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Dynamic Complementarity Conditions and
Whole-Body Trajectory Optimization for

Humanoid Robot Locomotion
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and Daniele Pucci , Associate Member, IEEE

Abstract—This article presents a planner to generate walking
trajectories by using the centroidal dynamics and the full kine-
matics of a humanoid robot. The interaction between the robot
and the walking surface is modeled explicitly via new conditions,
the dynamic complementarity conditions. The approach does not
require a predefined contact sequence and generates the footsteps
automatically. We characterize the robot control objective via a set
of tasks, and we address it by solving an optimal control problem.
We show that it is possible to achieve walking motions automati-
cally by specifying a minimal set of references, such as a constant
desired center of mass velocity and a reference point on the ground.
Furthermore, we analyze how the contact modeling choices affect
the computational time. We validate the approach by generating
and testing walking trajectories for the humanoid robot iCub.

Index Terms—Complementarity, contact modeling, humanoids,
nonlinear optimization, whole-body trajectory generation.

I. INTRODUCTION

THE general problem of planning whole-body locomotion
trajectories of humanoid robots remains an interesting

and partially open challenge for the robotics community [1].
Whole-body humanoid robot motion planning, in fact, is often
associated with optimization problems having high-dimensional
search space, which further complexifies the process of finding
either local or global solutions. This process requires sophisti-
cated models that characterize the robot motions and interactions
with its surrounding environment. When one of the robot bodies
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makes contact with a rigid environment, the models that may
describe the robot motions and contact forces are known as
complementarity conditions, which add a degree of complexity
when solving the associated whole-body trajectory optimiza-
tion problem. A common approach to circumvent this barrier
is to consider simplified, and often linear, robot models that
seldom consider the contacts between the humanoid robot and
its surroundings. This article presents a nonlinear trajectory
optimization approach that employs novel definitions of the
complementarity conditions tailored for whole-body humanoid
robot motion planning, here called dynamic complementarity
conditions (DCCs).

After the DARPA Robotics Challenge [2], it became popular
to tackle humanoid robot locomotion using a hierarchical control
architecture [3]. Each loop of the architecture receives inputs
from the robot and the environment, and provides references to
the loop next. The inner the layer, the shorter the time horizon
that is used to evaluate the outputs. Also, inner loops usually
employ more complex robot models to evaluate their outputs,
but the shorter time horizon often results in faster computations
for obtaining these outputs. More precisely, from outer to inner,
the hierarchical control architecture is usually composed of
the following loops: the trajectory optimization; the simplified
model control; and the whole-body quadratic programming (QP)
control loop [4], [5].

The trajectory optimization loop is often in charge of gener-
ating foothold trajectories starting from high-level commands,
such as those coming from the user via a joypad. The output
of this layer is given to the simplified model control loop—also
called receding horizon [6]. Its aim is to generate desired and
feasible centroidal quantities associated with stable walking
instances [7]. The output of this loop is fed into the whole-body
QP control layer, which is in charge of stabilizing the planned
trajectories exploiting the full robot model with a suitable
QP formulation. The trajectory optimization and the simplified
model control loops aim at generating robot trajectories, so can
be viewed as the planning layers of the architecture. The present
article proposes novel methods for combining these two layers.
What follows is a short recap of the state-of-the-art concerning
the planning algorithms employed in the trajectory optimization
and the simplified model control loops.

The trajectory optimization layer mainly deals with
defining the contact locations of the robot locomotion pattern.
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Several strategies exist to address this problem, and they can be
categorized depending on the amount of hand-crafted contact
information an external user needs to specify to run the plan-
ning algorithms. Fixed contact sequence, timing, and location
planning assumes that contact positions and timings are either
specified by an external user or by an outer control loop. Planning
then focuses on the center of mass (CoM) state [8]. In this
case, the main complexity is given by the nonlinearity of the
angular momentum dynamics. This problem can be faced by
considering only the CoM linear acceleration [9], or by using
a convex upper bound of the angular momentum to be min-
imized [10]. A convex optimization problem is obtained also
by forcing the CoM trajectory to a polynomial with only one
free variable [11]. Body postures can be planned together with
the centroidal quantities, thus considering the robot kinematic
structure in the same formulation [12]–[16]. These methods,
however, require external contact planners. Analogously, dif-
ferential dynamic programming-based methods can generate
whole-body motions [17]–[20], and track them online [21]. Pre-
defined contact sequence planning assumes to know in advance
the contact sequence, although the contact locations and timings
are not fixed [22]–[24]. Different sets of equations for each
contact phase usually model the hybrid nature arising from the
pattern of making and breaking contacts. To solve the associated
problem, one may use mixed integer programming that uses
integer variables in the definition of the optimization framework
to determine where and at which time a contact should be made
[25]–[29]. Exploiting integer variables, however, strongly af-
fects the computational performances, especially when the
robot may make several contacts with the environment.
Complementarity-free planning approaches model multibody
systems subject to contacts without directly enforcing the com-
plementarity conditions [30]. Equivalently accurate results are
obtained by maximizing the rate of energy dissipation [31].
These methods consider contacts explicitly in the planner formu-
lation, so contact location, timing, and sequence are obtained as
solutions to the optimization problem, thus generating complex
robot motions [32]–[34].

The other planning layer, the simplified model control layer, is
in charge of finding feasible trajectories for the robot CoM along
the walking path. The computational burden to find feasibility
regions, however, usually calls for simplified models to charac-
terize the robot dynamics. Indeed, when restricting the CoM on
a plane at a fixed height and assuming constant angular momen-
tum, it is possible to derive simple and effective control laws
based on the linear inverted pendulum (LIP) model [35], [36],
the capture point [37], and the divergent component of motion
(DCM) [38]. These simplified linear models have allowed online
model predictive control [39]–[43], also providing references for
the footstep locations.

An emerging approach is that of combining the simplified
model control into the trajectory optimization layer so as to ob-
tain both foothold trajectories and feasible centroidal quantities
with a single optimization problem, which often employs com-
plete or reduced robot models. When complete robot models are
combined with impact dynamics, the control problem increases
its complexity considerably.

A. Related Works

Neunert et al. [44] presented one of the first real-time im-
plementation of an MPC controller adopting the full robot
model with contacts. This has been tested on a quadruped robot
adopting a tailored soft contact model. Nevertheless, the use of
soft contact models presents some limitations when applied to
robots with finite size feet [45].

Instead of considering the entire robot model in a single
optimal control problem, another possibility consists in planning
trajectories for the centroidal and joint quantities separately,
iterating until a consensus is reached between the two sets of
trajectories [12]. The footstep locations and timings can also be
determined while planning for the robot momentum [46].

Dai et al. [47] exploit the full robot kinematics and its cen-
troidal dynamics in a single optimal control problem. They
follow the approach proposed by Posa et al. [48] on the con-
secutive relaxations of the complementarity conditions, so they
avoid to consider soft contact models. Contact sequences can be
predefined or defined by the optimizer.

B. Contribution

This article proposes new methods to consider the simplified
model control objectives as part of the trajectory optimization
layer. So, feasible footsteps and whole-body robot trajectories
are obtained as the solution to a single nonlinear optimization
problem. With our approach, neither contact sequences nor
contact locations and timings need to be known beforehand, and
no hand-crafted a priori knowledge is injected in the system to
generate walking motions.

The approach we propose follows similar arguments and
methods presented in Dai et al. [47]. In particular, we take the
same modeling approach that consists in considering the full
robot kinematics and centroidal momentum. On the other hand,
we introduce a new and alternative formulation of the classical
complementarity conditions tailored for trajectory optimization
problems aimed at finding robot locomotion patterns. These
are called dynamic complementarity conditions (DCCs) and
represent the first contribution of the article.

As a second contribution, we show how the DCCs can be em-
bedded into a whole-body nonlinear optimization framework to
find feasible footsteps and whole-body robot trajectories with no
a priori knowledge about the robot locomotion. This represents
another difference compared to the work by Dai et al. [47], where
a postural term in the cost function determines the robot motion,
and the contacts are predefined in the majority of the cases.

We compute the robot trajectories using the receding horizon
principle. We validate the whole approach using the real iCub
humanoid robot. Finally, we perform a comparison between the
DCCs and other classical complementarity formulations to show
that DCCs may lead to improved computational time and contact
condition accuracy. This represents the third contribution of
the article.

This article extends and encompasses the authors previous
work [49]. The main differences between the two articles are
as follows. 1) The previously introduced contact parametriza-
tion [49] is presented as one of the DCCs and we compare its
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performances with other methods. The comparison is performed
in two contexts and with a crescendo of complexity. First, we
analyze the performances of the complementarity methods when
applied to a simple toy problem. Then, we use the whole-body
nonlinear optimization framework presented in the article as
a testing ground. The comparisons run both on a personal
laptop, and by using Github Actions, thus exploiting a
reproducible setup. 2) We validate the generated trajectories on
the real iCub Humanoid robot. 3) We update the formulation of
the whole-body nonlinear optimization framework adding more
tasks that lead to a better generation of walking trajectories.

The rest of this article is organized as follows. Section II
presents some basic humanoid robot modeling tools and in-
troduces to the complementarity conditions of rigid contact
models. Section III presents the DCCs. These are then adopted
in a nonlinear trajectory optimization framework, described in
Section IV. The output of the planner is validated and tested
on the real humanoid robot iCub in Section V, while we draw
comparisons between the DCCs and state-of-the-art methods in
Section VI. Finally, Section VII concludes this article.

II. BACKGROUND

A. Notation

Throughout the article, we use the following notation.
1) Vector and matrices are expressed in bold symbols.
2) The ith component of a vector x is denoted as xi.
3) The transpose operator is denoted by (·)�.
4) The superscript (·)∗ indicates desired values.
5) Given a function of time f(t), the dot notation denotes

its time derivative, i.e., ḟ := df
dt . Higher order derivatives

are denoted with a corresponding amount of dots.
6) I is a fixed inertial frame with respect to (w.r.t.) which the

robot’s absolute pose is measured. Its z axis is supposed
to point against gravity, while the x direction defines the
forward direction.

7) 1n ∈ Rn×n denotes the identity matrix of dimension n.
8) 0n×n ∈ Rn×n denotes a zero matrix, while 0n = 0n×1

is a zero column vector of size n.
9) ei is the canonical base in Rn. It corresponds to ei =

[0, 0, . . . , 1, 0, . . . , 0]� ∈ Rn, where the only unitary el-
ement is in the ith position.

10) The operator ∧ defines the skew-symmetric operation
associated with the cross-product in R3. For example,
(a∧)b, with a, b ∈ R3, is equivalent to a× b. Its inverse
is the operator vee ∨, i.e., (a∧)∨ = a.

11) Given x ∈ Rn, and α ∈ R, x � α indicates that each
component of x is greater or equal than α, i.e., xi ≥
α ∀i ∈ [1, n].

12) The weighted L2-norm of a vector v ∈ Rn is denoted by
‖v‖W , W ∈ Rn×n is a positive definite weight matrix.

13) ARB ∈ SO(3) and AHB ∈ SE(3) denote the rotation
and transformation matrices which transform a vector
expressed in the B frame, Bx, into a vector expressed in
the A frame, Ax.

14) DV A,D ∈ R6 is the relative velocity between frame A
and D, and its coordinates are expressed in frame D.

The first three coordinates refer to the linear part of the
velocity, while the bottom three to the angular velocity.

15) x ∈ R3 is the position of the center of mass w.r.t. I.
16) n(·) : R3 → R3 is a function returning the direction that

is perpendicular to the walking plane given the x and y
coordinates of the input point.

17) t(·) : R3 → R3×2 is a function returning two perpen-
dicular directions normal to n(·). The composition
of t(·) and n(·), i.e., [t(·)n(·)], defines the rotation
matrix IRplane.

18) h(p) : R3 → R defines the distance between p and the
walking surface.

19) diag(·) : Rn → Rn×n is a function casting the argument
into the corresponding diagonal matrix.

B. Humanoid Robot Modeling

The robot configuration space is characterized by the position
and the orientation of the base frame B, and the joint configura-
tions. Thus, it corresponds to the group Q = R3 × SO(3)× Rn

and an element q ∈ Q can be defined as the following triplet:
q = (IpB ,

IRB , s).
The velocity of the multibody system can be characterized by

the algebra V of Q defined by V = R3 × R3 × Rn. An element
of V corresponds to ν.

We also assume that the robot is interacting with the envi-
ronment exchanging nc distinct wrenches.1 By employing the
Euler–Poincaré formalism [50, Ch. 13.5], we obtain

M(q)ν̇ +C(q,ν)ν +G(q) =

[
06×n

1n

]
τ s +

nc∑
k=1

J�
Ckkf ,

(1)
where M ∈ R(n+6)×(n+6) is the mass matrix, C ∈
R(n+6)×(n+6) accounts for Coriolis and centrifugal effects,
G ∈ Rn+6 is the gravity term. The vector τ s ∈ Rn represents
the actuation torques, while kf ∈ R6 denotes the kth external
wrench applied by the environment on the robot, namely

kf =

[
kf

kτ

]
(2)

with kf , kτ ∈ R3 being the contact force and torque, respec-
tively. We assume the wrenches to be measured in a frame
located on the contact link origin and oriented as I.

As described in [51, Section 5], it is possible to apply a
coordinate transformation in the state-space (q, ν) that trans-
forms the system dynamics (1) into a new form where the mass
matrix is block diagonal, thus decoupling joint and base frame
accelerations. Also, in this new set of coordinates, the first
six rows of (1) correspond to the centroidal dynamics. In the
specialized literature, this term is used to indicate the rate of
change of the robot’s momentum expressed at the CoM, which
then equals the summation of all external wrenches acting on
the multibody system [52], [53].

1As an abuse of notation, we define as wrench a quantity that is not the dual
of a twist, but a 6-D force/moment vector.
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C. Centroidal Dynamics

By definition, the CoM x ∈ R3 corresponds to the weighted
average of all the links’ CoM position

x = IHB

∑
i

BHi
ipCoM

mi

m
(3)

where ipCoM ∈ R3 is the (constant) CoM position of the ith
link expressed w.r.t. the ith coordinate systems. The scalars
m,mi ∈ R+ are the robot total mass and the ith link mass,
respectively. In order to introduce the centroidal dynamics, it is
convenient to define a frame, called Ḡ, whose origin is located
on the CoM, while the orientation is parallel to the inertial frame
I. We introduce Ḡh ∈ R6 to denote the robot total momentum
expressed w.r.t. Ḡ, namely

Ḡh =

[
Ḡh

p

Ḡh
ω

]
(4)

where Ḡh
p ∈ R3 and Ḡh

ω ∈ R3 are the linear and angular
momentum, respectively. In addition, the following holds:

ẋCoM =
1

m Ḡh
p. (5)

The robot total momentum corresponds to the summation of
all the links momenta Bh

i, measured in the base frame and
projected on Ḡ

Ḡh =
∑
i

ḠX
B
Bh

i. (6)

The adjoint matrix ḠX
B transforms a wrench expressed in B

into one expressed in Ḡ. Then, Ḡh writes

Ḡh = ḠX
B
∑
i

BX
iIi

iV A,i (7)

with Ii ∈ R6×6 being the (constant) link inertia expressed in
link frame. Hence, one obtains

Ḡh = JCMMν (8)

where JCMM ∈ R6×n is the centroidal momentum matrix
(CMM) [7]. The rate of change of the centroidal momentum
balances the external wrenches applied to the robot, which yields

Ḡḣ =

nc∑
k=1

ḠX
k
kf +mḡ

=

nc∑
k=1

[
IRk 03×3

(Iok − x)∧ IRk
IRk

]
kf +mḡ. (9)

The adjoint matrix ḠX
k ∈ R6×6 transforms the contact wrench

from the application frame (located in Iok with orientation
IRk) to Ḡ. Finally, ḡ = [0 0 −g 0 0 0]� is the 6-D gravity
acceleration vector.

Alternatively, the centroidal momentum dynamics can be
obtained by differentiating (8), which writes

Ḡḣ = JCMMν̇ + J̇CMMν (10)

thus highlighting the dependency of Ḡḣ on ν̇.

D. Recall on Complementarity Conditions

Humanoid robots are often equipped with flat feet, which
simplify the walking and balancing task with respect to line
and point foot. It is important, then, to model how the foot can
land on the walking surface, also limiting the set of admissible
contact wrenches. As an example, in case of line contacts, no
torque can be exerted along the contact line.

A common approach is to consider the foot as composed by a
set of points, for example (but not limited to), four points located
at the corners of the foot [23], [47], [54]. A pure force is supposed
to be applied on each of the contact points.

Define ip ∈ R3 as the ith contact point location in an inertial
frame I, and if ∈ R3 as the force exerted on that point. Such
force is expressed on a frame located in ip and with orientation
parallel to I.

In this article, we exploit a rigid contact model to characterize
the interactions between the robot feet and the environment
floor. In the literature, other contact models exist, e.g., compliant
models that allow a degree of compenetration [44], [55], [56].
In a rigid setting, instead, the contact points are not supposed to
penetrate the walking ground, i.e.,

h(ip) ≥ 0.

The force if results from the interaction between the contact
point and the ground, and hence, it is bounded. Being a reaction
force, its normal component with respect to the walking ground
is supposed to be non-negative. In particular,

n(ip)
�
if ≥ 0. (11)

Additionally, we focus on the case where the contact force is not
enough to overcome the static friction

‖t(ip)�if‖ ≤ μs n(ip)
�
if (12)

where μs ∈ R+ is the static friction coefficient. It can be shown
that, for what concern the validity of the contact wrench, it is
sufficient to guarantee that the forces at the vertices satisfy (11)
and (12) [57].

Being a reaction force, the value of if is different from zero
only if the associated contact point is in contact with the walking
surface. This condition can be compactly written as

h(ip)n(ip)
�
if = 0. (13)

Such a constraint may lead to a number of numerical issues
when solving an optimization problem that makes use of it. This
is due to the fact that the feasible set is only defined by two lines,
namely h(ip) = 0 and n(ip)

�
if = 0, that intersect the origin.

In particular, at this point, the so-called constraint Jacobian
is singular, thus violating the linear independence constraint
qualification, on which most off-the-shelf solvers rely [58].

The conditions given by (13) can be relaxed considering that
both h(ip) and n(ip)

�
if are positive quantities. Hence, instead

of using an equality condition, it is possible to upper bound their
product with a small positive constant ε ∈ R+

h(ip)n(ip)
�
if ≤ ε. (14)
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Inequality (14) is referred to as relaxed complementarity. Thanks
to this relaxation, the feasibility region increases in its di-
mension. This common approach also corresponds to using
“bounded” slack variables [48], [58]–[60].

Once a contact is made, the relaxed complementarity condi-
tion cannot prevent the contact point to move on the walking
plane: Even if the friction constraints defined by (12) are sat-
isfied, the contact points are still free to move on the walking
surface. This problem is often faced by imposing that the product
between the planar velocities and tangential forces is equal to
zero [47], [48], the relaxed version of which writes

−εp ≤ diag
(
t (ip)

�
iṗ
)
t (ip)

�
if ≤ εp (15)

with εp ∈ R2, εp � 0 the relaxation parameters. The relations
(15) are referred to as relaxed planar complementarity.

III. DYNAMIC COMPLEMENTARITY CONDITIONS

The relaxed complementarity (14) trades off the numerical
tractability of the problem with the accuracy of the model. This is
particularly important when (14) is integrated in optimal control
problems for small humanoid robots, whose feet little rise up
from ground during the swing phases of walking motions. The
normal force allowed by the relaxed complementarity (14) may
have a non-negligible effect on the overall robot stability of
these phases.

This section proposes two novel approaches to describe the
complementarity conditions of a rigid contact model, namely

1) dynamically enforced complementarity; and
2) hyperbolic secant in velocity bounds.
We call them dynamic complementarity conditions (DCCs).

A. Dynamically Enforced Complementarity

The complementarity constraints can be enforced using a
Baumgarte stabilization method [61]. Thus, we enforce condi-
tions (13) so as to obtain convergence to zero. This is achieved
by setting the following dynamical constraint:

d
dt

(
h(ip)n(ip)

�
if

)
= −Kbs

(
h(ip)n(ip)

�
if

)
(16)

where Kbs ∈ R+ is a positive gain. Hence, the product
h(ip)n(ip)

�
if exponentially decreases to zero at a rate de-

pendent on Kbs. Direct calculations then lead to

d
dt

(·) = d
dt

(h(ip))n(ip)
�
if+

+ h(ip)if
� d

dt
(n(ip)) + h(ip)n(ip)

�
iḟ (17)

where we use the fact that the left-hand side of (13) is scalar,
which eases the computations above. We can substitute the time
derivative of the h(·) and n(·) functions with the relations

d
dt

(h(ip)) =
∂

∂ip
(h(ip)) iṗ (18a)

d
dt

(n(ip)) =
∂

∂ip
(n(ip)) iṗ. (18b)

For simplicity, let us define ζ as follows:

ζ :=
∂

∂ip
(h(ip)) iṗn(ip)

�
if

+ h(ip)if
� ∂

∂ip
(n(ip)) iṗ+ h(ip)n(ip)

�
iḟ .

Finally, we obtain the condition

ζ = −Kbs
(
h(ip)n(ip)

�
if

)
. (19)

In case of planar ground, we have the following relations:

h(ip) = e�3 ip,
∂

∂ip
(h(ip)) = e�3 (20a)

n(ip) = e3,
∂

∂ip
(n(ip)) = 03×3. (20b)

In other words, the normal vector to the walking plane corre-
sponds to e3, while the height h(ip) of the point coincides with
the point z-coordinate. Hence, in the planar case, ζ writes

ζplanar = iṗz · ifz + ipz · iḟz. (21)

We can relax (19) by exploiting again the fact that the product
h(ip)n(ip)

�
if is positive by construction. Henceforth, if we

impose the following:

ζ ≤ −Kbs
(
h(ip)n(ip)

�
if

)
(22)

we still have exponential convergence, at a rate which is higher
or equal to the one specified by Kbs. Finally, similarly to (14),
we add a further relaxation through a positive number ε ∈ R+

to increase the feasibility region

ζ ≤ −Kbs
(
h(ip)n(ip)

�
if

)
+ ε (23)

obtaining the final version of the complementarity condition.

B. Hyperbolic Secant in Velocity Bounds

We can impose (13) dynamically by enforcing the following
set of constraints on the force derivative:

−Mf ≤ iḟ ≤ Mf if h(ip) = 0 (24a)

iḟ = −Kf if if h(ip) �= 0 (24b)

meaning that when the point is in contact, iḟ is free to take
any value in [−Mf ,Mf ] with Mf ∈ R3 a (non-negative)
control bound. On the other hand, if the contact point is not on
the walking surface, the control input makes the contact force
decreasing exponentially, see (24b), at a rate depending on the
positive definite control gain Kf ∈ R3×3. Defining δ∗(ip) as a
binary function such that

δ∗(ip) =

{
1 if h(ip) = 0

0 h(ip) �= 0
(25)

it is possible to write (24) as a set of two inequalities

−Kf (1− δ∗(ip)) if − δ∗(ip)Mf ≤ iḟ (26a)

−Kf (1− δ∗(ip)) if + δ∗(ip)Mf ≥ iḟ . (26b)
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Even if δ∗(ip)would require the adoption of integer variables,
it is possible to use a continuous approximation, δ(ip), namely
the hyperbolic secant

δ(ip) = sech (kh h(ip)) (27)

where kh is a user-defined scaling factor. Notice that, when
δ∗(ip) = 0, the bounds coincide and are equal to −Kf if .

As discussed in Section III-A, we can simplify the lower
bound defined by (26a) allowing the force to decrease at a higher
rate than that given by (26b). Hence, we can rewrite (26) as

−Mf ≤ iḟ ≤ −Kf (1− δ(ip)) if + δ(ip)Mf . (28)

Given (12), it is enough to apply any of these equations only
to the force component normal to the ground: If it decreases to
zero, also planar components have to vanish to satisfy friction
constraints. Hence, we can reduce (28) to

− e�3Mf ≤ e�3 iḟ (29a)

−Kf,z (1− δ(ip))n(ip)
�
if + δ(ip)e

�
3Mf ≥ e�3 iḟ (29b)

with Kf,z the corresponding element of Kf .

C. Summary on Complementarity Conditions

We have presented different methods for enforcing the com-
plementarity constraints given by (13), namely:

1) h(ip)n(ip)
�
if ≤ ε;

2) ζ ≤ −Kbs(h(ip)n(ip)
�
if) + ε;

3) −e�3Mf ≤ e�3 iḟ ≤ −Kf,z(1− δ(ip))n(ip)
�
if +

δ(ip)e
�
3Mf .

It is also pragmatic to assume the force derivative to be
bounded,2 i.e., −Mf ≤ iḟ ≤ Mf . Observe that all the con-
ditions presented in the above bullet points do not depend on the
type of ground, which is here considered rigid. The parameters
involved do not have a direct physical meaning (like in compliant
contact models), but rather determine the “accuracy” of the
simulated behavior.

IV. DCCS-BASED NONLINEAR TRAJECTORY PLANNING

We detail below how the DCCs presented in Section III can
be used in a nonlinear trajectory planning framework aimed at
generating walking trajectories.

A. Kinematic Control

First of all, we assume to have full control over the derivative
of the contact point’s positions and forces

iṗ = u
ip (30a)

iḟ = u
if (30b)

where u
ip, uif ∈ R3 are the control inputs for the ith contact

point. While each contact point is supposed to be independent
from the control point of view, they all need to remain on the
same surface and maintain a constant relative distance: The

2Note that this is not necessary if one uses (26b) instead of (29b) since the
bounds are already included in the constraint.

contact points belong to the same rigid body. At the same time,
we want them to be within the workspace reachable by the robot
legs. We can achieve both objectives with the following algebraic
condition acting on each contact point:

ip = IH foot
foot

ip (31)

where foot
ip is the (fixed) position of the contact point within

the foot surface, expressed in foot coordinates. Here, the trans-
formation matrix IH foot would depend on q, including the joint
configuration s. As a consequence, the full kinematics of the
robot is taken into account.

Concerning the robot controls, we assume that the joint values
can be assigned at will. In the language of automatic control and
thanks to the so-called backstepping hypothesis [62, p. 589],
full joint controllability is essentially equivalent to assuming
the joint velocities as a control input, namely

ṡ = us. (32)

This assumption requires an additional control loop: Joint ve-
locities, together with contact vertex positions and forces, are
considered as references to an inner whole-body controller.

Finally, the base rotation included in q is vectorized using the
quaternion parametrization. The corresponding unitary quater-
nion is called IρB ∈ H. The base position is indicated with
the symbol IpB ∈ R3. The equations governing the dynamical
evolution of the base are as follows:

I ṗB = IRB
BvI,B (33a)

I ρ̇B = uρ. (33b)

BvI,B ∈ R3, uρ ∈ R4, and us ∈ Rn are control inputs,
defining the base linear velocity, the quaternion derivative, and
the joints velocity, respectively. More specifically, BvI,B is the
linear part of BV I,B ∈ R6, the left-trivialized (i.e., measured
in body coordinates) base velocity. The control input uρ is such
that the base quaternion remains unitary over time.

B. Planar DCC

As mentioned in Section II-D, we need to prevent the contact
points to move on the walking plane when they are in contact
with the ground. Instead of applying the relaxed planar comple-
mentarity (15), we achieve the same result by limiting the effect
of the control input u

ip along the planar components

t(ip)
�
iṗ = tanh (kt h(ip)) [e1 e2]

� u
ip (34)

where kt ∈ R is a user-defined scaling factor. Equation (34)
projects the control input u

ip along the planar directions, and
forces these projections to zero when h(ip) is null. At the
same time, (34) reduces the velocity when the contact point is
approaching the ground. So, (34) can then be used to substitute
(30a) as follows:

iṗ = τ (ip)uip (35)
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where τ (ip) is defined as

τ (ip) =
IRplane diag

⎛
⎜⎝
⎡
⎢⎣tanh (kt h(ip))tanh (kt h(ip))

1

⎤
⎥⎦
⎞
⎟⎠ . (36)

Note that, from now on, u
ip is assumed to be expressed in the

plane coordinates. Thus, the normal component of the velocity
is directly regulated by e�3uip. Also, it is necessary to bound
this control input, u

ip ∈ [−MV ,MV ],MV ∈ R3, to properly
exploit the effect of the hyperbolic tangent.

Compared to the relaxed planar complementarity (15), the
advantages provided by (35) are twofold. 1) The proposed DCC
planar complementarity (35) naturally limits the point velocity
to zero when approaching the contact surface. 2) Through the
parameter kt, it is possible to control the height of the contact
points when swinging. The smaller the kt, the higher is the
resulting swing height.

C. Momentum Control

In Section II-D, we assumed that the contact points can exert
any force on the environment. Let us now describe the effect of
these forces on the robot motion through the centroidal dynamics
introduced in Section II-C, which writes

Ḡḣ = mḡ +
∑
i

[
13

(ip− x)∧

]
if . (37)

Compared to (9), (37) reduces the matrix ḠX
i since no torque

is applied at the contact points. We also need to make sure that
the CoM position obtained by integrating (5) corresponds to the
one obtained via the joints variables. This is done through the
following algebraic equation:

x = CoM(IpB , IρB , s) (38)

where CoM(IpB , IρB , s) is the function mapping base pose
and joints position to the CoM position, i.e., the right-hand
side of (3). Equation (38) links the linear momentum and the
joint variables, so we also need to link the angular momentum
and the joints evolution. To do so, we use the CMM JCMM,
thus obtaining

Ḡh
ω = [03×3 13]JCMMν ∈ R3. (39)

The system velocity ν contains the base angular velocity
BωI,B . It can be substituted with the quaternion derivative
through the map G. It is defined in [63, Section 1.5.4] as

G(IρB) =

⎡
⎢⎣−

IρB,1
IρB,0

IρB,3 −IρB,2

−IρB,2 −IρB,3
IρB,0

IρB,1

−IρB,3
IρB,2 −IρB,1

IρB,0

⎤
⎥⎦ (40)

such that

BωI,B = 2G(IρB)uρ. (41)

Hence, it depends on the same control input of (33b).

D. Complete Differential-Algebraic System of Equations

By summarizing all the ODEs and algebraic conditions,
we obtain the following inequality constrained differential-
algebraic system of equations (DAE).
• Dynamical constraints

iḟ = u
if , ∀ contact point (42a)

iṗ = τ (ip)uip, ∀ contact point (42b)

Ḡḣ = mḡ +
∑
i

[
13

(ip− x)∧

]
if (42c)

ẋ =
1

m
(Ḡh

p) (42d)

I ṗB = IRB
BvI,B (42e)

I ρ̇B = uρ (42f)

ṡ = us. (42g)

• Equality constraints

ip = AH foot
foot

ip, ∀ contact point (43a)

x = CoM(IpB ,
IρB , s) (43b)

Ḡh
ω = [03×3 13]JCMM

⎡
⎢⎣

BvI,B
2G(IρB)uρ

us

⎤
⎥⎦ (43c)

‖IρB‖2 = 1. (43d)

• Inequality constraints, applied for each contact point

n(ip)
�
if ≥ 0 (44a)

‖t(ip)�if‖ ≤ μs n(ip)
�
if (44b)

−MV ≤ u
ip ≤ MV (44c)

−Mf ≤ u
if ≤ Mf (44d)

h(ip) ≥ 0 (44e)

Complementarity, see Section III-C. (44f)

E. Walking Specific Constraints

While taking a step, the robot legs do not have to collide
with each other. Self-collisions constraints are usually hard to
consider and may slow down consistently the determination of
a solution. A simpler solution to avoid self-collisions between
legs consists of avoiding cross-steps. We assume the frame
attached to the right foot to have the positive y-direction pointing
toward left. In this case, it would be sufficient to impose the
y-component of the rxl (i.e., the relative position of the left
foot expressed in the right foot frame) to be greater than a given
quantity, i.e.

e�2
rxl ≥ dmin. (45)

Too wide motions of the swing leg may cause other self-
collisions, especially between the robot arms and thighs. Hence,
we set an upper bound on the difference between the height
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of the two feet. To simplify the definition of the constraint, we
consider the mean position of every contact point

−Mhf ≤ e�3 (#pl − #pr) ≤ Mhf (46)

where #pl and #pr are the mean positions of all the con-
tact points of the left and right feet, respectively, i.e., #p◦ =
1
np

∑np

i ip◦. The number of contact points in a single foot is

np, and Mhf ∈ R+ is the constraint upper bound.
Some additional constraints can be considered

xz min ≤ h(x) (47a)

−Mhω
≤ Ḡh

ω ≤ Mhω
. (47b)

Equation (47a) avoids the emergence of solutions that set the
CoM position too close or even below the ground. Equation
(47b) sets a bound Mhω

∈ R3 on the angular momentum.
When considered together, (47) tends to avoid the emergence
of trajectories that cause excessive motions or let the robot fall.

F. Tasks in Cartesian Space

In order to make the robot move toward a desired position, it
is necessary to specify tasks in Cartesian space.

1) Contact Point Centroid Position Task
We define as a task the L2 norm of the error between a point
attached to the robot and its desired position in an absolute
frame. Suppose we choose the CoM position as a target point. By
moving its desired value forward in space, the robot could simply
lean toward the goal without moving the feet. This undesired be-
havior may lead the robot to fall. It is possible to avoid the robot
leaning forward by locating the target point on the feet instead of
the CoM. In particular, we select the centroid of the feet contact
points as target, thus avoiding specifying a desired placement for
each foot

Γ
#p =

1

2
‖#p− #p

∗‖2W#
(48)

where #p = 1
2 (#pl + #pr) and #p

∗ ∈ R2 is its desired value.
2) CoM Linear Velocity Task

While walking, we want the robot to keep (an approximately)
constant forward motion. In fact, since foot positions are not
scripted, it may be possible to plan two consecutive steps with the
same foot. Requiring a constant forward velocity helps avoiding
such phenomena. This task can be defined as

Γ
Ḡhp =

1

2
‖Ḡhp −mẋ∗‖2W v

(49)

with ẋ∗ a desired CoM velocity. The weights W v allows select-
ing and weighting the different directions separately.

3) Foot Yaw Task
The task on the centroid of the contact points defined in Sec-
tion IV-F1 allows us to specify the direction the robot has to
step toward. The foot yaw task specifies at which angle the foot
should be oriented with respect to the z-axis, i.e., the foot yaw
angle. Define γ∗

◦ as the desired yaw angle for either the left or
the right foot (◦ is a placeholder). We construct a unitary vector
�∗◦ ∈ R2 belonging to the xy-plane (of I), oriented such that the

angle with the x-axis of I corresponds to γ∗
◦ . Its components are

�∗◦ =

[
cos(γ∗

◦)
sin(γ∗

◦)

]
. (50)

Similarly, the vector �◦ ∈ R2 is fixed to the foot and parallel to
the foot x-axis, but expressed in the I frame. This vector can
be easily obtained as a linear combination of the contact points
position. The goal of the foot yaw task is to align �◦ to �∗◦, which
can be (locally) achieved by minimizing their cross-product, thus
leading to

Γ′
yaw =

∑
l,r

1

2

∥∥∥[− sin(γ∗
◦) cos(γ

∗
◦)
]
�◦
∥∥∥2 . (51)

Notice that (51) has a minimum also when �◦ is null. In other
words, Γ′

yaw can be minimized by shrinking the projection on
the xy-plane of the vector attached to the robot foot. This is
undesired because it would set the foot to be perpendicular to
the ground. Hence, we consider also a second vector attached
to the foot and perpendicular to �◦, called �⊥◦ . This vector is
parallel, and has the same direction of the foot y-axis. Hence,
the final task has the following form:

Γyaw =
∑
l,r

1

2

∥∥∥[− sin(γ∗
◦) cos(γ∗

◦)
]
�◦
∥∥∥2

+
∑
l,r

1

2

∥∥∥[cos(γ∗
◦) sin(γ∗

◦)
]
�⊥◦

∥∥∥2 . (52)

Equation (52) does not prevent the foot to have roll and pitch
motions during the swing phase.

G. Regularization Tasks

The dynamical system in Section IV-D depends on a high
number of variables. Despite the additional constraints defined
in Section IV-E and the Cartesian tasks presented in Sec-
tion IV-F, a consistent part of the system dynamics is not taken
into account nor constrained. For this reason, it is necessary
to introduce regularization tasks that contribute in generating
walking trajectories.

1) Frame Orientation Task
While moving, we want a robot frame to take a desired orien-
tation IR∗

frame. We weight the distance of the rotation matrix
IR̃frame =

IR∗�
frame

IRframe from the identity. To this end, we
convert IR̃frame into a quaternion (through a function quat,
that implements the Rodrigues formula, while keeping the real
part always non-negative), and weight its difference from the
identity quaternion Iq , thus exploiting the Euclidean distance
of quaternions as a metric for rotation error [64]

Γframe =
1

2

∥∥∥quat(AR̃frame

)
− Iq

∥∥∥2 . (53)

It can be applied on multiple bodies, like the torso and waist.
2) Base Quaternion Derivative Regularization Task

The base quaternion derivative task allows tracking a desired
angular velocity for the base. During walking, this task helps in
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regularizing the robot motion. It is defined as follows:

Γreguρ
=

1

2

∥∥uρ − u∗
ρ

∥∥2 (54)

with u∗
ρ ∈ R4 a desired quaternion rate of change.

3) Force Regularization Task
While considering foot contact forces independent from each
other, they still belong to a single rigid body. Thus, we prescribe
the contact forces in a foot to be as similar as possible, refraining
from using partial contacts if not strictly necessary. This can be
obtained through the following:

Γregf =
∑
l,r

np∑
i

1

2

∥∥∥∥∥∥if − diag(iα
∗)

np∑
j

jf

∥∥∥∥∥∥
2

W f

. (55)

Here iα
∗ ∈ R3 determines the desired ratio for force i with

respect to the total force. For example, if we want all the forces
in a foot to be equal, it is sufficient to select all the components
of iα

∗ ∈ R3 equal to 1
np

. In this case, the corresponding CoP is
the centroid #p. In other cases, it may be helpful to move the
CoP somewhere else in the foot. In this case, it is sufficient to
compute the corresponding iα

∗.
4) Joint Regularization Task

In order to avoid solutions with huge joint variations, we can
introduce a regularization task for the joint variables

Γregs =
1

2
‖ṡ+Ks(s− s∗)‖2W j

(56)

with s∗ a desired joints configuration. The minimum for this
cost is achieved when ṡ = −Ks(s− s∗), with Ks ∈ Rn×n a
positive semi-definite matrix. When this equality holds, joint
values converge exponentially to their desired values s∗. In this
way, both joint velocities and joint positions are regularized.

5) Swing Height Task
When performing a step, the swing foot height usually ensures
some level of robustness with respect to ground asperity. In order
to specify a desired swing height, we can define the following
task:

Γswing =
∑
l,r

np∑
i

1

2

(
e�3 ip− sh

∗)2 ∥∥∥[e1 e2]� u
ip

∥∥∥2 . (57)

Equation (57) penalizes the distance between the z-component
of each contact point position from a desired height sh

∗ ∈ R
when the corresponding planar velocity is different from zero.
Trivially, this cost has two minima: When the planar velocity
is zero (thus the point is not moving) or when the height of the
points is equal to the desired one.

6) Contact Control Regularization Tasks
Even if we assume the contact point velocities and force deriva-
tives to be control inputs, we want to avoid the planner to use
them always at the limit. Hence, we add some basic regulariza-
tion tasks

Γregup
=

∑
l,r

np∑
i

1

2

∥∥u
ip − u∗

ip

∥∥2
Wup

(58)

Γreguf
=

∑
l,r

np∑
i

1

2

∥∥u
if − u∗

if

∥∥2
Wuf

(59)

with u∗
ip
,u∗

if
∈ R3 the corresponding desired quantities.

H. Complete Optimal Control Problem

Given the set of equations listed in Section IV-D and the
tasks described in Sections IV-F and IV-G, it is possible to
define an optimal control problem whose complete formulation
is presented below. Here the vectorw contains the set of weights
defining the relative “importance” of each task.

minimize
χ,U

w�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ
#p

Γ
Ḡhp

Γframe

Γreguρ

Γregf

Γregs

Γswing

Γyaw

Γregup

Γreguf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60a)

subject to:

χ̇ = f(χ,U), see (42) (60b)

l ≤ g (χ,U) ≤ u, see (43)−(44), (60c)

e�2
rxl ≥ dmin (60d)

xz min ≤ h(x) (60e)

−Mhω
≤ Ḡh

ω ≤ Mhω
(60f)

−Mhf ≤ e�3 (#pl −#pr) ≤ Mhf . (60g)

Here, the state variables X are those derived in time, while U
contains all the control inputs. Thus,

χ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if

ip
...

Ḡh

x
IpB

IρB

s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
if

u
ip

...
BvI,B
uρ

us

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(61)

where the symbol
... represents the repetition of the corresponding

variables for each contact point.

I. Considerations

The optimal control problem presented in Section IV-H is
designed such that (almost) no constraint is task-specific. As
a consequence, it is particularly important to define the cost
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function carefully since the solution is a trade-off between all
the various tasks. On the other hand, the detailed model of the
system allows us to achieve walking motions without specifying
a desired CoM trajectory or by fixing the angular momentum to
zero. Nevertheless, due to the limited time horizon, it is better
to prevent the solver from finding solutions that would lead to
unfeasible states in future planner runs. For this reason, (47a)
and (47b) are added.

In order to plan for trajectories longer than the prediction
horizon, we apply the receding horizon principle [65]. Hence,
the planner is called iteratively, initialized with the results from
the previous run. A possible effect resulting from the application
of the receding horizon principle is the emergence of “procras-
tination” phenomena. Due to the moving horizon, the solver
may continuously delay in actuating motions, since the task
keeps being shifted in time. A simple fix to this phenomena
is to increase the task weights with time, such that it is more
convenient to reach a goal position earlier.

In addition, since the optimal control problem described in
Section IV-H uses a quaternion as parametrization for the base
rotation, it is necessary to preserve its unit norm. Since this prob-
lem is solved using iterative nonlinear optimization solvers, the
enforcement of (43d) is not enough, as the solver might perform
intermediate unfeasible iterations. Hence, we normalize the base
quaternion every time we evaluate the costs and constraints.

Finally, given that the problem under consideration is noncon-
vex, the optimizer will find a local minimum. This may result in
a suboptimal solution for the given tasks, but this fact does not
limit the applicability of the results to the robot. In this context,
a proper problem initialization plays a pivotal role. For the first
run only, the planner is initialized by setting the force on the left
foot to be null for the entire horizon. The position of the left foot
is such that the centroid of the contact points is on the desired
position. In this way, we hint the optimizer to use the left foot
for the first step. In successive runs, the solver is warm-started
with the solution computed in the previous run. Even if it affects
only the first run, the initial guess can strongly influence the
generated motion.

V. VALIDATION

We present the results obtained when solving the optimal
control problem presented in Section IV-H. In particular, we test
its capabilities to generate whole-body walking trajectories for
a flat ground using the model of the iCub humanoid robot [66].
All the tests presented in this section have been carried on a
7-generation Intel Core i7@2.8 GHz laptop.

The optimal control problem described in Section IV-H is
solved using a direct multiple shooting method [58]. The system
dynamics, defined in (42), is discretized adopting an implicit
trapezoidal method with a fixed integration step. The corre-
sponding optimization problem is solved, thanks toIpopt [67],
using the MA57 linear solver [68]. The solver requires at least
the first derivative of the cost and constraints with respect
to the optimization variables. These are computed explicitly
using the derivation presented in [69]. The pipeline from the
problem definition to its solution is implemented using the

Fig. 1. Snapshots of the generated walking motion. The red arrows indicate
the force required at each contact point scaled by a factor of 0.01. These images
have been obtained using the complementarity constraints of Section III-A.
(a) t = 0.5 s. (b) t = 1.5 s. (c) t = 2.5 s. (d) t = 3.5 s.

iDynTree::optimalcontrol3 library, allowing for easy
testing of other integrators or solvers. The code is implemented
entirely in C++ and open-source.4 The walking trajectories are
generated with a fixed prediction window of 2 s. The horizon is
large enough to predict at least one full step.

The planner is set up using an integration step of 100ms,
while the time horizon is 2 s. The choice of a large integration
step serves for two reasons. First, it reduces the number of
variables used by the optimization problem (fixing the time
horizon). Second, it allows inserting another control loop at
higher frequency. After each run of the planner, the first and
the second states are added to the final trajectory. The latter is
also used as a feedback state for the new planner run in a receding
horizon fashion.

When planning, we control 23 of the robot joints. We consider
four contact points for each foot, located at the vertices of the
rectangle enclosing the robot foot. Concerning the references,
the desired position for the centroid of the contact points is
moved 10 cm along the walking direction every time the robot
performs a step. A simple state machine where the reference is
moved as soon as a step is completed, is enough to generate a
continuous walking pattern. The speed is modulated by prescrib-
ing a desired CoM forward velocity equal to 5 cm/s. The desired
joint positions are fixed, and equal to the initial configuration of
the robot. The terms u∗

ρ,u
∗
ip

, and u∗
if

are set to zero. The value
of kt (see Section IV-B) is 10m−1.

Fig. 1 shows some snapshots of the first generated step,
while Fig. 2 shows the position of one of the right contact
points. It is possible to recognize the different walking phases,
though they are not planned a priori. Nevertheless, the controller
does not specify explicitly when a phase begins and ends. It is
also possible to notice that the trajectories obtained using the
hyperbolic secant method, Section III-B, have been affected
by some initial “procrastination,” with a longer initial double
support phase. Those produced with the other two methods are
instead very similar.

Fig. 3 presents the planned CoM position. Here, it is possible
to notice that the position along the x direction grows at a

3[Online]. Available: https://github.com/robotology/idyntree/tree/devel/src/
optimalcontrol

4[Online]. Available: https://github.com/dic-iit/dynamical-planner

https://github.com/robotology/idyntree/tree/devel/src/optimalcontrol
https://github.com/robotology/idyntree/tree/devel/src/optimalcontrol
https://github.com/dic-iit/dynamical-planner
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Fig. 2. Planned position of one of the right foot contact points using different
complementarity constraints. The walking phases are recognizable, but they
are not defined beforehand. The controller does not specify directly when a
phase begins and ends. (a) Relaxed complementarity. (b) Dynamically enforced
complementarity. (c) Hyperbolic secant in control bounds.

constant rate. This is a direct consequence of the task on the
CoM velocity presented in Section IV-F2. Notice that the bound
on the CoM height, xz min, is set to half of the initial robot height,
but such constraint is never activated. These are the results of
consecutive runs of the optimal control problem described in
Section IV-H. From one run to another, the solver may find
slightly different solutions because of the shift in the prediction
horizon, causing the irregularities shown in the figures. In ad-
dition, there is no regularization on the CoM position, whose
trajectory is fully determined by the solver.

Fig. 4 shows the planned angular momentum, that is not
fixed to zero, but limited to 10 kgm2/s. This limit is never
reached. Thanks to the regularization terms on the base and joint
velocities, the angular momentum is kept close to zero.

It is worth stressing that none of the tasks described above
define how and when to raise the foot. By prescribing a refer-
ence for the centroid of the contact points and by preventing
the motion on the contact surface, swing motions are planned
automatically. Nevertheless, this advantage comes with a cost.
It is difficult to define a desired swing time and, more impor-
tantly, the relative importance of each task, i.e., the values of

Fig. 3. Planned CoM position using different complementarity constraints. It
is possible to notice a continuous velocity on the x direction. The plots appear a
little irregular. This may be a consequence of the chosen time step. (a) Relaxed
complementarity. (b) Dynamically enforced complementarity. (c) Hyperbolic
secant in control bounds.

w, must be chosen carefully. As anticipated above, in order to
avoid “procrastination” phenomena, we adopted a time-varying
weight for the centroid position of the contact points, described
in Section IV-F1. In particular, we define

w̃
#p(t) = αts(t)wts + 1 (62)

where wts = 30, while αts determines the current percentage of
the step. It is computed as follows:

αts(t) =
t− ts,init

t∗s
(63)

where t∗s is the desired step duration, while ts,init is the first
moment in which a specific position reference is active.

At the same time, since only the initial states of a given
solution are considered in the final trajectory, it is necessary
to increase the importance of some tasks at the beginning of the
horizon. One specific example is the orientation of the torso.
In order to avoid undesired motions for the robot upper body,
we set a weight for the torso orientation task that decreases
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TABLE I
COST FUNCTION WEIGHTS USED IN THE COMPARISON OF THE COMPLEMENTARITY METHODS

The terms w̃
#p(t) and w̃frame−torso(t) are defined in (62) and (64), respectively.

Fig. 4. Planned angular momentum obtained adopting different complemen-
tarity constraints. (a) Relaxed complementarity. (b) Dynamically enforced com-
plementarity. (c) Hyperbolic secant in control bounds.

exponentially with time. In particular, we have

w̃frame−torso(t) = 100e−10t + 1 (64)

where we assume, without loss of generality, that t ∈ [0, 2].
The weights we adopted in the cost function are listed in Ta-

ble I. During experiments, we adopted an incremental approach
to determine them. We added the tasks one by one, starting from
Γ

#p and then we gradually refine the walking motion by tuning
one cost at a time.

A. Real Robot Validation

To further validate the output of the planner presented in
this part, we tested the generated trajectories on the iCub hu-
manoid robot. In particular, they are used as a reference for

a joint position controller. Since their frequency is at 10 Hz,
we interpolate them to have a reference point every 10 ms.
Hence, the trajectories are replayed on the robot closing the loop
only at joint level. The robot performed several steps, Fig. 5,
demonstrating the feasibility of the generated trajectories.

Compared to the results shown in Section V, we reduce the
forward speed to 3 cm/s, advancing the mean point reference of
6cm at every step. In this case, it has been also useful to move
the desired CoP position, as anticipated in Section IV-G3. In
particular, by moving it toward the inner foot edge, the robot
walks more robustly. The cost function weights are listed in
Table II, while wts = 60.

The trajectories are generated offline for a time span of
20 s. They are tested in open-loop, thus limiting the maximum
velocity achievable by the robot. This specific test is aimed
at validating the formulation of the optimal control problem
described in Section IV-H, independently from the choice of the
complementarity method (in this case, we selected the dynam-
ically enforced complementarity method). In the next section,
we analyze the difference between each method.

VI. DCCS COMPARISONS

In this section, we analyze the differences among the com-
plementarity methods described in Section III-C. In order to
asses the relative performances of the different methods, we
adopt the DCCs in two contexts with a crescendo of complexity.
First, in Section VI-A, we apply the DCCs in a toy problem
involving a single contact. Then, in Section VI-B, we exploit the
output of the nonlinear trajectory planning framework presented
in Section IV.

As a measure of performance, we adopt the product between
the normal force and the height of the contact point from the
ground, i.e., ipz · ifz . In other words, we test the accuracy with
which (13) is satisfied, simplifying the formulation, thanks to the
planar ground assumption. As another performance measure,
we use the average computational time needed to solve the
corresponding optimization problem.

In order to have the results of Sections VI-A and VI-B com-
parable, we use the same integration method, time horizon, and
integration step described in Section V in both cases. Similarly,
the Ipopt configuration is identical.

Moreover, for the sake of reproducibility, the comparisons in-
volving parameter variations run also on Github Actions.5

Thus, we provide a comparison using a standard machine. In
this latter case, Ipopt uses the openly available MUMPS [70]
linear solver.

5[Online]. Available: https://github.com/ami-iit/paper_dafarra_2022_tro_
dcc-planner

https://github.com/ami-iit/paper_dafarra_2022_tro_dcc-planner
https://github.com/ami-iit/paper_dafarra_2022_tro_dcc-planner
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Fig. 5. Snapshots of the robot walking using the planned trajectories. The planner generates joint references which are interpolated and stabilized through a joint
position controller. (a) t = t0. (b) t = t0 + 1 s. (c) t = t0 + 2 s. (d) t = t0 + 3 s. (e) t = t0 + 4 s. (f) t = t0 + 5 s. (g) t = t0 + 6 s. (h) t = t0 + 7 s.

TABLE II
COST FUNCTION WEIGHTS USED IN THE REAL ROBOT VALIDATION

The term w̃
#p(t) is defined in (62).

The various methods have been tuned to obtain the best
complementarity accuracy, while remaining able to generate a
walking pattern. Indeed, parameters that are too “restrictive”
(e.g., an ε too small) may prevent the solver from finding a
walking strategy because the points are not able to move. On the
other hand, low accuracy may mean the solver requires a force
of considerable magnitude when the point is still raised from the
ground. The same parameters have been adopted also for the toy
problem. The parameters are chosen as follows.

1) Relaxed complementarity: ε = 0.004[N ·m].
2) Dynamically enforced complementarity: Kbs = 20[ 1s ],

ε = 0.05[N·m
s ].

3) Hyperbolic secant in control bounds: Kf,z = 250[ 1s ],
kh = 500[ 1m ].

Mf is set to 100N/s for all the components and it is common
for all the methods.

A. Comparison Using a Toy Problem

We consider a point mass falling vertically from a given
height and approaching ground. We assume the ground to be
infinitely rigid, and the ground level to be at zero. These settings
render the analyzed toy problem interesting also from a robotics
perspective since it exemplifies the case of a humanoid robot
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foot approaching ground. Then, the mass position xm ∈ R has
to satisfy the following constraint:

xm ≥ 0. (65)

When the mass hits the ground, a force is applied to it. This is
modeled through the DCCs presented in Section III. We assume
the impact to be completely inelastic. On the other hand, the
dynamics of the mass would not be continuous since its velocity
should suddenly go to zero at the moment of the impact. In our
toy problem, we circumvent this issue by assuming to be able to
control the mass acceleration, as if a propeller is powering the
mass.

The resulting system has the following dynamics:

ẋm = vm (66a)

v̇m = g +
1

m
(fm + pm) (66b)

ḟm = uf (66c)

where vm, g, fm, pm, uf ∈ R are, respectively, the mass veloc-
ity, the gravity acceleration, the contact force, the propeller thrust
force, and the contact force derivative. The control inputs are
given by pm and uf , and the magnitude of uf is limited to a
maximum value Muf

. The objective is to minimize the use of
pm as if the propeller had fuel constraints.

We insert the dynamical system of (66) and the DCCs in the
following optimal control problem:

minimize p2m (67a)

subject to:

ẋm = vm (67b)

v̇m = g +
1

m
(fm + pm) (67c)

ḟm = uf (67d)

xm ≥ 0 (67e)

fm ≥ 0 (67f)

−Muf
≤ uf ≤ Muf

(67g)

Complementarity, see Section III-C. (67h)

1) Toy Problem Solution
The optimal control problem described by (67) is tran-
scribed into an optimization problem using a direct multi-
ple shooting method and solved through Ipopt. We use
a prediction window of 2 s, with an integration step of
100ms as in Section V. The initial guess of the opti-
mization problem is as follows. We compute the expected
mass position and velocity assuming no propeller is used.
The initial guess for the position and velocity is set to zero after
the impact. Similarly, the guess for contact force is set equal to
the weight after the impact.

Differently from Section V, the implementation has been
fast-prototyped using MATLAB, exploiting the CasADi frame-
work [71]. This excludes possible implementation-specific bi-
ases.

Fig. 6. Planned mass position, and contact force of the toy problem adopting
different complementarity constraints. The dashed lines correspond to the initial-
ization provided to the optimal control problem. (a) Relaxed complementarity.
(b) Dynamically enforced complementarity. (c) Hyperbolic secant in control
bounds.

Fig. 6 presents the output of the trajectory optimization for a
unitary mass falling from 10 cm. We present the results using
the different complementarity methods. The dashed lines corre-
spond to the initialization fed to the optimizer. Fig. 7 shows the
accuracy achieved by each method and the use of the propeller.
The red dashed line displays the average accuracy.

The major complexity of the problem is represented by the
complementarity constraints, as all the other constraints are
linear. Hence, any difference in the output can be safely ascribed
to the chosen complementarity method. In the following we
analyze the performance of each complementarity method in
case of parameter variations.

2) Comparison Using Different Initial Positions
In this section, we analyze the performance of the different
complementarity methods by varying the initial mass height.
Since the toy problem can be seen as an approximation of a
robot foot approaching the ground, we consider an initial height
that is compatible with the step heights achievable by a small
humanoid robot. Table III presents the computational time, the
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TABLE III
COMPUTATIONAL TIME, AVERAGE ACCURACY, AND COST OF EACH COMPLEMENTARITY METHOD WHEN SOLVING THE TOY PROBLEM AT DIFFERENT

INITIAL HEIGHTS

The results are the average of 100 repetitions. In bold the best resulting method by row.

average accuracy of the output trajectory, and the corresponding
cost when using different complementarity methods, averaged
over 100 repetitions. We highlight in bold the lowest compu-
tational time, the best accuracy, and the lowest cost for each
initial height. Overall, the dynamically enforced method is the
one providing best accuracy, except for the 5 cm case, where
the hyperbolic secant method performs better. The same result
holds also when running the test on Github Actions. For
what concerns the computational time, the hyperbolic secant
method performs better for heights lower than 9 cm, while the
dynamically enforced is the fastest in the other cases, with the
exception of the 15 cm height. In fact, in the test running on
Github Actions, the relaxed method performed better. This
latter method is also the one providing the smallest cost in the
majority of the cases. We can notice a correlation between the
accuracy and the cost value. In fact, a higher use of the propeller
reduces the time in which the mass is in contact with the ground,
resulting in a lower average accuracy. Hence, there is a trade-off
between the use of the propeller and the accuracy. Such trade-off
is visible in the 5 cm case, where the hyperbolic secant method
has very little accuracy, but with the highest cost. Another thing
to notice is that the cost increases with the initial height. In fact,
higher initial heights involve higher impact velocities that are
counteracted by the use of the propeller.

Finally, we highlight that the dynamically enforced method is
the one providing the least variations in terms of computational
time across different heights.

3) Comparison After Parameter Variations
In this section, we compare the complementarity methods by
varying the following parameters associated with each comple-
mentarity method:

1) ε for the relaxed complementarity;
2) Kbs, ε for the dynamically enforced complementarity;
3) Kf,z and kh for the hyperbolic secant in control bounds.

The results are depicted in Fig. 8, where each point has an
associated label displaying the parameters being used. The initial
mass height is set to 0.1cm and the points represent the average
result over 100 repetitions. The dynamically enforced method
with the parameters (ε 0.05, Kbs 20) is the one providing the
best accuracy. At the same time, the hyperbolic secant method
with parameters (kh 400, Kf,z 250) is the one producing the
fastest solution. In general, we can observe that the dynamically
enforced and the hyperbolic secant method are those closer to
the origin, thus providing the most accurate solutions at the
lowest time. On the other hand, we can notice that the hyperbolic
secant method is more sensitive to parameter variations, since
the computational time can largely increase. Moreover, when
using MUMPS on Github Actions, the hyperbolic secant
method is the one suffering the highest performance loss. Indeed,
it can be noticed that its corresponding points appear to be shifted
toward right in Fig. 8(b). For what concerns the relaxed com-
plementarity points, a higher ε corresponds to a lower accuracy,
trading off with the computational time.

B. Comparison Using the Planner of Section IV

In this section, we use the nonlinear trajectory planning
framework presented in Section IV to compare the dynamic
complementarity conditions. We perform a first comparison
using the same setup presented in Section V. The accuracy,
namely the product ipz · ifz , is depicted in Fig. 9 for each contact
point of both feet, and numerically summarized in Table IV. The
dynamically enforced complementarity method is the one with
the best numeric performance, although very close to the relaxed
complementarity method. In this context, the hyperbolic secant
method is outperformed. The particularity of this method is that
when the contact points are raised from the ground, the force
drops to zero consistently on all the points, as it is possible to
notice from Fig. 9. In fact, with this method, we force the normal
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Fig. 7. Propeller value, and complementarity accuracy, of the toy problem
adopting different complementarity constraints. The dashed red line is the
average accuracy. (a) Relaxed complementarity. (b) Dynamically enforced com-
plementarity. (c) Hyperbolic secant in control bounds.

TABLE IV
ACCURACY OF THE DIFFERENT COMPLEMENTARITY METHODS IN THE SETUP

OF SECTION V

We consider the left and right foot separately. The best resulting method is in bold.

force derivative to be strongly negative when the point is not on
the ground. At the same time, this method does not prevent the
point to move when a force is applied, possibly explaining the
worst average accuracy compared to the other methods.

Fig. 10 presents the computational time required by the opti-
mizer to complete the 100 planner runs that define the walking
trajectory presented in Section V. Table V presents the numerical
results. In this case, the hyperbolic secant method is the best
performing, requiring in average more than a second less com-
pared to worst performing method, the relaxed complementarity.

Fig. 8. Performance of the different complementarity methods in the toy
problem after parameter changes. The closer to the origin, the better is the
performance. (a) Test running on a laptop using the MA57 linear solver. (b) Test
running on Github Actions using the MUMPS linear solver.

TABLE V
TIME PERFORMANCES USING DIFFERENT COMPLEMENTARITY METHODS IN

THE SETUP OF SECTION V

All times are showed in seconds and obtained after 100 runs of the solver. The best
result for each row is in bold.

Nonetheless, a reason for this difference of performance can be
explained by the longer initial double support phase observed
when using the hyperbolic secant method. In fact, by looking
at Fig. 10, it is possible to notice that the computational time in
the first runs was much lower than the other methods. For all
the methods, it is possible to notice some pattern in the peaks.
In particular, we have a high variation in the computational time
when we move the reference for the centroid of the contact
points. Hence, the planner has to predict a full new step. Since
we initialize the planner with the previously computed solution,
in this instant, the optimal point is far from the initialization.
Hence, more time is required to find a solution. This issue can
be addressed by providing the planner with a more effective
initialization.
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Fig. 9. Product between the vertical position and the normal force of each
contact point, separated by foot, when using the different complementarity
methods summarized in Section III-C in the setup of Section V. The black dashed
lines indicate the mean values. By plotting the result of pz · fz for each point,
we show the accuracy of each method in simulating a rigid contact. (a) Relaxed
complementarity. (b) Dynamically enforced complementarity. (c) Hyperbolic
secant in control bounds.

TABLE VI
AVERAGE COMPUTATIONAL TIME USING DIFFERENT COMPLEMENTARITY

METHODS AT DIFFERENT DESIRED WALKING SPEEDS

The symbol − indicates that the planner was not able to plan a walking motion. The
best result for each row is in bold.

1) Comparison With Different Walking Velocities
As a second comparison, we test the output of the planner at
different desired walking speeds, measuring the corresponding
computational time. Table VI presents the numerical results.
Compared to Section V, the only parameter difference is the
desired walking velocity. We notice that this (apparently) small
change can have a strong impact, eventually making the planner
to fail in finding walking patterns, keeping the robot constantly
in double support. This has been the case for the relaxed com-
plementarity method at 0.06 m/s, and the hyperbolic secant
method at 0.07 m/s (when using the MA57 linear solver). In

Fig. 10. Computational time required by each nonlinear trajectory planner
run. (a) Relaxed complementarity. (b) Dynamically enforced complementarity.
(c) Hyperbolic secant in control bounds.

general, this behavior can be avoided with small variations of
the initial guess, suggesting that the planner might get stuck
in local minima. Nonetheless, for the sake of the comparison,
we avoided additional changes. In this setting, the dynamically
enforced method appears to be the most robust and consistent,
even when running the test on different machines using different
linear solvers.

2) Comparison After Parameter Variations
As a third comparison, we keep the desired forward velocity
fixed while varying the same parameters as in Section VI-A3.
The results are depicted in Fig. 11, where each point is labeled
with the parameters used. The plot presents the trade-off between
the computational time and the accuracy. This is particularly
evident by looking at the relaxed complementarity points. The
higher the parameter ε, the lower is the computational time, but
at the same time, the accuracy decreases. When running the
test using a personal laptop running Ipopt with MA57, the
dynamically enforced method seems to remain always below
the line traced by these points, hence showing better overall
performances in this setting. On the contrary, the hyperbolic
secant method has proved to be very fast with the parameters
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Fig. 11. Performance of the different complementarity methods in case of
parameter change with respect to the setup of Section V. The closer to the origin,
the better is the performance. (a) Test running on a laptop using the MA57 linear
solver. (b) Test running on Github Actions using the MUMPS linear solver.

used in Section V, but the average computational time tends to
increase considerably when changing the parameters.

Similarly to Fig. 8(b), when running the test onGithub Ac-
tions, the hyperbolic secant method points get shifted toward
right, suggesting a higher performance loss compared to the
other methods. Nonetheless, also in this case, the dynamically
enforced method seems to provide the best trade-off between
accuracy and computational time.

VII. CONCLUSIONS

This article showed that walking trajectories can emerge by
specifying a moving reference for the contact points’ centroid
and the desired CoM velocity only. The planner considered
relatively large time-steps. This enabled the insertion of another
control loop at higher frequency, whose goal was to stabilize
the planned trajectories. The main bottleneck was represented
by the computational time. A single planner run may take from
slightly less than a second to minutes, also according to the ma-
chine used. This prevents an online implementation on the real
robot. Nevertheless, the continuous formulation of the problem
allowed the application of techniques which solved the problem
through the iterative application of fast LQR solvers [44], [72].

Among the different complementarity methods, the dynam-
ically enforced complementarity method proved to be the best
performing, both in a toy problem and when using the presented
nonlinear trajectory planning framework. In particular, it is the
most accurate and consistent in case of parameter variations.

The hyperbolic secant method provided the lowest average
computational time in generating walking trajectories, but this
result is sensitive to parameter variations.

Finally, given the nonconvex nature of the problem defined in
Section IV-H, it is fundamental to provide a meaningful initial
guess. Indeed, local minima may bring the planner to “procrasti-
nate,” as anticipated in Section IV-I. An interesting future work
consists in adopting reinforcement learning techniques, like
[73], [74], to warm-start the optimization problem. In addition,
the definition of references can affect the time necessary to find
a solution. In future works, we will investigate both the adoption
of faster solvers and the definition of a more sophisticated and
efficient way of providing references.

VIII. CODE AND MULTIMEDIA MATERIAL

The code of this project is available at the link.6 The definition
of the Github Actions used for the comparisons of Sec-
tion VI and the instructions on how to reproduce the results are
available at the link.7 A video describing the paper is available
at the link https://youtu.be/Uc9o8TE32cw.
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