehicle networks). It is known that the
open and broadcasting nature in wireless environments result
in the vulnerability in secure communication, so that eaves-
dropping and impersonation attacks can be carried out more
easily in conventional communication networks. Therefore,
dedicated methods are required for secure wireless communi-
cation.

As shown in Tab. 1, there are two major security concerns
in wireless communication networks: confidentiality and au-
thentication. Confidentiality prevents the secret plaintext from
being obtained by eavesdroppers, while authentication verifies
the identities of users and makes sure that illegitimate users
cannot impersonate as legitimate users do. Traditional com-
munication security is usually achieved by the upper-layer se-
curity protocol stack using cryptography-based methods, such
as symmetric and asymmetrical cryptographic methods, mes-
sage authentication code (MAC) or digital signature, etc.[8,9]

The security of cryptography-based methods relies heavily on
the computational complexity and secret keys. However, the
development of future Internet of things (IoT) techniques ac-
commodate more limited devices in terms of power and com-
putation resources, which makes it impractical to implement
complicated cryptography-based security protocol.

As an alternative security mechanism that compensates the
restriction of upper-layer security protocols, physical layer se-
curity (PLS) is considered to validate security wireless trans-
mission on the physical layer. By exploring the unique sta-
tistical characters of physical channels, PLS-based transmis-
sion can support both confidentiality and authentication in the
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Table 1 Some of the survey papers that mention about PLA

Works Brief introduction

[1,2]
Physical-layer identification techniques that

are based on unique RFs of different
transmitters

[3]

Mainly concentrates on available device
features, including feature extracting and

classification techniques, and the
fingerprinting algorithms in RF

fingerprint-based PLA

[4]
Cross-layer PLA design is proposed after

briefly reviewing the existing techniques and
limitations of current PLA

[5,6], and [7]

Put a major effort on the general and
comprehensive review of the confidentiality
of PLS, i.e., the secrecy capacity analysis in

different transmission scenarios

viewpoint of information-theoretic security. Rather than de-
pending on computational complexity of hard mathematical
problems, the reliability of PLS lies on the variation and ran-
domness of wireless channels to limit the information of secret
message extracted by attackers. The confidentiality of PLS
was firstly considered in 1949 by Shannon, who proposed the
first application of information theory to cryptology, which
is also known as Shannon’s information theoretic secrecy[10].
Then the information theoretic analysis for secure transmis-
sions over insecure channels (wiretap channels) was studied
in Ref. [11] by Wyner in 1975, whose approach was further
generalized by Csiszar and Korner[12]. One of the most im-
portant targets of the physical layer confidentiality studies is
to maximize the secret information rate received by the le-
gitimate user in the wiretap channel, which is defined as the
secrecy capacity by Wyner[11], with certain constraints on the
information attainability to an eavesdropper. Based on the ap-
proaches introduced in Refs. [11,13], a number of research
works and surveys that aim to implement secure communi-
cations in various of systems are presented in the following
decades[14,15].

As another key aspect of PLS, physical layer authentica-
tion (PLA) plays a nonnegligible role in wireless security
communications. In this survey we mainly focus on the
concepts, state-of-the-art techniques and future challenges of
identity/user authentication in wireless physical layer, which
is not only because there are limited systematic works and
surveys that concentrate on this field, but also we aim at em-
phasizing the unique contributions of PLA to the final PLS in
the entire wireless communication network.

B. Research Issues and Significance of PLA
Following the spirit of Shannon’s work, a series of anal-

ysis on information-theoretically secure authentication was

studied in Refs. [16-19]. Here, Ref. [16] was considered as
the first lower bound results in message authentication, based
on which, different information-theoretic lower bounds in au-
thentication theory were studied by Refs. [17,18]. Then in
2000, Maurer proposed a more generalized and simplified
cheating probability lower bound for any authentication sys-
tem by introducing the application of hypothesis testing in
authentication[19]. As stated by Maurer, the inherent nature of
authentication can be regarded as a binary hypothesis testing
problem, i.e., deciding whether a received message is from an
authentic transmitter or not. The testing result is obtained by
considering the joint probability distribution of the received
message and the secret key, which is simply based on the real-
ity that the eavesdropper has no priori knowledge of the secret
key. Although the work in Ref. [19] was based on the authen-
tication with secret keys, the idea of hypothesis was general-
ized, modified and widely applied to various of communica-
tion systems afterwards, such as conventional single antenna
point-to-point communications[20-24], multiple-input multiple-
output systems[25-27], multi-carrier systems[22,23,26-33], 5G sys-
tems with handover transmission[34], distributed ad hoc wire-
less networks[35], etc. The result of hypothesis testing in au-
thentication is usually related to a single value that helps to
make a decision by comparing with a preset threshold. How
to decide a threshold is also one of the major topics in hypoth-
esis testing based authentication to achieve a good balance be-
tween the false alarm and the missing detection rates. The de-
tailed mechanism of hypothesis testing will be introduced in
the following sections.

The mostly studied authentication techniques can be clas-
sified into two categories: channel-based and radio frequency
(RF) fingerprint-based schemes. Channel-based authentica-
tion schemes verify the identity of an unknown transmitter by
either observing the unique instantaneous/average characteris-
tics of the estimated channel state information (CSI)[28,32,36-38]

or comparing the current CSI to the authentic CSI previ-
ously reserved during the past transmission[21,27,33,35,39]. The
RF fingerprint-based schemes identify a user/device accord-
ing to unique features of their transmitted waveform, which is
also referred to as physical-layer device identification[1]. The
works on this field mainly focus on how to extract intended
features from the received signals[40] and improve the authen-
tication accuracy by carefully selecting and classifying the
features in hand[41]. Besides of the two categories of authen-
tication techniques above, there are also some other authen-
tication schemes proposed, such as the watermark/fingerprint
embedding[42-44], multi-attribute multi-observation (MAMO)
techniques[4], and so on.

There are already several survey papers that provide a
general/partial view on PLA[1-7]. In Refs. [1,2], the au-
thors mainly presented systematic reviews and a summary
of physical-layer identification techniques that were based
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on unique RFs of different transmitters, while in Ref. [4],
a novel MAMO technique with cross-layer PLA design was
proposed after briefly reviewing the existing techniques and
limitations of current PLA. In Ref. [3], the authors provided
a detailed survey of features that can be adopted in wireless
device fingerprinting, including the characteristics of avail-
able device features, widely used feature extracting and clas-
sification techniques, and the fingerprinting algorithms in RF
fingerprint-based PLA. Refs. [5-7] put a major effort on the
general and comprehensive review of the confidentiality of
PLS, i.e., the secrecy capacity analysis in different transmis-
sion scenarios. Unfortunately, only limited research results on
PLA are summarized and presented in the existing PLS survey
papers, which becomes one of the motivations for the appear-
ance of this survey.

C. Criteria of PLA

It is traditionally acknowledged that the goal of authen-
tication is to verify the identity of an entity. For PLA
schemes specifically, it is more focused on distinguishing
different transmitters. Generally, an effective authentication
scheme must meet three properties[45,46]: covertness, robust-
ness, and security. The covertness means that any authentica-
tion schemes should not significantly affect the performance
of the normal data transmission. It would be better if the PLA
application does not occupy too much communication over-
heads or extra computational resources. Such covertness re-
quests also guarantee that a PLA system framework does no
harm to the existing conventional higher-layer cryptographic-
based techniques. Robustness requires that the PLA frame-
work is robust enough to mitigate channel fading and noise
interference. In other words, the authentication performance
should not be severely degraded due to channel dynamics and
impairment. Finally, the security is the kernel of PLA systems
which represents the ability to prevent the authentication pro-
cedure from being interrupted or invaded by eavesdroppers. It
is not trivial to achieve all of these three targets when design-
ing a practical authentication scheme, so most of the existing
researches on PLA only focus on security. Although there
are some efforts on achieving the other two properties[44], still
limited works have been done on this topic.

The criteria mentioned above are general but cannot be
used as design metrics for PLA systems. Instead, to evalu-
ate the performance (or to be more specific, the accuracy) of
a specific authentication framework, detailed metrics are in-
troduced and compared in some PLA frameworks to evaluate
the system performance in a more general way. Actually, in
early studies about RF fingerprint-based physical-layer device
identification[47,48], the authentication procedure is inherently
similar to biometric identification systems[49]. Therefore, the
metrics established and generally used in classification prob-

lems of machine learning can also be used to evaluate PLA
systems. According to Ref. [1], the error rates should include
the false reject rate (FRR) and the false accept rate (FAR). The
former, which is also known as the false alarm rate or type I er-
ror, is defined as the probability that the receiver mistakes the
legitimate authentication message as non-authentic in the hy-
pothesis testing. The latter is also referred to as the missed de-
tection rate (type II error), which is the probability of success-
ful attack from adversaries (i.e., the chances that a spoofing
message coming from the attacker is accepted as authentic).
In some works, this metric is replaced by the detection rate
or the authentication rate, which is actually the complemen-
tary of the missed detection rate. These two types of errors
are significantly affected by the design of hypothesis testing
schemes, and sometimes conflict with each other. Therefore, a
careful authentication design is needed to achieve a good bal-
ance between these two metrics subject to performance con-
straints. However, good authentication and hypothesis testing
schemes can still make both false alarm and missed detection
errors as lower as possible.

In the security analysis of a certain PLA strategy, it is usu-
ally required to make comparison between different authen-
tication systems. One basic and commonly applied idea is
to analyze the missed detection and false alarm rates in a re-
ceiver operating characteristic (ROC) curve, which shows the
FRRs at different FAR levels. Generally, the point where
FAR and FRR are equal in ROC is referred to the operating
point of ROC, which is named as the equal error rate (EER).
The EER is a commonly used metric that can evaluate the
priority of a designed classification method or authentication
scheme in the range of ROC operating points encompassing
the EER. Although the ROC and EER can be generally used as
performance metrics of different identification systems, from
the perspective of effective authentication schemes designing,
minimizing one of the two types of errors (e.g., the missed
detection rate) in the constraints of the other metrics (e.g., the
false alarm rate) is generally considered.

D. The Paper Structure

The remaining of this paper is organized as follows. Sec-
tion II presents general architectures of PLA systems, in-
cluding the security models of key-based/key-less PLA ap-
proaches and basic ideas of common attack models. In
section III, we investigate some of the major research re-
sults on the key techniques in three typical PLA architec-
tures, i.e., channel-based, RF fingerprint-based and watermark
embedding-based authentication. Future research issues and
challenges are introduced in section IV, and the survey paper
is concluded in section V.

The structure and the main contents of this paper are illus-
trated in Tab. 2.
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Table 2 The structure of the survey

Sections Subsections

Section II: Basic Security
Model in PLA

II.A Generalized Wireless Security Com-
munication
II.B Key-Based PLA
II.C Key-Less PLA
II.D Attack Model

Section III: Key
Techniques in PLA

III.A Channel-Based PLA
III.B RF Fingerprint-Based PLA
III.C Watermark Embedding-Based PLA

Section IV: Further
Applications and Research

Trends of PLA

IV.A Multiuser Communication Networks
IV.B The Internet of Things Network

II. BASIC SECURITY MODEL IN PLA

Without loss of generality, PLA methods can be roughly
classified into two groups: key-based and key-less, according
to whether the secret key is used for authentication. We pro-
vide basic models and principles of these two groups of PLA
methods in this section, based on which some representative
research results are briefly introduced.

A. Generalized Wireless Security Communication
For the sake of simplicity, we first introduce a typical wire-

less communication model that is general and adaptable in
most of security communication scenarios.

As illustrated in Fig. 1, there are three different parties: Al-
ice, Bob and Eve in the transmission system, which are bor-
rowed from the conventional terminology of the security com-
munity. Alice (A) is a legitimate transmitter and Bob (B) is a
receiver, while Eve (E) is an adversary who tries to imperson-
ate the communication between Alice and Bob by pretending
that she is the legitimate transmitter. Denote by HAB, HAE,
and HBE the channel coefficients between Alice-Bob, Alice-
Eve, and Eve-Bob, respectively. Here, we use the matrix H
to represent the equivalent channels for a specific communica-
tion scenerio, which can either be an orthogonal frequency di-
vision multiplexing (OFDM) system or a MIMO system. De-
noting by x the authentication signal vector transmitted from
Alice, then the received signal at Bob can be represented by

y =HABx+n, (1)

where n = [n0 · · ·nL−1]
T ∼ C N (0,N0I) is the background

additive white Gaussian noise (AWGN) vector.
For an OFDM system with multipath environment, if per-

fect OFDM transmission is assumed, the waveforms between
each subcarrier can be viewed as “mutually orthogonal” at the
receiver even they undergo multipath fading channels (after
insertion and deletion of the CP). So one can describe the
OFDM system as a set of L parallel fading channels. Let
the lth element of x be the transmitted OFDM symbol by
the subcarrier l, and H = diag(H0, · · · ,HL−1) represents the

frequency-domain channel matrix, where Hl is the channel co-
efficient of subcarrier l, which is given by

Hl =
P−1

∑
p=0

hpe−
j2πl p

L , l = 0, · · · ,L−1. (2)

Here, hp is the channel coefficient of the pth path and P is
the length of channel impulse response (CIR).

For a MIMO system, x is the transmit vector, and H rep-
resents the channel matrix between the transmitter and the re-
ceiver, where the (i, j)th element is the channel coefficient be-
tween the transmit antenna j and the receive antenna i. The
single-carrier single-input single-output (SISO) system is not
mainly considered in this article, as it is just a special case of
the above two communication scenarios.

B. Key-Based PLA
1) Authentication by One-Way Transmission: General

key-based PLA frameworks are similar to traditional symmet-
ric cryptography or digital signature based systems. The stud-
ies on key-based authentication methods appeared in around
1970s[16], where it is aimed to provide proper secret keys by
coding schemes to achieve authentication. Then a series of
information-theoretic lower bounds in authentication theory
were derived in the 1980s by Simmons[50], who provided a
more rigorous bound analysis on the probability of successful
impersonation over a noiseless channel. It is also confirmed
by Simmons that schemes used in authentication theory just
aim to achieve uniform spread of the altered messages over
the transmitted message set, which can be surely realized by
proper channel coding. Therefore, spread spectrum coding[51]

and code division multiple access (CDMA) techniques[52] for
PLS are exploited decades later. Simmons’ bound on imper-
sonation was further modified and enhanced by Johannesson
et al. in Ref. [53] who considered the dependence between
the message and the encoding rule. The authors in Ref. [19]
provided a more generalized key-based authentication scheme
by introducing the concept of hypothesis testing. Although
the work is based on message authentication, the idea of hy-
pothesis testing-based PLA framework is modified and widely
applied to various of communication systems.

A typical key-based authentication framework is illustrated
in Fig. 1. The key-based PLA procedure generally includes
two phases: one is the identification association phase, when
Alice generates keys, assigns identification messages to the
authentication tag according to certain generation function
and then sends them to Bob. The other one is the identifica-
tion verification phase, during which the identity information
is verified based on the received message and the shared key at
Bob. More specifically, the whole authentication mechanism
can be summarized as follows.
• Alice generates and sends an authentication message by

using certain association/encrypting function, which is given
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Key generation

Secret key                                                                                                     Secret key

Identity message
Authentication

message
Wireless
channel

Identity
extraction

Authentication

Identity association                                                                                                Identity verification
Channel

estimation

Figure 1 A typical two-phase key-based authentication framework

by x = F (m,k). Here m is the identity information deter-
mined by the transmitter and is also known or can be obtained
by the receiver (such as the channel state between Alice and
Bob or the unique RF information of Alice). k is the shared
secret key between Alice and Bob.
• Bob receives the authentication message and extracts the

identity information by using pre-designed decrypting func-
tion D , i.e.,B = D(k,x).
• Bob performs the verification as: if B =m, the trans-

mitter is Alice. Otherwise, the authentication fails.
Note that the general authentication method above is based

on the assumption that Bob can obtain precise identity infor-
mation of Alice. However, due to additive noise and imperfect
channel estimation, in most cases B 6=m. Therefore, binary
hypothesis testing is used to decide whether the received mes-
sage is from Alice or not.

As introduced in Ref. [19], binary hypothesis testing is the
task of deciding which of two hypotheses, H0 or H1, is true,
using test statistics (e.g., the outcome of a measurement). Let
T be the identity information with error obtained by the re-
ceiver, then the hypothesis testing problem is given by

H0 : T is the estimated version ofm; (3)

H1 : T is NOT the estimated version ofm. (4)

The null hypothesis, H0, is accepted when the transmitter
is decided to be Alice; otherwise, Bob judges the transmit-
ter is intrusted and simply rejects the communication request.
Generally, the hypothesis testing result is dependent on a log-
maximum likelihood function

η = log
f (T |m,k)

f (T |mE,kE)
, (5)

where f (·|·) is the conditional probability density function
(PDF), and mE and kE are the spoof message and the key
at Eve, respectively. η is also referred to as the test statistic
that helps to make authentication decision. It can be observed

that larger η indicates a higher probability that the transmitter
is authentic. So the authentication system usually chooses hy-
pothesis H0 if and only if η >U , where U is a pre-designed
threshold. According to definitions of missed detection and
false alarm rate (denoted by α and β , respectively), these two
performance metrics can be calculated as

α = P(η >U |H1) = 1−Fηev(U), (6)

β = P(η <U |H0) = Fηa(U), (7)

where Fηev(·) is the cumulative probability distribution func-
tion (CDF) of (5) while the received message is from Eve,
and the CDF, Fηa(·), represents the case when Alice is trans-
mitting. Clearly, the setting of U has a strong impact on the
probabilities of missed detection and false alarm. A larger
U can efficiently decrease the missed detection probability at
the cost of higher false alarm rate, and vice versa. (6) is also
related to the probability distributions of the identity informa-
tion m and the secret key k, which is to exploit optimal key
generation and authentication association schemes. Note that
(5) is a theoretical test statistic which may be used in secu-
rity analysis, but is not practical as it is not realistic for Bob
to know the statistic properties of me and ke generated by
Eve. Therefore, most works consider simplified test statistics
to obtain hypothesis testing results, which will be introduced
in detail in the next section.

2) Authentication by Challenge-Response Transmission:
The key-based PLA framework illustrated in Fig 1 is per-
formed during single-way transmission. Another kind of
widely studied key-based PLA schemes is based on traditional
challenge-response architecture (which is referred to as the
key-based physical layer challenge-response authentication
mechanism (PHY-CRAM))[28,32,37]. The idea of key-based
PHY-CRAM is similar to the authentication and key agree-
ment protocol which has been universally used in conven-
tional cryptographic security mechanisms. However, PHY-
CRAM can achieve secure transmission by relying on the
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randomness of channel characteristics. Besides, the simi-
lar mechanism of PHY-CRAM and traditional upper-layer
challenge-response protocol makes it easier to consider cross-
layer optimization and key submission design between PLA
and cryptography-based architectures.

The basic security model of key-based PHY-CRAM is il-
lustrated in Fig. 2 with two legitimate users, Alice and Bob,
sharing a secret key. Before security transmission, Alice
firstly sends a random message (which is referred to as the
challenge signal) to Bob, then Bob returns back a response,
which is generally the output of a pre-designed function with
the inputs of the received challenge signal and the shared se-
cret key. Once Alice receives the response signal, certain au-
thentication schemes are used to verify the identity of Bob
according to the response and the shared secret key. More
specifically, the whole authentication mechanism has the fol-
lowing steps.
• Alice generates a random challenge message m from a

message codebook M which can be either a number or a se-
quence, and sends the message to Bob.
• Bob receives the challenge message and compute the re-

sponse signal according to the pre-designed function F and
the shared secret key, i.e.,R=F (k,m). The response signal
is sent back to Alice afterwards.
• Alice receives the response signal R and obtain the se-

cret key information by using a decrypting function D and
the local message m, i.e., V = D(m,R). In some research
works, F is assumed to be a cryptographic hash function, in
which case Alice can simply compute the local test response
as V = F (k,m).
• Alice performs the verification as follows. If V = k (or

V =R), the transmitter is Bob. Otherwise, the authentication
fails.

According to the authentication procedure above, it can be
observed that the security of key-based PHY-CRAM is en-
sured by the randomness of the secret key and the channel
characteristics which can help to hide the challenge message
and the response signal. Just as the case of single-transmission
authentication scheme, the PHY-CRAM introduced above is
only based on ideal transmission scenarios with perfect chan-
nel estimation and decoding. Therefore, the hypothesis testing
is also used in key-based PHY-CRAM frameworks, which can
be shown as

H0 : V is the estimated version of k(R), (8)

H1 : V is NOT the estimated version of k(R). (9)

For the case thatV is the estimated version of k, the test statis-
tic can be chosen as

η = log
f (V |m,k)

f (V |mE,kE)
. (10)

Alice

Generates a random
challenge message

Receives the response signal

Obtains the key
information

from the
response

V = D(m, R)

Verification

V = k?

Computes the
local reference

V = F(k, m)

Verification

V = R?

Bob

Receives the challenge
message

Computes the response
signal

R = F(k, m)

Secret key

Communication start

Authentication
failing

N

Y

Figure 2 A basic key-based PHY-CRAM system

On the basis of the fundamental PHY-CRAM, there have
already been some studies with modifying and further
enhancing[28,32,36,37]. The works in Refs. [28,37] are all based
on CSI and short-term channel reciprocity. More specifically,
Bob should firstly estimate the CSI from the received chal-
lenge message m, and then generates the response signal ac-
cording to the estimated CSI and the shared key. The authors
of Ref. [37] extended the work in Ref. [28] to the worst case of
static channels by introducing artificial noise to conventional
PHY-CRAM proposed in Ref. [28].

We have already emphasized the nonnegligible role of hy-
pothesis testing in key-based PLA systems. Unlike the ba-
sic frameworks above, authentication can be performed with-
out hypothesis testing. For example, the authors of Ref. [32]
proposed a PHY-CRAM framework simply by utilizing chan-
nel reciprocity and verifying the identity by checking the Eu-
clidean distance between the response and the locally gener-
ated contrast signal. In Ref. [36], it is considered channel cod-
ing based authentication schemes, where the shared key and
CSI between two legitimate nodes are combined to make an
adversary’s attack ineffective. Detailed description of such
authentication schemes is provided in the next section.
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C. Key-Less PLA

A significant part of studies on channel-based au-
thentication and almost all kinds of RF fingerprint-
based authentication schemes can be classified as key-less
PLA[21,27,33,35,39,54,55]. One of the first works considering the
key-less channel-based authentication scheme is the architec-
ture established by Xiao et al. in Ref. [54], where an ap-
proach based on the channel frequency response and hypoth-
esis testing is presented to determine whether the current and
prior communication attempts are made by the same user.
Similar ideas are proposed in Refs. [21,26,27,33,35,39,55-58]
in different wireless transmission systems. For example, in
Refs. [55,57], the authors extended the approach in Ref. [54]
to time-variant wireless channels, and in Refs. [35,56,58],
more complicated communication scenarios such as the cel-
lular Internet of things (CIoT) network, the ad hoc networks,
and relay networks are considered to achieve channel-based
authentication. The works in Refs. [21,27,33,39] utilize typ-
ical machine learning techniques to properly track and em-
ulate the channels similarity between adjacent transmission
time slots, where the authors of Refs. [21] and [27] focused on
exploiting optimal testing threshold of the channel similarities
of legitimate users and the adversary, and in Refs. [33,39], dif-
ferent channel characteristics are observed and classified into
different clusters to track the channel dynamics rather than
rely only on the last trusted channel. The detailed descriptions
are provided in the next section.

By employing the typical Alice-Bob-Eve security model,
we can introduce a basic key-less channel-based authentica-
tion framework as follows, which generally consists of three
stages.
• Initialization stage. Alice sends the perfectly authenti-

cated Alice-Bob channel information, denoted by HAB, to
Bob at the beginning of communication, i.e.,H(0) =HAB.
• At transmission time slot t, Bob receives the data packet

with the training sequence from Alice, and estimates the chan-
nel information Ĥ(t) based on the training data block.
• Bob performs the verification as follows. If Ĥ(t) '

H(t− 1), the received data come from the same source (i.e.,
from Alice) as those in the previous time slot; otherwise, the
authentication fails. Once the authentication succeeds, Ĥ is
stored as the reference channel estimation. Considering the
varing environment and the channel estimation error intro-
duced by the noise, Ĥ(t) is not equal toH(t−1). Therefore,
Bob should use hypothesis testing to differentiate the channels
of legitimate transmitter and adversary.

In comparison with the channel-based authentication, the
works on RF fingerprint-based authentication (or device iden-
tification) schemes appear much earlier. There have already
been some works focusing on identifying different devices
according to the unique characteristics or imperfections of

their analog (radio) circuitry[47,59-62]. Generally, the finger-
printing features will be extracted from the received signal
at the receiver side by observing the radio communication,
and then be compared with the local reference fingerprints as-
sociated to the device under identification. Therefore, reli-
able fingerprint database and feature selection strategies play
a key role in the authentication[63,64]. Based on these early
studies, more sophisticated RF fingerprint-based authentica-
tion schemes were proposed in Refs. [40,41,46,65-67]. A ba-
sic key-less RF fingerprint-based authentication framework is
illutrated in Fig. 3, which includes the following steps.
• Training stage. Features of different legitimate devices

are collected and selected by using a certain selection method
at the receiver side. The goal of this stage is to establish re-
liable fingerprints database that maps the features of received
signals to the identity of an authenticated user.
• The receiver receives an authentication signal from an

unknown transmitter and then extracts useful features from
the received signal.
• The receiver maps the selected radiometric features to

the identity fingerprints by using a pre-determined mapping
function, and then retrieves the reference fingerprints from the
database and compares them against the obtained fingerprints
to verify the identity (or the class) of the transmitter.

In comparison with the channel reciprocity require-
ment in key-less channel-based authentication schemes, RF
fingerprint-based authentication is more stable with time as it
is practically impossible to arbitrarily change hardware-level
RF features in a short time. However, the RF features between
different devices are usually very slight, which forces the re-
ceiver to execute complicated feature selection and analyzing
algorithms to extract the subtle differences in the signals. Be-
sides, some researchers argue that RF fingerprint-based au-
thentication is vulnerable to impersonation attack[68].

D. Attack Model
Clear definitions and extensive studies on the attack mod-

els of potential adversaries are essential in security analysis
of a designed PLA scheme. As clever malicious users al-
ways exhaust all power and computational resources in hand
to achieve their goals, it is necessary to consider all possi-
ble attacks the system might face. Depending on the num-
ber of adversaries, there are two big classifications of attack
models: the single-attacker model and the multiple-attacker
model. Most of the previous studies on PLA mainly focus on
the single-attacker model, i.e., only one active eavesdropper is
considered during the security communication.

In most of the security analysis of communication sys-
tems, Eve, the adversary, is an aware active user who has
full (read and write) access to the communication channel and
also knows the authentication scheme that Alice and Bob use.
From the perspective of ensuring higher security, the hypo-
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Figure 3 A basic key-less RF fingerprint-based PLA framework

thetical attacker is usually assumed to be as powerful as pos-
sible. There are usually three basic assumptions about the hy-
pothetical attacker.
• The adversary has the full knowledge of CSI of the entire

communication network, and is also equipped with very pow-
erful hardware equipments with unlimited transmission power
and computational ability.
• The adversary has partial knowledge of CSI of the entire

communication network (probably the statical characteristics
of channels), but is equipped with very powerful hardware
equipments with unlimited transmission power and compu-
tational ability.
• The adversary has partial knowledge of CSI of the entire

communication network (probably the statical characteristics
of channels), and its transmission power and computational
ability is also restricted due to hardware limitation.

The first two assumptions are not practical, of course, how-
ever it can be seen that such assumptions simplify general the-
oretical analysis about the performance of the proposed au-
thentication schemes in the following sections. The last as-
sumption is more practical, which is usually used as the typ-
ical attacker model to evaluate the security performance of
a particular authentication scheme. Although the adversary
may change attacking strategies due to different communica-
tion environment and authentication schemes, the two most
commonly used attack modes are impersonation and substitu-
tion attacks. Here we mainly focus on these two attack modes
in the following discussion.

1) Impersonation Attack: Through impersonation attack,
the goal of Eve is to create and send a fraudulent message
which is hoped to be accepted by the receiver, i.e., she at-
tempts to imitate Alice. These attackers may forge massive
fake identities, or embezzle other legitimate nodes’ identities,
such as Sybil attacks[69]. There are two ways to perform such
attacks: one is an active attack, where the adversary will ran-

domly send the forge message to Bob with the knowledge of
authentication scheme and maybe partial CSI of the commu-
nication network. Usually the probability that Eve’s message
is successfully authenticated depends on the security of au-
thentication test that the receiver uses. The other form is a
passive attack, where the adversary monitors all kinds of mes-
sage streams pass through the network during authentication,
and tries to learn the knowledge of any useful authentication
information (i.e., the shared secret key, the channel informa-
tion between Alice and Bob, or the identity features or fin-
gerprints) from whatever it gets. Impersonation attack is the
most commonly concerned attack mode during the design of
authentication framework, either in key-based[32,36,46], or key-
less schemes[26,39]. For example, in Refs. [36] and [46], pas-
sive attack and key equivocation were considered, based on
which the authors of Ref. [46] provided the theoretical lower-
bound on the impersonation attack success probability by us-
ing the similar approach in Ref. [19]. Besides, in Ref. [36]
the authors also considered the case of active attack and de-
rive a closed-form expression for the probability of success-
ful attack. The authors of Ref. [32] emulated the security
of PHY-CRAM in relay systems in the scenarios of passive
and active attack. In Ref. [39] the eavesdropper tried to im-
personate the communication by emulating a large number of
different channel responses to improve the passibility of suc-
cessful attack, and in Ref. [26] besides of single attack, the
authors further analyzed multiple attack strategies where Eve
can transmitted a sequence of messages in order to break the
authentication system. In some works such as Ref. [32], the
authors also briefly analyzed the cases of replay attack, in-
cluding signal replay attack and feature replay attack[60-62].
Generally, relay communication networks are more vulnera-
ble in replay attack due to its inherent characteristics coming
from entrusted relay nodes, as it is easier for malicious nodes
to store or collect radio features of the waveforms passing by.
However, there is little work that focuses on such an attack
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mode.

2) Substitution Attack: In substitution attack, Eve will in-
tercept the message coming from Alice and replace it with
an originally generated message which she hopes to be ac-
cepted and also correctly decoded by the receiver. Therefore,
an adversary can be considered successful only when the forge
message is successfully decoded by the receiver. Substitution
attack is mainly considered in the message authentication sys-
tems, though, authentication systems such as that based on
tag/fingerprint embedding[46], and relay systems[70] also pay
some efforts on security analysis in the scenario of substitu-
tion attack. In Ref. [46], the authors also derived the theo-
retical lower-bound on substitution attack success probability
just as that of impersonation attack. A more detailed anal-
ysis about substitution attack in relay systems was provided
in Ref. [70] where the channel conditions is obtained under
which substitution attacks performed by relay nodes can be
detected.

III. KEY TECHNIQUES IN PLA

On the basis of the basic security models introduced in the
previous section, we will describe the latest and the most fre-
quently studied techniques that may be implemented in PLA
frameworks in this section. The concepts, challenges and the
recent works on the following two basic authentication cat-
egories, namely channel-based authentication and RF-based
authentication, are introduced in detail. Besides, other au-
thentication techniques including watermark/fingerprint em-
bedding schemes will also be discussed in this section.

A. Channel-Based PLA

Channel-based authentication schemes are universally
studied in PLA which intuitively take advantage of the special
nature of wireless environments. Most channel-based PLA
frameworks are established on the channel assumption of the
well-known Jakes uniform scattering model[71], i.e., the typi-
cal frequency-selective wireless scenarios with rich multipath
environment. It has been proved that the transceivers in such
environment is location-specific, which means the following.
• The channel can be specified by a number of complex

samples either in the frequency domain (a set of complex
gains at a set of frequencies) or the time domain (a set of im-
pulse response samples at different time delays).
• Such sets of numbers vary from one transmit-receive path

to another if the paths are separated by the order of an RF
wavelength or more.

Based on the assumptions above, CSI can be utilized as a
special kind of fingerprint that represents and discriminates
different user identities in the total network. Note that in
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Figure 4 A general abstract information flow in channel-based authentica-
tion schemes

OFDM systems the correlations between adjacent subcarri-
ers should also be considered and controlled, as the spec-
trum decorrelation improves the robustness and the security of
PLA systems[36]. Based on the typical Alice-Bob-Eve security
model introduced in the previous section, Fig. 4 illustrates a
general abstract information flow in channel-based authenti-
cation schemes.

As is shown in Fig. 4, f (HAB,HAE,HBE) is the joint PDF
of the communication channels, and g(HAB,kA) represents
the PDF of HAB and the shared secret key kA. Note that
for key-less PLA systems, g(HAB,k) is reduced to g(HAB).
Denote by x, u the authentication signal and forge message
sent by Alice and Eve, respectively. y/v and z are the re-
ceived signals in Bob and Eve. Here, x sent by Alice is gen-
erated with the knowledge of g(HAB,k) and the secret key
(if possible), which will also be observed as z by Eve after
transmitting through the channel HAE. Assume that Eve is
able to acquire partial knowledge of the network channel in-
formation, she should learn and grab useful information from
z and the limited CSI, after which the forge message u is cre-
ated by p(u,kE|z) and transmitted to Bob. Therefore, Bob
may receive either the authentication message y, or the forge
message v after transmitting through HAB or HEB, respec-
tively. To complete authentication, Bob firstly performs chan-
nel estimation based on the received signal and obtains Ĥ .
Then certain authentication scheme D is used by referring to
a local authenticated channel sample ĤAB, which is previ-
ously obtained during the initial transmission. For a general
channel-based PLA framework, the following hypothesis test-
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ing method can be used in the authentication phase

H0 : Ĥ ' ĤAB, (11)

H1 : Ĥ ' ĤEB. (12)

There are three major assumptions in the channel-based au-
thentication scheme introduced above, which are listed as fol-
lows.
• The channel coefficient between Alice and Bob should

vary slowly or is highly correlated in time so that the es-
timation results can be almost the same between adjacent
time slots. Therefore, the basic method should be modi-
fied and enhanced in fast fading environment or time-variant
channels[55,57,72].
• The initialization stage must be included to verify the

identity of the first transmission source. Generally, the chan-
nel information during the first transmission time slot is as-
sumed to be perfectly authenticated by using other authenti-
cation schemes (e.g., a cryptographic-based authentication at
the application layer). Note that there are limited works that
consider the authentication problem during the first transmis-
sion.
• The reciprocity assumption is satisfied for PHY-CRAM,

i.e., as during the coherence time, the observed channel im-
pulse responses at two geographically separated communicat-
ing terminals are the same.

There are two ways of utilizing channel information for
identification: one is observing channel impause/frequecy re-
sponse correlations between adjacent time, the other way is
completing authentication directly based on the current chan-
nel impause/frequecy response. For the former, we call it
as CSI difference-based PLA, while the latter is named as
CSI-based PLA for convenience. The representative research
works based on these two kinds of methods are summarized
in Tab. 3, which will be introduced in detail in the following
subsections.

1) CSI Difference-Based PLA: The basic idea of the
scheme given by (11) is only valid in time-invariant chan-
nel environment. As has already been mentioned in the pre-
vious section, in some works like Refs. [21,26,27,33,39,57],
the hypothesis testing given by (11) is modified by comparing
the channel responses between two adjacent transmission time
slots. A threshold δh is decided for the following hypothesis
testing

H0 : |Ĥ(t)−Ĥ(t−1)|2 < δh, (13)

H1 : |Ĥ(t)−Ĥ(t−1)|2 > δh. (14)

The total authentication procedure is similar to that introduced
in subsection II.C.

The concept of CSI difference-based PLA is straightfor-
ward, though, it has additional challenges in practical use.

Specifically, the robustness and security of such authentica-
tion schemes are severely affected by the channel inherent
characteristics. As CSI difference-based PLA utilizes the dif-
ferences between a measured (test) channel response and a
prior channel response to discriminate between transmitters
at different locations, in high dynamic communication net-
works such as mobile communication and ad hoc networks,
the channel response from the same transmitter can fluctuate
violently due to the rapid movement of devices. Furthermore,
in urban area with intensive buildings, due to the rapid spa-
tial decorrelation properties of the wireless multipath channel,
even a minor movement of a mobile can lead to a quite dif-
ferent channel response. It can be seen that the performance
of the aforementioned CSI difference-based PLA is greatly
degraded due to the mismatch between adjacent channel re-
sponse, especially the false alarm rate. Therefore, enhanced
schemes are required to overcome the performance degrada-
tion due to channel dynamics. Therefore, the major challenge
or the most important technique of CSI difference-based PLA
is the channel-tracking methods in high dynamic communica-
tion networks.

A. Channel tracking methods based on generalized time-
varying multipath channel models

There have been a number of works to handle the PLA
challenge in time-varying multipath communication scenar-
ios, some of which were studied by Xiao’s group[29-31,55], and
the works in Refs. [57] and [22].

In Ref. [55], a generalized time-variant channel frequency
response sample was built in the terms of three parts: the fixed
average channel response over time and contains the spatial
variability information, the variable part with zero mean, and
the receiver noise. The characteristics of these three param-
eters directly reflect the channel correlation and variance in
spatial and time domains, therefore affect the authentication
performance in time-varying multipath communications. The
hypothesis testing method proposed in Ref. [55] is enhanced
in Ref. [30] with a more generalized channel model. The ap-
proaches in Ref. [57] use the similar channel model, which in-
troduces a robust channel-based PLA by exploiting the noise-
mitigated CIR difference and tracking the significant channel
taps.

Above all, for a multipath OFDM system defined in the
previous section, due to the correlation of adjacent CIRs on
the same path, an autoregressive (AR) model of order 1 (AR-
1)[30] is utilized to describe the temporal process of hp(k) at
time k:

hp(k) = λhp(k−1)+
√
(1−λ 2)σ2

l εp(k−1), (15)

where the AR coefficient λ is the correlation of two successive
CIRs, εp is a zero-mean complex Gaussian random variable
with variance 1, and σ2

p is the variance of hp. Therefore, the
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Table 3 Representative works on channel-based PLA techniques

Works Channel model Authentication mode Major contributions

[20,21]
Single-carrier,

time-invariant and
frequency-selective

One-way, CSI
difference-based with

hypothesis testing

1. Enhanced PLA via residual testing or time-domain CSI comparison[20]

2. Machine learning schemes such as SVM and linear Fisher discriminant anal-
ysis (LFDA) are used to exploit the channel features and enhance the PLA
performance[21]

[28,37]
Multi-carrier,

time-invariant/variant and
frequency-selective

Challenge-response,
CSI-based with

hypothesis testing

1. PLA by exploiting both the reciprocity and randomness of the phase responses
over multi-carrier channels[28]

2. A modified artificial-noise aided PLA is proposed to alleviate the discontinuity of
phase responses at far separated time slots[37]

[22,29-
31,55]

Multi-carrier, time-variant
and frequency-selective

One-way, CSI
difference-based with

hypothesis testing

1. PLA based on a generalized channel frequency response with both spatial and
temporal variability and correlations[55]

2. An enhanced PLA scheme which is more robust against terminal mobility is pro-
posed based on inter-burst authentication and intra-burst authentication[29]

3. A PLA scheme with a practical generalized likelihood ratio test (GLRT), that
requires no a priori knowledge of channel parameters, is proposed and analyzed in
frequency-selective Rayleigh channels[30]

4. A hybrid authentication protocol is proposed to integrate the PLA algorithm into
any existing higher-layer security mechanism without assuming a reliable reference
channel estimation[31]

5. A novel channel-based PLA is proposed by exploiting and mathematically model-
ing both of time-varying channel amplitude and propagation delay[22]

[23]
General channel model

(not specific)
One-way, CSI-based with

hypothesis testing
An outer bound on the error probability region in terms of the attacker strategy is

derived

[32]
Multi-carrier,

time-invariant and
frequency-selective

Challenge-response,
CSI-based without
hypothesis testing

A novel PHY-CRAM that doesn’t require any channel estimation or training

test statistic under the hypothesis testing (13) can be given by

Tl(k) = Hl(k)−HAB,l(k−1). (16)

According to the distributions of both Hl(k) and the noise
np(k), the PDF of the test statistic Tl under the two hypothesis
H0 and H1 can be represented, based on which the threshold
δh is determined adaptively subject to certain constraints of
false alarm or missed detection rate.

Based on the channel tracking model introduced above, en-
hanced CSI difference-based PLA schemes are studied. The
work in Ref. [29] focuses on mobile communication scenar-
ios, and an enhanced scheme is proposed to overcome the
problem of rapid spatial decorrelation properties of wireless
multipath channels in mobile communication. More specif-
ically, two parts of authentication, inter-burst authentication
and intra-burst authentication are considered to relax the limit
on user displacement between two bursts. The inter-burst au-
thentication is carried out using the first frame of each data
burst to determine whether the current transmitter is still Al-
ice or not, where similar time-varying channel tracking model
as that described by Ref. [55] is used with the aid of Neyman-
Pearson test. During the inter-burst process both Alice and
Bob save at least one channel response from the last burst
as the key, which is sent for re-verification in the first frame
of each burst. In this way, the authentication with decorrela-

tion channels between data bursts is realized. A cross-layer
authentication framework was proposed in Ref. [31]. Be-
sides of the dynamic environment, the effect of unreliable ref-
erence channel estimation is also considered to analyze the
CSI difference-based PLA scheme proposed in the previous
works.

However, the performance of this channel tracking method
is strongly related to the AR coefficient. In other words, in
the extremely high dynamic communication networks where
the AR coefficient tends to zero, the aforementioned channel
tracking method may have difficulty in differentiate channel
responses of legitimate user and the adversary.

B. Channel tracking methods based on clustering and ma-
chine learning

In Ref. [39], the authors have proposed an authentication
technique based on Gaussian processes (GPs) to track the
channel dynamics by clustering the observations into trajec-
tories. More specifically, Bob measures and stores the N
most recent frequency responses of the channel between (a
presumed) Alice and himself at time n, which is denoted by
ĤAB = [ĥAB,n−N+1, ĥAB,n−N+2, · · · , ĥAB,n]. With the newly
observed channel response hn+1, the hypothesis testing is per-
formed based on the following test statistic

γ = ‖hn+1− ĥAB,n+1‖, (17)
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where ĥAB,n+1 represents the prediction of Alice-Bob chan-
nel according to the predesigned channel tracking algorithm.
Here, the authors use the overlapping mixture of Gaus-
sian processes (OMGP) multi-target tracking algorithm from
Ref. [73] to obtain ĥAB,n+1 with the input observed sample
ĤAB. The work in Ref. [33] followed a similar idea.

Basically, we can summarize the basic architecture of such
kinds of authentication schemes as “Channel Prediction based
PLA”, as the kernel of tracking techniques is very similar to
channel prediction. The methods introduced above are typ-
ical solutions to overcome the channel dynamics. However,
note that the properties of multipath and channel dynamics
don’t always do harm to the system security performance,
sometimes the time variations even improve the authentica-
tion. Works by Xiao’s group all aim to provide advanced PLA
schemes with hypothesis testing and sophistic performance
analysis based on more generalized channel model with dy-
namic environment variance, multipath delay, correlation in
time and frequency domain, and practical technique limitation
such as channel estimation error. For example, Ref. [55] ex-
amined the ability of channel-based PLA to authenticate trans-
mitters in a more practical time-variant environment based on
a generalized channel response with both spatial and tempo-
ral variability, and considers correlations among the time, fre-
quency and spatial domains. The theoretical and numerical
results confirm that the minimum average miss rate is a trade-
off between the positive impact of the time variation and its
negative impact resulting from the rise of the test threshold.

2) CSI-Based PLA: There are two ways of utilizing CSI
directly for authentication, which are listed as follows.
• CSI white-list authentication. It is a natural idea to com-

plete authentication by building the user profile using CSI for
a specific user identity before authentication, just as that in-
troduced in Ref. [74]. The mean amplitudes of CSI measure-
ments are analyzed and partitioned into two groups by using
K-means algorithm during the data pre-processing stage, then
the framework deposits the pre-processed legitimate CSI sam-
ples as the user profile for future matching. Obviously, CSI
white-list authentication is vulnerable to channel dynamics,
which makes the method less practical.
• CSI-key joint authentication. Another way of utilizing

the characteristics of channel states is by generating authen-
tication information according to both of the channel and the
shared secret key. In Ref. [24], the authors introduced two
key-based authentication frameworks: asymmetric channel-
based cryptographic authentication (A-CBCA) and symmetric
channel-based cryptographic authentication (S-CBCA). Both
of these authentication schemes generate the secret keys (pri-
vate/public key couple for A-CBCA and the shared key for
S-CBCA) based on CSI estimations at Alice by using cer-
tain mapping strategies such as the SKA protocol[15], which is

used to generate the authentication signature and encrypts the
message package in both of the authentication frameworks.

CSI-key joint authentication can also be applied to PHY-
CRAM systems. Considering the PHY-CRAM based general-
ized system model given in the previous section, if Bob is able
to obtain a good estimation of the Alive-Bob channel HAB,
then he can compute the response signalR as

Rl = Klejθl , (18)

where θl is the channel phase response of the subcarrier l.
Therefore, the received signal at Alice in the lth subcarrier is
given by

Vl = Rl‖HAB,l‖e−jθl +nl = Kl‖HAB,l‖+nl . (19)

Hypothesis testing similar to that given by (8) with the test
statistic (10) can be considered to determine whether or not
V is transmitted by Bob. However, a more realistic way is to
use the following simplified method

H0 : |K†
AV |> δh, (20)

H1 : |K†
AV |< δh. (21)

Just as CSI difference-based PLA, CSI-based PLA also suf-
fers from various factors including fading and multipath envi-
ronment, channel estimation error, correlation between sub-
carriers in OFDM system, etc.
• Channel estimation error. Channel estimation is the first

and one of the most important proceeding block during the au-
thentication phase at the receiver. As CSI-based PLA frame-
works usually rely on the authentication information extracted
from channel responses, channel estimation error can directly
affect the successful authentication probability. The problem
aggravates for PHY-CRAM based systems, as the receivers
of challenge and response signals may have different channel
estimations. The authors of Ref. [28] have provided the con-
ditional PDF of the channel phase estimation error.
• Channel correlations of different carriers. For the au-

thentication in OFDM systems, the correlations of different
sub-channel responses tends to cause an increase of success-
ful passive attack probability. It has been further proved in
Ref. [36] that the phases of channel coefficients of OFDM
subcarriers are highly correlated when the number of multi-
path is extremely small. Therefore, the eavesdropper is able to
estimate the secret key through passive attack by using the ob-
served information between adjacent subcarriers, and success-
fully impersonate the communication between Alice and Bob.
To overcome this problem, the subcarriers in a single trans-
mission should be with sufficient spacing, so that the channel
coefficients are independent with each other. However, this
approach may not be reasonable if the channel does not have
a sufficient number of multipath[36].
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Therefore, robust authentication that can overcome the im-
pact of fading and multipath environment as well as the chan-
nel estimation error in multi-carrier systems is the key re-
search topic in CSI-based PLA design.

a. Robust CSI-insensitive relaxed authentication
One natural idea to overcome the challenge is to design and

apply efficient channel estimation methods before authentica-
tion procedure. However, sophisticated estimation methods
reduce the channel estimation error at the cost of higher com-
putational complexity or longer pilot, which brings extra hard-
ware burden on small devices in future IoT networks.

A promising idea is to consider relaxed authentication
schemes, i.e., try to reduce the sensitivity of the authentica-
tion message to the channel estimation error. However, any
sorts of relaxed authentication schemes design should result
in the security performance degradation, because it inherently
increases the risk of suffering successful attack. The author of
Ref. [36] proposed the idea of generating the challenge signal
by combining the information of the shared key and CSI be-
tween two legitimate nodes, which is named as key-channel
based randomization method. Based on the OFDM system
discussed in the previous section, the authentication consists
of two steps as follows.
• In the first step, Alice sends a challenge signal to Bob by

using a random message,m, which is shared by both sides of
Alice and Bob (and also in Eve). At Bob, channel estimation
(Ĥb) is carried out before recovering the message m.

As for Bob, he can determine the corresponding codeword
as c= φ(m), where φ(·) is a channel encoding function. Us-
ing the shared secret key, k, and the estimated CSI Ĥb, Bob
can determine the set of selected subcarrier indices (Ib) and
obtain a randomized key e. Basically, e is a binary sequence
whose positions of ‘1’ are related to the subcarriers with rela-
tively lower channel gain. The response signal at Bob is rep-
resented by b= c⊕e.
• In the second stage, Alice receives the response signal

and obtain estimated CSI Ĥa. By using similar key-channel
based randomization method, she generates her own key ē
and performs soft-decision decoding with log-likelihood ra-
tio (LLR) to recover c̄. If c̄ = c, Alice can easily verify that
the signal is transmitted by Bob for authentication. according
to the proposed key-channel based randomization.

By observing the authentication method above, it can be
seen that the relationship between authentication message c̄
and the channel states is relaxed with the help of e and soft-
decision decoding. The author clearly addresses that because
e is only related to the subcarriers’ indices of the relatively
small channel gains. Even though Hb and Ha are different
due to the estimation error, their impact on Alice’s decoding
performance based on LLR in may not be significant due to
their low channel gains.

b. Robust authentication without channel estimation

Another solution to the problem of channel estimation er-
ror is more straightforward, which is to derive authentica-
tion methods without channel estimation. The authors in
Ref. [32] introduced a general PHY-CRAM based framework
which can achieve secure authentication by exchanging unen-
crypted shared secrets, such as a random number, and a secret
key among participants. The verifier at the receiver is able
to verify the secrets without knowing the CSI. More specif-
ically, considering a simple Alice-Bob-Eve security model,
suppose that the channel between Alice and Bob is denoted
by HAB, which is block fading and remains the same during
one challenge-response time duration (the channel reciprocity
assumption). The total authentication procedure is similar to
the general PHY-CRAM framework given in the previous sec-
tion.
• Just as mentioned before, Alice first generates a random

challenge message m from a message codebook M which
can be either a number or a sequence, and sends the mes-
sage to Bob. The received message can be represented by
y =HABm+n1, where n1 is the AWGN.
• Bob receives the challenge message and tries to compute

the response signal. Instead of extracting the secret message
by channel estimation, Bob obtains the response signal R by
simply reversing the noisy challenge signal and multiplexing
it with the secret keyK, i.e.,

R=
K

HABm+n1
. (22)

• The response signal received by Alice can be represented
by

V =HABR+n2 =
HABK

HABm+n1
+n2. (23)

Alice verifies the secret key information by computing the fol-
lowing test statistic

η = ‖V �m−K‖. (24)

A hypothesis testing method is used by defining the threshold
δ

H0 : η < δ , (25)

H1 : η > δ , (26)

where Alice performs the verification as: if H0 is accepted,
the transmitter is Bob. Otherwise, the authentication fails.

It can be concluded that since the method above does
not need to estimate CSI, the training and synchroniza-
tion sequences in the header are eliminated, which prevents
the attackers from probing the channel and increases secu-
rity strength. Besides, in comparison with other traditional
challenge-response authentication, channel coding and fre-
quency offset compensation are not used in the scheme. Due
to its simplicity and good concealment of CSI, the “noisy
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channel inversion” based PLA-CRAM can be extended to re-
lay systems, just as discussed in Ref. [38].

c. Robust authentication for OFDM systems
Authentication design of multi-carrier systems, such as

OFDM systems, is essential for the practical utilization of
PHA in communication systems under multipath environ-
ment.

There are two promising tracks to handle the problem: one
is by adding artificial interferences to the secret information at
each subcarrier; the other is considering time diversity, i.e., by
allocating more carriers at sufficiently-separated time-epoches
larger than the coherence time. Both of these two methods are
considered in Ref. [37].

For an OFDM PHY-CRAM system with Alice-Eve chan-
nel matrix HAE, denote by m = [a0ejθ0 , · · · ,aL−1ejθL−1 ] the
authentication message. The received signal at Eve in the lth
subcarrier after adding artificial phase noise is given by

xl = HAE,lalejθl ejvl +nl = HAE,lalej(θl+vl)+nl . (27)

Although ejθl may be strongly correlated between OFDM sub-
channels, it has been proved in Ref. [36] that due to the arti-
ficial interference ejvl , Eve may not be able to recover the au-
thentication messagem by observing channel phase response
in adjacent subcarriers. To remove the effect of the artificial
interference, Bob should design different test statistic for effi-
cient hypothesis testing. The authors in Ref. [37] simply used
the same test statistic as that defined in the previous work[28],
and claim that a strictly-positive key equivocation can be en-
sured even for the worst case scenario. For the case of active
attack, the effect of the extra phase noise ejvl on the perfor-
mance of hypothesis testing should be carefully considered,
which is however not clearly stated in Ref. [37].

B. RF Fingerprint-Based PLA
Due to certain imperfections inherent in the hardware com-

ponents caused by various manufacturing and environmental
factors, the device-dependent bias to the nominal hardware
specification can be used to create a waveform signature (fin-
gerprint or transceiverprint) that can uniquely determine the
transmitter identification. Such imperfections are generally
regarded as RF features.

A typical RF fingerprinting-based system consists of pre-
processing, detection, feature extraction, and classification
stages[75]. The general system model has been given in Fig. 3
except the preprocessing block. The goal of the preprocessing
stage is to generate complex-valued analytic functions from
real-valued data, which has been extensively studied. There-
fore, we mainly focus on the research results of detection, fea-
ture extraction, and classification techniques.

There are two types of widely studied RF features: one is
based on the signal transients[60,75-80] where the transient be-
haviour of RF signal with respect to instantaneous frequency

and amplitude is utilized as device identity. The other one
mainly considers modulation domain techniques that repre-
sent signals at the most basic level in terms of I/Q samples,
whose interpretation depends on the underlying modulation
scheme[40,41,61,65,66,81]. Most of works on transients-based au-
thentication schemes focus on the power, timing, amplitude,
phase or frequency of RF waveforms, while the modulation-
based schemes are based on the carrier center frequency (fre-
quency offset), the error in the symbol clock of the transmitted
signal, the I/Q imperfections, etc. An extensive study about
RF fingerprints of wireless devices was provided in Ref. [3],
including the taxonomy of wireless features, a review on fin-
gerprint algorithms, and some open research problems in the
field.

1) Transient Detection: The objective of the transient de-
tection stage is to determine the exact time instant at which
the transmitter is turned on[75], i.e., the turn-on transients. In
the following analysis, we also refer to transient detection as
“transient extraction”, which represents the similar meaning
in some works[82]. Both amplitude-based and phase-based
techniques have been previously investigated for detecting
signal transients[75,83,84]. Here are the brief introduction on
typical transient detection techniques.
• Bayesian detection/Amplitude detection. Bayesian de-

tection is a classical turn-on transients detection strategy
widely used in the early studies for RF fingerprinting-based
PLA[85,86]. For amplitude-based schemes, the technique is
based on a posteriori probability of a simple step change point
detector which determines the instant at which the received
power level exhibits a sudden increase[85]. Here, the Bayesian
approach relies on Bayes’ theorem for describing the learning
process, by which prior information is updated. However, the
received power level increases gradually due to the practical
Wi-Fi standard. If the change detector lags behind the actual
starting point, characteristics important for classification may
be lost. The authors of Ref. [75] proposed a Bayesian ramp
change detector[86], which is able to estimate the time instant
at which the signal power starts its gradual increase.
• Phase-based detection. The idea of phase-based detec-

tion is based on the fact that the slope of the phase associated
with the start of transient is linear. Therefore, a phase-based
detection technique is carried out by computing the corre-
sponding difference in phase variance, which was firstly given
in Ref. [83]. The method is proved to be more susceptible to
noise and interference. The works in Ref. [87] followed the
phase-based detection approach proposed in Ref. [83].
• Preamble detection. As noted in Ref. [88], the power am-

plifier’s control mode of ramp-on may lead to unstable aligned
envelope profiles. Therefore, an enhanced detection scheme
utilising a fixed preamble and its periodicity was proposed by
the authors of Ref. [88], which is verified with a direct se-
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quence spread spectrum-preamble.
• Hybrid detection. A natural idea to enhance detection

accuracy can be considered with reliable judging means that
provide a-priori whether amplitude-based or phase-based fea-
tures will provide best performance. The authors in Ref. [84]
proposed a variance trajectory-based generalized detection ap-
proach which permits evaluation of transient detection perfor-
mance using both amplitude and phase features.

Besides, there are some other works searching for effi-
cient detection methods based on other features, such as
Ref. [82] where the envelope rather than the amplitude fea-
tures of the transient signal is utilized to achieve lower sam-
pling rate, which is more suitable for more resource con-
strained transceivers.

2) Feature Extraction/Selection: The specific signal char-
acteristics used to differentiate various transients or transmit-
ters are called transient features. The works of Ellis and
Serinken[89] analyzed both amplitude and phase information
that can be used as RF fingerprints. For the amplitude infor-
mation, the authors of Ref. [75] observed several most com-
monly used features. The phase information is directly ob-
tained after detecting the complex signal[83], such as the stan-
dard deviation of phase/normalized phase, standard deviation
of normalized in-phase data, etc. The authors of Ref. [87]
considered both of the amplitude and phase features.

The basic structures of modulation-based authentication
systems are similar to those of transient-based ones, while the
major difference falls in the features extraction.

a. Fixed features without selection
A good signal feature has a low intra radio variability (from

sample to sample in the same radio) but a high inter radio
variability (between different radios)[87,90].

There have already been plenty of works study-
ing the authentication based on fixed transient-based
or modulation-based RF features. For transient-based
schemes, the generally used features include received sig-
nal strength information[77,78], the signal amplitude or phase
angle[75,83,87,90], power spectral density (PSD) features[84], etc.
Besides, the authors of Refs. [91] and [92] developed ap-
proaches for device identification based on the imperfections
of RF oscillator of a transmitter, i.e., frequency offset and
phase noise. In Ref. [91], the RF features were extracted from
variations in the components that comprise the phased-locked-
loop circuit of RF oscillators, while in Ref. [92], the feature
are corresponded to the variability in control voltage.

For modulation-based schemes, the most commonly used
modulation feature is carrier frequency offset (CFO), which
is a salient metric with great flexibility for device identifica-
tion. As has been demonstrated in Ref. [65], CFO can further
enhance the authentication accuracy in comparison with other
radiometric signatures. Besides, CFO estimation and compen-

sation are commonly embedded functions for signal recovery
in wireless systems, therefore no extra computational resource
is required. In Ref. [65], the authors concentrated on the static
wireless environment with constant CFO, which is extracted
and estimated by using training sequences. However, due to
the mobility-induced Doppler frequency shift in more real-
istic mobile communications, time-varying CFO should also
be considered. The authors of Ref. [66] further extended the
CFO-based authentication scheme in Ref. [65] to the time-
varying scenario and propose a continuous PLA scheme for
mobile communications by exploiting the characteristics of
varying CFO. More specifically, the combined CFO model ia
modeled as an AR random process. Then Kalman filtering
is used to track the variation pattern in the predicted sequen-
tial CFO estimates, which is compared with the current actual
estimated CFO in the hypothesis testing.

Obviously, the basic idea of the aforementioned authentica-
tion is very similar to that of “Channel Prediction based PLA”
in the previous subsection, which is actually known as “CFO
Predection based PLA”.

b. Multiple features with selection
Besides of fixed features based PLA, there are quite a

few works on PLA schemes achieved by observing multiple
features[40,41,81]. As suggested by Ref. [89], the feature set
which will yield the best fingerprint is highly dependent on the
type of radio being fingerprinted. The identification accuracy
is intuitively maximized when using all available features for
model training and application, though, this leads to increased
computational complexity in the training phase. An efficient
feature extraction algorithm should minimize the length of the
feature vector without losing the necessary components for
classification[75]. Therefore, it is important to select the set of
radiometric features that can effectively discriminate between
different devices before exploring efficient classification algo-
rithms.

Early works on transient feature selection rely strongly on
experiments, i.e., the performance of different feature combi-
nations are tested using all kinds of experimental setup. In
Ref. [90], the authors created 6 data sets for each sensor node
in a wireless sensor network, each of which consists of 100
samples. The works in Ref. [79] suggested that the transients
can be reduced to approximately 50 to 200 feature values from
2 000 to 3 000 complex samples, where the exact sizes of the
window and feature vector are experimentally determined by
trial and error to give the best classification performance.

The extensive study on machine learning in the past
decades shows that the efficiency of feature selection can be
enhanced by applying different machine learning techniques.
A natural idea applied in Ref. [87] was to determine the two
classes of features that have low intra-transceiver variability
and high inter-transceiver variability, respectively, by using
Euclidian distance and clustering techniques of multivariate
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analysis. Further, in Ref. [75] a multivariate procedure, prin-
cipal component analysis, was used to reduce the dimension-
ality of the feature space by rotating the data such that max-
imum variability is projected onto the axes. The authors of
Ref. [75] claimed that there is no definite pattern from phase
profiles that will help to discriminate among the transmitters,
as the dynamic range of phase variations is very small. There-
fore, the phase profiles are not included as part of the feature
vectors.

As mentioned before, the principle of feature selection for
transient-based RF fingerprinting is to select the features set
that varies slightly for the same device while has higher vari-
ability between different radios. To realize the same target in
modulation-based authentication systems, designing specific
metrics that quantify the relevance between the features and
identities of devices and the redundancy of different features
is considered. The works in Refs. [41] and [63] used the mu-
tual information of the feature gi and the device identifier ID,
which can be a unique integer number known previously, to
measure the relevance between features and users identities

I(gi, ID) =
∫

∑
ID∈I

p(gi, ID) log
p(gi, ID)

p(gi)p(ID)
dgi, (28)

where p(gi, ID), p(gi), and p(ID) are joint PDF and partial
PDFs of gi and ID, respectively. Similarly, redundancy can
also be represented by the mutual information of two different
features, which is defined as the average of the mutual infor-
mation of each pair of features

WS =
1
N ∑

gi,g j∈G
I(gi,g j), (29)

where N = |G |. Obviously, a good features set G should
maximizes the relevance while minimizing the redundancy.
In Refs. [41], [63], and [64], the authors developed and im-
plemented an enhanced feature selection algorithm based on
minimizing redundancy-maximal-relevance to order the ob-
served features by their effectiveness in device discrimination.
Besides of the algorithm mentioned above, there are other
researches that develop the feather selection framework di-
rectly based on the statistic properties of candidate features. In
Ref. [81], the authors developed a signature extraction (learn-
ing phase) framework to compute each single-characteristic
classifier by using data-driven density formation and maxi-
mum likelihood (ML) classification.

Above all, Tab. 4 is a nonexhaustive conclusion of relative
works.

3) Classification: The target of classification in authen-
tication is to verify the identity of a user by analyzing and
matching the transient features to the local legitimate RF fin-
gerprint data base. Depending on whether training phases are
involved, the classification methods that have been studied for

RF fingerprinting-based PLA can be further classified into two
categories: supervised and unsupervised classification.

a. Supervised classification
Most of the classification schemes used in RF identification

are based on supervised learning. For supervised classifica-
tion, collection of training data sets is needed and has a great
impact on the performance of the classifiers. Here we sum-
marize some typical supervised classification schemes that are
widely applied in device identification.

• Feature distance. It is a natural idea to perform a “one-
to-many” comparison between current received RF fingerprint
and the stored reference models based on the predesigned fea-
ture distance function. The authors of Ref. [62] propose a
transient-based identification method by using Mahalanobis
matching, where Mahalanobis distance is used to see the sim-
ilarity between the reference and test features. It is shown
that the method achieves an equal error rate as low as 0.0024
(0.24%). The authors of Ref. [94] used the multitude of
sensors on a modern smartphone to generate a robust de-
vice fingerprint in mobile communication. Two classifica-
tion schemes, Euclidean distance-based and the maximum-
likelihood estimation methods, are considered and compared
in experiment setups using frequency response graph. It was
concluded in Ref. [94] that the identification precision of sim-
ple Euclidean distance-based classification approach is de-
graded due to the variation at some frequencies, which causes
penalty for distances calculation.
• Fisher-based MDA-ML classification process. Multiple

discriminant analysis with maximum likelihood (MDA-ML)
is an extension of Fisher’s linear discriminant process, where
higher dimensional data is projected onto a 2-dimensional
“Fisher plane” that maximizes inter-class distances while min-
imizing intra-class distances. Therefore, classification is per-
formed using unknown data and the trained 2-dimensional
decision boundaries calculated from ML distributions. In
Ref. [95], fisher-based MDA-ML is used for device classifi-
cation.
• Support vector machines algorithm (SVM). SVM is a

widely studied supervised algorithm which learns to classify
the data sets from a set of training examples (e.g., the ref-
erence fingerprints) and makes it a non-probabilistic binary
linear classifier. SVM achieves a good separation on a multi-
dimensional surface by using a separating function, therefore,
distance between the nearest training-data point of any class
(so-called functional margin) becomes the largest. The ad-
vantage of the SVM for fingerprint classification is that it
is well known for its high level of accuracy and robustness
against outliers. In Ref. [61], the authors proposed an iden-
tification technique referred to as the passive radiometric de-
vice identification system (PARADIS) that when applied to
a large set of network interface cards (NICs) achieves ex-
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Table 4 Representative works on different feature extraction/selection techniques

Feature selection Brief introduction Works

Experimenting Evaluating the performance of different feature combinations [79,90]

Redundancy-maximal-relevance minimization
algorithm

By calculating the mutual information between features and devices ID,
finding the feature set that maximizes the relevance while minimizing the

redundancy of two different features
[41], [63,64]

Principal component analysis
Finding a compact feature subspace that contains most of the total covariance

in the data
[93]

Euclidian distance and clustering techniques of
multivariate analysis

Determining the intra-transceiver and inter-transceiver variability [87]

Data-driven density formation and maximum
likelihood classification

Combining the results of the single-characteristic classifiers based on
weighted voting

[81]

Probabilistic neural network Following an approach developed in statistics called Bayesian classification [75,83]

cellent identification accuracy. During the training stage of
the PARADIS-SVM classifier, a number of matrices are con-
structed which return a measure of similarity between a given
signature and the known ones. The classifier finally returns
the best-matching identity along with a measure of similarity
in identification.

• K-nearest-neighbor (KNN). KNN is a typical non-
parametric method used for classification and regression,
where the input k closest training examples in the feature
space are assigned to the majority category label among its
k nearest neighbors. The KNN classifier is commonly based
on the Euclidean distance between a test sample and the speci-
fied training samples. There have been extensive works about
KNN including new rejection approaches, refinements with
respect to Bayes error rate, distance weighted approaches, soft
computing methods, and fuzzy methods. In Ref. [61], KNN
was also considered a classification scheme for comparison
during classifier training and identification stages, where the
radiometric signatures were obtained from frames as training
data sets.

• Probabilistic neural network. In Refs. [75] and [83],
probabilistic neural network provided a general solution to
classification problems by following Bayesian classification,
which is an approach developed in statistics that takes into
account the relative likelihood of events and uses a priori in-
formation to improve prediction. The authors of Ref. [75] pro-
vided the performance analysis of the proposed identification
schemes through different classification tests, including the
benchmark test, transient duration test, and the dimension re-
duction test by using probabilistic neural network. It is shown
that the classification error is around 2%∼4% for standard Wi-
Fi radios[83]. Provided the performance test results based on
the infrastructure which captures signals from Bluetooth wire-
less PC cards, Bluetooth test radios and 802.11 wireless LAN
adapters. The results showed that the detection algorithm pro-
posed in the paper achieves an overall success rate of about
89.5%.

• Bootstrap aggregating. Bootstrap aggregating (or bag-
ging) is an enhanced machine learning scheme whose basic
idea is to increase classification accuracy by generating and
aggregating multiple classifiers[96]. The major priority of the
bootstrap aggregating algorithm is that it can achieve virtu-
ally identical accuracy with reduced computational cost in
comparison with traditional machine learning schemes. In
Ref. [41], the authors proposed an identification algorithm
based on bootstrap aggregating method, where the training
data is divided into subsets and then each subset is used to
train a nonlinear kernel predictor. The kernel used in Ref. [96]
was based on the C4.5 decision tree algorithm.

b. Unsupervised classification
Compared with supervised methods, unsupervised meth-

ods have the advantage of differentiating devices without the
knowledge of device fingerprints ahead of time. In Ref. [77]
the received signal strength (RSS) vector, which is related to
the environment and the locations of devices, was measured
by surrounding access points, and in Ref. [78] the RSS read-
ings were modeled as a Gaussian mixture model. There are
limited works on the applications of unsupervised classifica-
tion methods in RF fingerprinting-based PLA, and here is a
brief introduction about some well-known techniques.
• K-means clustering. As a typical unsupervised learning

technique, K-means clustering is one of the most widely used
clustering algorithm in classification problems. The aim of the
K-means algorithm is to partition a number of N-dimension
points into several clusters. In Ref. [97], the authors proposed
a K-means cluster based approach to analyze RSS and detect
spoofing attacks, which is general for almost all RSS-based
localization algorithms.
• Unsupervised Bayesian learning. Unsupervised

Bayesian learning is the application of Bayesian net-
works to unsupervised learning. The technique is based
on the principle that the feature space can be modeled as a
nonparametric Bayesian model when the number of classes
is undetermined. For example, in Ref. [98], a nonparametric
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Bayesian model was employed based on reliable RF features
to enhance the classification performance. More specifically,
the goal of the identification is to determine the parameters
of the distributions and the indicators to classify the features
based on an infinite Gaussian mixture model. Finally, a
modified collapsed Gibbs sampling method is proposed to
sample from the distribution and find the class label with the
maximum a posteriori probability.
• Principal component analysis. Principal component

analysis is a widely used unsupervised dimension reduction
technique that aims to extract the main information from an
original data set, usually by finding the best low rank approxi-
mation of the data via the singular value decomposition. Prin-
cipal component analysis is generally used as a dimension
reduction technique along with other unsupervised learning
schemes such as K-means clustering. In Refs. [75] and [67],
principal component analysis was used to reduce the dimen-
sions of feature space for fingerprinting definition.

C. Watermark Embedding-Based PLA
The idea of watermark embedding-based PLA is inspired

by conventional cryptography-based authentication methods.
For conventional authentication methods, a tag (which can be
referred to as an MAC or digital signature) is generated and
transmitted along with the data message by the transmitter.
Generally, the tag is a function of the data (for the MAC) or the
unique identity (for the digital signature), and a secret key that
is only shared between the legitimate transmitter and receiver,
which is a separate authentication message appended to the
information message. Clearly, as the tag is available to an ad-
versary, the security of such kinds of methods are guaranteed
by the secret key and a complicated tag generating function,
which ensures that an adversary cannot easily recover the key
given the message and the associated tag. However, append-
ing the separate tag consumes additional bandwidth.

In the physical layer, the only difference is that the tag,
which conveys unique watermark fingerprint, is superimposed
on the transmitted information stream. The resulting meth-
ods are referred to as “authentication with superimposed tag
(Auth-SUP)”, which are the most widely studied schemes in
the early PLA works.

A typical framework of Auth-SUP is illustrated in Fig. 5.
Given transmitted message m and secret key t at Alice, she
generates an authentication tag by using the message and a
previously shared secret key. i.e., t = H (m,kA), where H
is a cryptographic hash function. Then, the transmit signal is
created by superimposing the tag to the original information
message. To verify the identity of Alice, Bob should first ex-
tracts the authentication tag from the received signal and then
compares it with a locally generated one. Clearly, the ker-
nels of Auth-SUP are tag superimposing and testing methods.
There are two superimposing ways: add the authentication tag

to the data frame[42,43,45,46] or to the training pilot frame[44].
For the sake of simplicity, the authentication methods based
on the formal superimposing way is called SUP-based PLA,
while that based the latter way is referred to as blind SUP
(BSUP)-based PLA[44]. These two categories of watermark
embedding-based PLA will be introduced in detail in the fol-
lowing subsections.

1) SUP-Based PLA: The basic procedure of SUP-based
PLA is illustrated in Fig. 5. Here we discuss more detailed
transceiver methods.

a. Tag superimposing
Alice usually generates the transmitted signal using the in-

formation messagem and the authentication tag t as

s=
√

psm+
√

ptt, (30)

where pt and pt are the powers allocated to the informa-
tion message and authentication tag, respectively. Typically,
pt � ps so that the adversary, Eve, can only obtain an ex-
tremely noisy version of tag, which is challenging for her to
extract correct information about the secret key. Let p be the
pilot sequence used for channel estimation, the final transmit-
ted data frame has the following information

x= {p,s}. (31)

b. Tag testing
The received signal at Bob after channel transmission is

given by
y =HABx+n. (32)

To perform authentication, Bob should first decode ŝ after
channel estimation to obtain information message m̂. Then
a residual signal r is extracted from the received signal y by
r = Ext(y,m̂), based on which a hypothesis testing is con-
sidered:

H0 : Tag t is contained in r, (33)

H1 : Tag t is NOT contained in r. (34)

Based on different security system structures, various of effi-
cient residual signal extracting and hypothesis testing schemes
are studied. One of the most generally used schemes is cor-
relation analysis[43]. Assume that Bob can always recover the
information message perfectly (i.e., m̂ =m), he will com-
pute the expected tag and the residual signal by t=H (m,k)

and r = 1
pt
(y− psm,k). The presence of the expected tag t

is tested by designing the test statistic

η = R(〈r,t〉), (35)

which is the cross-correlation between the expected tag and
the residual signal. The hypothesis testing is performed by
comparing (35) with a predetermined threshold. According
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Figure 5 A typical framework of Auth-SUP

to[43], the threshold is determined by minimizing missing de-
tection rate subject to certain false alarm rate (the approach is
similar to that applied in channel-based PLA).

c. Performance analysis
Clearly, the authentication performance is strongly affected

by channel noise and message recovering error, as it is trivial
that a slight change in the message will result in the nonsuc-
cess of tag recovery at the receiver, and hence authentication
will fail with a high probability. The impact of imperfect mes-
sage recovery has been analyzed in Ref. [43], where the prob-
ability of successful authentication is given by

Pauth = ρP(C)+β (1−P(C)). (36)

Here, ρ is the conditional probability of authentication given
correct message and P(C) denotes the probability of correct
message recovery. β is the false alarm rate as noted in the
previous sections. To simplify the analysis, it is generally as-
sumed that β → 0, so that the receiver will always reject im-
perfectly recovered message frames.

Power allocation strategy is another kernel impact factor to
the authentication performance of Auth-SUP. As noted above,
to maintain the privacy of the secret key, the tag has relatively
much lower power than the data. However, the probability of
successful tag detection generally decreases as pt decreases.
It is observed that the tag power should be properly chosen
so that it can be distinguished from the noise during tag test-
ing, while it does not cause severe performance degradation
to message detection at the same time. Therefore, a trade-
off between the performance of tag testing (also known as
the system robustness) and message recovery (which reflects
the system covertness) was considered in Refs. [43,45,46,99].
In Ref. [43,45,46], the system robustness, covertness, and
security are analyzed separately. The authors of Ref. [45]
mainly focused on PLA with single-antenna fingerprinting.
In Ref. [46], the framework was extended to MIMO system,
where multi-antenna precoding and channel mode power al-
location applied to both the data and the fingerprint are also
studied. It was concluded in both Refs. [45] and [46] that
when the tag is superimposed at relatively very low power

(small than 1 percent of the total power), the impact on the bit
error rate of data is negligible. In this case, an improvement
of authentication performance can be achieved by increasing
the tag size, e.g., increasing the frame length, which helps to
achieve a trade-off between the desired authentication perfor-
mance and security. In Ref. [99], the authors propose a new
systematic metric that combines the three properties together
to fairly compare the performance of different authentication
schemes.

2) BSUP-Based PLA: The basic procedure of SUP-based
BPLA is illustrated in Fig. 5. Here we discuss more detailed
transceiver methods.

a. Tag superimposing
Unlike the SUP-based PLA scheme described above, Alice

generates the authentication tag by using pilot p and previ-
ously shared secret key k. i.e., t = H (p,k). The tag is then
superimposed on the pilot as

s=
√

psp+
√

ptt, (37)

and the final data frame is transmitted with the following in-
formation.

x= {s,m}. (38)

b. Tag testing
The received signal at Bob during the training period is

given by

yp =HABs+n=HAB(
√

psp+
√

ptt)+n. (39)

As Bob has perfect knowledge of pilot p and key k, he can
easily recover the authentication tag t. To detect whether
the tag is included in the received signal, a hypothesis test-
ing is considered which is similar to (33). However, due to
the known interference of p, it is not straightforward to re-
move the effect of p without a good estimation of CSI. Actu-
ally, the process of cancelling the interference part in (39) can
be regarded as a problem of blind known-interference can-
cellation (BKIC). The principle of the BKIC is introduced in
Ref. [100], which is based on the assumption that the wireless
channel generally remains similar between adjacent symbols.
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Therefore the interference in yp can be cancelled by using the
pilot in its adjacent symbol. The output of BKIC can be sum-
marized as

r0|H0 =H
√

ptt+n+ε, (40)

r1|H1 = n+ε, (41)

where ε is the residual noise caused by the pilot cancellation
processing of the BKIC module. Observing the similarity be-
tween adjacent channels, the effects of channel coefficients
can be removed[44]. In Ref. [44], the method above is en-
hanced so that it can be extended to multi-path channels, as
the knowledge of the maximum delay of all paths is assumed
to be known at the transceiver.

Unlike the conventional SUP-based method, BSUP-based
PLA requires neither channel estimation nor message recov-
ery, which greatly saves computational resources. As the tag is
superimposed on the pilot, the receiving SNR of the message
also increases. The whole authentication framework is more
reasonable and streamlined than conventional ones. However,
as the BSUP scheme corrupts the pilot structure, the accuracy
of channel estimation is deteriorated in message recovery for
an unaware receiver.

3) Security Analysis: For watermark embedding-based
PLA systems, in most research works only substitution or im-
personate attack is considered, i.e., the target of the adversary,
Eve, is to impersonate the communication between Alice and
Bob by generating legitimate authentication tag. Therefore, a
successful attack performed by Eve is dependent on whether
she can recover correct authentication tag hidden in the trans-
mission signal. To achieve this, she should have the ability
of extracting key information by observing the information
package passing by. Key equivocation[101] quantifies the un-
certainty about the secret key with Eve’s observation of the
transmitted signal yE , which is given by the binary entropy
H(k|y). Assuming that Eve has perfect knowledge of pi-
lot/data information and the hash function H (·), generally,
the key equivocation can be focused as

H(k|yE)∼=H(k|I,t) =− ∑
ki∈K

f (ki|t̂) log f (ki|t̂), (42)

where t̂ is the estimate of tag at Eve and f (·|·) is the condi-
tional PDF (I =m for SUP and I = p for BSUP). As indi-
cated by Ref. [101], it is proven in Refs. [45] and [44] that if
the tag is observed without error, a positive key equivocation
is achieved if and only if multiple keys ki map the informa-
tion data m to the same tag t for SUP-based PLA (for BSUP
scheme, the information data is replaced by pilot p). Other-
wise, each tag corresponds to a unique key and H(k|yE) = 0,
Eve has full knowledge of the secret key. However, as the
tag is always observed with noise and interference, there is a
chance of t̂ 6= t, where f (ki|t̂) is always nonzero and pos-
itive key equivocation is achieved. Therefore, as noted in

Refs. [44], [45], and [99], the security of Auth-SUP based
PLA mostly depends on how noisy the observed tag is at Eve.
Especially, the key equivocation approaches its upper bound
H(k) as the noise becomes increasingly powerful. The work
in Ref. [45] provided a basic security analysis for SUP-based
PLA systems, where the simulation about equivocation of the
binary tag with varying tag-to-noise ratio (TNR) is performed.
The results indicate that the noise significantly expands the
search space for the secret key at Eve, which deceases the
probability of successful key recovery by using the brute force
method. The authors of Ref. [44] extended the analyzing re-
sults to the BSUP-based PLA framework. It is concluded in
Ref. [44] that both of the power allocation ratio and TNR di-
rectly affect the equivocation. The simulation results indicate
that although SUP has higher value than equivocation, the gap
is narrow and both schemes have similar security levels.

D. A Brief Comparison Between the Mentioned PLA
Techniques

According to the discussion above, it can be conclude that
the authentication performances of different PLA techniques
are strongly affected by the channel conditions. We have sum-
marized the performance and applications of the three PLA
techniques mentioned above in Tab. 5.

IV. FURTHER APPLICATIONS AND
RESEARCH TRENDS OF PLA

A. Multiuser Communication Networks

As aforementioned, works on PLA are mostly based on the
traditional Alice-Bob-Eve model, i.e., the communication sce-
nario with only a pair of legitimate transceiver and a single ad-
versary. A more general communication system can includes
multiple base stations (BSs), access points, devices and ter-
minals with complicated topology. Besides, there exist multi-
ple attackers that aim to disturb the system by stealthy wire-
less impersonation attacks. Therefore, secure authentication
between multiple transmitters and users should be taken into
account. There are some existing works that focus on PLA
in mission critical machine-type communication (MTC) and
cognitive radio networks[33,58,102-105].

To understand the advantages of PLA for a more general-
ized multiuser communication network, several problems and
techniques should be clearly stated, some of which are as fol-
lows.
• The applications of distributed multiple antennas in PLA
• Delay control in mission critical MTC
• Reliable authentication in cognitive radio networks
• The applications of deep learning in multiuser PLA
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Table 5 The performance comparison of three PLA techniques

Name Strengths Weaknesses Applications

Channel-based PLA
The idea is straightforward and the security is

well guaranteed by taking advantage of the
special nature of wireless environments

1. The CSI information should be renewed
each time when channel changes, and its per-
formance is degraded in high dynamic envi-
ronments
2. The security cannot be guaranteed in LOS
channel systems

Urban communication,
indoor communication

networks, etc.

RF fingerprint-based PLA

The authentication is completed by exploiting
the unique variations in the RF chain of radios,

which is usually stable with time. So RF
fingerprint-based PLA can be applied in

systems with high dynamic

The RF difference between different devices
are usually slight, so a large number of fea-
tures may need to be selected and classi-
fied to uniquely identify transmitters, which
causes high computation complexity

High dynamic
communication systems

Watermark
embedding-based PLA

The idea is similar to conventional
cryptography-based authentication methods,

which makes it easier for cross-layer
authentication design optimization. The
authentication method is also adapted to

time-varying environment as the tag can be
generated without CSI

1. The authentication performance of SUP-
based PLA is constrained by message re-
cover error
2. For the BSUP-based PLA, the accuracy
of channel estimation is deteriorated in mes-
sage recovery for an unaware receiver as it
scheme corrupts the pilot structure

Small-scale networks with
relatively good channel

conditions

1) The Applications of Distributed Multiple Antennas in
PLA: MIMO techniques have been widely used in the cur-
rent wireless communication systems. Compared with single-
antenna PLA structure, the authentication performance can
be further enhanced in multiuser communication networks by
collecting and jointly estimating physical-layer information
received by multiple distributed users/landmarks at different
locations. Especially for channel-based PLA schemes, the
spatial resolution of the radio channel increases. In Ref. [106],
an RSS-based authentication system was proposed to detect
multiple spoofing attacks by using spatial correlation infor-
mation of multiple landmarks that improve the spoofing de-
tection accuracy. SVM method is also considered to improve
the accuracy of determining the number of attackers. The au-
thors of Ref. [34] provided a message authentication scheme
for cellular Internet of things (CIoT) networks based on the
multiple channel characteristics between the source nodes and
the anchor nodes, which aims to decide whether or not the
current channel responses correspond to a certain legitimate
source. Note that the systems mentioned above can be re-
garded as typical distributed multi-antenna authentication sys-
tems, where multiple landmarks are equipped with single an-
tenna. In Ref. [104], the authors established a more practi-
cal authentication framework with unknown channel model by
evaluating channel information collected by multi-landmarks.
Based on the general system model, logistic regression with
the Frank-Wolfe (FW) algorithm is applied to exploit the re-
ceived signal strength indicators collected at multiple anten-
nas by multiple landmarks to discriminate transmitters even
though the channel distribution is not aware of, where the FW
algorithm aims to estimate the coefficient of the logistic re-
gression model. Furthermore, to reduce the overall communi-
cation overhead between the landmarks and the security agent,

distributed FW algorithm is applied instead of the FW algo-
rithm. Based on the works in Ref. [104], another efficient
authentication scheme was proposed in Ref. [105] by using
an online method called incremental aggregated gradient to
solve the logistic regression problem for the same authenti-
cation system with multi-landmarks. The authors confirm that
the IAG-based PLA further reduces the computation overhead
while achieving a higher detection accuracy in comparison
with the distributed FW-based scheme.

The current works on the PLA in distributed multi-antenna
systems are mostly based on the framework with single au-
thentication entity, which is supported by multiple distributed
assisted nodes to collect physical-layer information. However,
for multiuser networks, collaborative communication can be
applied between distributed devices. Therefore, each node in
the network can be either the authentication entity or the as-
sisted node, and proper nodes selection and scheduling meth-
ods are required to achieve higher network authentication ac-
curacy with limited energy consuming. In other words, more
researches on the application of distributed multi-antenna
schemes in PLA are needed in future study.

2) Delay Control in Mission Critical MTC: The appli-
cations of mission mission critical MTC to future wireless
systems is becoming an increasingly attractive research topic
in the area of wireless communication. Compared to com-
mon communication applications such as IEEE 802.11 based
wireless systems or cellular 4G LTE networks, mission crit-
ical MTC has much higher requirements regarding reliabil-
ity, availability and especially latency[107]. A. Weinand et al.
firstly studied possible PLA schemes for mission critical MTC
in Refs. [33] and [107], which are robust to active attacks such
as spoofing or replying attack. The authentication approach is
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basically channel-based, where the channel estimations at the
receiver are clustered according to a Gaussian mixture model.
However, the works in Refs. [33] and [107] are based on sim-
ple Alice-Bob-Eve security model and traditional machine-
learning schemes. The requirements of mission critical MTC,
such as the network delay, are not analyzed.

The authors of Ref. [102] concentrated on the delay per-
formance of PLA for an uplink centralized MTC network
with multiple wireless devices and an access point. The AP
is assumed to be equipped with multiple antennas, which is
responsible for processing feature-based authentication that
compares the CSI associated with each transmission to a pre-
stored feature database. The authors introduce a infinite-
buffer queueing model to represent the data flow from each
device to the AP, based on which the upper-bounds on delay
violation probability performance is developed as a function
of FAR and MDR by using the stochastic network calculus
framework. It is claimed in Ref. [102] that despite some cost
of increase in delay violation probability, the proposed PLA
can effectively confront disassociation and Sybil attacks and
ensure authentication security in mission-critical MTC sys-
tems.

3) Reliable Authentication in Cognitive Radio Networks:
As a software defined radio, cognitive radio was proposed to
utilize the vacant spectrum space amongst the crowded chan-
nel efficiently by spectrum sensing. Security issues on cog-
nitive radio have also attracted extensive attention from the
researchers in this field since decades ago. For example,
Burbank[108] and Clancy et al.[109] provided early surveys in
2008 that introduced key security concerns in cognitive radio
networks, including the new threats and challenges, and re-
lated evolution to mitigation attacks.

Among all of the attack modes, primary user emulation at-
tack (PUEA) is one of the major threats to the spectrum sens-
ing, where the malicious user mimics the primary user’s sig-
nal characteristics to make secondary users (SUs) erroneously
identify the attacker as the legitimate primary user. PUEA can
introduce extra interference in spectrum sensing and occupy
the channel resources of legitimate SUs. Therefore, reliable
PLA-based methods are required to overcome PUEA and im-
prove the performance of cognitive radio networks.

The methods proposed in Refs. [110,111] are all based
on the wireless channel characteristics. More specifically, in
Ref. [110], the authors introduced an advanced PUEA scheme
with estimation and learning method, based on which a de-
fense solution is proposed by estimating the invariant of a
communication channel (i.e., the variance of the received sig-
nal power) to distinguish the identities of different transmit-
ters. The authors assumed a channel model with the path loss
and the log-normal shadowing, thus only energy sensing is
considered in Ref. [110]. The authors of Ref. [111] proposed

a channel-based detection method for OFDM cognitive radio
networks in multipath Rayleigh fading channels to distinguish
the primary user emulate attacker from the primary user (PU)
by using Neyman-Pearson test.

In comparison with channel-based methods, the applica-
tions of RF-based PLA techniques in cognitive radio networks
are more widely studied. An RF tag-based authentication
method was proposed in Ref. [112] where the one-way hash
chain is used to generate the tag which is then embedded in
quadrature phase shift keying (QPSK) modulation scheme and
quadrature amplitude modulation. The authors of Ref. [113]
utilized the transmitter location fingerprints extracted from es-
timation of the PSD.

There are also few works considering the scenario with
multiple SUs[114,115]. Here, the information received by dif-
ferent SUs can be jointly used to enhance the detection per-
formance, which is similar to the idea of distributed multi-
antenna techniques. For example, in Ref. [115], local infor-
mation about the PU is analyzed by the SUs, and then they are
exchanged among the SUs. A cooperative spectrum sensing
system is established to combat PUEA based on the energy
characteristics of a weighted sum of the signals received from
cooperative spectrum sensing system SUs in fusion center[114].
Rather than detecting attack users, the scheme aims to detect
the presence of legitimate PUs with existing PUEA signals.

Above all, despite plenty of research works focusing on
the issues of PLA in cognitive radio networks, there are still
several open problems that need to be investigated. On one
hand, the types of attack modes considered in most studies
are simple. Except for the PUEA, limited studies are carried
out about other attacks as in Ref. [110]. On the other hand,
the structures of cognitive radio networks are assumed to be
homoplastic. The studies about more dynamic and complex
network structures are required as future research works.

4) The Applications of Deep Learning in Multiuser PLA:
Deep learning (DL), as one of the hottest machine learning re-
search topics, has been expansively studied and applied in arti-
ficial intelligence fields like computer vision, image classifica-
tion, and multiuser communications[116,117]. There are already
several research works that concentrate on the applications of
DL algorithms to improve the wireless network security. For
example, in Ref. [118] the authors presented a novel DL-based
indoor fingerprinting based method to realize indoor localiza-
tion by using CSI. DL can also be used for channel predic-
tion, such as the Rayleigh fading channel prediction approach
with deep neural networks proposed in the work [119]. In
Ref. [120], the authors developed a DL-based PLA frame-
work to enhance the security of industrial wireless sensor net-
works (IWSNs). The authentication system includes multiple
sensor nodes in the different locations of the industrial scene,
which has been identified by the upper layer authentication to
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facilitate labeling the corresponding CSI before communica-
tion. Based on the system model, the authors proposed a rapid
deep neural network (DNN) based PHY-layer authentication
algorithm to meet the low latency requirements of industrial
wireless sensor networks. It is clarified and demonstrated by
the authors the proposed methods can enhance the security of
the industrial wireless network without sacrificing communi-
cation resources.

DL-based authentication methods are also used to enhance
security in mobile edge computing (MEC). For example, the
authors of Ref. [121] proposed a DL-based PLA scheme
which exploits CSI to enhance the security of MEC system
via detecting spoofing attacks in wireless networks. After
the communication node sends the identity information to
the MEC server, the MEC server should require for the up-
per layer protocol authentication from the authentication cen-
ter. Then the uplink PHY-layer authentication is performed
on the MEC server after the protocol authentication is con-
firmed. The DL approach is applied to complete channel au-
thentication and spoofer detection in an MEC system, where
the MEC server estimates the CSIs of each edge nodes by pi-
lots, and processes the CSIs to the input samples of DNN. The
authors demonstrated that the proposed method can achieve
efficient multi-user authentication with smaller computation
overheads and lower energy consumptions compared with the
conditional hypothesis test approach.

In a word, DL-based PLA is becoming a promising authen-
tication approach that can be applied in multiuser communi-
cation networks. However, the works focusing on DL-based
PLA are still limited, which remains for further study.

B. The Internet of Things Network
As the next wave of technological evolution, the IoT has

increasingly attracting attention due to its ability of per-
vasively supporting wireless devices for diverse end-to-end
(E2E) communication services via the Internet. Due to the
hardware restraints of most IoT devices, such as limited bat-
tery lifetime and computational capability in wireless sen-
sor networks, standardized transmission and conventional au-
thentication framework seem to be too expensive and redun-
dant. Therefore, PLA is a promising substitution to conven-
tional authentication scheme to guarantee secure communi-
cation. Current studies on PLA are mostly based on the tra-
ditional Alice-Bob-Eve model. However, several extra prob-
lems should be considered before commercial applications of
PLA in practical IoT network, some of which are listed as fol-
lows.
• Extending the device-to-device PLA to E2E PLA.
• PLA handover in dynamic environment, such as ad hoc

or 5G heterogeneous networks.
• The integration of PLA and cryptography-based authen-

tication structure.

1) Cross-Layer Authentication for E2E Networks: In
Ref. [4] the authors introduce a general architecture for cross-
layer authentication in E2E communication in future com-
plex heterogeneous networks. A cross-layer authentication
framework is further studied in detail in Ref. [40] by the
same research group, where an enhanced E2E authentica-
tion framework is proposed to realize seamless integration of
PLA into traditional asymmetric cryptography-based authen-
tication schemes. More specifically, the authors consider a
typical IoT network consisting of a source node, some collab-
orative nodes, and a destination node at the other communi-
cation end. The secure authentication consists of two phases.
During the first phase (which is referred to as the registration
phase), multiple RF features (CFO and IQI) of the source node
are received and estimated by the selected collaborative nodes.
The kernel of the registration phase is to generate a unique
physical-ID by using the information of quantified CFO/IQI
along with the upper-layer public key, which also provides ad-
ditional physical entropy to protect keys. As the physical fea-
tures are observed by different collaborative nodes, the tech-
nique MAMO is also used. The second phase is authentica-
tion, where both of physical and cryptography-based authen-
tication are proceeded in the selected collaborative nodes and
destination node. The main process of physical-layer authen-
tication is extracting and verifying the quantified CFO/IQI
of the transmitted node to exclude the easily detectable il-
legitimate source nodes. Then cryptography-based authenti-
cation is performed based on the typical one-way hash dig-
ital signature scheme. The authors of Ref. [40] proposed
a physical-layer-enhanced identity-based cryptography (IBC)
system with the PHY-IBC-based key protection for E2E com-
munication in IoT networks.

2) Reliable Authentication Handover in Heterogeneous
Networks: Besides of the challenges above, with the rapid
growth of the wireless infrastructure scale in future complex
heterogeneous networks, frequent and seamless authentica-
tion handover is also required when mobile users switch be-
tween different BSs or access points. The work in Ref. [40]
mainly focused on the PLA of a single fixed IoT commu-
nication link. In Ref. [4], the authors only provided a gen-
eral thought of authentication handover for 5G heterogeneous
networks, where prediction and sharing of multiple physi-
cal attributes are used as security context to monitor and
track the real-time moving of the user. Therefore, the au-
thentication server can generate physical-key information and
send it to the serving AP of the next cell in advance. The
authors of Ref. [34] explored an efficient PLA scheme for
software-defined-radio (SDN) enabled heterogeneous 5G net-
work handover test with the application of the nonparametric
Kolmogorov-Smirnov test. The authentication management
module is installed in the SDN controller. Similarly, the key
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technique of authentication is monitoring and predicting the
positions of mobile users for seamless handover authentica-
tion between relevant access points and BSs. Such authentica-
tion handover method in Ref. [34] is actually an extension of
channel-based PLA, but relies on the characteristics of more
channel-based or RF-based features.

The works above are some of the attempts on PLA han-
dover. However, more detailed techniques, such as user loca-
tion predicting algorithm and PHA information sharing agre-
ment, are still limited. The applications of seamless authenti-
cation handover still remains as a challenging research topic
for the scholars in this field.

3) Adaptive Authentication for Dynamic Environment:
For time-varying wireless communication environment such
as ad hoc networks, the dynamic conditions of the network
and the mobility of devices usually result in non-symmetrical
observations at the transmitter and receiver, and therefore give
rise to challenges on PLA. As discussed in section III.A, some
researchers have already proposed potential solutions to the
problem, mostly by using channel-tracking[33,35,39,55,57,73]. For
example, the authors of Ref. [35] proposed a simple PLA
method for ad hoc wireless sensor networks with the aid of
symmetric cryptography. The PLA is based on the chan-
nel information, where the channel response in the current
time is compared with a series of channel information re-
ceived and stored previously. To adapt to the channel varia-
tion, the time interval of two consecutive authentication pro-
cedures is compared with channel’s coherence time. If the
former one is larger, the first frame of the message should be
re-authenticated via the conventional cryptography-based dig-
ital signature scheme. The method above is straightforward,
but the authentication performance is poor and inefficient in
more complex communication environment. Basically, the
variations of physical layer attributes are unknown for the de-
signers and become harder to predict and track in extremely
dynamic environment. To further enhance the authentication
performance, multiple physical layer attributes may be taken
into account, which also aggravate the challenge above.

In Ref. [122], the authors proposed an adaptive PLA frame-
work for dynamic time-varying environment by tracking mul-
tiple physical layer attributes based on the kernel-based ma-
chine learning technique. Different from the channel-tracking
methods in section III.A, here the variations of physical at-
tributes and the time-varying environment is learnt by the
kernel machine learning, which is an intelligent process to
achieve reliable authentication through discovering the com-
plex dynamic environment encountered. More specifically, let
H(t) = [H1(t),H2(t), · · · ,HN(t)] be the N imperfect observa-
tions of physical attributes at the receiver during the tth trans-
mit duration, then a hypothesis testing problem is formulated
by comparing F (H(t)−H(t − 1)) with a predetermined

threshold δ , where F (·) is the intelligent adaptive function
promptly updated according to the variations of the environ-
ment. Clearly, the proposed adaptive authentication scheme
enhances the authentication performance in time-varying en-
vironment by tracking and studying the differences of multiple
physical attributes between adjacent authentication time rather
than the physical attributes themselves. Compared with tradi-
tional multiple RF-based schemes and channel-tracking meth-
ods based on simple time-varying channel models, the method
proposed in Ref. [122] extends the thoughts of channel-based
and multiple RF-based PLA to a general MAMO authenti-
cation framework considering more complex communication
environment with multiple time-varying physical attributes.
Meanwhile, the machine learning method is more compli-
cated as an optimization problem should be solved during
each training period. The proposed authentication method
in Ref. [122] only consider three physical attributes (i.e., the
carrier CFO, CIR, and RSS indicator) using Gaussian kernel
function. Therefore, feature selections with more physical at-
tributes and the application of more advanced and efficient
feature-tracking schemes can be studied to develop enhanced
adaptive authentication methods for dynamic environment.

V. CONCLUSION

This paper has provided a comprehensive survey of the
field of PLA in wireless communication networks. We firstly
investigated the background, fundamentals and attack mod-
els of key-based and key-less PLA, based on which repre-
sentative research results and key approaches of three typi-
cal PLA architectures: the authentication based on channel
information, RF features of devices, and identity watermarks
are introduced in the following. It is observed that channel-
based PLA is more sensitive to the variance of communica-
tion environment and device mobility, while RF fingerprint-
based schemes facing the challenges of reliable feature selec-
tion and classification problems in complex networks. Wa-
termark embedding-based PLA has the similar framework as
traditional cryptography-based methods such as digital signa-
ture, but the security is guaranteed according to key equivoca-
tion. Finally, we discussed potential research trends of PLA
in future multiuser communication networks such as cognitive
radio and IoT, and demonstrated that PLA is a promising solu-
tion to cope with security challenges in future device commu-
nications and enhance the authentication security in conjunc-
tion with traditional upper-layer authentication frameworks.
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