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Adaptive Feet for Quadrupedal Walkers
Manuel Giuseppe Catalano , Mathew Jose Pollayil , Giorgio Grioli , Giorgio Valsecchi ,

Hendrik Kolvenbach , Marco Hutter , Antonio Bicchi , Fellow, IEEE, and Manolo Garabini

Abstract—The vast majority of state-of-the-art walking robots
employ flat or ball feet for locomotion, presenting limitations while
stepping on obstacles, slopes, or unstructured terrain. Moreover,
traditional feet for quadrupeds lack sensing systems that are able
to provide information about the environment and about the foot
interaction with the surroundings. This further diminishes their
value. Inspired by our previous work on soft feet for bipedal
robots, we present the SoftFoot-Q, an articulated adaptive foot
for quadrupeds. This device is conceived to be robust and able to
overcome the limitations of currently employed feet. The core idea
behind our adaptive foot design is first introduced and validated
through a simplified mathematical formulation of the problem.
Subsequently, we present the chosen mechanical implementation
to attempt overcoming current limitations. The realized prototype
of adaptive foot is integrated and tested on the compliantly actuated
quadrupedal robot ANYmal together with an ROS-based real-time
foot pose reconstruction software. Both extensive field tests and
indoor experiments show noticeable performance improvements,
in terms of reduced slippage of the robot, with respect to both flat
and ball feet.

Index Terms—Adaptive feet, quadrupedal robots, soft foot.

I. INTRODUCTION

WHEN compared to wheels, although less easy to con-
struct and control, legs have distinct advantages and

can provide superior mobility and agility. Climbing obstacles,
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Fig. 1. SoftFoot-Q, a passive adaptive foot designed for quadruped robots.

leveraging the environment for support or pushing-off, and
executing dynamic maneuvers—like jumping or bounding—are
just some of the notable capabilities enabled by legged loco-
motion [1]. Humans and animals strongly rely on the partic-
ular mechanical structure of their feet to be more stable and
agile, as well as to move more flexibly and efficiently [2].
Feet are central organs that help to isolate the body from
terrain irregularities by adapting themselves to features such
as local ground curvature and inclination [3], [4]. This isola-
tion property is even more relevant in the case of robots [5].
Furthermore, in living beings, the sensing abilities of the skin
provide sensory inputs about foot placement and loading that
are used by the central nervous system to control balance
and subsequent movements. Studies suggest that sensory func-
tions of feet are critical in controlling balance during human
locomotion [6].

However, while considerable attention is given to hand de-
sign in the field of robotic end-effector development, much
less focus is devoted to mechanical foot design for stable
locomotion and environment exploration through sensing. A
substantial effort on artificial feet design has been put only
in the field of prosthetic devices to replicate the functionality
of human feet and to achieve the additional aim of reaching
high-level performance in traits like metabolic efficiency and
comfortable daily use [7]–[9]. Energy-efficient bionic feet us-
ing elastic actuators are also proposed in [10]. Still, unfor-
tunately, the application of advanced feet in robotics is not
common at all, notwithstanding the aforementioned distinct
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advantages. More details about the current trends can be found in
Section II.

In this context, this article introduces the SoftFoot-Q (see
Fig. 1), a robotic foot prototype for quadrupedal walkers devised
to be able to increase locomotion flexibility and robustness
together with the ability to sense and interact with the envi-
ronment while endeavoring to limit mechanical and control
complexity. The proposed design is loosely inspired by our
previous work [11] and encouraged by the results of [12]. In
the light of the considerations and of the differences from [11]
and [12], discussed in Section IV, the contributions of the present
work are the following:

1) the SoftFoot-Q, an entirely novel and robust adaptive foot,
explicitly devised for quadrupedal locomotion in very
challenging conditions;

2) a more complete mathematical validation of the concept;
3) an integrated low-cost and robust sensing system for haptic

exploration;
4) indoor and in field validation, even on very harsh terrains,

that proves effective reduction of slippage during locomo-
tion on a state-of-the-art robotic quadruped.

In Section II, a quick review of the currently employed robotic
feet and their limitations is carried out. Subsequently, Section III
conducts a mathematical analysis of the influence of foot-sole
shape on the stability of foot-terrain interaction, which leads to
the core idea of our adaptive foot and to the choice of the foot
design, explained in Section IV. In Section V, we present the
mechanical implementation of our robotic foot. The particulars
about its sensorization are provided in Section VI. Four of
these novel foot prototypes are built and tested on the ANYmal
quadruped [13], as Section VII describes in detail. Section VIII
concludes this article.

II. STATE OF THE ART

The majority of legged bipeds walk on flat feet with actuated
ankles (e.g., ATLAS [14], Digit [15], HRP3 [16], HUBO [17],
Nao [18], Talos [19], Toro [20], Walkman [21]) or, rarely,
on very simple ball feet (e.g., Hume [22] or Mabel [23]) or
on active/passive line contact feet (e.g., Cassie [24] and Mer-
cury [25]). This is due to the fact that bipeds need to exert
torques on the ground for balancing, which mostly requires
actuated planar feet. Instead, multilegged systems can make
use of more simplistic feet: almost all quadrupedal robots (e.g.,
ANYmal [13], HyQ [26], Laikago [27], MIT Cheetah [28],
SpotMini [29]), employ passive ball shaped feet.

Currently employed robotic feet privilege simplicity and ro-
bustness at the cost of reducing functionality. However, there
are several concepts of enhanced feet that could, in principle,
improve robot performance in terms of stability and percep-
tion, but severely lack real-world validation. Most of them
are adaptive devices that make use of inflatable balls or other
delicate soft components that are hardly useable in harsh outdoor
settings. For instance, the one presented in [30] is a flexible
humanoid foot design made of a flat part with rubber pads
for absorbing impacts. In [31], a mechanical realization of the
lower body of the “cCub” robot is shown, but the foot sole is

just a solid plate divided into two parts. A passive foot that
uses an airtight bag filled with granular material was developed
in [32], but the work lacks an experimental validation of the
prototype on a robot. In a previous work, we also have shown
how to realize a passive adaptive planar foot with sensing
capabilities [33].

There are also a few adaptive foot designs that are made of
actuated components: although a human-like robot foot proto-
type is described in [34], it is validated only by attaching it
to a stationary rig and lowering it onto different surfaces. A
biped foot mechanism with four spikes that modify their height
according to the terrain using optical distance sensors is shown
in [35]. Still, the authors themselves admit that their solution
cannot be used on soft and deformable terrain such as sand or
snow. A foot system made of an actuated ankle and five rigid
bodies connected via passive joints is presented in [36]; however,
for achieving adaptability, they focused more on an active spine
and distributed control rather than the mechanics of the foot
itself. Other studies on bio-mimetic concepts (e.g., [37] and [38])
implement adaptive mechanisms or mechanical intelligence in
robotic feet mainly in order to maximize traction. Finally, feet
that attempt to mimic the compliance and adaptability of human
feet are presented in works such as [39] and [40], but these
provide no significant experimental results.

Furthermore, current robotic feet are rarely equipped with
sensing devices in their soles. This goes against the knowledge
that sensed data (posture, force/torque, pressure) from the feet
are vital for efficient control of balancing and walking. Only
a few exceptions employ expensive force/torque or pressure
sensors [41], [42] or a combination of inertial measurement units
(IMUs) and force/torque sensors [33] to estimate contact force
or pressure.

Most of the aforementioned robotic feet have very little
mechanical and functional sophistication. The limited use of
advanced feet, such as mechanically adaptive feet, is likely
resulting from several hindrances including the following.

1) Mechanical complexity—an adaptive or active foot is gen-
erally more complex with respect to a foot with rigid flat
sole and might be less robust and not suitable in practice
for harsh interactions.

2) Modeling complexity—advanced feet are usually more
difficult to model and hence also more intricate to simulate.

3) Control complexity—novel feet designs are typically not
compatible with the flat floor hypothesis [43], hence most
locomotion algorithms do not apply in a straightforward
way;

4) Weight—the need to apply and bear large loads makes
active robotic feet heavy and not easily adaptable to mul-
tilegged robots and, moreover, moving a heavy mass at the
tip of the leg is not at all desirable.

Despite these potential hindrances, adaptive feet can provide
many advantages to locomotion, e.g., leveraging the environ-
ment for support or pushing-off, adapting to the conditions of
the terrain. Another benefit is the increased perception given by
the possibility of exploiting environment and objects with the
robot sole for estimating surface features, textures, and friction.
This allows the feet to be used to inspect the environment as
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TABLE I
STABILITY ANALYSIS: THE THREE DIFFERENT FEET COMING INTO CONTACT WITH CONVEX TERRAIN

shown in [44]. With the right sensors, feet can be used as adaptive
probes that are able to enhance the perception of unstructured
environments through haptic reasoning, as we have shown in a
previous work [45]. Especially in the case of impaired vision,
visual and haptic information can be integrated to assess the
shape and softness of the surroundings [46]. Hence, knowing
the properties of the terrain, such as its compliance and local
curvature, can considerably improve the stability of a walking
robot [46]–[48].

III. MODELING

In this section, we conduct a mathematical study of the
stability properties of a generic robotic foot in relation to the
shape of its sole for both the cases of locally convex and concave
terrains. Therein, we purposely neglected static friction as we
intended to develop a design that is inherently stable even in the
absence of frictional effects. The aim of this simplified study is
to roughly justify our choice of design.

Consider the simplified model of a robotic foot contacting
the terrain, as shown in Fig. 2. Here, m stands for the mass of
the foot; r ∈ IR and R ∈ IR stand for the local signed radii of
curvature of respectively the foot and the terrain at the contacting
point. A negative value of the radii would change the shape of
the foot or the terrain to be concave. The parameters kx, cx and
ky , cy are related to the impedance of the robotic leg in the x and
y directions, respectively. The dynamic frictional effects at the
contact surface are modeled by the coefficient cθ. Let xp and yp
be the reference positions of the foot and θ the Lagrangian angu-
lar coordinate of the midpoint of the foot with respect to the cen-
ter of the terrain curvature. To derive the model of the foot-terrain
interaction dynamics, we choose as state ζ = [ζ1 ζ2]

T = [θ θ̇]T

Fig. 2. Simplified 2-D model of a robotic foot contacting an uneven terrain,
which is used for foot-terrain interaction stability analysis. Results are reported
in Table I.

and as input u = [u1 u2]
T = [xp yp]

T . By employing the La-
grangian formulation, using θ as Lagrangian variable, we write
the nonlinear dynamics of the foot-terrain system in the state
space [49]⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇1 = ζ2

ζ̇2 = −ζ2

[
(R+ r)(cxR cos2 ζ1 + cyR sin2 ζ1) + cθ

m(R+ r)2

]

+
sin(2ζ1)(ky − kx)

2m

+

[
kx cos ζ1
m(R+ r)

−ky sin ζ1
m(R+ r)

]
u.

(1)
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Fig. 3. Simplified model of a robotic foot with elastic element under the sole. (a) Foot with rubber sole of thickness t. The support area is highlighted in red on
the ground. Deformation and projection of a same resultant force F in the two cases of rubber sole with (b) high and (c) low stiffness. (d) Simplified 2-D model of
a foot with soft material under the sole.

Linearizing (1) about the feasible equilibrium of the
system, which is given by ζeq = [ζ1eq ζ2eq ]

T = [0 0]T ,
ueq = [u1eq u2eq ]

T = [0 ȳp]
T , we obtain

ξ̇ =

[
0 1

−η1 −η2

]
ξ +

[
0 0
kx

m(R+r) 0

]
v (2)

where ξ and v, respectively, stand for state and input perturba-
tions in a neighborhood of the equilibrium. The parameters η1
and η2 are

η1 =
kx(R+ r) + ky(ȳp −R− r)

m(R+ r)
, η2 =

cθ + cxR(R+ r)

m(R+ r)2
.

(3)
If we assume that both the environment and the robotic foot
are able to withstand the vertical interaction force given by
|Fy| = ky|(ȳp −R− r)|, the foot-terrain system is at equilib-
rium ∀ȳp < R+ r, which guarantees contact of the foot with
the ground.

The stability of the nonlinear system about the equilib-
rium, as studied in [49], taking into account that m > 0,
|Fy| = ky|(ȳp −R− r)| and R �= −r, is granted by

kx > (R+ r)−1|Fy|. (4)

Condition (4) yields some interesting conclusions. If R > 0, the
terrain is locally convex at the contact point (cases illustrated
in the first row of Table I). In this case, for both the ball and
flat feet, a positive bound on the horizontal stiffness kx of the
robotic leg is required for the stability of the system. Instead,
for an adaptive foot, the bound on kx is a negative value, hence
the system is always stable for any physically possible value of
horizontal stiffness of the leg. Instead, if the terrain is concave
at the contact (R < 0), all feet exhibit an interaction stabilizing
behavior (second row of Table I). Consequently, if either the foot
or the terrain has a concave shape, the foot-terrain interaction is
locally stable. Thus, a foot that can become convex or concave
using its capacity to conform to the shape of the terrain (third
column of Table I) has the property of inherently stabilizing the
interaction dynamics.

This highlights how the curvature of the robotic sole plays a
critical role in the stability of the sole-terrain interaction. The
more the curvature of the sole adapts to the contact surface, the
more the contact dynamics with the foothold is stable, even in the
absence of static friction at the contact. Frictional phenomena,

on the other hand, can always aid in and improve the stability of
the interaction in all of the three cases shown in Table I.

The desired property of being able to adjust the sole to the
curvature of the terrain can be implemented on a robotic foot
in at least two ways: 1) by inserting a thick, soft layer under
the sole; or 2) by mechanically designing the foot to have an
adaptable sole. The former case, also analyzed in [11], presents
some shortcomings, as illustrated in the thought experiment in
Fig. 3. A soft component under the sole can be modeled with
two springs of equal stiffness K1 = K2. When a nonvertical
force acts on the ankle, it will cause the foot to incline in one
direction and potentially tilt if the stiffness of the springs is
below a given threshold, since the projection of the force might
lay outside the support surface [see Fig. 3(c)]. The higher the
thickness t of the soft component below the sole, the higher
also the pivot point and the more the chance for the foot to
become unstable, as the resulting moment is bigger. Moreover,
the physical limits on ankle motion and the available control
torque by the foot lead to lower bounds on the stiffness of soft
components under the sole: this has been extensively discussed
in [11].

An additional reason against a foot with soft layer sole is
found by studying the balance of forces on the simple model
shown in Fig. 3(d). The equilibrium of vertical forces is as
follows:

Fv = kvδv1
+ kvδv2

. (5)

Here, δv1
and δv2

are the displacements of the left and right
vertical springs respectively. If we assume that the ankle joint
does not transmit any torque along its axis from the leg to the
foot (for instance, it might be a revolute joint), the equilibrium
of moments can be expressed approximately as

0 = −Fhh− kvδv1

L

2
+ kvδv2

L

2
. (6)

From (5) and (6), the vertical displacements of the springs can
be computed as

δv1
=

1

2

(
Fv

kv
− 2Fhh

kvL

)
, δv2

=
1

2

(
Fv

kv
+

2Fhh

kvL

)
(7)

and the difference between the displacements of the two vertical
springs can be directly found from (6) as

δv = δv2
− δv1

=
2Fhh

kvL
= 2pFh. (8)
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Fig. 4. Three different kinds of feet: (a) adaptive foot; (b) flat foot; (c) ball foot. coming into contact with an irregular slope. Differences between expected contact
and actual contact manifest in terms of different foot position and orientation, different support polygon, and different distribution of pressure.

As expected, foot stability depends on the variable p = h
kvL

,
which is a combination of the height of the pivot point and the
softness of the sole. It is noteworthy, from (7) and (8), that p has
particular relevance in helping choose the correct design for a
stable adaptable foot. A high value of p leads to an easier tilting,
increasing the chance of instability of the design, and so a low
value of p is desirable. As a consequence, ideally, the height
of the joint should be kept low, the base wide, and the sole as
stiff as possible. However, as there are usually limitations on the
geometric size of the foot (on h and L), for the architecture
to be stable, the sole stiffness kv should be relatively high.
Therefore, it becomes clear that the thickness of rubber-like
elements under the sole should be kept at a minimum. This
motivates our choice of implementing the alternative solution
of a mechanically adaptive sole.

IV. ADAPTIVE FEET: IDEA

Based on the results of Section III, we propose a passive-
adaptive foot with a mechanically deformable and adaptable
sole. As illustrated in the simplified drawing in Fig. 4(a), the
sole itself of our robotic foot is deformable without any thick,
soft part under the base. In this manner, the prototype is able to
adapt to the shape of the ground while minimizing the chance
of instabilities due to the deformation of elastic elements under
the base of the foot.

As illustrated in Fig. 4(a), the intended behavior of our foot
design when approaching the soil is to act as a rope in a tension
state. In particular, as the foot approaches the ground, parts of
the sole will start touching some of the peaks of the ground. In
this condition, a flat foot would stop as soon as there are enough
contact points to limit the motion (assuming a sufficient amount
of friction, this would happen with two contact locations in a
planar example as in Fig. 4(b), or three not aligned contacts in
3-D space). Instead, a ball foot might contact the terrain on a
tiny surface (a point in the worst case), increasing the chance
of slippage, as Fig. 4(c) shows. The adaptive foot, on the other
hand, can continue to move down, “settling” its position until
the flexible sole becomes sufficiently tense. In performing this
motion, the foot would wrap around the convex hull of a subset
of the points on the ground. The usage of such an adaptive foot
could also have the effect of increasing the size of the support

area unless the terrain surface is even and perfectly flat: in such
an ideal case, the flat foot would surely maximize the contact
area. However, in real-world situations, surfaces are irregular,
and hence adaptive feet have more chance to lead to a larger
support area.

Our design, extensively explained in Section V, is loosely
derived from the one presented [11] (SoftFoot), which has been
later tested on the HRP-4 biped in [12]. However, the prototype
presented therein is meant to be a humanoid adaptive foot. So, it
combines the design of an adaptive sole with fingers and a system
to implement a windlass-like mechanism, which is a function of
the anatomy of the base of the foot that helps in maintaining
stability when the foot is still in contact, but the heel rises from
the ground [50]. In [11], the authors also state that the SoftFoot
needs further optimization and field validation. However, the
prototype has not been modified in [12], except for a connection
interface, and no extensive validation has been carried out: the
authors themselves admit that the presented results are simply
a proof of concept to demonstrate the employability of their
adaptive foot on the HRP-4 robot. In both [11] and [12], the
adaptive foot has never been tested outdoors on harsh terrains.

In contrast, the design proposed in the present work is entirely
new and is explicitly devised for being used on quadrupedal
robots in very harsh environments. Since the SoftFoot is “a
mechanical architecture that translates in a feasible engineered
complexity the behavior of a human foot,” a complete redesign-
ing was required for reducing unnecessary sophistication and in-
creasing robustness. Additionally, the SoftFoot has dimensions
and weight that are in line with the state-of-the-art humanoid
bipeds. Hence, it cannot be employed on the small legs of
quadrupedal robots.

In accordance with the above, the main design goals of
SoftFoot-Q were lightness, size reduction, robustness, and
adaptability. Our foot preserves from the SoftFoot only the
two arch structure together with the idea of a mechanically
compliant sole that leads to a stiffening-by-compression behav-
ior. SoftFoot-Q does not present the windlass-like mechanism
anymore, as we wished to reduce the complexity of the design.
The number of components are also considerably lower than
SoftFoot, which also aided in ensuring a relatively low weight
of the prototype. Moreover, the new foot is enhanced with an
extra degree of freedom in order to extend the adaptation of the
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Fig. 5. (a) Exploded view of the SoftFoot-Q showing each of the relevant components of the foot. The placement of the electronic components (IMUs and custom
board) of the sensing system are also shown. (b) Perspective. (c) Lateral and front. (d) CAD views of the mechanical design of SoftFoot-Q. The relevant dimensions
(in mm) and angles of the parts of the prototypes are highlighted in the lateral and front views. (d) Pitch and roll motions of the foot.

foot also to variations of the profile of the terrain on the frontal
plane.

V. ADAPTIVE FEET: DESIGN

The required specifications for the design of SoftFoot-Q have
been derived for its use on the quadrupedal robot ANYmal:1

the size, mass, and inertia of the foot should be contained and
compatible with the specifications of the robot; to reduce the
sinkage of the foot in soft soil, the footprint should be maximized
while keeping the weight low [45]; the adaptiveness in roll and
pitch should be maximized avoiding any singularities in the
range of motion of the joints; the sensing systems should be
robust and accurate enough for the intended outdoor and indoor
use.

The chosen design is shown as an exploded view in Fig. 5(a),
while Fig. 5(b) and (c) depict perspective, lateral, and front
views. SoftFoot-Q is composed of the following four main
components.

1) An ankle link acts as the connecting component of the
foot.

1This work has been carried out within the EU Project THING. Its principal
aims are to deliver: 1) novel foot designs for enhanced tactile perception and
locomotion; 2) improved perceptual capability for enriching existing sensing
modes with haptic data; 3) increased physical sense of the environment;
4) enhanced mobility through better perception, prediction, and control.

2) Two arch links provide the foot with pitching movements.
3) Two roll links make it possible to perform rotations around

the forward axes.
4) Three chains are the core parts of SoftFoot-Q as they make

the sole that deforms when coming into contact with an
uneven terrain. The first three set of components are made
of aluminium and the chains of stainless steel.

Referring to Fig. 5(a), the lower extremity ©A of the leg of the
quadruped is connected to the ankle link ©C –©D , which in turn is
attached to two arch links ©H by means of a pin ©E forming two
revolute pitching joints. Using smaller pins©J , two links—called
roll links ©K —are joined to the extremities of the arch links
opposite to the ankle link for providing the foot with rolling
rotations. See Fig. 5(d) to better understand the two main types
of movements that SoftFoot-Q can perform: roll joints provide
a rotational degree of freedom to the sole on the frontal plane
while pitch joints provide the same on the longitudinal plane.
Additionally, the two arch links are connected to each other at the
level of the pitching joints using also a spring ©F for ensuring
relative stiffness of the arch closure. Two limiters ©I are also
used to restrict the pitching angles: in their absence, the relative
movement of the arch links could increase the pitch range of
motion, which might cause the projection of the foot contact
force to lie outside the support area, thus leading to instability
of the foot. Finally, three paddled chains ©L are attached to the
front and back roll links, turning the foot into a closed kinematic
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Fig. 6. Some examples of sole deformations and interactions while SoftFoot-Q
engages different obstacles and terrains. Adaptability to the profile of the terrain
is one of the main highlights of or foot.

chain and providing a flexible sole, which becomes rigid in
extension. This enables the adaptiveness of the foot because, as it
approaches an uneven terrain, the chains will move and conform
to the terrain until the flexible sole becomes fully tense. Thus, the
foot would envelop the convex hull of a subset of the points on the
ground. The chains are also equipped with grousers with small
rubber cylinders ©M on part of the sole for increasing the grip on
the ground. The relevant dimensions of the mechanical parts of
the foot are reported in Fig. 5(c) and some more essential details
are provided in Section VII in Table III. Also refer Appendix A
for an analysis of the critical components of SoftFoot-Q. Fig. 6
shows some examples of feet deformations and interactions with
different obstacles.

When the foot is at rest, the two roll axes of the foot are
inclined approximately 6◦ upward with respect to the horizontal
terrain plane [see Fig. 5(c)]. This choice is of extreme importance
as it lets the foot sole to roll within a good range of foot poses.
Here, one might argue that the movement of the roll links might
get stuck whenever the two roll joint axes are not aligned. This
is not the case with SoftFoot-Q, thanks to the play between the
links of the chains. The inclination of 6◦ is justified by the fact
that, through several tests, we found such particular value to be
the average of all roll axes inclinations if the rest position of the
axis were to be null.

The roll joint is positioned lower than the pitching one because
a high position of the roll joint can seriously affect the stability
of the foot by causing the projection of the force exerted by the
leg to lie outside the support area (see Section III). As we were
bound, by the required specifications, to keep the width of the
sole limited for allowing continuous rotation of the shank of
ANYmal, the only solution was to make the position of the roll
joint as low as possible.

Fig. 5 also shows the sensing and perception components:
four IMUs ©G are placed on the feet in appropriate locations:
one embedded in a custom electronic board ©B mounted inside
the ankle base, two on the upper part of the arch links, and one
in front of the forward roll link. The positions of the IMUs on
the foot are configured in such a way that there are always two
sensors on the adjacent links of each joint of the foot except for
the rear roll joint. This is by choice and for the sake of simplicity,
since we assume for the time being that the two roll angles do
not differ too much.

The IMUs we used on our foot are the Invensense MPU-9250
9-axis MEMS with gyroscope, accelerometer and magnetome-
ter: in particular, the digital-output triple-axis gyroscope in the
MPU-9250 has a user-programmable full scale range up to

±2000 deg/sec and an integrated low-pass filter; the digital-
output triple-axis accelerometer has a programmable full scale
range up to ±16 g. The sensors are made water resistant by
coating them with an appropriate resin and by positioning them
inside protective cases, such as ©N , apart from the one inside the
ankle. For more technical details about the IMUs, the reader may
refer to the data-sheet of the Invensense MPU-9250 provided by
the manufacturer.

The schematics of the custom electronic board, to which all
IMUs are connected, are available openly at the GitHub page
of Natural Machine Motion Initiative [51]. The PSoC firmware
uploaded on the board handles readings from up to 17 connected
IMUs. The communication with the board is established through
FTDI and RS-485 protocols using a dedicated API. Each foot
provides a USB cable, which can be attached to a hub to get
measurement data from all feet. An ROS node [51] uses the
aforementioned API to read and publish on a topic the acceler-
ations and angular velocities of the IMUs connected to it at a
maximum frequency of 200 Hz. The exact placements of each
IMU on SoftFoot-Q are shown in Fig. 5.

VI. POSE ESTIMATION AND HAPTIC EXPLORATION

A. Pose Reconstruction

To employ SoftFoot-Q in harsh and hostile environments, it
is highly desirable to know the pose of the foot to infer on char-
acteristics (for instance, curvature or shape) of the surroundings
with which the robot will be interacting (see also Section VI-B).
However, the lack of joint encoders, which increases the robust-
ness of SoftFoot-Q, makes it impossible to directly measure the
joint angles.

We devised a simple foot pose reconstruction algorithm,
which makes use of readings from the IMUs, for enhancing the
perceptual capacities of the foot. It employs a complementary
filter that fuses two estimates of the joint angles: one obtained
through integration of angular velocities, measured by the gyro-
scopes, and the other from geometric considerations on the local
gravity vector, acquired by the accelerometers.

The algorithm is based on the following assumptions.
1) The IMUs on each link are placed on the same locations

and with the same orientation on all four feet.
2) The movements of the IMUs w.r.t. the related link bodies

(changes in relative pose) are negligible.
3) The foot is not constantly subject to accelerations that are

much greater than the acceleration of gravity.
For the sake of simplicity, consider the case of a single joint

with two IMUs on the adjacent links (see Fig. 7). A preliminary
estimate of the joint state qak (with joint axis jk) can be obtained
from the two accelerometers as the difference of the measure-
ments of the gravity vectors from the rest position, as illustrated
in Fig. 7

qak = θk+1 − θk. (9)

It is noteworthy that this estimate is purely based on geometric
considerations and suffers severely in the cases where the gravity
vector tends to align with the joint axis. Another estimate qgk of
the joint state can be integrated from the angular rate ωg

k of the
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Fig. 7. Simple illustration of a revolute joint with two IMUs on the adjacent
links. The variation of inclination of the gravity vectors measured by the two
IMUs can give an estimate of the joint angle.

Algorithm 1: Angle Estimation of the kth Joint at nth Step.

1: procedure Joint States Estimation(ak[n], ak+1[n],
ωk[n], ωk+1[n], qk[n− 1])

2: θk[n] =
jk ·(ak[0]×ak[n])

ak[0]·ak[n]

3: θk+1[n] =
jk ·(ak+1[0]×ak+1[n])

ak+1[0]·ak+1[n]

4: qak [n] = θk+1[n]− θk[n] �Acc. estimate
5: ωg

k[n] = (ωk+1[n]− ωk[n]) · jk
6: qgk[n] = qk[n− 1] + ωg

k[n] dt �Gyro estimate
7: qk[n] = kaq

a
k [n] + kgq

g
k[n]

8: return qk[n] �Joint angle estimate

joint, which in turn can be obtained trivially from the angular
velocities of the two IMUs. This angle estimate is

qgk = q∗k + ωg
k dt. (10)

Here, q∗k is some reliable previous estimate of the joint angle.
Fusing (9) and (10) with suitable weights, a complementary filter
for the joint angle estimation can be defined as follows:

qk[n] = ka q
a
k [n] + kg q

g
k[n]. (11)

The variable n stands for discrete time steps, the two positive
gains ka and kg can be changed at each step n according to
the confidence in the two estimations (qak and qgk) and it should
always hold that ka + kg = 1. In particular, we change the gains
dynamically according to the degree of alignment of jk with the
local gravity vector. Since the estimate qak is not reliable when
jk is aligned with the local direction of the gravity, we set at
each instant kg = |jk · ak| and ka = 1− kg .

From steps (9)–(11), an iterative procedure for estimating
the joint angle between two links is devised (Algorithm 1).
At the nth step, the Algorithm takes as input the acceleration
vectors (ak[n] and ak+1[n]), the angular velocity vectors (ωk[n]
and ωk+1[n]) of the two adjacent IMUs to the kth joint and
the previous estimate of the joint angle qk[n− 1] (to be used
as initial condition q∗k for gyro integration). The output is an
estimate of the joint angle qk[n]. The procedure obviously needs
to be applied for each joint of the robotic foot in order to
reconstruct its entire pose.

The primary benefit of the complementary filter defined
in (11) relies upon the fact that it is generally easier to implement
on hardware than other more precise but complex solutions, such
as a Kalman filter. Additionally, it does not suffer from yaw
drift due to uncorrected integration of gyroscope measurements,

Fig. 8. Precision of the pose reconstruction algorithm (on a single joint of
SoftFoot-Q) estimated by means of video tracking using Kinovea Software Suite.
(a) Real and sensed angles. (b) Estimation errors. The feet poses in (c), (e), and
(g) are estimated in (d), (f), and (h). These estimations are related to (a).

Fig. 9. Pose reconstruction of SoftFoot-Q on ANYmal. The shape of the foot
is estimated by the software even under water.

which is common in traditional IMU-based orientation estima-
tion, like the one proposed in [52]. The effort of implementation
of our solution with respect to the accuracy it guarantees is
sufficient for our application. Some additional processing of the
sensor measurements with Low-Pass filters to clean up noise can
further increase the precision.

The pose estimation algorithm was implemented in ROS
Melodic and its accuracy was evaluated by using the built-
in angle selection tool of the video tracking software suite
Kinovea,2 which provided the ground truth. This software suite
is widely used in robotics research and achieves sufficient angle
estimation accuracy in targets up to 5 m away [53]. An HD
Canon camera was placed at a distance <1 m to record the
videos and, additionally, also red colored dots where placed on
the feet to better track the angles. The reconstruction was found
to be responsive and precise for the intended use; for instance, we
tested the estimation of the pitch angle and noticed relative errors
on average smaller than 5% (with maximum absolute errors of
≈ ±6 deg [see Fig. 8)]. Three screenshots of the estimated poses
and the real relative poses of the foot on ANYmal are shown in
Fig. 9. These also show how the pose reconstruction is crucial
wherever traditional sensing systems might fail. For instance,
in the last photo of Fig. 9, notice that, even though a foot is
submerged in muddy water, its configuration can still be sensed.

2[Online]. Available: https://www.kinovea.org/

https://www.kinovea.org/
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Fig. 10. Simplified qualitative resolution analysis of the smallest terrain profile
variation that can be detected.

B. Haptic Exploration

Tactile and haptic inspection with legged robots are relevant
problems in the literature [44], [45], [54]. Indeed, using a purely
visual inspection in places, such as deep underground mines
or sewers, can lead to almost certain failures [55]. The sensing
system can be employed for using SoftFoot-Q as a haptic probe
to explore and sense the environment. This is in line with the
aforementioned main advantage provided by robust adaptive
feet, which is the possibility to have a more daring approach
to the interaction process with the surroundings with the aim
of increasing perceptual capabilities. For instance, one of the
specifications on the foot design might be the ability to detect
soil irregularities under the sole. The resolution with which we
expect to sense irregularities can be approximately characterized
mathematically.

Suppose a small obstacle at the center of the sole moves the
chains upwards (see Fig. 10). From a simple and approximate
geometric analysis, the following holds:

δθ = 2

⎡
⎣arcsin(Lchain

2Larch

)
−arcsin

⎛
⎝
√(

Lchain

2

)2 −δh2

Larch

⎞
⎠
⎤
⎦ .

(12)
Differentiating (12) with respect to δh yields the sensitivity

of the joint angle to variations in the height of the terrain profile

S =
∂(δθ)

∂(δh)
=

2 δh

Larch

√
1−

Lchain
2

4 −δh2

Larch
2

√
Lchain

2

4 − δh2

.

(13)
By inverting the relation in (12), we obtain

δh =

√
Lchain

2

4
− Larch

2 sin

(
δθ

2
− arcsin

(
Lchain

2Larch

))2

(14)
which is approximately 14mm in the case of SoftFoot-Q, if

we take into account the worst case δθ = ±6 deg.
This type of irregularity detection is merely a simple il-

lustrative example of the many possible applications of the

Fig. 11. Steps for the calculation of the slippage metric explained visually. For
the sake of simplicity, only a single foot is considered. (a) Instantaneous speed
of a foot and of the robot base, and the status of the contact of the foot with the
ground. (b) Numerator (distance slipped by the foot) and denominator (distance
travelled by the robot base) of the metric.

haptic perceptual capabilities of SoftFoot-Q. The real world
applications of haptic perception and active exploration can
range from inspection to search and rescue. The possibilities
are innumerable since a sensorized adaptive foot can lead to an
increased awareness about the geometry and properties of the
environment. Empowering such an awareness would help the
following:

1) in reducing the dependence on visual sensors, which are
excessively influenced by natural variations;

2) in increasing locomotion stability by devising control
techniques that explicitly make use of the information
estimated via haptic exploration;

3) in opening new possibilities for industrial applications
related to inspection.

VII. EXPERIMENTAL VALIDATION

A. Experimental Setup: Tests on ANYmal

This section presents the experimental data we collected,
while testing SoftFoot-Q on the quadrupedal robot ANYmal [56]
in order to show the effectiveness of the proposed prototype in
enhancing the stability of the quadruped, its adaptiveness and
robustness on uneven terrain (both in the field and indoors), and
its ability in reducing slippage.

ANYmal weighs 30 kg and is approximately long 0.5 m; each
of the four legs has three joints, which are driven by proprietary
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series elastic actuators, called ANYdrives. These enable accu-
rate control of locomotion. On-board batteries provide power to
the robot for operating autonomously for more than 2 hours. The
robot’s underlying motion controller and additional software run
on three on-board PCs.

During the experiments all relevant data were measured
from both the feet and the robot: the state of the robot (base
link position and orientation from the state estimator and the
joint angles and torques of the legs) was recorded. Instead,
the four SoftFoot-Qs provided measurements from the IMUs,
which were used by Algorithm 1 for estimating the joint an-
gles of the feet. During all experiments, both outdoor and
indoor, no autonomy was used: the robot was commanded
by an operator manually by giving velocity commands. The
type of gaits that were used are mainly static walk and trot
with an average velocity of the robot base of approximately
0.45 m/s.

Throughout both the outdoor and the indoor experiments,
we measured and estimated the functional specifications that
SoftFoot-Q complies with. The mechanical mobility, relia-
bility under wet and varying temperature conditions, and
the quality of sensing were also estimated and are reported
in Table III.

B. Outdoor Testing

Initially, extensive outdoor tests were performed by letting
the robot walk on different terrains, mainly composed of mud,
grass, and stones. Throughout the several testing sessions, in
each experiment the average distance walked by ANYmal and
the average speed were respectively about 10 m and 0.45 m/s.
We also tested the performance of the feet on gentle slopes
(inclination approximately less than 25%) as these could ac-
centuate the phenomenon of slippage that we wish to minimize.
We tested all three types of feet (ball, flat, and SoftFoot-Q),
and the amount of slippage happening on the robotic legs was
estimated.

While an accurate tracking of the robot utilizing external and
fixed measuring devices would have been desirable, such an
experimental setup is costly and was not available at the time we
performed the tests. However, ANYmal features a state estimator
that relies on the fusion of data coming from its perception
system composed of IMUs, joint position, and torque sensors,
and on the model of the robot [57], [58].

1) Slippage Metric: The state estimator of ANYmal out-
puts the poses of the tip points of the feet, their contact
status and the motion of the base of the robot. From these
estimates it is possible to assess the slippage of the feet
to compare the performances of the different sets of feet
quantitatively.

Let C be the cartesian trajectory of the base reference frame
of the robot and Ci the cartesian trajectories of the feet (with
i = 1, 2, 3, 4). Cj

i will be the jth segment of Ci considered only
while it is in contact with the ground. By computing the distances
dji and d respectively along the trajectories Cj

i and C, a metric

TABLE II
AVERAGE SLIPPAGE IN EXPERIMENTS

can be expressed as follows:

m =

∑
i

∑
j

dji

d
. (15)

The numerator is the total distance traveled by all four feet
while they are contacting the ground, whereas the denominator
is the total distance traveled by the robot. Such a metric would
have the following properties: it is null in the absence of slippage,
larger when more slippage occurs, not affected by the length of
the traveled path and by still phases, and, finally, it is only slightly
affected by punctual events. However, particular attention must
be devoted to comparing only similar runs since different gaits,
speed, payload, and other parameters might affect the final
metric value.

A series of graphs that can help understand the metric is shown
in Fig. 11. Therein, for clarity of explanation, we consider the
slippage of only one of the ball feet mounted on ANYmal during
an outdoor experiment on slippery terrain. The first two plots of
Fig. 11(a) show the status of the contact of the foot with the
terrain and its instantaneous speed. The integral of the instanta-
neous speed of the foot over the time intervals, while it is con-
tacting the terrain (area under the foot speed curve - highlighted
in red), is the slippage, shown in red in the first plot of Fig. 11(b).
On the other hand, the green curves show the instantaneous speed
of the base frame of the robot and its integral (distance traveled
by the robot). Finally, the slippage metric is plotted in blue
in Fig. 11(b).

Results obtained for the outdoor tests using this metric are
reported in Table II: it is possible to appraise an average reduction
of slippage for SoftFoot-Q of about 29.05% for all the tests
performed outdoors (in detail 16.25% on stones, 29.60% on
collapsible terrain, 26.65% on slopes). It is noteworthy that
the flat feet exhibited a marked tendency to slip, and a slower
gait was required to properly perform the experiments. Despite
the slower gait, the flat feet slipped more than the ball feet or
SoftFoot-Qs. More testing was performed on mixed terrain that
was partly muddy, covered with grass, and also having variable
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Fig. 12. Outdoor testing—Pictures show examples of the experimental setup. The first three images show the three feet on mixed grassy terrain. The last three
show the same on stones. Slippage analysis is reported in Table II.

TABLE III
SUMMARY OF THE SPECIFICATIONS MET BY THE SOFTFOOT-Q

∗Verified through extensive outdoor and indoor experiments.
†Estimated from data harvested during experiments.
‡Estimated from data-sheet of components.

slopes (see Fig. 12): SoftFoot-Q performed better than both the
ball and the flat feet in terms of slippage. By taking a global
average of the slippage over all of the tests that were performed,
the adaptive feet display lower slippage than the others (1.36
for adaptive, 1.77 for ball, and 2.09 for flat feet), hence an
improvement of 23.2% with respect to ball feet and of 34.9%
relative to flat feet.

During the experiments we noticed that our feet performed
particularly well on soft terrain, especially on sand, grass,
and mud. We were also able to walk the robot on water
puddles and dusty areas without damaging the electronics
of SoftFoot-Q. At the end of the experiments, even though

Fig. 13. Indoor testing—Setup used for evaluating the slippage in controlled
environment with ball feet, flat feet, and adaptive feet.

we used the same four feet for all the tests (both the in-
door and the very harsh outdoor ones), no significant elec-
trical or mechanical damage was reported, and any accumu-
lated dirt or mud did not hinder operation. Moreover, the use
of SoftFoot-Q did not require any alteration of the speed of
the robot: neither any significant increase nor any reduction
were seen during the experiments (see attached submission
video).

C. Indoor Testing

Additionally, indoor tests were also performed by letting the
robot walk forward and backward on a platform composed of
fixed rectangular beams. Using each foot, the same distance
was covered (from one side of the platform to the other). We
manually commanded the robot to maintain the same speed. The
platform was big enough for ANYmal to stand with all four legs
on it: the dimensions were approximately 150× 120× 7 cm3.
The four beams on the platform had a profile of approximate
dimensions 3× 2 cm2, and were placed at random angles in
order to increase uncertainty during the tests. These indoor
experiments allowed us to evaluate the performance of the feet in
a controlled environment through repeatable experiments, which
were conducted with ball, flat and adaptable feet, as shown in
Fig. 13.

A different criterion (visual inspection in place of the slippage
metric used for outdoor tests) was purposely employed here
since we wanted to measure the phenomena of instantaneous
and sudden slippages instead of an aggregate measure. The
sudden downward movement of a foot, which is caused by the
robot losing a foothold, might not always induce instability of
the robot itself and might not always be crucial for operation.
However, it can give an indication of the grip and the reduced
slippage that our foot design can ensure. Depending on the
terrain and the situation, these type of slips can be more or less
critical for locomotion.

A simple visual analysis of slippage was carried out by
counting the number of times the robot legs slipped from an
expected foothold. A slippage was counted for whenever a leg
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Fig. 14. Simplified load bearing analysis of the critical components of SoftFoot-Q: the pitch and roll joint pins. The von Mises equivalent tensile stress of the

two pins are σ
(p)
V M = 179.46MPa and σ

(r)
V M = 97.94MPa.
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lost the expected foothold with a sudden downward movement
of the foot and a velocity of the tip of the leg much higher than
its average speed throughout the test (see attached submission
video). Since the total number of steps taken by the robot were
different for each foot, we normalized the number of slips by the
count of steps taken. We noticed a significantly lower percentage
of slippage in the case of our adaptive feet with respect to ball
and flat feet (4.0% versus 8.0% and 16.2%) on an average of
100 steps walked by the robot.

VIII. CONCLUSION

In this work, we presented the SoftFoot-Q, a novel adap-
tive foot, devised with the particular goal of being used on
quadrupedal robots. Our prior work [11] loosely inspired this
prototype, which preserved all of the advantages of adaptiveness
and robustness of the previous foot. Furthermore, SoftFoot-Q
was specifically designed for quadrupedal navigation in outdoor
terrain and mud. It was more adaptive, robust, light, and simple
than its predecessor. The proposed robotic foot also tried to
overcome the limitations of current feet as its core functioning
principle was to conform to the shape of the ground so as to
attempt to maximize the contact surface, and thus, stabilized the
quadrupedal walker by reducing feet slippage. A summary of
the mechanical and functional requirements that the SoftFoot-Q
complies with, were shown in Table III.

We started by discussing and proving mathematically some of
the limitations that affected traditional ball and flat feet, which
were commonly used on quadrupeds. These were substantial,
especially when they were used for walking outdoors on uneven
and unstructured terrain or on slopes and, in general, wherever
the knowledge about the profile of the ground was imperfect.
This analysis led us to the choice of design as it proved that
a mechanically adaptive sole was inherently stable even in the
absence of frictional phenomena.

After describing in detail the chosen adaptive foot design and
its low-cost but effective sensing system composed of inertial
measurement units, we implemented a computationally efficient
and precise algorithm for foot pose reconstruction. Further
work is currently being carried out for estimating other relevant
quantities, such as contact forces during locomotion, which can
provide additional information about the interaction of the foot
with the environment.

The effectiveness of SoftFoot-Q was validated through ex-
tensive in-field testing: the adaptive feet were mounted on a
compliantly actuated quadrupedal robot and compared with the
traditional counterparts, ball and flat feet, on harsh irregular
terrain with different softness and consistency. Results showed
a performance improvement measured in terms of slippage.
Surprisingly, the flat feet displayed more instability during the
tests than did the ball feet. Furthermore, these experiments
also proved the robustness and adaptiveness of the proposed
prototype. Additionally, indoor tests were also conducted; the
total number of times the robot slipped was visually estimated
for each of the trials. Outcomes display a reduced number of
slips of the robot while mounting the SoftFoot-Q, whereas ball
and flat feet slipped much more during locomotion.

In conclusion, our foot design was clearly seen to improve
the stability of quadrupeds by reducing slippage considerably
during locomotion without any need of slowing down the robot.
The sensing module and the pose reconstruction algorithm are
a good point of departure for enhancing the haptic feedback of
the probe. Future works might include designing an actuated
version of the foot to actively stabilize quadrupedal robots and
devising control algorithms that make use of the information
provided by SoftFoot-Q to improve locomotion. Also the design
of the proposed foot will be further improved by investigating
the option of efficiently adapting it to different robots and of
adding elasticity to the ankle.

APPENDIX

A. Load Bearing Analysis

A simplified load bearing analysis (see Fig. 14) was performed
in order to prove the robustness of the prototype. In particular,
stress analysis of the two critical components of the foot (the
joint pins) was carried out. We used the data saved during the
experiments to find the highest possible load on the feet ankles,
which is Fext ≈ 330N.

Subsequently, a reduced model [see Fig. 14(a)] on the lon-
gitudinal plane was employed to compute the reactions of the
joint pins to such a load. These aided in drawing the free body
diagrams [see Fig. 14(b)] of each of the main components of
SoftFoot-Q, considering also the longitudinal symmetry of the
foot and some minor simplifying assumptions.

Finally, the stress analysis of the two joint pins of the foot
were performed [see Fig. 14(c)] and the von Mises criterion
was used to evaluate their yielding. For the pitch joint pin we
computed an equivalent tensile stress of σ(p)

VM = 179.46MPa.

Instead, the roll joint pin had σ
(r)
VM = 97.94MPa. Both values

are fairly below the yield strength of stainless steel (pins are
made of EN 1.4301), which is greater than 200MPa.
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