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Avoiding Dense and Dynamic Obstacles in Enclosed
Spaces: Application to Moving in Crowds

Lukas Huber , Jean-Jacques Slotine , and Aude Billard , Fellow, IEEE

Abstract—This article presents a closed-form approach to con-
straining a flow within a given volume and around objects. The
flow is guaranteed to converge and to stop at a single fixed point.
The obstacle avoidance problem is inverted to enforce that the flow
remains enclosed within a volume defined by a polygonal surface.
We formally guarantee that such a flow will never contact the
boundaries of the enclosing volume or obstacles. It asymptotically
converges toward an attractor. We further create smooth motion
fields around obstacles with edges (e.g., tables). Both obstacles
and enclosures may be time-varying, i.e., moving, expanding, and
shrinking. The technique enables a robot to navigate within en-
closed corridors while avoiding static and moving obstacles. It was
applied on an autonomous robot (QOLO) in a static complex indoor
environment and tested in simulations with dense crowds. The final
proof of concept was performed in an outdoor environment in
Lausanne. The QOLO-robot successfully traversed a marketplace
in the center of town in the presence of a diverse crowd with a
nonuniform motion pattern.

Index Terms—Autonomous agents, collision avoidance, crowd
navigation, dynamical systems, mobile robots.

I. INTRODUCTION

ROBOTS navigating in human-inhabited environments will
encounter disturbances constantly, for instance, when au-

tonomous delivery robots drive around pedestrians. The robot
must have a flexible control scheme to avoid collisions. As
the number of obstacles increases and their motion becomes
less predictable, the robot needs to reevaluate its path within
milliseconds to prevent a crash while moving actively toward its
goal.

Control using dynamical systems (DS) is ideal for addressing
such situations. In contrast to classical path planning, the con-
trol law is closed-form, hence requires no replanning, and can
ensure impenetrability of obstacles [1], [2]. DS offer stability
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and convergence guarantees in addition to the desired on-the-fly
reactivity.

This article addresses the need for a reactive (closed-form)
obstacle avoidance approach with formal guarantees of impen-
etrability to handle highly dynamic environments and realistic
obstacles, such as obstacles with sharp edges. To this end, this
article extends our previous work [3], in which we presented
a closed-form obstacle avoidance approach guaranteed to not
penetrate smooth concave, albeit star-shaped, obstacles. We
present three novel theoretical contributions as follows:

1) We extend the modulation parameters of the obstacle
avoidance with surface friction and repulsive value (Sec-
tion III). They allow an agent to move slower and further
away from obstacles, respectively. The extensions result
in more cautious behavior.

2) We invert the obstacle description to ensure that the robot
moves within the enclosed space defined by the boundary,
while preserving convergences guarantees toward an at-
tractor. This boundary may represent walls, furniture, or
even joint limits of manipulators (Section IV).

3) We extend the approach to handle nonsmooth surfaces,
i.e., obstacles with sharp edges. The novelty comes from
creating a smooth dynamical system around an obstacle
without approximation of the curvature (Section V).

4) We show that the approach can be extended to tackle dy-
namic environments, with obstacles that have deforming
shapes (Section VI).

5) We propose an approach on how to use the dynamical
obstacle avoidance in combination with a robot arm (Sec-
tion VII). The safe joint velocity is evaluated based on the
proximity function combined with the obstacle avoidance
algorithm.

We validate these contributions with a wheelchair robot mov-
ing in a simulated crowd of pedestrians and an office environ-
ment with real furniture (Section IX).

II. RELATED WORK

A. Sampling Based Exploration

Sampling algorithms, such as probabilistic road map
(PRM) [4] or the rapidly exploring random trees (RRT) [5]
can find a path in cluttered environments. They are computa-
tionally intensive, and early approaches were limited to static
environments. In [6], online (partial) replanning and elastic-band
methods deform the path locally. This allowed adapting to
dynamic environments. Reinforcement learning allowed Zhang
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et al. [7] to learn from previously explored PRM-paths and
efficiently adapt to dynamic obstacles. However, the switching
often comes with the theoretical loss of global convergence [8].
Recent work uses customized circuitry on a chip for onboard,
fast global sampling and evaluation [9]. This method allows fast
replanning, but a customized chip design is required for each
robot configuration.

B. Real-Time Optimization

With improvements in hardware and computational speed, op-
timization algorithms, such as model predictive control (MPC)
have become feasible for onboard use in dynamic path planning,
and obstacle avoidance [10]. MPC has been used to control
nonholonomic robots in environments with multiple convex
obstacles [11]. Most optimization methods cannot guarantee
convergence to a feasible solution at runtime.

Power diagrams were used to identify the robot’s collision-
free, convex neighborhood, and an associated, well-known con-
vex optimization problem generates a continuous flow [12]. This
method is limited to convergence for convex obstacles with
almost spherical curvature.

Control barrier functions (CBFs) and control Lyapunov func-
tions (CLFs) were united through the use of quadratic program-
ming (QP) to create collision-free paths in [13]. The convergence
constraint was softened to ensure the feasibility of the optimiza-
tion problem. As a result, full convergence cannot be guaranteed
anymore. In [14], local minima were overcome by introducing
a (virtual) orientation state. This orientation state introduces a
dependence on the history of the QP problem. In addition, the
authors do not address the challenge of finding an appropriate
Lyapunov candidate.

In [15] a diffeomorphic transformation to a sphere-world is
used, which is based on [16]. The method introduces a depen-
dence on its history through virtual obstacle positions and radii.
Furthermore, the construction of the diffeomorphism requires
full knowledge about the space.

C. Learning-Based Approaches

With the rising popularity of machine learning in the past
years, these algorithms have been applied to sensor data to
infer data-driven control [17] but this method cannot ensure
impenetrability. Other approaches use neural networks on a
circular representation of crowds to create steering laws but
cannot guarantee convergence [18].

D. Velocity Obstacles

Velocity obstacles extend the obstacle shape by its potential
future positions based on the current velocity [19]. Velocity
obstacles allow safe navigation in dynamic environments. They
were successfully applied in multiagent scenarios [20] and ex-
tended to include acceleration, and nonholonomic constraints of
the agent [21]. The velocity obstacle approach often conserva-
tively limits the workspace.

E. Artificial Potential Fields and Navigation Functions

Artificial potential fields were used to create collision-free
trajectories [22], but they are prone to local minima. In [23],
artificial potential fields for sphere-worlds were designed to
have only a global minimum. A diffeomorphic transformation
was introduced to map star-worlds to sphere-worlds [16], and
extended to include trees of stars [24]. The tuning of critical
parameters needs the knowledge of the whole space. Hence, in
practice, full convergence is difficult to achieve.

More recent approaches introduce artificial potential fields
with only the global minimum for more general environ-
ments [25], [26]. Automated approximation of the tuning pa-
rameter has been proposed [27], but it does not generalize easily
to dynamic environment. In [28], full convergence is ensured
around ellipse obstacles through quadratic potential functions.
Learning methods were used to tune the hyperparameters of
potential fields to obtain human-inspired behavior for obstacle
avoidance [29].

Dangerfields were used in [30] to ensure collision avoidance
for robot arms through repulsion from dynamic obstacles. The
approach was extended by guiding the motion through an artifi-
cial potential field in [31]. The design of the artificial potential
field remains a challenge for this method. Dynamic reference
points help to reduce the probability of converging to a local
minimum for potential fields [32].

F. Harmonic Potential Fields

Harmonic potential functions are interesting as they guar-
antee that no topologically critical points arise in free space.
In [33], the harmonic potential functions were evaluated numer-
ically to overcome the challenge of finding them analytically.
Closed-form harmonic potential functions can be generated
by approximating the obstacles through linear panels [34].
This linear approximation applies to concave obstacles but is
limited to 2-D environments [1]. In [35], known harmonic
potential functions are interpolated to navigate in more com-
plex environments. A closed-form solution to harmonic po-
tential flow around simple obstacles was presented in [36].
The work allows to avoid moving obstacles but is limited to
convex. In [37], the approach was extended to concave obstacles
by using a discrete, sensor-based representation. Closed-form
approaches using harmonic potential fields are often simpli-
fied to a circular world or require high (close to circular)
curvature.

In [3], a dynamic reference point was introduced to ensure
convergence for star-shaped environments. However, the ap-
proach was not able to handle boundaries or deforming obsta-
cles.

III. OBSTACLE AVOIDANCE FORMULATION

Dynamical system-based obstacle avoidance has been pro-
posed by the authors in [3]. We restate previous definitions, and
introduce two new extensions: a friction parameter (Section III-
F) and a repulsion parameter (Section III-G).
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A. Notation

The state variable ξ ∈ Rd defines the state of a robotic system.
If not mentioned otherwise, ξ will refer to the Cartesian position
of the agent.

The variable π is used as the circle constant throughout the
article.

Superscripts are used to denote the name of variables and
subscripts for enumeration.

Bold-face Latin characters describe vectors and matrices.
The brackets 〈·, ·〉 denote the dot product of two vectors.
The ×-operator indicates the cross product.
The square brackets indicate elements of a vector, e.g., ξ[1]

denotes the first element of ξ. Double dots within the brackets
indicate a subvector up to the specified number, e.g., ξ[1:2] is a
vector of the first two elements of ξ.

B. Dynamical Systems

This work focuses on motion toward a goal of an autonomous
dynamical system, i.e., limt−→∞ f(ξa) = 0. The most direct
dynamics toward the attractor is a linear dynamical system of
the form

f(ξ) = −k(ξ − ξa) (1)

wherek ∈ R is a scaling parameter. The attractor ξa is visualized
throughout this work as a star: ∗ and set k = 1.

C. Obstacle Description

Each obstacle has a continuous distance function Γ(ξ) :
Rd �→ R≥0, which allows to distinguish three regions as follows:

Free points: Xf = {ξ ∈ Rd : Γ(ξ) > 1}
Boundary points: Xb = {ξ ∈ Rd : Γ(ξ) = 1}
Interior points: Xo = {ξ ∈ Rd \ (Xf ∪Xb)}. (2)

1) Reference Point: For each obstacle i a reference point is
chosen such that it lies within the kernel of the obstacle: ξri ∈
Xo

i .1 The reference direction is defined as

ri(ξ) = (ξ − ξri ) /‖ξ − ξri ‖ ∀ξ ∈ Rd \ ξri . (3)

The reference point is visualized throughout this work as a
cross +.

2) Distance Function: By construction, the distance func-
tion Γ(·) increases monotonically in radial direction and has a
continuous first-order partial derivative (C1 smoothness). Here,
we define the general distance function as

Γo(ξ) = (‖ξ − ξr‖/R(ξ))2p ∀ξ ∈ Rd \ ξr (4)

with the power coefficient p ∈ N+. The local radius
R(ξ) = ‖ξb − ξr‖ is a function of the local boundary point,
which is defined as

ξb = br(ξ) + ξr such that b > 0 , ξb ∈Xb. (5)

1The kernel of a star-shaped obstacle defines the region from which any
surface point is visible [38].

Fig. 1. Velocity obtained with the isometric-inspired eigenvalue (left) results
in accelerations close to the obstacle. The modulation inspired by surface friction
(right) reduces the velocity with decreasing distance to the obstacle. The black
star is the attractor ξa, and the black cross is the (shared) reference point ξr .

D. Obstacle Avoidance Through Modulation

Real-time obstacle avoidance is obtained by applying a dy-
namic modulation matrix to a dynamical system f(ξ)

ξ̇ = M(ξ)f(ξ) with M(ξ) = E(ξ)D(ξ)E(ξ)−1. (6)

The modulation matrix is composed of the basis matrix

E(ξ) = [r(ξ) e1(ξ) .. ed−1(ξ)] (7)

which has the orthonormal tangent vectors ei(ξ) evaluated at
the boundary point ξb given in (5).

The diagonal eigenvalue matrix is given as

D(ξ) = diag (λr(ξ), λe(ξ), . . . , λe(ξ)) . (8)

We set the eigenvalues to

λr(ξ) = 1− 1/Γ(ξ)1/ρ λe(ξ) = 1 + 1/Γ(ξ)1/ρ (9)

with the reactivity factorρ ∈ R>0 and the distance functionΓ(ξ)
from (4). In this work, we simply choose ρ = 1.

E. Multiple Obstacles

In the presence of multiple obstacles, the velocity is modu-
lated for each obstacle individually as described in (6). The final
velocity is obtained by taking the weighted directional mean of
the individual velocities; see Appendix-A.

F. Surface Friction Imitation

The choice of eigenvalues in (9) is inspired by the harmonic
potential flow, i.e., the description of the potential flow of an
incompressible fluid. The incompressibility constraint forces
the velocity to increase in regions where the flow is pushed
around the obstacle, i.e., the eigenvalues in the tangent direction
increase. This leads to acceleration close to the surface (see
Fig. 1).

We propose to mimic surface friction, i.e., slowing down
in tangent direction close to an obstacle (limΓ→1 ξ

e = 0). A
friction parameter λf (ξ) ensures the slowing down close to the
surface. The friction dynamics ξ̇f are obtained by applying the
factor to tangent and reference direction as follows:

ξ̇f = λf (ξ)
‖f(ξ)‖
‖ξ̇‖ ξ̇ with λf (ξ) = 1− 1/Γ(ξ) (10)

where the ξ̇ is the modulated velocity from (6).



3116 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 5, OCTOBER 2022

Fig. 2. Repulsion coefficient of crep = 1 results in strictly positive eigenvalues
(top). An increased distance to the obstacle is obtained with higher repulsion
coefficients, such as crep = 2 (bottom).

G. Repulsive Eigenvalue

The eigenvalues in reference direction given in (9) are always
positive, as follows fromΓ(ξ) ≥ 1. This results in eigenvalues in
the range of λr(ξ) ∈ [0, 1], hence reduces the velocity in radial
direction.

Conversely, active repulsion can be achieved through negative
eigenvalues, i.e., λr(ξ) < 0. Active repulsion increases the dis-
tance by which the an agents avoids the obstacle (Fig. 2). Since
the repulsive eigenvalues are incorporated in the modulation
matrix in (6), it is ensured that attractors are preserved.

The eigenvalue in radial direction is defined for repulsive
obstacles as

λr(ξ) =

{
1− (crep/Γ(ξ))1/ρ if 〈f(ξ), r〉 < 0

1 otherwise
(11)

with the repulsive coefficient crep ≥ 1. A repulsive coefficient
crep = 1 corresponds to no repulsion. Note, that the repulsive
eigenvalues are coupled with no tail effect, i.e., λr(ξ) = 0 in the
wake of an obstacle (see [36]).

IV. INVERTED OBSTACLE AVOIDANCE

An autonomous robot often encounters scenarios, where it has
boundaries that it cannot pass. This might be a wall for a wheeled
robot or the joint limits for a robot arm. These constraints can
be interpreted as staying within an obstacle, where the obstacle
represents the limits of the free space.

Fig. 3. Forward and invertedΓ-function for the same shape. The brown region
marks the inside of the obstacle and wall, respectively.

A. Distance Inversion

The distance function Γ(ξ) from (4) can be evaluated within
the obstacle ξ ∈Xo.2 For interior points, our boundary function
is monotonically decreasing along the radial direction, i.e., the
Lie derivative with respect to the reference direction is positive.
Furthermore it is bounded. This can be written as

LrΓ =

〈
∂Γ(ξ)

∂r(ξ)
, r(ξ)

〉
> 0, Γ(ξ) ∈ [0, 1[ ∀Xo \ ξr.

We consider the obstacle boundary Xb as the description of an
enclosing hull. It follows that the interior points of the classical
obstacle become points of free space of the enclosing hull and
vice versa. Boundary points stay boundary points. We define the
distance function of wall obstacles as the inverse of the obstacle
distance function

Γw(ξ) = 1/Γo = (R(ξ)/‖ξ − ξr‖)2p ∀ Rd \ ξr. (12)

This new distance function fulfills the condition for the three
regions as given in (2). The distance function Γw is now mono-
tonically decreasing along radial direction and reaches infinity
at the reference point, i.e., limξ→ξr Γ

w(ξ)→∞ (see Fig. 3).

B. Modulation Matrix

The modulation matrix, defined in (6), consists of the eigen-
value D(ξ) and basis matrix E(ξ). For inverted obstacles, the
diagonal eigenvalue matrix from (8) is a function of the inverted
distance function Γw(ξ).

Conversely, the basis matrix is constant along the radial
direction. It can be evaluated everywhere (including the interior
of a boundary) except at the reference point (ξ = ξr). Since the
reference direction from (3) is a zero vector, no orthogonal basis
is defined. However, the distance value Γw(ξr) reaches infinity,
hence from (8) we get that the diagonal matrix is equal to the
identity matrix

Γw(ξr)→∞ ⇒ D(ξr) = I. (13)

Using (6), it follows for the modulated dynamics at the reference
point:

M(ξr) = E(ξr)D(ξr)E(ξr)−1 = E(ξr)IE(ξr)−1 = I

⇒ ξ̇r = f(ξr). (14)

2In the classic obstacle avoidance case, this is of no use, since theoretically
the obstacle does never reach the boundary [3], and practically an emergency
control has to be applied in this case.
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Fig. 5. Dynamical system (left) is not modulated in front of the gap since the
Γ-function reaches infinity (right). The gap region Xg is the blue region. The
influence of the gap is limited by the blue half-circle around the center of the
gap ξc,g (black square).

Fig. 4. Smooth flow with full convergence toward the attractor (black star) can
be observed within any star-shaped wall with reference point ξr (black plus).
(a) Ellipsoid boundary. (b) Star-shaped boundary.

The influence of modulation approaches zero when reaching
the reference point. Hence the dynamical modulation is contin-
uously defined as can be seen in the the example environments
in Fig. 5.

Theorem 1 Consider a star-shaped enclosing wall in Rd with
respect to a reference point inside the obstacle ξr, and a bound-
ary Γw(ξ) = 1 as in (12). Any trajectory {ξ}t, that starts within
the free space of an enclosing wall, i.e.,Γ({ξ}0) > 1 and evolves
on a smooth path according to (6), will never reach the wall,
i.e., Γ({ξ}t) > 1, t = 0..∞ and converges toward an attractor
ξa ∈Xf , i.e., limt→∞ ξ → ξa. Proof: See Appendix B.

C. Guiding Reference Point to Pass Wall Gaps

In many practical scenarios, a hull entails gaps or holes
through which the agent enters or exits the space (e.g., door
in a room). The modulation-based avoidance slows the agent
down when approaching the boundary and does not let it pass
through such an exit. We introduce a guiding reference point ξg

for boundary obstacles to counter this effect. We assume convex
walls, and the robot size being smaller than the gap width. It is
assumed that gap is a priori known from a map.

In (14), it was shown that at the center of an inverted obstacle,
the influence of the modulation vanishes.

Let us define the gap region Xg enclosed by the lines connect-
ing the gap edges and the reference point ξr (see Fig. 5). The
guiding reference point is designed in the following manner:
close to the gap, the guiding reference point is equal to the

Fig. 6. For the navigation in a concave corridor (brown), the boundary can
be extended to be of star shape; see the yellow patches in (a). Alternatively,
the motion can be divided into partial boundaries, the blue, orange, and purple
rectangles. They each have a corresponding dynamical systems with attractors;
see the black stars (b). (a) Boundary extensions. (b) Consecutive dynamics.

position of the evaluation, hence no influence of the modulation.
Far away from the gap, the guiding reference point is equal to
the reference point; hence the wall has no influence. In between
the two regions, the guiding reference point is projected onto the
gap region Xg . This can be written as

ξg =

⎧⎪⎨
⎪⎩
ξ if ξ ∈Xg

argminξ̂∈Xg‖ξ − ξ̂‖ else if ‖ξ
c,g−ξ‖

‖ξc,g−ξr‖ > 1

ξr otherwise

with ξc,g the center point of the gap (see Fig. 5).

D. Concave Environments

The presented obstacle avoidance algorithm applies to star-
shaped environments. The extension of environments with vari-
ous concave obstacles to fulfill the constraints is described in [3].

Similarly, the presented method for inverted obstacles re-
quires star-shaped boundaries. A general concave wall can
be extended to meet the constraints [see Fig. 6(a)]. However,
this extension results in certain regions not being accessible
anymore, i.e., the yellow patches.

Alternatively, we propose to combine the modulation avoid-
ance algorithm with a high-level planner. The planner divides the
boundary into several subboundaries with corresponding local
dynamics. For this, we use the method to pass gaps in a wall as
described in Section IV-C to pass from one local environment
to the next one. The modulated DS can be summed according to
the local weights

wp
i (ξ) =

{
ŵp

i (ξ)/
∑

i ŵ
p
b (ξ) if

∑
i ŵ

p
i (ξ) > 0

ŵp
i (ξ) = 0 otherwise

with ŵp
i (ξ) = max (Γi(ξ)− 1, 0) .

The high-level planners, which decompose the environment
autonomously is part of ongoing research.

V. NONSMOOTH SURFACES

Human-designed environments often contain obstacles and
enclosing walls with nonsmooth surfaces, e.g., a table with
edges or a building with corners. An approximation with a
high gradient of these surfaces can lead to undesired results.
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Fig. 7. Variables for the evaluation of the pseudonormal n̂(ξ) of a nonsmooth
star-shaped obstacle are displayed for three surface tiles. Only the surface
reference point (cross) and the surface normal (red arrow) are visualized for
the other tiles. The angle ϕw is evaluated for each surface at the edge-point
closest to ξ.

On the one hand, a smoothing of the edges increases the risk of
colliding with them. On the other hand, an increased, smooth
hull conservatively increases the boundary region, and certain
parts of the space are not reachable with such a controller.

Moreover, the obstacle avoidance algorithm applied to a sur-
face with a high gradient can lead to a fast change of the flow.
Even though the trajectories are smooth, the curvature of the
flow can be high and induce fast accelerations. This can result
in dangerous behavior in the presence of humans or simply
exceed the robot’s torque limits. We propose an approach to
avoid obstacles with nonsmooth surfaces without smoothing the
boundary.

A polygonal obstacle consists of i = 1. . .Ns individually
smooth surface planes which form a star shape in d− 1 such
that

Xs
i = {ξ, ξ̂ ∈Xb, ∃ni : 〈ni, (ξ − ξ̂)〉 = 0}. (15)

A. Pseudonormal Vector

The normal to the surface of the obstacle is not defined
continuously. As a result, the modulated flow would not be
smooth.

We create a smoothly defined pseudonormal n̂(ξ). It is equal
to the normal on the surface of the obstacle. While far away
from the obstacle, the pseudonormal approaches the reference
direction, i.e.,

n̂(ξ) = ni(ξ) ∀ξ ∈Xs
i and lim

‖ξ−ξr‖→∞
n̂(ξ) = r(ξ). (16)

The pseudonormal is the weighted sum of the normals, with
the weights being evaluated as follows. At first the vector from
the closest edge point ps

i (Fig. 7) to the agent’s state is created

v∠
i (ξ) = ξ − ps

i with ps
i = argmin

ξ̂∈Xe
i

‖ξ − ξ̂‖ (17)

Fig. 8. Nonsmooth inverted obstacles representing rooms or boundary condi-
tions. (a) Nonsmooth obstacles. (b) Nonsmooth boundaries.

with Xe
i the set of all points at the edge of a surface tile i. This

vector is further projected onto the surface plane

êi(ξ)=
(
v∠
i (ξ)−〈ni(ξ), v

∠
i (ξ)〉ni(ξ)

)
sign〈v∠

i (ξ), ξ−ξr,si 〉.
The angle to the plane (Fig. 7) in the range [0, π] is evaluated as

ϕw
i (ξ) = arccos

( 〈êi(ξ), v∠
i (ξ)〉

‖êi(ξ)‖ ‖v∠
i (ξ)‖

)
sign〈ni(ξ), v

∠
i (ξ)〉.

(18)
The edge weight is evaluated as

w̃s
i (ξ) =

{(
π

ϕw
i (ξ)

)p
− 1 if ϕw

i (ξ) ∈ ]0, π]
0 otherwise

(19)

with the the weight power p ∈ R, a free parameter. A lower
weight power p results in an increased importance for the closest
polygon face compared to the other faces, we simply choose
p = 3. The final step is the normalization of the weights

ws
i (ξ) =

{
w̃s

i (ξ)/
∑

j w̃
s
j (ξ) if ξ ∈ Rd \Xs

i

1 otherwise.
(20)

The pseudonormal is evaluated as the directional weighted mean
(see Appendix A) of normal vectors of the surface tiles ni(ξ),
the weights ws

i , and with respect to the reference direction r(ξ).
The basis matrix from (7) is redefined for nonsmooth

surfaces as

E(ξ) = [r(ξ) ê1(ξ) .. êd−1(ξ)] (21)

with êi(ξ) the orthonormal basis to n̂(ξ). The resulting smooth
vectorfield can be observed in Fig. 8.

B. Inverted Obstacles

For an inverted obstacle (Section IV) the pseudonormal is
evaluated at the mirrored position ξmir. It is obtained by flip-
ping the current robot state ξ along the reference direction
r(ξ) = ξ − ξr onto the other side of the boundary (4)

ξmir = Γ(ξ)2 (ξ − ξr) + ξr. (22)

The mirrored position allows the evaluation of the distance
function, as described in Section V-A. Further, the inverted
obstacle is treated, as described in Section IV. This allows
avoiding nonsmooth obstacles and boundaries in Fig. 4.
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Theorem 2 Consider a polygon composed of Ns surfaces as
given in (15) or alternatively an inverted polygon, as described
Section V-B. Any trajectory {ξ}t, that starts in free space, i.e.,
Γ({ξ}0) > 1 and evolves on a smooth path according to (6), will
never reach the surface, i.e., Γ({ξ}t) > 1, t = 0..∞ and will
converge toward the attractor as long as it is placed outside all
obstacles, i.e., limt→∞ ξ → ξa ∈Xf . Proof: See Appendix C.

C. Implementation

Pseudonormals are useful for surroundings with sharp bound-
aries, for example, pieces of furniture with edges or maps of
buildings with sharp corners. These cases consist of polygons
with a small number of faces. They allow the evaluation of
the algorithm in real time. It is designed for scenarios with
obstacles known from previously learned libraries or a known
map retrieved at runtime, such as the tracker of [39].

Conversely, if the input data are a point cloud (e.g., Lidar)
or an obstacle mesh, the surface can be approximated using
a standard regression technique. The surface normal can be
obtained directly by taking the derivative or by learning the
normal at regression time [40].

VI. DYNAMIC ENVIRONMENTS

In changing environments with moving or deforming ob-
stacles the system is modulated with respect to the relative
velocity as

ξ̇ = M(ξ)
(
f(ξ)− ˙̃

ξtot
)
+

˙̃
ξtot. (23)

The local, relative velocity is summed up over all obstacles

˙̃
ξtot =

No∑
o=1

wl
o
˙̃
ξo (24)

with the dynamic weight being a function of the distance Γ(ξ)

wl
o =

wl
o∑

o w̃
l
o

with w̃l
o =

1

Γo(ξ)− 1
∀ Γo(ξ) > 1.

The relative velocity consists of the obstacle’s velocity ˙̃
ξvo and

deformation ˙̃
ξdo

˙̃
ξo =

˙̃
ξvo +

˙̃
ξdo . (25)

Note that avoiding dynamic obstacles is not only a modulation
of the DS, i.e., a matrix multiplication. This can result in the
velocity at the attractor being nonzero, even though the initial
dynamical system has zero value there: f(ξa) = 0.

For the rest of this section, we will assume the application to
each obstacle implicitly without using the subscript (·)o.

A. Moving Obstacles

The relative velocity of a moving obstacle is obtained simi-
larly to [41]

˙̃
ξv = ξ̇L,v + ξ̇R,v × ξ̃. (26)

Fig. 9. In order to comply with a velocity limit of the robot, while avoiding
a collision with an obstacle of velocity ξ̇, the modulated velocity ξ̇ might be
stretched only in normal direction to obtain the safe velocity command ξ̇s.

The linear velocity ξ̇L,v and angular velocity ξ̇R,v are with
respect to the center point of the obstacle ξc. The relative position
is ξ̃ = ξ − ξc.

B. Deforming Obstacle

Obstacles and hulls can not only move but they can also
change their shape with respect to time, e.g., breathing body for
a surgery robot. Conversely, the deformation of the perceived
obstacle can be the result of uncertainties in real-time obstacle
detection and position estimation.

The deformation velocity of an obstacle is evaluated as

˙̃
ξd = ξ̇L,d + ξ̇R,d × ξ̃d (27)

where the linear velocity ξ̇L,d and angular velocity ξ̇R,d are
evaluated on the surface position in reference direction, and ξ̃d =
ξ − ξb is the relative position with respect to the boundary point
(see Fig. 9).

The surface deformation should be explicitly given to the al-
gorithm whenever it is known. Alternatively, it can be estimated
from sensor readings, such as Lidar or camera.

1) Repulsive Mode: In many scenarios, the consideration of
the obstacle’s deformation is only of importance when it reduces
the robot’s workspace, and puts the robot at risk. It is sufficient to
consider the deformation only along positive normal direction.
For example for a circular object, we have

˙̃
ξd = ξ̇L,d =

{
ṙ n(ξ) ṙ > 0

0 otherwise
(28)

where ṙ is the rate of change of the circle radius.

C. Impenetrability With Respect to Maximum Velocity

Many agents have a maximum velocity they can move with,
further referred to as vmax. This limits the motion of obstacles
which an agent can avoid to

vn = 〈 ˙̃ξ,n(ξ)〉 < vmax as Γ(ξ)→ 1. (29)

When close to an obstacle, the agent must prioritize moving
away from the obstacle over following the desired motion. Since
the modulated velocity ξ̇, see (6), does not take into account
the maximal velocity, smart cropping needs to be applied. We
propose the following method, which prioritizes avoidance in
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Fig. 10. (a)–(c) Dynamic extension of the hull for an ellipsoid object with-
out margin and (d)–(e) a nonsmooth polygon object with constant margin.
(a) Reference inside. (b) Reference close. (c) Reference far. (d) Reference inside.
(e) Reference close. (f) Reference far.

critical situations but sticks to the initial DS as when safe

ξ̇s =

⎧⎪⎨
⎪⎩
vnn(ξ) + ve e(ξ) if 〈 ξ̇

‖ξ̇‖ ,n(ξ)〉 < vn

vmax

vmax ξ̇/‖ξ̇‖ else if ‖ξ̇‖ > vmax

ξ̇ otherwise

(30)

with ve =
√

(vmax)2 − (vn)2; see Fig. 9.
Theorem 3 Consider the dynamic environment with N obs

obstacles, which have a weighted local velocity ˙̃
ξtot, result-

ing from the obstacles’ movements and surface deformations,
defined in (24). An agent is moving in this space and has
a maximum velocity of vmax, further the obstacles’ surface
velocities are limited by (29). The agent which starts in free
space, i.e., Γo({ξ}0) > 1, ∀o ∈ N obs and moves according to
(30), will stay in free space for infinite time, i.e., Γo({ξ}t) > 1,
t = 0..∞ ∀o ∈ N obs.

Proof: See Appendix C. �

D. Reference Point Placement

1) Dynamic Extension of Hull: Clusters of more than two
convex obstacles do often not form a star shape. In such cases,
we propose to extend the hull of each obstacle such that they all
include a common reference point. The new hull is designed to
be convex for each obstacle, and hence the cluster is star-shaped.
The extended hull creates a cone that is tangent to the obstacle’s
surface and has the reference point at its tip (Fig. 10). Since the
clusters are star-shaped, there is a global convergence of the
vector field toward the attractor.

The extension of the surfaces can be done dynamically, as a
collision-free trajectory is ensured around deforming obstacles
(Section VI-B).

2) Cluttered Environments With Obstacles and Boundaries:
For obstacles which intersect with the boundary, the reference
point has to be placed inside the wall, i.e., Γb(ξ

r
o) < 1 (see

Fig. 11). This enforces all trajectories to avoid the intersecting
obstacles by moving away from the wall (counterclockwise

Fig. 11. Full convergence toward the attractor (black star) in an environment
of three obstacles intersecting with the boundary.

in this example). The boundary modulates them in the same
direction. Hence, there is full convergence of all trajectories
toward the attractor. This is true for a boundary-obstacle with a
positive (local) curvature

cb(ξ) > 0 ∀ ξ (31)

with the curvature given as

c(·)(ξ) = lim
Δξ→0

R(ξ)−R(ξ +Δξ)

Δξ

∀ξ ∈Xb, 〈Δξ, n(ξ)〉 = 0. (32)

VII. OBSTACLE AVOIDANCE WITH ROBOTS

The algorithm has so far been described for a point mass. It
is straightforward to extend this to control robots, which can be
approximated by a circle (e.g., drones, wheel-based platforms)
by creating a margin around all obstacles wide enough to account
for the shape of the robot. The method can also be extended to
higher dimensions and multiple degrees-of-freedom robot arms
by describing and evaluating the system (robot + obstacle) in
joint-space. This, however, requires representing the obstacle in
configuration space which is not always easy, especially when
the obstacle moves.

Alternatively, in the rest of this section, we introduce a
weighted evaluation of the desired dynamics along a robot arm’s
links to obtain a collision-free trajectory toward the desired goal
in Cartesian space.

A. Goal Command Toward Attractor

Consider a robot arm with end-effector’s position ξ. The
desired velocity toward the attractor is evaluated as described
in Sections III to VI and denoted as ξ̇. The goal command in
joint space is evaluated through inverse-kinematics as

q̇g = Ĵ†(q)ξ̇ (33)
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Fig. 12. Γ-field and desired direction in a multiobstacle environment as given
in (34).

where Ĵ(q) is the Jacobian of the robot arm with respect to
position only.3

1) Γ-Danger Field: The closer an obstacle is to the robot,
the more it is in danger to collide. Based on the Γ(ξ)-function
introduced in (2), we introduce a Γ-danger field with respect to
all N obs obstacles as

Γd(ξ) = min
o∈[1..N obs]

Γo(ξ). (34)

The field is displayed in Fig. 12 around two obstacles. This field
is used to evaluate the weights to continuously switch between
the goal command q̇g to the avoidance command q̇m.

B. Link Avoidance

The avoidance command q̇m ensures that each link is avoid-
ing the collision with the environment. To extend the obstacle
avoidance algorithm to a rigid body, we introduce NS section
points ξSl,s for each link l and s ∈ [1..Ns]. The dynamical system
is evaluated at each section point and coupled with a section
weight wS

s . The section point weight wS
s increases the lower the

Γ-danger value (see Appendix C).
1) Rigid Body Dynamics: The linear and angular avoidance

velocity for link l are obtained as

vL =
NS∑
s=1

wS
s ξ̇

S
l,s and

ωL =
NS∑
s=1

wS
s (ξ

S
l,0 − ξSl,s)×

(
vS
s − vL

)
(35)

where ξSl,0 is the position of the root of a link l, and ξ̇Sl,s is the
dynamical system-based avoidance evaluated as described in in
Section III–VI. A single link avoiding a circle can be seen in
Fig. 13.

3The inverse of the Jacobian J†(q) is obtained through the Moore–Penrose
pseudoinverse.

Fig. 13. Resulting linear velocity vL and angular velocity ωL for a rigid body
with to sections points.

2) Joint Modulation: The desired joint avoidance command
is obtained through inverse kinematics as

q̇m = J†(q, ξSl,0)

[
vL

ωL

]
(36)

where J(q, ξSl,0) is the Jacobian up the root of the link l, i.e., the
position of the section point ξSl,0.

C. Evaluation Along the Robot Arm

The evaluation is performed by iterating over all NL links,
starting from to base of the robot arm. At each iteration, the joint
control q̇c of all links which are part of the kinematic chain are
updated, i.e., if the evaluation is performed for link l, the joint
control are updated for q̇c

i ∀i ≤ l.
The evaluation is weighted along with the link to ensure

collision avoidance of all links while trying to follow the goal
command q̇g . The link weights wL

l are further described in
Section Sec. E2.

1) Initial Joint Control: The joint control is initialized based
on the goal control from (33) as

q̇c ←
⎛
⎝1−

NL∑
l=1

wL
l

⎞
⎠ q̇g. (37)

The first element of the joint command is then updated based
on the avoidance velocity obtained in (36) as

q̇c
[1] ← q̇c

[1] + wL
1 q̇

m
[1]. (38)

2) Joint Control Correction: As an effect of influence the
obstacle avoidance of each link, the obtained control command
q̇c differs from the ideal goal command q̇g . This difference is
obtained at link l as

vΔ = Ĵl(q)
(
q̇g
[1:l] − q̇c

[1:l]

)
∀ l > 1 (39)

where q̇c
[:l] is the current control command, evaluated up to link

l − 1, and Ĵl(q) is the arm Jacobian with respect to position up
to link l.

The joint speed of link l which would best account for this
difference can be evaluated as

q̇Δ = 〈ωΔ, Iω〉 with ωΔ = vΔ × IL (40)
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Fig. 14. Robot arm with three links (NL = 3), which each containing three
sections points (NS = 3) is surrounded by two obstacles. The blue arrows are
the goal velocity obtained (only evaluated at the joints), and the red arrows are
the weighted avoidance velocities. The direction of joint rotation Iωl is pointing
out of the plane.

where Iω is the direction of rotation of the joint actuating link
l4 and IL is the direction along with the link, i.e., pointing from
one joint to the next. The variables can be observed in Fig. 14.

3) Joint Control Update: The velocity of each joint is eval-
uated one by one, starting at the joint closest to the base of
the robot toward the end-effector (see Algorithm 1). The joint
command q̇c is first updated by applying the correction control
from (40) to the current joint l as

q̇c
[l] ← q̇c

[l] + q̇Δ
l−1∑
i=1

wL
i ∀ l > 1. (41)

The modulation command q̇m from (36) is then applied to all
underlying joints

q̇c
[1:l] ← q̇c

[1:l] + wL
l q̇

m
[1:l] ∀ l > 1. (42)

This is executed iteratively for all joints l > 1.

D. Validation in Simulation

We applied the algorithm to two scenarios with planar robotic
arms (Fig. 15). The scenario in Fig. 15(a) was chosen similar to
the one presented in [31]. Our approach can avoid obstacles in
a similar setup without a navigation function.

The scenario in Fig. 15(b) includes a more complex robot with
three links. Additionally, the skew placement of the obstacle and
the position of the start end goal point require the robot to actively
go around the obstacle guided by the reference point (see Fig. 12
for the full DS).

VIII. COMPARISON ALGORITHMS

A. Qualitative Comparison

We have selected multiple time-invariant, local obstacle
avoidance algorithms for qualitative comparison with the pre-
sented method Table I. The navigation functions, Lyapunov QP,
sphere-world QP, and danger fields all rely on critical tuning
parameters. This is a Lyapunov function for the Lyapunov QP,

4We assume single-degree-of-freedom joints.

Algorithm 1: Joint Control Command for a Robot Arm.

Input: NL, NS , f(ξ), obstacle environment
Output: q̇c

1: ξro ∀o ∈ 1..N obs {update dynamic obstacles as in
Section VI}

2: q̇g ← (J(q))†ξ̇ {compute goal command as in (33)}
3: for l = 1toNL do
4: for s = 1toNS do
5: Γ(ξs,l) {compute dangerfield as in (34)}
6: wΓ {compute danger weight as in (55)}
7: end for
8: wL

l {compute link weight as in (57)}
9: end for

10: q̇c ← (1−∑l w
L
l )q̇

g {initialize control command}
11: q̇c

[1] ← q̇c
[1] + wL

1 q̇
m
[1]

12: for l = 2toNL do
13: if wL

l > 0 then
14: for s = 1toNs do
15: wS

s {compute section weight as in (58)}
16: end for
17: vL

l , ωL
l {compute avoidance velocities as in (35)}

18: q̇m
l {compute modulation command as in (36)}

19: q̇c
[1:l] ← q̇c

[1:l] + wL
l q̇

m
[1:l]

20: end if
21: vΔ ← Jl(q)(q̇

g
[1:l] − q̇c

[1:l])

22: ωΔ ← vΔ × IL

23: q̇Δ ← 〈ωΔ, Iω〉
24: q̇c

[l] ← q̇c
[l] + q̇Δ

∑
i w

L
i

25: end for

and parameters for the diffeomorphic transformation or naviga-
tion function for the other three methods. While the parameters
and functions can be obtained through manual tuning, no solu-
tion exists to set them in real-time automatically. Hence, these
methods cannot be easily applied to dynamic environments.

Navigation functions and the diffeomorphic transform are
defined globally. Their tuning parameter depends on the dis-
tribution of the obstacles all across space. Two obstacles close
together far from an agent will determine the possible tuning
parameters and influence the avoidance behavior. As a result,
the methods cannot be transferred easily to cluttered dynamic
environments.

While other methods have already allowed navigation inside
walls, this has not been done in combination with proven star-
shaped world convergence and dynamic surroundings.

B. Quantitative Comparison

For a quantitative comparison, we chose algorithms that can
function in cluttered, dynamic environments and can handle
external hulls (see Table I).

The method for the modulation algorithm in dynamic environ-
ments is presented in this article (referred as Dynamic during this
section). It is compared to [36], which uses modulation matrix
based on an orthogonal decomposition matrix E(ξ) (referred as
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TABLE I
PROPOSED DYNAMIC OBSTACLE AVOIDANCE IS COMPARED TO DIFFERENT STATE-OF-THE-ART METHODS

The last three items refer to the main contributions of this work.

Fig. 15. Time sequence of robot arms navigating in two different environ-
ments. (a) 2 DoF arm. (b) 3 DoF arm.

Orthogonal) and the potential field algorithm [22] (referred to
as Repulsion).

The comparison is made in a simulated environment (Fig. 16).
Two ellipse-shaped obstacles randomly change shape, and the
movement is inspired by random walk. The combined maximum
expansion and obstacle’s velocity are lower than the maximum

Fig. 16. Three snapshots of one experimental run are placed from left to right.
The obstacles are randomly initialized and move according to a random walk.
One obstacle moved from the right to the left, while the other one was stationary.
The three algorithms start at the same randomly chosen position and move toward
the attractor.

TABLE II
OUTCOME OF THE 300 TRIALS RUNS WERE EITHER FULL CONVERGENCE,

COLLISION WITH AN OBSTACLE OR GETTING STUCK IN A LOCAL MINIMUM

speed of the agents of vmax = 1m/s. The three algorithms are
given the same attractor as a goal. They start at the same time
and encounter the same environment.

The Dynamic algorithm is observed to have the highest rate of
convergence (Table II) resulting from the increased environment
information through the reference point. The Repulsion has a
preferable behavior on avoiding collisions because of its con-
servative behavior around obstacles (moving far away and only
approaching them slowly). This influences the distance traveled
and the time needed to reach a goal (Table III). The mean of
the velocity is lower for the Dynamic algorithm. This is a result
of no tail effect behind the obstacles (see Section III-G). The
variance of the velocity is similar for the three algorithms.5

5The source code of the implementation is [Online]. Available: https://github.
com/epfl-lasa/dynamic_obstacle_avoidance

https://github.com/epfl-lasa/dynamic_obstacle_avoidance
https://github.com/epfl-lasa/dynamic_obstacle_avoidance
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TABLE III
MEAN AND THE STANDARD DEVIATION (AFTER THE ±) ARE COMPARED FOR

THE THREE ALGORITHMS FROM THE 54 TRIALS, WHERE ALL THREE AGENTS

CONVERGED

The metrics of distance (d), duration of the Run (t), the mean velocity (v̄), and the
standard deviation of the velocity (σv) are listed.

Fig. 17. Picture of the semiautonomous wheelchair real (left) and the simula-
tion rendering including an operator (right).

C. Computational Complexity

The presented algorithm is closed-form, whereas the matrix
inverse is the most complex computation. Since it is applied to all
obstacles, the complexity follows as O(d2.4N obs), a function of
the number of dimensions d and the number of obstacles N obs.
It had an average time of 3.48 ms on a computer with 8 Intel
Core i7-6700 CPU @ 3.40 GHz.

This is more complex than the Orthgonal, where the matrix
multiplication is the most complex operation. The complexity
follows as O(d2 N obs). This reflects in the slightly faster evalu-
ation time of 2.84 ms.

The potential field is the simplest of the three algorithms, with
the norm being the most complex operation and a complexity
O(dN obs). It has the lowest evaluation time of 1.75 ms.

The search for the optimal reference point is the compu-
tationally most extensive calculation because it requires the
(iterative) closest-distance evaluation between obstacles. The
Python library shapely6 was used for the implementation, and
an evaluation time of 5.14 ms was obtained.

IX. EMPIRICAL VALIDATION

The empirical validation is performed with the mobile robot
QOLO [42], see Fig. 17; first in simulation and then on a real
robot platform. QOLO, a semiautonomous wheelchair, is de-
signed to navigate in pedestrian environments and indoors. This
platform is hence suited to test our algorithm’s ability to avoid
moving obstacles (pedestrians) and nonconvex obstacles (walls,
indoor furniture) containing sharp edges (tables, shelves). In all

6[Online]. Available: https://github.com/Toblerity/Shapely

Fig. 18. Two static office environments with two tables in a rectangular room.
The center table divides the room into two passages in (a). In (b) one of the
passages is blocked by a static person. Convex expansion of the hull around the
reference point (black cross) ensures convergence toward the attractor (black
star). The path followed by the agent is visualized in red. (a) Office with two
passages. (b) Office with passage at side.

our experiments, we assume that QOLO has information about
the goal, i.e., the attractor ξa of our nominal DS.7

A. Static Environment

We task QOLO to navigate in an office-like environment. The
room is a square (5 × 5 m), modeled as a boundary obstacle.
Further, two tables are located in the room, one at the side
and one at the center. The robot starts from the bottom left,
and the attractor ξa is placed at the opposite side of the room
(illustrated with a star). All objects, including the wall, are static
and known a priori, and the localization is performed using the
SLAM algorithm. The robot evaluates the modulated avoidance
in real-time. We run the following two scenarios:

1) QOLO is in the room, and there are two possible paths
to go around the center table. The dynamical system is
split by the obstacle at the center [Fig. 18(a)]. The robot
chooses its preferred trajectory at runtime.

2) In addition, there is a (static) person in the room, which
blocks the center passage.
The reference point of the obstacles is automatically
placed inside the wall. The robot finds its path around
the obstacles [Fig. 18(b)].

B. Dense Crowd (Simulation)

The robot is navigating in a corridor within a dense, simulated
crowd. The motion of the crowd is created according to [43].
Two hundred people are moving uniformly along the 6m wide
corridor, either in the same or opposite direction as the robot
(see Fig. 19).

QOLO is tasked to travel from one end of the corridor to
the other. It is guided by the attractor of the nominal DS. All
pedestrians are modeled as circular obstacles with radius of
0.6 m [Fig. 20(a)].

At each timestep, the problem is reduced to avoiding a subset
of the pedestrians. Due to the crowd’s density, the robot could

7A video of the experiments is [Online]. Available: https://youtu.be/WKso-
wu68v8

https://github.com/Toblerity/Shapely
https://youtu.be/WKso-wu68v8
https://youtu.be/WKso-wu68v8
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Fig. 19. QOLO moving in a crowd.

Fig. 20. Environment with many agents (left) is reduced to a scenario with 10
obstacles and an enclosing hull (right). (a) All crowd agents. (b) Local Obstacle
Hull.

realistically perceive only a subset of the pedestrians in real-time.
The number of perceived people is set to N c = 10. The rest of
the people are hidden behind a virtual, circular wall. The center
of the circular wall ξc,w is displaced from the position of the
robot ξQ based on the remaining obstacles

ξc,w = ξQ +

N obs∑
i=Nc+1

ξci − ξQ

‖ξci − ξQ‖e
−(‖ξci−ξQ‖−rp−rQ) (43)

where i is iterating over the list of the obstacle which are ordered
based on their distance to the robot. The displacement factor is
with respect to the radius of each pedestrian, rp =0.6m, and the
robot radius, rQ =0.5m.8

The radius of the hull is chosen such that the next closest
obstacle N c + 1 is fully within the hull. The resulting envi-
ronment has a dynamic hull with changing center-position and
radius (Fig. 20).

Reducing the environment to only sphere obstacles decreases
the computational time since there is a closed-form solution for
the closest distance between two spheres. The evaluation on
ROS19 and Python 2.7 run at around 200 Hz on a Up Board:
Intel Celeron N3350 with 2.4 GHz (CPU) and 8 GB of RAM.
The number of nearby obstacles (including the wall) was eleven,
while the wall remained far from the agent, it helped guide the
robot around the local crowd (see Section VI-D2). This is done

8For a real-world implementation sensory distance measurements in the hor-
izontal plane can be used to create the virtual circular wall and its displacement,
since the detection of people is still a time intensive task.

9[Online]. Available: https://www.ros.org/

Fig. 21. QOLO agent is moving in parallel (red) and opposite direction (blue)
to the crowd. When the robot moves with the crowd, the density of the crowd has
a negligible effect. When the robot moves in the opposite direction, the denser
the crowd, the larger the cumulative distance (D) and mean velocity (V), as well
as time (T), needed to reach the end of the corridor. The standard deviation of
the velocity (V Variance) increases for dense crowds with counterflow.

by placing a reference point inside the wall if a crowd cluster is
touching the wall [see small cluster at the bottom in Fig. 20(b)].
Further, fast contraction of the boundary can happen when the
local crowd density is high. This forces the obstacle to stay away
from surrounding obstacles.

1) Quantitative Analysis: We evaluate the effect of the crowd
size on the time it takes for the robot to travel through the corri-
dor. The crowd moves along the (infinite) corridor at an average
velocity of 1m/s. The simulation runs with a steady-state crowd
flow. QOLO is tasked to move in the same or opposing direction
crowd’s flow with the desired velocity of 1 m/s.

We assess the time, speed, and distance traveled by the robot
when moving with and opposite to the flow, see Fig. 21. When
moving with the flow (parallel flow), the crowd has no significant
effect on the distance traveled by the agent or the velocity. When
moving against the flow of the crowd, a decrease of the robot’s
velocity can be observed for crowds denser than 20 agents per
1000 square meters. (No effect on the crowd was observed since
only a single robot was moving against a large crowd.) The
distance traveled increases significantly for densities above 100
agents per 1000 square meters. As a result, the average time
needed to reach the goal more than doubles for a crowd size of
100 people compared to 2 people.

In counterflow scenarios, the standard deviation of the flow
increases. This results from situations where the robot has to
slow down or stop to avoid the upcoming agents.

C. Proof of Concept: Outdoor Environment

A qualitative proof of concept was performed in an outdoor
environment. We brought the QOLO robot to the center of

https://www.ros.org/
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Fig. 22. Desired path of the robot in the outdoor environment is the direct line
from the initial position of the robot (right) to the target position on the left.

Fig. 23. (a) Camera and the LIDAR of the robot are interpreted by the (b)
detector, which is used for the obstacle avoidance algorithm. (a) Camera view.
(b) Detector interpretation.

Lausanne, Switzerland.10 The robot was tasked to travel back
and forth across a small marketplace (Fig. 22). The location is
restricted to pedestrians only, and a total of six streets meet at the
crossing. This results in a large diversity in both the pedestrians’
speed and direction of movement. The robot’s controller is
initialized with a linear DS to reach a goal 20-m away from
the onset position. Pedestrians are detected with a camera and
Lidar-based tracker developed by Jia et al. [39]. The output of
the tracker is displayed in Fig. 23. Recordings were taken on
Saturday morning when the market was ongoing, and the crowd
had a high density.

The nonholonomic constraints of QOLO are taken into ac-
count by evaluating the dynamical system 0.53 m in front of the
center of the wheel-axes. The linear command of the robot is
the velocity part in the moving direction. The angular velocity
follows the perpendicular part of the velocity. These velocities
are provided to the low-level controller of the robot.

The geometry of QOLO is taken into account by placing a
margin of 0.5 m around each pedestrian.

A total of five runs were executed. The robot reached its goal
autonomously without intervention. The driver reported high
angular acceleration during parts of the trip.

10Approval was obtained from the EPFL Ethics board and the police of
Lausanne city. A driver was on board the robot during the experiment. He could
start and stop at all times. A second experimenter was watching the scene and
verified the output of the tracker. This was necessary in case the detector/tracker
disfunctioned.

Fig. 24. Crowd-density is highly varying during the five runs.

Post-hoc analysis of the video recordings revealed that the
crowd density varied with a mean between 150 and 260 people
per 1000 square meters (Fig. 24). The time to complete the runs
ranged from 115–150 s. No correlation was observed between
the density of the crowd and the time taken to reach the goal.
We expect this to result from external factors influencing the
run, such as the speed and direction of the crowd.

We see this as a successful proof-of-concept of the obstacle
avoidance algorithm in a real crowd scenario. The crowd motion
was more complex than the streamline simulation, as people
would come from all directions and would not group in a uniform
flow. Moreover, the crowd included diverse pedestrians, from
families with small children to elderly people.

X. DISCUSSION

In this article, we have introduced a dynamical system-based
obstacle avoidance algorithm. The modulation-based approach
has a theoretical proof of convergence and can be applied
to higher dimensional space. The implementations presented
in this work focus on collision avoidance in two dimensions,
such as navigation of mobile robots and obstacle avoidance for
simplified robot arms.

The inverted obstacle has shown to be a great representation
of workspace boundaries of mobile robots, such as walls of a
room or the local window in dense crowd navigation. These
boundaries could be interpreted as control constraints similar
to CBFs. Recent works have used such control barrier function
in the context of safe learning by demonstration [44], [45] or
reinforcement learning [46]. Other than existing methods, we
propose a closed-form solution for star-shaped barriers.

Since many human-made environments contain nonsmooth
surfaces (e.g., tables, corners of rooms), the solution for provid-
ing a smooth flow without extending the hull has shown suitable
for practical implementations.

The concept of dividing dynamical systems into direction and
magnitude and the presented method summing vectors to avoid
local minima has been used throughout: 1) to create a smooth
pseudonormal for polygon obstacles and walls and from that a
smooth flow in their presence; 2) to sum the flow created by
several obstacles without creating local minima; and 3) to solve
the optimization problem to find the closest distance for pairs of
obstacles.

Finally, the algorithm has been successfully applied to a
nonholonomic robot in a static indoor environment and dynamic
outdoor crowds.
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A. Scalability and Speed

The implementation used for the experiments on QOLO
was running on Python 2.7. Note that already the update to
Python >3.6 gives around a 1.5-speed improvement. Addition-
ally, switching to a compiled language like C++ can increase the
speed by a factor of around 10 [47]. The proposed algorithm can
run at a frequency of >1 kHz onboard of a mobile robot. This
is well above the human reaction time of around 250 ms.

The bottleneck of the current implementation is the image
recognition/tracking since it was only able to run at an average
frequency of around 5 Hz. This is due to the computationally
heavy evaluation of the deep-neural networks used for obstacle
recognition. Nevertheless, we believe that the approach of sep-
arating perception and motion-planning is favorable, supported
by current trends in self-driving cars and other autonomous
vehicles [48], [49].

B. Contribution

The proposed method adds value to the current state of the
art, not for global path planning but for reactive obstacle avoid-
ance with convergence proofs. The modulation-based avoidance
algorithm fully converges in (local) star-shaped environments
toward the desired attractor ξa. The behavior is similar to ap-
proaches using potential artificial fields. However, the presented
approach does not require finding and deriving an artificial po-
tential function, but the modulation directly outputs the desired
velocity.

Compared to other closed-form and QP-based obstacle avoid-
ance algorithms, our method does not require any tuning of
critical parameters for its convergence, nor the finding of a
Lyapunov candidate function. All parameters presented in this
article can be chosen within the defined range, and theoretical
convergence is ensured.

In the presented article (and initially introduced in [3]), we
presented several methods of how to place the reference point
(i.e., tune its position). Even though its position is critical for
convergence, it is known for star worlds.

1) Convex obstacles: The reference point can be placed any-
where within the obstacle, i.e., ξr ∈Xi.

2) Star shapes: The reference point has to be placed within
the kernel of the obstacle. Most of the time, this is just
the geometrical center of the obstacle. For polygons, an
algorithm to find the kernel has been described in [38].

3) Intersecting convex obstacles: If several convex obstacles
intersect and form a star shape, the reference point can be
placed anywhere at the center of all intersecting obstacles
o, i.e., ξr ∈Xi

o ∀o.
If the convex obstacles do not form a star-shape or are
intersecting with the boundary, the hull can be extended
dynamically, as described in Section VI-D.

The placement of the reference point only becomes challeng-
ing when obstacles merge or separate dynamically. While we
propose approximations for many cases (see Appendices-A-2
and A-3), we do not provide a solution for all scenarios.

To the best of the authors’ knowledge, there currently exists
no closed-form method to generate a flow around merging

and dividing obstacles, which has convergence guarantees. The
placement of the reference point for such dynamic scenarios is
ongoing research.

C. Future Work

Future work can extend the proposed work in the following
areas:

1) Low-Level Controller: The low-level controller used in
crowd navigation displaced the evaluation point away
from the center of the robot. This resulted in an increased
(conservative) margin around the robot. The way the shape
of the robot is considered in the algorithm should be
improved.

2) Environment Recognition: The update rate of the (deep-
learning-based) tracker was approximately 5 Hz, while the
present avoidance algorithm ran at a frequency of 50 to
100 Hz. The obstacle avoidance was often evaluated with
old environment information (but updated robot position).
An intermediate estimator could predict how the crowds
move in-between.

3) High-Level Planning: The combination of the fast obsta-
cle avoidance controller with slower planning algorithms
could allow to handle more complex environments, i.e.,
including the avoidance of surrounding (nonstar-shaped)
environments.

4) Evaluation in High Dimensional Space: The experimental
implementation is executed on an autonomous wheelchair
(a 2-D scenario). However, this work provides a theoretical
solution, which can be applied to 3-D and higher dimen-
sional spaces. The next step will be the implementation
and evaluation in a higher dimensional space.

XI. CONCLUSION

This article presents a dynamical system-based algorithm for
local navigation under convergence constraint. The work has
provided and tested the solution for local crowd navigation.
It ensures certain convergence constraints to not only safely
navigate but also reach the goal in local scenarios. The advantage
of the method comes from the low complexity and speed of the
algorithm. Furthermore, tuning free convergence is obtained in
star-world scenarios. This will allow to scale to higher dimen-
sions and transfer to various scenarios.
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APPENDIX

A. Directional Weighted Mean

The weighted summation of vectors can result in a zero-sum
(e.g., two vectors opposing each other with equal weight) and
lead to undesired local-minima of dynamical systems.
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Fig. 25. Various directions (here three) are described with respect to a (a) basis
direction r0. The directions are transformed to the (b) direction-spaceK, where
the weighted mean, κ̄, is obtained. (a) Three initial vectors. (b) Direction-space.

We extend here the directional weighted summing introduced
in [3] for more general application. It ensures that the summed
vector field is free of local minima

{v ∈ Rd : ‖v‖ = 1}. (44)

The transformation into direction space K is given by

K = {κ ∈ Rd−1 : ‖κ‖ < π}. (45)

The direction space is with respect to a base vector b which is
the first column of the orthonormal transformation matrix B.
This allows the transformation into the new basis

v̂i = BTvi. (46)

The magnitude of the transformed vector in direction space is
equal to the angle between the original vector and the reference
vector. The transformation of the initial vectorvi in the direction
space is

κi(b) = k(vi,b) =

{
arccos

(
v̂i[1]

) v̂i[2:]

‖v̂i[2:]‖ if v̂i[1] �= 1

0 if v̂i[1] = 1.
(47)

The mean is evaluated as a function of the weight wi of all
Nv vectors

κ̄ =

Nv∑
i=1

wiκi. (48)

The mapping into original space is evaluated as

v̄(κ̄) =

⎧⎪⎨
⎪⎩
B
[
1 0 .. 0

]T
if ‖κ̄‖ = 0

B
[
cos (‖κ̄‖) sin (‖κ̄‖) κ̄

‖κ̄‖
]T

otherwise.
(49)

1) Intuition: In the 2-D case, this hypersphere is a line that
represents the angle between the initial DS f(ξ) and the mod-
ulated DS ξ̇. It has a magnitude strictly smaller than π, the
directional space is a vector space, where the weighted mean
is taken (see for the 3-D case in Fig. 25).

Theorem A Consider a unit vector b as the basis for the
projection given in (47) and the corresponding reconstruction
function defined in (49). The resulting transformation of unit
vector k(v,b) : {v ∈ Rd \ −b : ‖v‖=1} → K defined in

(45) is a bijection and the basis vector projects to the origin,
i.e., b→ 0.

Proof: The proof is divided into three parts as follows: (I)
Showing that transformation and reconstruction are the inverse
functions of each other, (II) any unit vector is transformed to the
direction space K, and (III) is reconstructed to a unit vector.

(I) Inverse Functions: To be the inverse functions, applying
one after the other onto a vector, must results in the original
vector. (Vectors b will be treated separately below).

Let us apply the forward transformation based on (46) and
(47) to a unit vector v1. It can be summarized to

κ(b) = arccos (〈b,v1〉) B̂Tv1

‖B̂v1‖
(50)

with B̂ the matrix B without the first row.
We apply it to a single vector, hence the corresponding weight

isw1 = 1. From (48), we get κ̄ = κ1. The reconstruction follows
with (49):

v̄ = B

[
cos (‖κ̄‖)

sin (‖κ̄‖) κ̄
‖κ̄‖

]
= B

⎡
⎣ cos (arccos (〈b,v1〉))

sin(arccos(〈b,v1〉))(B̂)Tv1

‖(B̂)Tv1‖

⎤
⎦

= B

⎡
⎣ 〈b,v1〉(

B̂
)T

v1

⎤
⎦ = B (B)T v1 = v1

by using

sin(arccos (〈b,v1〉)) =
√
1− 〈b,v1〉2

=
√
‖Bv1‖2 − 〈b,v1〉2 = ‖

(
B̂
)T

v1‖.

For the case that v1 = b, we get from (47) that κ̄ = κ1 = 0.
And with (49), we get v̄(κ̄) = b, i.e., the original vector.

Hence for all cases, the transformation is bijective.
(II) Transformation Domain: From definition of the transform

in (47), the maximum magnitude is the arccos, which is ‖κi‖ <
π. Hence it lies in the domain of (45). (The magnitude π is only
reached for a vector−b, which is excluded from the transform).

(III) Reconstruction Domain: From the inverse transform
(49), we have that norm of any transformed vector ‖v̄(κ̄)‖ = 1,
this follows from the fact that B is orthonormal. As a result they
all lie in the domain (44). �

2) Pairwise Closest Distance in Direction Space: The direc-
tional space can be used for gradient descent to find the closest
distance between two (convex) obstacles. This is done by moving
along the surface of the obstacle in direction space. Since the
direction space is of dimension d− 1, finding the closest point of
each obstacle has only 2(d− 1) degrees of freedom (instead of
2 d in the Cartesian space). The problem converges to the global
minimum when the points start on the line which connects the
two center points.

The optimization problem is given as

min
Φ

f b(Φ) with f b(Φ) = ‖ξb1(φ1)− ξb2(φ2)‖, Φ =

[
φ1

φ2

]
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Fig. 26. Minimum distance problem for a rectangular object (with margin)
and an ellipsoid. The boundary-reference-point which corresponds to the closes
point is marked in red (a) and the corresponding gradient descent problem in
direction space (b). (a) Minimum Distance. (b) Value Function.

Fig. 27. Individual Γ-function from the obstacle in (a) and (b) are summed
as described in (Appendix-A-3). The resulting value function (c) is used for the
angle based gradient-descent.

where the ξbi (φi) denotes the boundary point in the direction
φi for the obstacle i with respect to its reference point ξri . The
direction space of each obstacle is created such that the null-
direction points toward the other obstacles center. An example
is visualized in Fig. 26.

3) Intersecting Obstacle Descent: Two intersecting obsta-
cles need to share one reference point, which lies within both
obstacles. The simplification of the problem to surface points
only is not of use anymore. Hence, the optimization problem is
evaluated in Cartesian space to find a common point that lies
inside of the two obstacles’ boundaries

min
ξ∈Xb

1∩Xb
2

f i(ξ) with f i(ξ) =
Γb

Γb − Γ1(ξ)
+

Γb

Γb − Γ2(ξ)

with Γb the base distance value, i.e., where the value function
reaches infinity. It is chosen slightly larger than the Γ-value on
the surface, we simply choose Γb = 1.1. The step size can be
optimized based on the gradient. The optimization problem is
convex, and points starting within the intersection region will
stay inside due to the infinite repulsion at the boundary asΓ→ 1.
The value function of two ellipses can be found in Fig. 27.

4) Closest Distance for Mixed Environments: The above
method for gradient descent in directional space to find the
closest distance between two objects, can be applied to an
object-boundary pair, if obstacle’s curvature co is larger than
boundary’s curvature cb at any position

co(ξ1) < cb(ξ2) ∀ ξ1, ξ2 (51)

with the local curvature being defined in (32).

Note that for noncircular obstacles, the condition might lo-
cally not hold mainly if the space contains polygon obstacles
with local flat regions (c = 0). This can lead to a locally nonop-
timal solution when placing the reference point based on the
closest distance.

B. Proof of Theorem 1

1) Applicability of General Proofs: In [3] convergence has
been proven for star-shaped obstacles. The proof was developed
based on the distance functionΓ(ξ). Due to inverting the distance
function for enclosing wall obstacles and a continuous definition
of the modulation, the proof of star-shaped obstacles applies to
the case of enclosing walls.

2) Continuity Across Reference Point: In Section IV-A the
inverted distance functionΓw(ξ)was not defined at the reference
point, as it reaches an infinite value. The continuous definition
for the eigenvalue is a unit value, i.e., λe(ξr) = λr(ξr) = 1, it
follows that the diagonal matrix is equal to the identity matrix
D(ξr) = I . As shown in (14): we get

ξ = ξr → ξ̇ = EDE−1f(ξr) = EIE−1f(ξr) = f(ξr)
(52)

that is, no modulation of the initial DS. In fact, this is
equivalent to the case far away for a classical obstacle with
lim‖ξ−ξr‖→∞ Γo(ξ)→∞.

Even though the basis matrixE(ξ) is not defined at ξr, the DS
is continuously defined across this point since the modulation
has no effect.

The trajectory that traverses the reference point ξr of the
inverted obstacle corresponds to the trajectory that gets stuck
in a saddle point for a common obstacle. As a result, there is full
convergence for the inverted obstacles. �

C. Proof of Theorem 2

We show first that the modulation has full rank and hence that
the dynamics does not vanish outside the attractor and that it is
smooth.

1) Full Rank: The basis matrix from (21) has full rank every-
where outside of the obstacle, if the following condition holds:

arccos (〈r(ξ), n̂(ξ)〉) < π/2. (53)

The angle between the normal to each surface i, ni(ξ) and the
reference direction r(ξ) can be evaluated by defining an vector
ñi(ξ) = ni(ξ) +

∑d−1
j=1 k

e
i ej(ξ) with 〈ej(ξ), r(ξ)〉 = 0, kei ∈

R such that ps
i (ξ) + ñi(ξ) intersects with ξr + krr(ξ) at qs

i (ξ)
with kr ∈ R (Fig. 28).

This allows to create a triangle spanned by the lines ξ, ps
i (ξ)

and qs
i (ξ), colored in blue in Fig. 28. Using the associative law

of the dot product, the geometry constraint of the blue triangle
and (19), the maximum angle results in

〈ni, r〉 = 〈ñi, r〉 ≥ 〈ξ − ps
i , r〉 ≥ 0 ∀wi(ξ) > 0. (54)

Hence the directional transformation of (47) results in ‖κi‖ <
π/2‖, ∀wi(ξ) > 0. Using additionally the triangle equality
for vectors: ‖κ1 + κ2‖ ≤ ‖κ1‖+ ‖κ2‖ applied to all surface
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Fig. 28. Visualization of variables used for the weighted directional mean.

directions, it follows with (48) that:

‖κ̄‖ = ‖
Nv∑
i=1

wiκi‖ ≤
Nv∑
i=1

wi‖κi‖

≤
(

Nv∑
i=1

wi

)
‖ max
i with wi>0

κi‖ ≤ π

2
.

Since the basis vector of the directional mean is r(ξ), with (49)
condition (53) holds true.

2) Smooth Vector Field: The continuous extension across the
reference point is defined in Appendix -2 and applicable, too.

The reference direction r(ξ) and the distance function Γ(ξ)
does not have any other discontinuity.

The pseudonormal n̂(ξ) is smoothly defined across space.
Even in the case when the edge point with the minimum is
switching (17), no discontinuity occurs since the angle will stay
the same due to the flat surface.

3) Applicability of General Proofs: Since we have a smooth
field of normal vectors n(ξ), we further need to define any
smooth distance function which decreases its value with increas-
ing distance. The two properties are sufficient to comply with
the proof of Appendix-B �

D. Proof Theorem 3

As an agent approaches the surface of an obstacle, the im-
portance weight from this obstacle is approaching one, i.e.,
limΓô(ξ)→1 wô = 1, see (VI). It follows with (24) that the relative

velocity is ˙̃
ξ =

˙̃
ξtot =

˙̃
ξô.

As a result it is sufficient to analyze impenetrability for each
obstacle individually. The next step is to ensure impenetrability
of the three cases in (30).

1) Evaluation in Moving Frame: ξ̇ = ξ̇
The simplest case comes with no stretching, but the evaluation

in the local frame of the moving boundary of the obstacle. It
follows that the Neuman-boundary condition for impenetrability
holds (see also [3]).

2) Contraction Within Margin: ξ̇ = vmax‖ξ̇‖ξ̇
This contraction is only performed, if it results in a normal

velocity which is larger than the velocity of the obstacle ˙̃
ξ, i.e.,

the evaluation in the moving frame results 〈(ξ̇ − ˙̃
ξ,n(ξ)〉 ≥ 0,

hence ensuring impenetrability.

3) Contraction in Tangent Direction:

ξ̇ = vnn(ξ) +

√
(vmax)2 − ‖ξ̇n‖2 e(ξ).

This limited contraction along the normal direction ensures
that the velocity in normal direction remains equal to the obsta-
cles’ velocity. The evaluation of the Neuman boundary condition
in the moving frame leads to

〈(vnn(ξ)+
√

(vmax)2 − ‖ξ̇n‖2 e(ξ))− ξ̃,n(ξ)〉= vn − vn= 0

using the definition of (29) and the fact that the normal n(ξ) and
the tangent e(ξ) are orthogonal.

Hence, we have impenetrability for multiple obstacles. �

E. Evaluation Weights for a Robot Arm

We introduce link weights wL
l for each link l ∈ [1..NL],

and section weights wS
l,s for each section point ξSl,s with s ∈

[1, ..NS ]. The weights determine how much the obstacle avoid-
ance command influences the control, i.e., zero weights indicate
following the goal velocity only, whereas a weight of 1 means
full avoidance at this specific position.

These weights are designed, such that their product is smaller
than one, i.e.,

0 ≤
∑
l

(
wL

l

∑
s

wS
l,s

)
≤ 1.

Furthermore, if a section point approaches the surface of an
obstacle, it should dominate, i.e.,

Γd(ξSl,s)→ 1 ⇒ wL
l w

S
l,s → 1.

And when the robot arm is far away from any surface, all weights
should go to zero

min
l,s

(
Γ(ξSl,s)

)→∞ ⇒
∑
l

(
wL

l

∑
s

wS
l,s

)
→ 0.

1) Base Weight: For each link l and section point s, we define
a Γ-danger weight wΓ(Γd) : ]1,∞[→ ]∞, 0[ to represent the
danger of colliding for a specific point: the higher the weight,
the greater the chance of collision. It is defined as

wΓ(Γd) =

{
Γc−Γmin

Γd(ξSs,l)−Γmin − 1 if Γd(ξSs,l) < Γc

0 otherwise
(55)

where Γmin = 1 is the lower bound, Γc > 1 the cutoff value and
Γd(ξ) defined in 34.

2) Link Weights: The influence of each link l is evaluated as

ŵL
l = cL|q̇g

[l]|
l

NL
max

s∈[1..NS ]
wΓ(ξSs,l) ∀ l ∈ [1..NL] (56)

where cL ∈ R>0 is a constant link-weight factor and q̇g
[l] the lth

element of the goal vector defined in (33). The l-factor in the
equation gives an increasing importance for links closer to the
end effector.
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The link weights are obtained through normalization

wL
l =

{
ŵL

l /ŵ
sum if ŵsum > 1

ŵL
l otherwise.

with ŵsum =

NL∑
l=1

ŵL
l

(57)
3) Section Weights: For all links lwithwL

l > 0, the influence
weight of each section point is evaluated as

wS
s =

ŵS
s∑NS

s=1 ŵ
S
s

with ŵS
s =

s

NS
wΓ(ξSl,s) ∀ s ∈ [1..NS ].

(58)
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