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Abstract—In this article, we propose a visual-inertial navigation
system that directly minimizes a photometric error without an
explicit data-association. We focus on the photometric error
parametrized by pose and structure parameters that is highly
nonconvex due to the nonlinearity of image intensity. The key idea
is to introduce an optimal intensity gradient that accounts for a
projective uncertainty of a pixel. Ensembles sampled from the state
uncertainty contribute to the proposed gradient and yield a correct
update direction even in a bad initialization point. We present two
sets of experiments to demonstrate the strengths of our framework.
First, a thorough Monte Carlo simulation in a virtual trajectory
is designed to reveal robustness to large initial uncertainty.
Second, we show that the proposed framework can achieve
superior estimation accuracy with efficient computation time over
state-of-the-art visual-inertial fusion methods in a real-world UAV
flight test, where most scenes are composed of a featureless floor.

Index Terms—Iterated extended Kalman filter (EKF), matrix
Lie groups, stochastic linearization, visual-inertial navigation.

I. INTRODUCTION

V ISUAL navigation is a fundamental building block for
higher-level tasks such as autonomous flight in space

exploration [1] and semantic perception [2]. While a camera
provides rich information for localization and surrounding per-
ception, an inertial measurement unit (IMU) ensures interocep-
tive measurements without outliers that predict motion between
images in a faster sampling time. Visual measurements reduce
or bound an error accumulation in a noisy integration of IMU
readings. There has been intensive research on visual-inertial
navigation in the last decade [3]. Previous research has sug-
gested fusion methods either by filtering or optimization-based
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estimator, a programming architecture composed of tracking
frontend and mapping backend, and visual-inertial measurement
processing techniques.

Depending on how an image measurement is formulated,
one can minimize either geometric (indirect) or photometric
(direct) error. The former has a rather long history, where the
crucial step includes feature extraction, solving data association,
and minimizing a reprojection error [4]. The latter directly
minimizes a photometric error that measures an intensity dis-
crepancy between consecutive images [5]. Apart from a subtle
difference in a feature extraction strategy, the key difference lies
in the dependence on a repeatable feature. While the geometric
method has to detect visual features repeatedly across images
to build the reprojection error, the photometric approach relies
on an intensity gradient by which the discrepancy is minimized.
There has been a lot of discussions on the literature to answer
the question: Which is better? At least, it has been reported
that the photometric method shows a robust short-term pose
estimation performance over its alternatives in low-textured
environments [6], [7].

However, a cost function formed by the photometric error is
highly nonconvex in terms of pose and structure parameters [6].
The main reason for that is the nonlinearity in image intensities.
Except for a gradual brightness change, intensities do not exhibit
linearity. This leads to a huge sensitivity on an initial point to
reach an optimal point. To circumvent this problem, previous
work adopts the coarse-to-fine scheme to flatten local minima
over a multiresolution in a practical point of view [8]–[10].
Others employ image patches that account for neighboring
pixels [6], [11], [12], provide a better initial point based on an
inertial sensor [13], [14], or train a deep neural network to gen-
erate a desirable feature map for the optimization problem [15],
[16]. However, ensuring a highly accurate and robust solution
for minimizing the photometric error parameterized by the pose
and structure in real time is still a challenging problem.

To achieve high robustness against bad initialization, we
focus on an intensity gradient given a projective uncertainty
originated from geometric errors. Inspired by the stochastic
linearization in random vibration [17], we derive an optimal
image gradient in the sense that it minimizes the linearization
error within the uncertainty. We realize the proposed gradient by
sampling ensembles from the state uncertainty in a framework
of photometric visual-inertial odometry (VIO). We claim four
key contributions of this article as follows.

1) A framework of photometric VIO based on iterated ex-
tended Kalman filter (EKF) is introduced, where the state
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space is modeled on matrix Lie groups. The photometric
method makes our system robust to low-textured scenes,
while most visual-inertial navigation systems adhere to
repeatable and salient features.

2) We derive an optimal intensity gradient that accounts for
its projective uncertainty in our proposed pipeline, and this
leads to robustness to the bad initialization.

3) We present a thorough Monte Carlo simulation to demon-
strate the effectiveness of the proposed image gradient.

4) We implement the proposed method in real time using
C++ and analyze its estimation accuracy, consistency, and
computation time in a real-world UAV flight, where most
scenes are constituted by a featureless floor. We open our
source code1 for the benefit of the research community.

The rest of this article is organized as follows. In Section II, we
review related work in the context of visual-inertial navigation
and the photometric approach for localization. Definitions on
coordinate frames and notations along with the extended pose
group are given in Section III. We develop the photometric
VIO starting from the state-space definition in Section IV.
After laying the foundation, we derive the proposed intensity
gradient in Section V. In Section VI, a Monte Carlo simulation
and real-world flight test demonstrate our proposed framework.
Finally, Section VII concludes this article.

II. RELATED WORK

We review relevant research in the line of visual-inertial navi-
gation and photometric approaches for pose and map estimation.

A. Visual-Inertial Navigation

One of the earliest seminal works in visual-inertial navigation
includes the multistate constraint Kalman filter (MSCKF) [18]
by Mourikis and Roumeliotis. The key idea was to marginalize
feature positions in the state space by stochastically cloning the
history of camera poses. This has been the backbone of follow-up
studies. MSCKF 2.0 [19] remedied the filter inconsistency by
using the first estimate Jacobian and introduced the term VIO,
which implies the nature of estimation drift due to sequence-
to-sequence motion estimation. Sun et al. [20] implemented a
stereo measurement in a framework of MSCKF. More recently,
a unified framework called OpenVINS [21] for monocular and
stereo configuration was published.

On the other side, the Hessian matrix-based approach has
been popular by virtue of its estimation accuracy and effi-
cient implementation, exploiting the sparsity of the Hessian
matrix. Leutenegger et al. [22] followed the principle of the
keyframe [23] and introduced a marginalization procedure in
VIO that preserves the sparsity pattern of the Hessian matrix.
With the advent of the IMU preintegration [24], [25], visual-
inertial navigation has become more mature. Qin et al. [26]
proposed a visual-inertial navigation system that includes in-
flight initialization, visual-inertial bundle adjustment (BA), and

1[Online]. Available: https://github.com/lastflowers/envio

appearance-based loop detection with a pose-graph optimiza-
tion. This was extended to [27] and [28] that includes a multi-
sensor configuration and GNSS measurements. ORB-SLAM3
by Campos et al. [7] built on its predecessor [29], [30] features
a tracking thread using ORB features, local BA thread, and a
multimap data association to seamlessly fuse previously mapped
areas.

Regardless of its implementation methodology, visual-inertial
navigation systems are heading toward robustness to a sys-
tem failure in a constrained computing platform. Eckenhoff et
al. [31] developed a multi-IMU multicamera system that over-
comes measurement depletion due to a limited field of view. The
asynchronous multisensor measurements were interpolated to
efficiently model the state space at a low computational budget.
Huang et al. [32] extended an initialization procedure from a
single camera-IMU pair to a stereo camera configuration. Car-
lone and Karaman [33] introduced a feature selection strategy by
maximizing pose estimation accuracy at limited computational
resources. Zhang et al. [34] devised the motion manifold that
constraints a ground vehicle for efficient 6-D pose estimation.

In contrast to previous works, we focus on the photometric
measurement that fuses visual and inertial measurements in a
much deeper way than the geometric model in the sense that the
fusion involves feature tracking and consequently spares explicit
feature tracking in a sequence of temporal images. Therefore, our
method does not suffer from outliers from feature mismatching
and implicitly solves the feature correspondence by minimizing
the photometric error.

B. Photometric Approaches

A photometric approach, also known as the direct method,
minimizes intensity differences rather than a geometric error. It
was successfully employed in 2-D sparse feature trackers [35],
[36]. Extending an optimization parameter to a 6-DOF pose,
real-time dense visual odometry (VO) was presented in [8] that
maximizes photoconsistency. Kerl et al. [9] showed that the
photometric residual is well expressed by the t-distribution and
suggested a weight function that is robust to outliers. Relaxed
from an assumption of dense depth measurements, J. Engel et
al. [37] introduced semidense VO. The key idea was to track
pixels with nonnegligible gradients by modeling photometric as
well as geometric disparity uncertainties. This was extended to
LSD-SLAM [38] and direct sparse odometry (DSO) [6]. In DSO,
the key contribution was the real-time photometric BA on a CPU
that exploits the sparsity structures of the corresponding Hessian
matrix. This seminal work was extended to stereo DSO [39],
DSO with loop closure [40], visual-inertial DSO [13], and direct
sparse mapping [10]. More recently, a multidimensional feature
map was trained for the direct image alignment in a long-baseline
and multiweather condition [15], [16].

Hybrid approaches [12], [41], [42] use both photometric and
geometric errors, while the photometric model provides accurate
pose estimation over short-term tracking without data associa-
tion, the geometric model gives robustness for a large baseline.
A representative work by Forster et al. [12] proposed semidirect
VO, where the short-term tracking is solved by minimizing the
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photometric error, while windowed BA minimizes a reprojection
error built from previously established matching pairs.

Visual-inertial navigation systems with the photometric mea-
surement include [11], [13], [14], [43-46], where motion pre-
diction from an IMU provides a good initialization for tracking
convergence. Among these, the most relevant work to ours is
robust VIO (ROVIO) by Bloesch et al. [11], in which pyramidal
image patches are tracked in a framework of the iterated EKF.
The key idea was to formulate the state space in a robocentric
frame to reduce nonlinearity in a measurement model. They
also introduced multiple hypotheses for pixel positions to avoid
a tracking failure. On the other hand, our feature selection
strategy adopts locally high gradient pixels that are uniformly
distributed across an image instead of a small set of feature
patches. Aside from the difference in the feature extraction
and the filter formulation, we suggest an image gradient that is
optimal in the sense of a linearization error within a projective
uncertainty.

III. PRELIMINARIES

A. Coordinate Frame Definition and Notations

Throughout this article, the global frame {g} is defined as a
local tangent plane frame fixed at the starting point of the body
frame {b} of a robot. Its heading is aligned to that of {b} at the
beginning. The IMU frame is coincident with {b}, and the left
camera frame is denoted as {c} located on the optical center
of a camera model pointing right, down, and forward direction.
The right camera frame {r} is defined analogously. If we need
to specify a time instance, we adopt a subscript to a coordinate
frame, for example, {bk} means {b} at time tk. We assume that
spatial and temporal extrinsic parameters are calibrated for {c},
{r}, and {b}.

We express a vector (or a scalar) and a matrix as small and
capital letters such as x and X . When we place a coordinate
frame to the upper-right side of a vector or matrix, it indicates
reference and resolved frames. A subscript means a target frame.
For instance, pgb is a position of {b} referenced at {g}. Identity
and zero matrices are expressed as Id and 0. Their dimensions
should be clear in the context.

B. Extended Pose Group

We model the state space on matrix Lie groups and derive their
corresponding errors on the vector elements of the Lie algebra.
As introduced in invariant EKF [43], the so-called extended pose
is defined as

SE2(3) =

⎧⎪⎨
⎪⎩
⎡
⎢⎣R p v

0 1 0

0 0 1

⎤
⎥⎦
∣∣∣∣∣∣∣R ∈ SO(3), p, v ∈ R3

⎫⎪⎬
⎪⎭ (1)

where R, p, and v represent attitude, position, and velocity
of a robot with respect to a reference frame. Note that, we
express robot’s attitude in the special orthogonal group in three

dimensions. Its associated Lie algebra is

se2(3) =

⎧⎪⎨
⎪⎩
⎡
⎢⎣θ
∧ α β

0 0 0

0 0 0

⎤
⎥⎦
∣∣∣∣∣∣∣ θ, α, β ∈ R3

⎫⎪⎬
⎪⎭ (2)

where θ, α, and β are associated with attitude, position, and
velocity of a robot in (6).

An element in the Lie algebra is associated with a vector by
the hat (·)∧ and vee (·)∨ operator

x =
[
θT αT βT

]T
∈ R9 (3)

x∧ =

⎡
⎢⎣θ
∧ α β

0 0 0

0 0 0

⎤
⎥⎦ , and x = (x∧)∨ . (4)

In the case of so(3), (·)∧ corresponds to the skew-symmetric
matrix operator.

Elements of X ∈ SE2(3) and x ∈ se2(3) are exactly con-
verted to each other by the matrix exponential and logarithm
mapping

X = exp(x∧) and

x = log(X)∨. (5)

The closed-form formula of exp(·) for SE2(3) is derived as
similar to SE(3) [44]

exp (x∧) =

⎡
⎢⎣exp (θ

∧) Jl(θ)α Jl(θ)β

0 1 0

0 0 1

⎤
⎥⎦ (6)

where the left Jacobian Jl is

Jl(θ) = Id+
1− cos‖θ‖
‖θ‖2 θ∧ +

‖θ‖ − sin‖θ‖
‖θ‖3 (θ∧)2 . (7)

The exponential mapping for the rotation vector has the closed-
form formula as (Rodrigues’ formula)

exp (θ∧) = Id+
sin ‖θ‖
‖θ‖ θ∧ +

1− cos ‖θ‖
‖θ‖2 (θ∧)2. (8)

By inverting (6) in ‖θ‖ < π, ‖θ‖ �= 0, the inverse map log(·) is

‖θ‖ = cos−1
(
tr(R)− 1

2

)

θ =
‖θ‖

2 sin ‖θ‖
(
R−RT

)∨
α = J−1l (θ) p

β = J−1l (θ) v. (9)

Note that, exp(·) and log(·) are locally bijective mappings
due to the ambiguity in every ‖θ‖ = 2πn with n a nonzero
integer. We obtain SE(3) when eliminating the velocity entries
of SE2(3).
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C. Right-Invariant Error

The right-invariant error δX [43] is defined as

δX = X̂X−1 (10)

where X ∈ SE2(3) and the overhead hat (̂·) represents an
estimate for the corresponding quantity. This is a generalization
of the vector subtraction in the vector space. This error matrix
δX is associated with the tangent space element at the identity
as

ξ = log
(
X̂X−1
)∨

=
[
φT ρT νT

]T
(11)

where ξ∧ ∈ se2(3) and exp(·), log(·) are defined in
Section III-B.

IV. VISUAL-INERTIAL STATE ESTIMATION

A. Problem Definition

Given three-axis angular rates ωm(t0:k), specific force mea-
surements am(t0:k), and image intensities I0:k from time t0
to tk, our objective is to estimate the current pose of a robot
T g
b (tk) ∈ SE(3) and its surrounding feature map pbf with their

estimate confidences.
Inspired by the direct sparse odometry [6], we define the state

space as the current extended pose Xg
b (t), IMU biases B(t),

the previous pose when an image is captured T g
bl
(t), and depths

function at the previous camera pose D(t), that is

X (t) =

⎡
⎢⎢⎢⎣
Xg

b (t) 0 0 0

0 B(t) 0 0

0 0 T g
bl
(t) 0

0 0 0 D(t)

⎤
⎥⎥⎥⎦ (12)

where m is the number of features being tracked in the filter
state. The current and previous poses are

Xg
b (t) =

⎡
⎢⎣R

g
b (t) pgb(t) vgb (t)

0 1 0

0 0 1

⎤
⎥⎦ ∈ SE2(3) (13)

T g
bl
(t) =

[
Rg

bl
(t) pgbl(t)

0 1

]
∈ SE(3). (14)

The bias and depth function matrices are

B(t) =

⎡
⎢⎢⎢⎣
Id ba(t) 0 0

0 1 0 0

0 0 Id bg(t)

0 0 0 1

⎤
⎥⎥⎥⎦ ∈ R8×8 (15)

D(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 d1(t) 0 0

0 1 0 0
. . .

0 0 1 dm(t)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R2m×2m (16)

where ba, bg are accelerometer and gyroscope biases, and dj is
the jth depth parameterization referenced at tl that would be an
inverse depth dj = z−1j or a depth dj = zj . We will discuss the
depth parameterization in Section IV-C.

We simplify the matrix expression and omit the coordinate
frame and time argument to ease the readability if the context is
clear such that

X = (X, ba, bg, T, d1, . . . , dm) . (17)

B. Process Model

IMU measurements are modeled as the true quantity cor-
rupted by the time-varying bias and zero-mean white Gaussian
processes

am(t) = at(t) + ba(t) + na(t)

ωm(t) = ωt(t) + bg(t) + ng(t) (18)

where noises are na(t) ∼ GP (0, Qaδ(t− τ)) and ng(t) ∼
GP (0, Qgδ(t− τ)). GP (m,P ) stands for the multivariate
Gaussian process whose mean and covariance are m and P ,
and Qa, Qg are power spectral density matrices.

The extended pose and biases are governed by the following
differential equations:

Ṙ(t) = R(t) (ωm(t)− bg(t)− ng(t))
∧

ṗ(t) = v(t)

v̇(t) = R(t) (am(t)− ba(t)− na(t)) + g

ḃa(t) = nwa(t)

ḃg(t) = nwg(t) (19)

where g is the gravity in {g} and biases are modeled as random
walks with their densities nwa(t) ∼ GP (0, Qwaδ(t− τ)) and
nwg(t) ∼ GP (0, Qwgδ(t− τ)). The previous pose T and jth
depth functions dj are modeled as random constants.

The right-invariant error for the state X (t) is

δX (t) = exp (ζ(t)∧) = X̂ (t)X (t)−1. (20)

The vector element at the corresponding tangent space is

ζ =
[
φT ρT νT δbTa δbTg φT

l ρTl δd1 · · · δdm

]T
(21)

where φ, ρ, and ν are defined in (11) and φl, ρl are a pose error
at the previous time tl. Except for the current extended pose and
the previous pose, the rest of errors are defined by the vector
subtraction as defined in (20).

The error-state ζ up to the second-order term is evolved by

ζ̇(t) ≈ F (t) ζ(t) +G(t) w(t) (22)
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where F, G are Jacobian matrices to ζ and the noise vector
w = [nT

a nT
g nT

wa nT
wg]

T . It is worthwhile to note that, the
linearized (22) is perfect when δba = δbg = 0 and w = 0 [43].
State uncertainties are well captured by the invariant error (11) as
in SE(3) [45], [46]. As previously derived in [47], the Jacobian
matrix is turned to be

F (t) =

[
FI(t) 0

0 0

]

FI(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −R̂(t)

0 0 Id 0 −p̂(t)∧R̂(t)

g∧ 0 0 −R̂(t) −v̂(t)∧R̂(t)

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (23)

In our implementation, (19) and (22) are discretized to propagate
the mean X̂ and the covariance matrix P = E[ζ ζT ].

C. Photoconsistency Model

The photoconsistency assumption states that intensities are
the same regardless of the viewpoint of a camera if a ray hits
the Lambertian surface. This has been successfully employed in
the direct visual odometry [8] and with illumination parameter
estimation [6] to track the 6-DOF pose of a camera. We adopt
this as a filter measurement to spare the explicit 2-D feature
tracking.

For the jth feature at tk, this is written as

yj(X ) = h
(
ϕ(X , ul

j)
)
+ nj

= Il
(
ul
j

)− Ik
(
ϕ(X , ul

j)
)
+ nj (24)

where ul
j ∈ R2 is the jth pixel coordinate at the reference

tl. nj is the zero-mean white Gaussian noise nj ∼ N(0, σ2
j )

independent to the process noise w. Il and Ik are images at tl
and tk, respectively. Note that, yj = 0 without the noise. The
warping function ϕ is

ϕ
(X , ul

j

)
= Π

((
T g
bk
T b
c

)−1
T g
bl
T b
c

[
pclj
1

])
(25)

where Π is a perspective projection model. The jth feature
position viewed at the previous camera frame {cl} is

pclj = Π−1
(
ul
j , dj
)
. (26)

The nonlinear function h is linearized to incrementally mini-
mize the photometric error

δyj = yj − ŷj

≈ Hjζ + nj . (27)

The Jacobian matrix is derived using the chain rule

Hj = −∂Ik
∂ζ

= − ∂Ik
∂uk

j

∂uk
j

∂pckj

∂pckj
∂ζ

(28)

where uk
j is the jth pixel coordinate at Ik and pckj is the 3-D jth

feature position referenced at the current camera frame {ck}.
The first block is an image gradient at the predicted pixel

coordinate

∂Ik
∂uk

j

= ∇Ik(ûk
j ) (29)

from which most of linearization error is originated. We will
propose an image gradient that minimizes a linearization error
in Section V. The second block is 2-D-to-3-D feature point
Jacobian

∂uk
j

∂pckj
=

[
fu(p̂

ck
j,z)

−1 0 −fu p̂ckj,x(p̂
ck
j,z)

−2

0 fv(p̂
ck
j,z)

−1 −fv p̂ckj,y(p̂ckj,z)−2
]

(30)

where the pin-hole projection model is used with horizontal
and vertical focal lengths fu and fv. p̂ckj,x indicates the first
element of p̂ckj and so on. The last block is filled by the pose
and corresponding depth blocks

∂pckj
∂ζ

= R̂T
k[

− (p̂gj)∧ Id · · · (p̂gj)∧ −Id · · · R̂lp̂
cl
j d̂
−1
j · · ·

]
(31)

where R̂k = R̂g
ck

and p̂gj is the jth 3-D feature position refer-
enced at {g}.

The inverse depth parameterization [48] has been broadly
used because it yields the high linearity index in a pixel projec-
tion function, and exhibits a long tail in a far region. However,
in our proposed filter we use a photometric measurement, where
the majority of nonlinearity comes from an image intensity.
We initialize a feature depth by a stereo baseline with enough
parallax. This is why we choose the depth parameterization in
the current implementation. However, our approach can include
far features using inverse depth parameterization as suggested
in [49] without any difficulties.

D. Iterated EKF on Matrix Lie Groups

The iterated EKF is a local maximum a posteriori estimator
in a single step [44] that iteratively minimizes a weighted sum
of costs until convergence. In the ROVIO [11], the authors
presented iterated EKF formulations that account for rotations
and bearing vectors that live in a manifold. In this article,
however, we derive the filter update step in matrix Lie groups
that includes SE2(3) that is a proper group representation for
an inertial navigation system.

The objective is to maximize

X̂k = argmax
Xk

p (Xk|y0:k, am(t0:k), ωm(t0:k))

= argmax
Xk

p (yk| Xk) p (Xk|y0:k−1, am(t0:k), ωm(t0:k))

(32)

where a density function of the matrix Lie group is indirectly
defined by its corresponding Lie algebra [45] and Xk = X (tk),
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Fig. 1. Converged example in the VIODE dataset [50]: After a couple of update
iterations the pixel point reaches the photometrically as well as the geometrically
consistent region.

y0:k = y(t0:k). Here, yk is a vector that collects all measure-
ments at tk. This is equivalent to

X̂k = argmin
Xk

‖yk − h(Xk)‖2R−1k
+

∥∥∥∥log (X̂ −k X−1k

)∨∥∥∥∥
2

(P−k )−1

≈ argmin
ζk,i

∥∥∥yk − h(X+
k,i−1)−Hi−1ζk,i

∥∥∥2
R−1k

+

∥∥∥∥log (X̂ −k (X+
k,i−1)

−1
)∨

+ ζk,i

∥∥∥∥
2

(P−k )−1
(33)

where

h(Xk) =
[
h
(
ϕ(Xk, u

l
1)
) · · · h

(
ϕ(Xk, u

l
m)
)]T

(34)

Rk =

⎡
⎢⎢⎣
σ2
1

. . .

σ2
m

⎤
⎥⎥⎦ . (35)

In this expression, P−k is the covariance matrix before the filter
update P−k = E[ζ−k (ζ−k )

T ]. A priori covariance is propagated
according to (22). X̂ −k is a priori ofXk. In the second line in (33),
we have substituted the current ith a posteriori from the (i− 1)th
iteration: Xk = exp(−ζ∧k,i)X̂+

k,i−1 up to the higher order terms.

Hi−1 is stacked from (28) and linearized at X̂+
k,i−1.

By differentiating the cost in (33) with respect to ζk,i, the
update step is given as

ζk,i = Ki−1
(
yk − h(X̂+

k,i−1)
)

− (Id−Ki−1Hi−1) log
(
X̂ −k (X̂+

k,i−1)
−1
)∨

(36)

where Ki−1 = (HT
i−1R

−1
k Hi−1 + (P−k )−1)−1HT

i−1R
−1
k is the

Kalman gain linearized at (i− 1)th estimation. We define

ζ̄k,i−1 = log
(
X̂ −k (X̂+

k,i−1)
−1
)∨

, ζ̄k,0 = 0 (37)

and incrementally update a posteriori

X̂+
k,i = exp

(−ζ̄∧k,i) X̂ −k (38)

where

ζ̄k,i ≈ Ki−1
(
(yk − h(X̂+

k,i−1) +Hi−1ζ̄k,i−1
)
. (39)

If ζ̄k,i is converged we update the covariance matrix as

P+
k = (Id−KiHi)P

−
k . (40)

Fig. 2. Motivating example in a toy problem. (a) The point on the black and
white image moves from ux = 15 to ux = 75 with its ensembles (small green
dots) sampled from a Gaussian distribution. (b) The conventional image gradient
(at the mean) and the proposed stochastic gradient (46) when traveling to the
x-direction.

This is a generalization of the iterated EKF on the vector space:
If we replace log(X̂X−1)∨ by the vector subtraction we arrived
at the equivalent formulation.

Fig. 1 shows that the iteration step (38) and (39) is converged
to the photometrically as well as geometrically consistent area by
minimizing visual-inertial costs (33) in a sequence of temporal
images.

E. Feature Initialization, Tracking, and Marginalization

We process input stereo images as a set of feature points that
includes a pixel coordinate and its initial depth estimate on the
left camera frame. First, we undistort incoming stereo images
and convert the left grayscale image into a gradient magnitude
map. Then, we divide the gradient map into 25× 15 grids
and select the locally strongest pixel greater than a minimum
threshold. To maintain uniformly distributed points over an
image, we manage an image mask to ensure a minimum distance
among features. As noted in the DSO [6], this strategy does not
depend on corner features and performs well in low-textured
environments.

The depth is initialized by epipolar line search evaluated by the
sum of squared differences (SSD) within a 13× 13 patch in the
stereo baseline. We reject badly triangulated features based on a
ratio of the minimum and the second minimum SSD, and an inner
product of image gradient direction and a unit epipolar line. After
passing the quality check, the feature depth is augmented in the
filter state with a sufficiently large initial uncertaintyσz = 1.5m.

Features in the state space are tracked by minimizing the
visual and inertial costs (33). After convergence of an update
step, features at tl are warped to tk using a posteriori. In
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this step, we evaluate normalized cross correlations (NCC) in
13× 13 patches centered at ûl

j and ûk
j , and marginalize features

if the NCC is smaller than a certain threshold. After the feature
tracking and marginalization, we replace the previous pose at tl
with the current pose at tk as noted in line 12 of Algorithm 1. In
a covariance domain, marginalization erases the corresponding
depth blocks in the covariance matrix.

Due to the nature of the tracking mechanism, the measurement
noisenj in (24) is colored noise. This can be handled by Kalman
filter with a colored noise [51]. From a practical point of view,
we inflate the measurement noise σj to tackle this unmodeled
error.

V. STOCHASTIC GRADIENT

A. Motivating Example

We interpret tracked points in an image as an estimate revealed
from its projective uncertainty due to camera pose and depth
uncertainties. A simple black and white image in Fig. 2(a)
shows a red pixel that travels from ux = 15 to ux = 75, plotting
its image gradient in the horizontal and vertical directions in
Fig. 2(b). We assume that the red pixel is the mean of a 2-D
Gaussian distribution, where ensembles are sampled from the
distribution.

In the vicinity of the edges, image gradients are zero: There
is no information to minimize the photometric error. However,
our approach gives nonnegligible image gradients derived from
the pixel uncertainty as in Fig. 2(b). That is, it is reasonable to
account for the probabilistic property when computing an image
gradient. We introduce a stochastic gradient that reflects the
projective uncertainty inspired by stochastic linearization [17].

Previous approaches handle the intensity nonlinearity, includ-
ing this extreme case, by using an iteration over an image pyra-
mid to flatten local minima (coarse-to-fine scheme) [8]–[10] and
image patches to include neighboring pixels [6], [11]. However,
our approach guarantees an optimal gradient in the sense of a
linearization error that helps to converge to the correct direction.

B. Derivation of Stochastic Gradient

In deriving the stochastic gradient, we focus on the image
gradient which is the first matrix block in (28). We repeat the
associated jth feature intensity in time tk

Y(uk
j ) = Ik

(
ϕ(X , ul

j)
)
+ nkj (41)

where uk
j = ϕ(X , ul

j) and nkj is a zero-mean white Gaussian
noise that contributes to the noise nj in (24). A naive approach
is to linearize (41) starting from the filter state X . However,
we found that the nonlinearity in an image intensity is higher
than that of the perspective projection. Furthermore, the naive
approach will turn to require 13× 13 dense matrix inversion
per a feature. This is why we decide to linearize (41) at the
pixel position uk

j that requires only 2× 2 matrix inversion per a
feature.

We define a loss function

L(H) = I(u)− (I(û) +H δu) (42)

where I(u) = Ik(u
k
j ), u = û+ δu and H is an image gradient

we wish to find. Then, we minimize the expectation of the

Algorithm 1: Ensemble Visual-Inertial Odometry.

Input: X̂+
l , P+

l , am(tl:k), ωm(tl:k), Il, Ik, {ul
j}j=1:m

Output: X̂+
k , P+

k , {uk
j }j=1:m (X̂+

0 , P+
0 )←

Initialization(am(t0:ni
), ωm(t0:ni

))

1: (X̂ −k , P−k )← Time-

propagation(X̂+
l , P+

l , am(tl:k), ωm(tl:k))
2: for i = 1 to n do
3: for j = 1 to m do
4: Hj ←

StochasticGradient(X̂+
k,i−1, P

−
k , Ik, u

l
j)

5: Hj ←
MeasurementJacobian(Hj , X̂+

k,i−1, u
l
j)

6: δyj ←
FilterInnovation(X̂+

k,i−1, Il, Ik, u
l
j)

7: end for
8: X̂+

k,i ← Update(X̂+
k,i−1, P

−
k , Hk,i, δyk,i)

9: end for
10: P+

k ← CovarianceUpdate(P−k , Hk,n)

11: Feature tracking: {uk
j }j=1:m ← ϕ(X̂+

k , {ul
j}j=1:m)

12: Replace the previous pose to the current one: Tl ← Tk

13: if (m < nmin) then
14: Initialize new features.
15: end if

squared loss function

Ĥ = argmin
H

E
[
L2 (H)] . (43)

This can be rewritten as

Ĥ = argmin
H

E
[
(Y(u)− n− I(û)−H δu)2

]

= argmin
H

∫
δu

∫
n

(Y(u)− n− I(û)−H δu)2 p(δu, n) dn dδu.

(44)

Since we assume that the measurement and process noises
are independent, the joint density function is decomposed as
p(δu, n) = p(δu) p(n).

Differentiating with respect to the gradient yields

dE
[
L2(H)]
dH = −2

∫
δu

Y(u) δuT p(δu) dδu

+ 2 I(û)

∫
δu

δuT p(δu) dδu+ 2H
∫
δu

δu δuT p(δu) dδu (45)

where the zero-mean measurement noise assumption is em-
ployed. Equating (45) as zero gives

Ĥ =

(∫
δu

Y(u)δuT p(δu) dδu− I(û)

∫
δu

δuT p(δu) dδu

)
×

(∫
δu

δu δuT p(δu) dδu

)−1

=
(
E
[Y(u) δuT

]− I(û)E
[
δuT
]) (

E
[
δu δuT

])−1
.

(46)
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Fig. 3. Illustrative example in the VIODE parking lot dataset [50]. (a) A reference image at tl. (b) A close-up of the lane at tl with high gradient features. (c)
Pose tracking result at the current time tk using the conventional gradient. (d) The proposed stochastic gradient, where the red-to-blue color encodes iteration steps
in the iterated EKF.

Fig. 4. Representative pixel coordinate among the extracted features in Fig. 3(d) with sampled ensembles (nen = 100) at (a) the 1st iteration and (b) the 10th
iteration. (c) Its intensity gradients during the update steps, where the black and red plot correspond to intensity gradients of the representative pixel in Fig. 3(c)
and (d), respectively.

It is interesting to note that, (46) boils down to a numerical
differentiation in a noise-free model

Ĥ =
I(û+ δu)− I(û)

δu
(47)

where we set δu ∈ R. Note that, (46) is an optimal gradient that
minimizes the mean square of the linearization error. We replace
the conventional image gradient (29) to (46).

C. Stochastic Gradient Implementation

It is not straightforward to compute the correlation between in-
tensities and pixel position deviation E[Y(u) δuT ] analytically.
Therefore, we compute the correlation by sampling ensembles
according to the current state uncertainty. The ith ensemble is
sampled through

X (i) = exp
(
−ζ(i)∧
)
X̂ (48)

where ζ(i) is sampled from the IMU-predicted covariance. Each
feature point is projected to the current image plane at tk. The
ith ensemble of pixel coordinate at tk is

u
k,(i)
j = ϕ

(
X (i), ul

j

)
. (49)

Therefore, we can compute statistical properties of u. The
expectation of its deviation from the estimate is

E
[
δuT
]
=

1

nen

∑
i

(
u
k,(i)
j − û

)T
. (50)

where nen is a number of ensembles and the estimate is cal-
culated as û = ϕ(X̂ , ul

j). The covariance of the projected pixel

TABLE I
TRAJECTORY INFORMATION REPRODUCED FROM [50]

TABLE II
IMU SPECIFICATION IN THE MONTE CARLO SIMULATION

coordinate is

E
[
δu δuT

]
=

1

nen − 1

∑
i

(
u
k,(i)
j − û

)(
u
k,(i)
j − û

)T
(51)

and the cross-correlation between the image intensity and the
position deviation is

E
[Y(u) δuT

]
=

1

nen − 1

∑
i

Y(uk,(i)
j )
(
u
k,(i)
j − û

)T
.

(52)
In the process of the filter update, each ensemble contributes to
the stochastic gradient. Thus, we term our method as ensemble
VIO (EnVIO). Algorithm 1 summarizes the overall procedure
of EnVIO.
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Fig. 5. Attitude and position RMSE, pose NEES, and the number of failures (position RMSE is larger than 5% of flight distance, or attitude RMSE is larger than
10 deg) of 50 Monte Carlo runs with the increasing initial velocity uncertainty σv = {0.1, 0.5, 1.0} m/s in (a) parking_lot, (b) city_day, and (c) city_night.

Fig. 3 shows a pose tracking result in the parking lot sequence
of the VIODE dataset [50] with a 1-m/s initial velocity error.
Locally high gradient features on the lane mark are extracted
in the image Il, as shown in Fig. 3(b). Features are tracked
by minimizing (33) using the conventional image gradient and
the proposed stochastic gradient. Features are trapped in badly
initialized points due to weak image gradients in Fig. 3(c).
However, our method converges to the true minimum by virtue
of the uncertainty-aware ensembles in Fig. 3(d). We highlight
a history of a representative feature in Fig. 4 with its sampled
ensembles. Remarkably, ensembles of the representative feature
point can cover neighboring regions of its true position at the
1st iteration predicted by an IMU in Fig. 4(a). The stochastic
gradient computed from these ensembles pulls the pixel po-
sition to the correct direction in the minimization problem as
in Fig. 4(b). These ensembles exhibit nonnegligible gradients,
while the conventional gradient only at the mean point gives too
weak gradient to move, as shown in Fig. 4(c).

VI. EXPERIMENTS

To evaluate EnVIO, we run two sets of experiments. First,
we analyze robustness to bad initialization with an increasing
initial velocity uncertainty in a virtual environment generated by
AirSim [50], [52] in Section VI-A. Second, we evaluate EnVIO
in a real-world experiment in Section VI-B. We compare EnVIO
to the state-of-the-art methods [11], [26], [27] in terms of estima-
tion accuracy and computation time in a visually low-textured
environment, where a visual-inertial sensor is installed in an
UAV. We setnen = 100 in the following experiments that shows
a good tradeoff between estimation accuracy and computation
time.

A. Monte Carlo Simulation

We choose the VIODE dataset generated by AirSim to regu-
late error sources of visual and inertial sensor measurements.
The camera nonlinear response function, auto exposure, and
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Fig. 6. Velocity estimates of all trials in the Monte Carlo simulation in the first 20 s for σv = 1 m/s in (a) parking_lot, (b) city_day, and (c) city_night.

Fig. 7. Custom-built UAV and its MYNTEYE S1030 visual-inertial sensor.

vignetting effect can be calibrated for a real-world sensor as
suggested in [53]. However, our objective of this test is to
demonstrate the convergence behavior of the stochastic gradient
in bad initialization.

Specifically, we adopt the three flight sequences without
moving objects. Flight trajectory information is reproduced in
Table I for convenience. We generate the true IMU measurement
from the ground-truth pose and velocity and add time-varying
biases and noises, where sensor specification is based on Analog
Devices ADIS16448, as summarized in Table II. The virtual
stereo camera outputs 752× 480 images with 20 fps and a
baseline of 5 cm corrupted by a zero-mean white Gaussian noise
with 4 standard deviation in 8-bit intensity.

In the Monte Carlo simulation, random elements include the
initial state uncertainty, IMU and camera error sources, and sam-
pling of ensembles. In order to test the robustness to a bad initial
point, we evaluate the pose root mean square error (RMSE),
normalized estimation error squared (NEES), and the number
of failures in the Monte Carlo runs with the increasing initial
velocity uncertainty σv = {0.1, 0.5, 1.0} m/s, as presented in
Fig. 5. We declare a trial is failed if the position RMSE is
larger than 5% of the flight distance or attitude RMSE is larger
than 10 deg. The NEES evaluates the filter consistency and it is
defined as

NEES =
1

nmc ns

nmc∑
i=1

ζTi P
−1
i ζi (53)

where nmc = 50, ns is the state dimension, and ζi, Pi are the
actual error and filter covariance in the ith run, respectively.

In Fig. 5, all methods are implemented based on the proposed
architecture but with different settings. While Iterated EKF
(pyr=1) has the maximum 10 iterations on its original resolution,
we set the maximum number of iterations as 4, 3, and 3 from the
coarsest to the finest pyramid level for Iterated EKF (pyr=3)
and SG-iterated EKF (pyr=3). Note that, we downsample an
image as half resolution at every pyramid level. The stochastic
gradient (SG) is implemented for the latter.

1) Image Pyramid: The image pyramid can handle the mea-
surement nonlinearity to some extent: Iterated EKF (pyr=3)
shows better accuracy and consistency than Iterated EKF
(pyr=1) at σv = {0.5, 1.0} m/s in Fig. 5. This would be the
reason why this technique is widely adopted in literature. How-
ever, the image pyramid still cannot remedy filter divergence due
to the bad initialization (σv = 1.0 m/s). This is confirmed by the
increasing NEES and failure cases among the Monte Carlo trials
in Fig. 5.

2) Stochastic Gradient: The stochastic gradient in SG-
iterated EKF (pyr=3) reflects image gradients within an un-
certain region. In general, this reduces estimation errors, filter
inconsistency, and failure runs in combination with the image
pyramid in Fig. 5. Figs. 3 and 4 provide an intuitive description
for our interpretation: Ensembles provide the correct direction
to minimize the cost. We highlight velocity estimates for all
trials in the Monte Carlo simulation in the first 20 s of the three
virtual trajectories in Fig. 6. SG-iterated EKF (iter=3) shows the
smallest deviations to the ground-truth among the three cases.

B. Flight Experiment

The objective of this test is to experimentally show that
EnVIO can track a camera pose even in a low-textured area that
is a huge challenge in visual-inertial navigation. The estimation
accuracy is analyzed along with state-of-the-art methods. Fur-
thermore, we investigate a computational budget and validity of
the predicted filter covariance.
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TABLE III
ABSOLUTE TRAJECTORY ERROR AND AVERAGE COMPUTATION TIME PER A FRAME IN THE FLIGHT TEST

a) Stereo + IMU configuration is set for ROVIO and VINS-Fusion.
b) EnVIO reports the median value over 5 runs due to the randomness in ensemble sampling.
The bold numbers are the best results (the smallest number) among each flight test.

Fig. 8. Representative onboard left images with extracted features of (a) ROVIO, (b) VINS-Fusion, and (c) EnVIO (proposed).

We recorded four trajectories using a custom-built UAV
equipped with MYNTEYE S1030 (a stereo camera with an IMU)
and visual markers for the ground-truth trajectory, as shown
in Fig. 7. The sensor outputs a pair of stereo images at 20
fps and raw IMU measurements at 200 Hz. Intrinsic as well
as extrinsic calibration parameters of the visual-inertial sensor
are calibrated in advance using the Kalibr toolbox [54]. The
ground-truth pose is provided by the Qualisys motion capture
system with typical mm-level accuracy. The test environment
shown in Fig. 8 features a featureless floor: It does not provide
enough corners or edges for localization. Fig. 9 shows flight
trajectories in which the first two are made by a human pilot,
and the last two are controlled by an autopilot.

We implemented EnVIO in ROS Kinetic using C++. The
recorded dataset was played on a laptop with Intel i7-7820 CPU
at 2.90 GHz. We initialize new features if the current number
of features falls below 250 (nmin = 250) and set the maximum
number of iterations as 10 at the original resolution (n = 10).
We stop the filter iteration when the innovation change is less
than 0.1% or the elapsed time reaches a threshold.

In order to evaluate the absolute trajectory error (ATE) [55],
we align the first 100 estimated poses (5 s) to its corresponding
ground-truth poses. Table III summarizes ATEs and an average
computation time in the same CPU per a frame for ROVIO,
VINS-Fusion, and EnVIO. Note that, we use open-source pack-
ages of ROVIO and VINS-Fusion (without loop-closure), and
tune IMU noise parameters according to the sensor we use to
compare them as fairly as possible.

Fig. 9. Ground-truth trajectories in the flight test in which flight distances are
49.3, 44.7, 32.8, and 37.7 m, respectively.

1) ROVIO Versus EnVIO: ROVIO is one of the pioneering
photometric VIO that employs pyramidal corner patches in robo-
centric formulation. High-scored FAST corners are initialized
and tracked by minimizing intensity differences. A representa-
tive image with tracked feature patches is visualized in Fig. 8(a).
The feature selection strategy that extracts a small set of the
most salient corners leads to the fastest computation time, but
the largest estimation error as reported in Table III. In contrast,
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Fig. 10. Attitude and position error with their ±3σ bounds in (a) #1 flight and (b) #3 flight.

TABLE IV
TIMING STATISTICS PER A FRAME OF ENVIO

EnVIO also utilizes pixels on the low-textured floor in Fig. 8(c),
and it contributes to the more accurate pose estimation, as shown
in Table III.

2) VINS-Fusion Versus EnVIO: VINS-Fusion extracts uni-
formly distributed Shi-Tomasi features tracked by the KLT
tracker. A windowed BA minimizes reprojection errors to op-
timize poses and feature depths. Few features on the floor are
extracted and tracked, but their tracking length is much shorter
than visually rich regions, such as the windows in Fig. 8(b).
Therefore, it cannot maintain long-baseline features across the
whole image. It seems that this drawback leads to larger errors
than our approach. Also, note that the computation time, which
is longer than ours, only includes the BA thread.

In contrast, our method is robust to low-textured environ-
ments since it does not depend on repeatable features, such as
corners and edges. Instead, EnVIO aligns pixel intensities if
a nonnegligible image gradient is given. As a result, EnVIO
outputs lower pose errors than VINS-Fusion. Furthermore, our
lightweight two-view tracking shows 36.3 ms per a frame, as in
Table III.

3) Iterated EKF Versus EnVIO: Iterated EKF is based on the
proposed architecture without the stochastic gradient. The use
of the stochastic gradient can further boost estimation accuracy.
It is noticeable that the computation of stochastic gradient for
each feature only adds 2.0 ms per a frame on average.

4) Computation Time: Table IV summarizes an average
computation time in the four flights with its standard deviation
for each crucial step in EnVIO. At the implementation, we divide
the measurement Jacobian matrix into subblock matrices since
it has a sparse structure for efficient matrix multiplication. The
most time-consuming part is the filter update due to matrix

inversion for the Kalman gain at each iteration. Our method
can run at most 27 fps in terms of the mean computation time,
but we believe it would increase with further optimization.

5) Filter Consistency: Fig. 10 draws estimation error along
with 3σ bounds to validate the filter consistency. It can be seen
that the uncertainty reflects the four unobservable bases (global
translation and rotation around the gravity direction), and the
autopilot in Fig. 10(b) leads to bigger uncertainties due to limited
motion excitation. In the test time, errors are contained in the
predicted uncertainty. This confirms the validity of the filter
covariance.

VII. CONCLUSION

In this article, we have proposed EnVIO, a framework of
photometric VIO coupled with the stochastic gradient using
uncertainty-aware ensembles. Specifically, we formulated the
brightness consistency and derived the filter iteration step on
matrix Lie groups. As our key contribution, we derived an
optimal image gradient termed the stochastic gradient by min-
imizing the linearization error within the state uncertainty. The
effectiveness of the stochastic gradient was validated through the
Monte Carlo simulation at the increasing velocity uncertainty.
As expected, pixels with stochastic gradients converged to the
true minimum even from bad initialization. Furthermore, the
strength of our method was highlighted in the flight test, where
most of the scenes were composed of the visually low-textured
floor. Since our approach releases the dependence on repeatable
visual features, the proposed method outperformed the state-of-
the-art VIO in terms of estimation accuracy. The implementation
showed the real-time feasibility at most 27 fps in terms of the
mean computation time.

In future work, EnVIO can include illumination parameters
for robustness to illumination change environments. The estima-
tor can be reformulated as an information filter: The computation
time would be further decreased by efficiently calculating the
matrix inversion for the Kalman gain. Our interest also includes
a visual-inertial mapping module to bound error drift and build
a globally consistent map.
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