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Stochastic Dynamic Games in Belief Space
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Abstract—Information gathering while interacting with other
agents under sensing and motion uncertainty is critical in domains
such as driving, service robots, racing, or surveillance. The interests
of agents may be at odds with others, resulting in a stochastic
noncooperative dynamic game. Agents must predict others’ fu-
ture actions without communication, incorporate their actions into
these predictions, account for uncertainty and noise in information
gathering, and consider what information their actions reveal. Our
solution uses local iterative dynamic programming in Gaussian
belief space to solve a game-theoretic continuous POMDP. Solv-
ing a quadratic game in the backward pass of a game-theoretic
belief-space variant of iterative linear-quadratic Gaussian control
(iLQG) achieves a runtime polynomial in the number of agents
and linear in the planning horizon. Our algorithm yields linear
feedback policies for our robot, and predicted feedback policies for
other agents. We present three applications: Active surveillance,
guiding eyes for a blind agent, and autonomous racing. Agents
with game-theoretic belief-space planning win 44% more races
than without game theory and 34% more than without belief-space
planning.

Index Terms—Game-theoretic planning, motion and path
planning, multirobot systems, optimization and optimal control.

I. INTRODUCTION

W E aim to develop planners for multiagent systems that
are robust under uncertainty and combine information-

seeking behavior with game-theoretic reasoning. While game
theory can model the interaction and dependency among agents,
it does not address the quality of the information available to
the agent for decision-making. Agents must plan and act within
a game, remain robust to uncertainty, gain information, and
leverage the information gain to improve their control policies.
We propose an approach that combines game-theoretic planning
with belief-space planning (BSP), leveraging the interaction
models from game theory while incorporating uncertainties
in the modeled dynamics and perception. In multiagent sys-
tems, we find that agents gather information to reduce uncer-
tainty while maintaining decision-making strategies that support
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Fig. 1. One application we present is dynamic racing. Here, the blue agent
starts with a disadvantage but is equipped with better acceleration and capable
of moving faster through corners than the red agent. Our approach allows the blue
agent to overtake and win the race. Planned trajectories and chance constraints
are shown in dashed lines and ellipses. The traces correspond to the true state
(solid) and the noisy EKF-estimate (dashed) available to each agent during the
race. The red areas are zones with low noise observations and reduce uncertainty.

complex interactions. Applications include assistive robotics,
surveillance, pursuer–evader games, and racing, see Fig. 1.

While each agent operates independently and does not reveal
plans or intentions through communication, agents have approx-
imate models of the other agents. Dynamic models allow us to
infer the ability of other agents to move in the environment,
approximate cost models encode the agents’ objectives. Models
of how other agents perceive the world from observations allow
estimating what other agents know and with what certainty. Our
work is related to model predictive receding horizon planners:
Agents start from an initial belief about themselves, others, and
the environment and imagine how the future will evolve if they
and other agents were to execute certain actions. These models
can be prescribed, observed, sensed, or communicated. As plans
are not shared among agents, we propose a game-theoretic
framework that predicts the interactive policies of other agents
while optimizing for our own policy.

Within the game-theoretic framework, agents take actions that
increase their information gain, which in turn results in the ability
to improve their control policies with reduced uncertainty. For
example, an assistive robot tasked with guiding a human may
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explore the environment to reduce uncertainty and better navi-
gate. Conversely, a game-theoretic setting can model adversarial
agents. Here, agents may choose to hide to prevent others from
gathering information about themselves, which is relevant to
surveillance applications. In the context of racing, agents may
force others to increase their uncertainty, such as by pressuring
them to drive too fast in a corner which increases uncertainty in
their state, or by simply pushing them into the dark. It is therefore
not only important to reason about a robot’s own uncertainty but
also the uncertainty of other agents in the environment, and even
more so how one’s actions impact the change in the uncertainty
of others.

Game-theoretic models have not only proven useful to model
interactions between autonomous systems but also in integrating
interactive human predictions into autonomous decision-making
and planning. We can model the actions of humans as ex-
pected cost-minimizing and estimate human cost functions from
past observed trajectories with inverse reinforcement learning
(IRL) [1]. Consequently, computing expected cost-minimizing
actions based on the learned cost functions generates human
predictions. The expected cost-minimizing behavior can also
be interpreted as the best response to an autonomous agent’s
actions. This best response setting allows us to estimate how
the autonomous system’s actions influence human actions. The
autonomous system can therefore implicitly control the human’s
actions to a certain degree. This technique has been applied to
predict interactive human behavior for autonomous vehicles [2]–
[4], and to predict pedestrians [5]. The combination of game-
theoretic modeling of human behavior and information-seeking
planning is therefore even more promising.

For instance, home service robots can provide assistance and
support to humans, particularly the elderly population. These
robots need to work near humans, gauge the human’s intent,
and understand the state of mind of others to better perform
tasks. They have to avoid confusion and misunderstandings and
will need to seek information about both their environment and
surrounding humans. Additionally, these autonomous systems
need to also reason about the amount of information and un-
derstanding the human has about the robot. The robot can aid
the human’s understanding through explicit communication, as
well as implicitly through behavior, such as moving to visible
locations or indicating intent by unambiguously moving in the
desired direction.

We propose a solution that combines multiagent game-
theoretic decision-making under uncertainty and BSP. Our ap-
proach supports robust solutions to a wide range of multirobot
applications in which dealing with uncertainty, the need to
gather information, and game-theoretic decision-making are
fundamental. We build on important advancements in two areas:
Game-theoretic planning and BSP. Game-theoretic planning
successfully solves problems where an agent’s objective is at
odds with the objective of other agents, such as in modeling
human behavior in traffic [4], [6], [7], and leveraging the effects
on humans by autonomous cars [2]. The authors in[8] give a
recent review on game theory and control. In game theory, the
Nash equilibrium is a proposed solution of a noncooperative
game involving two or more players. Each player is assumed

to know the equilibrium strategies of the other players, and no
player has anything to gain by changing only their own strategy.
Solving for Nash equilibria has been applied to competitive
racing [9]–[11] and guiding vehicles through intersections [12].
Solution methods include iterated best response [9], [11], [13],
[14], iterative quadratic approximations [15], [16], using discrete
payoff matrices [10], or solving the necessary conditions [4].
We will solve the necessary condition of a static quadratic game
at each stage in the backward-pass of iterative linear-quadratic
Gaussian control (iLQG) to solve for the Nash equilibrium of
the dynamic game.

While game-theoretic planning models the interaction and
dependency among agents, it does not address the quality of
information available to the agent for decision-making. BSP [17]
uses beliefs, which are the distribution of the robot’s state
estimate, to represent the uncertainties in the perception of
the robot. The problem of computing a control policy over
the space of belief states is formally described as a partially
observable Markov decision process (POMDP), and has been
studied extensively. Solutions to POMDPs are known to be very
complex. Solving a POMDP to global optimality is NP-hard:
Solutions such as point-based algorithms [18]–[21] in discrete
space are bound to the curse of history, as well as sampling-based
solvers [22]–[24]. Optimization-based approaches have been
developed for planning in continuous belief space [25]–[29], by
approximating beliefs as Gaussian distributions and computing
a value function valid in local regions of the belief space. Sim-
ilarly to [28], [29], we avoid the common maximum-likelihood
observation assumption [26], [27]. In comparison to point-based
algorithms which scale exponentially in the planning horizon l,
optimization-based methods scale linearly, O(l).

A. Main Assumptions

To generate reasonable predictions about other agents, we
build on approximate prior information. Consider the analogy
of a race car driver. A driver knows that other race cars will
have comparable driving characteristics, while different classes
of vehicles, like trucks, will have different handling dynamics.
They also know that the other racing drivers desire to go as fast as
possible around the track to win the race, without crashing into
other vehicles or sliding off the road, similar to a cost model.
Lastly, they have experience in how other drivers observe the
track and that the quality of perception decreases in the dark.
For our autonomous systems, Assumption 1 describes that we
assume common knowledge of models about the world.

Assumption 1 (Common Knowledge): Agents have models
for cost, dynamics, and observations of other agents.

Related game-theoretic works, with applications ranging from
pedestrian-robot interactions to autonomous racing, make sim-
ilar assumptions by either prescribing dynamics and cost mod-
els [6], [9]–[11] or learning cost models through IRL [2], [4],
[5]. Assumption 1 allows agents to imagine how the future will
evolve: If the robot and other agents were to execute given
policies, how would model-based predictions of motions and
observations in the world impact the beliefs over time? We do
not assume any form of direct communication between agents
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and therefore do not have access to the policies of other agents.
Instead, we predict interactive policies of other agents through
game-theory and leveraging the models of costs, dynamics, and
observations. The robot, as part of the game, can then leverage
the influence of its actions on the predicted actions of other
agents to their advantage. We will show in a competitive racing
example that Assumption 1 can be relaxed in practice and that
approximate models of other agents prove sufficient to improve
performance.

We refer to beliefs as distributions over states and draw inspi-
ration over how we design our system from the cognitive theory
of mind. The cognitive theory of mind [30] defines the ability
to attribute mental states, such as beliefs, intents, or desires to
oneself and others. It is integral to understanding that others have
beliefs that are different from one’s own. Single-agent planning
in belief space, reasoning about the uncertainty of only the own
state, is limited to zero-order beliefs (e.g., I think...). In contrast,
we will also reason about the uncertainty of other agents. The
theory of mind refers to this as first-order belief spaces (e.g., I
think they think...). Higher-order beliefs such as second-order
belief spaces (e.g., I think they think that I think...) are beyond
the scope of this article as they quickly become computation-
ally intractable by essentially defining beliefs over beliefs. We
find that parametrizing belief spaces efficiently is essential to
generating real-time capable algorithms. Assumption 2, keeps
computation complexity at a reasonable level and avoids an
explosion in parameters in the recursive beliefs over beliefs.

Assumption 2 (First-Order Beliefs): Planning and prediction
are limited to first-order beliefs: Any robot i’s belief over another
agent j is the same as that agent j’s belief about themselves.

In Section IV, we evaluate cases, such as competitive racing,
where this assumption is a simplification of the true system
dynamics. In the racing scenario, all agents execute separate
instances of our algorithm and therefore maintain separate be-
liefs. Thus, an agent’s belief about themselves does not neces-
sarily match the beliefs that others have about them. However,
while these belief mismatches may occur, we see performance
improvements over a game-theoretic baseline without BSP, see
Section IV-C, which highlights the importance of accounting
for uncertainty and information gain in competitive racing and
other applications.

The purpose of Assumptions 1 and 2 is to enable interactive
predictions of other agents in belief space while maintaining
computational tractability. Since our approach is executed con-
tinuously in a receding horizon fashion, and we compute policies
that are reactive to deviations from the predicted beliefs, the
proposed method can adapt if the observed behavior differs
from the predicted ones. Our approach continues to successfully
control the agent under reasonable violations of the presented
assumptions, such as if the dynamics, observation, or cost mod-
els are inaccurate, if their own beliefs do not exactly match
the beliefs of others, or if the other agent’s optimization is
suboptimal.

B. Contributions

We present a computationally tractable solution to multiagent
planning that combines game-theoretic planning and BSP to

interact within a problem formulated as a game, gain informa-
tion, and leverage the information gain to improve the agents’
control policies. The main limiting factor in applying either
game theory or BSP, and even more so the combination of both
to robotic control problems lies in the associated computational
complexity. To the best of our knowledge, this is the first work
to combine general dynamic games and planning in belief space
into an efficient real-time algorithm. The main contributions of
this paper are: 1) A method for computing Nash equilibria for
dynamic games in belief space; 2) A linear feedback policy,
similar to linear-quadratic Gaussian control (LQG), for the robot
resulting from the solution, and also a predicted linear feedback
policy for all other agents; 3) Belief and control trajectory
based regularization to ensure convergence; 4) Evaluation of
the proposed method in three stochastic dynamic games: racing
with autonomous vehicles, active surveillance, and guiding eyes
for a blind agent.

We organize the remainder of the article as follows: Section II
introduces dynamic games in belief space, including a general
definition of best response POMDPs and a Nash equilibrium
formulation of the noncooperative dynamic game. We give
the resulting problem definition in Section II-A and, assuming
beliefs can be represented in the form of Gaussian distributions,
approximate the belief dynamics based on an extended Kalman
filter (EKF) detailed in Section III-A. Our method computes a
locally optimal solution to the best response POMDP problem
with continuous state and action spaces and nonlinear dynamics
and observation models by iteratively solving for a local Nash
equilibrium, outlined in Section III. We utilize a belief-space
variant of iLQG to compute the Nash equilibrium, Section III-C,
by solving for a local Nash equilibrium at each stage of the
backward pass, see Section III-B. At each iteration, each agent’s
value function is approximated based on a quadratization around
a nominal trajectory, and the belief dynamics are approximated
with an extended Kalman filter. We describe regularization
techniques in Section III-D to ensure that the algorithm con-
verges regardless of initial conditions. Based on these findings,
we introduce Algorithm 1 in Section III-E describing the full
belief-space Nash equilibrium computation.

We show the potential of our approach in Section IV by
presenting three multiagent problems that combine our game-
theoretic formulation with information-seeking behavior: Active
surveillance, guiding blind agents, and racing with autonomous
vehicles.

II. DYNAMIC GAMES IN BELIEF SPACE

We first define POMDPs in their most general form (following
notation of [28] and [31]), then formulate the resulting game,
derive the Nash Equilibrium, and present an iterative solution
method. The following notation is summarized in Tables I.

We write the BSP problem as a stochastic optimal control
problem. Consider a system of N agents i ∈ {1, . . ., N}, with
agent i’s state at time k denoted xi

k ∈ Rnxi , measurement as
zik ∈ Rnzi , and control input ui

k ∈ Rnui . Here, nxi , nzi , nui

define the dimensionality of agent i’s state, measurement, and
control. For brevity we refer to xk = [x1,�

k , . . . ,xN,�
k ]� ∈ Rnx

as the joint state, zk = [z1,�k , . . . , zN,�
k ]� ∈ Rnz as the joint
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TABLE I
MAIN SYMBOLS AND NOTATION

measurement, and uk = [u1,�
k , . . . ,uN,�

k ]� ∈ Rnu as the joint
control, consisting of all agents. We refer to the joint dimensions
asnx =

∑
i nxi ,nz =

∑
i nzi , andnu =

∑
i nui . The notation

¬i indicates all agents except i, e.g.,u¬ik relates to the controls of
all other agents except i. We will refer tou = [u0,u1, . . . ,ul−1]
as the control trajectory until time l. The joint belief b(xk) is
defined as the distribution of the state xk given all past control
inputs and sensor measurements, and consists of individual
beliefs bi. For brevity, we define s = [b�,u�]�.

Following [28] and [31], we compute the belief by

b(xk) = p(xk|u0, . . . ,uk−1, z1, . . . , zk) (1)

from all past control inputs and sensor measurements. The
stochastic dynamics and observation model, here formulated in
probabilistic notation as

xk+1 ∼ p(xk+1|xk,uk), zk ∼ p(zk|xk) (2)

allow us to forward propagate the belief given a control input
uk and a measurement zk+1 through Bayesian filtering

b(xk+1) = ηp(zk+1|xk+1)

∫
p(xk+1|xk,uk)b(xk)dxk.

(3)
In (3), η is a normalizer independent of xk+1 and b(xk+1)
and, contains the uncertainty originating from the stochastic
dynamics, the uncertain measurement and the uncertainty in the
belief at the previous time step. We employ the shorthand bk to
refer to b(xk). The stochastic belief dynamics are defined by (3)
and are written as

bk+1 = β(bk,uk, zk+1). (4)

The expected return of each individual agent i under a control
trajectory of all agentsu, including its own control trajectoryui,
subject to uncertainty on the observed measurements z over the
horizon l is determined by the action-value function Qi, defined

Qi(b0,u) = E
z

[
cil(bl) +

l−1∑
k=0

cik(bk,uk)

]
. (5)

Here cik(·) denotes the cost at time k and cil(·) denotes the ter-
minal cost of agent i. Since there exists an action-value function
for each agent, there are N distinct action-value functions Qi

for i ∈ {1, . . ., N}.

We will first formulate the two problems of (1) solving the
general POMDP best response game, and then (2) finding the
Nash equilibrium of this game.

Problem 1 (POMDP Best Response Game): Given an initial
belief b0, for agents i ∈ {1, . . ., N}, we need to solve the
stochastic optimal control problem

πi = arg min
ui

Qi(b0,u) ∀i ∈ {1, . . ., N} (6)

s.t. bk+1 = β(bk,uk, zk+1) (7)

for each agent by minimizing each agent’s expected cost with
respect to their own controls ui, where Qi(b0,u) is the action-
value function of agent i.

Note that all agents’ optimal policies πi depend on the actions
of all other agents because each agent i minimizes their own
action-value function Qi(b0,u). The result is a noncooperative
game [32] in which all agents’ policies depend on the optimal
policies of all other agents πi(π¬i). Since all policies are opti-
mized jointly and severally, the dependence of agent i’s policy
πi on other agents’ controls u¬i is resolved by inserting their
optimal policy π¬i. We therefore denote πi instead of πi(u¬i).

A general solution to (6) can be defined recursively by the
Bellman equation

V i
l (bl) = cil(bl)

Qi
k(bk,uk) = cik(bk,uk) + E

zk+1

[
V i
k+1(β(bk,uk, zk+1))

]
V i
k (bk) = min

ui
k

Qi
k(bk,uk)

πi
k(bk) = arg min

ui
k

Qi
k(bk,uk) (8)

where V i
k (bk) is the value function and πi

k(bk) the optimal
policy at time k. Note that in (8) the cost cik(bk,uk), the
reached value function V i

k+1(β(bk,uk, zk+1)), and therefore
the action-value function Qi

k(bk,uk) of agent i depends not
only on its own action but also on all other players’ actions. This
interdependence is analogous to (6) but formulated recursively
over time.

To better capture how an agent’s action-value function de-
pends on the controls of all other actions, we can equivalently
write Qi(b0,u) = Qi(b0,u

i,u¬i). More precisely, the inter-
dependence of all players optimal policies is captured in the
Nash equilibrium of Problem 1, defined in Problem 2. Problem 2
formulates a sufficient condition for Nash equilibria [32], [33]
in belief space.

Problem 2 (Nash Equilibrium): Find the optimal control pol-
icy π = [π1,�, . . . , πN,�]� that yields a local Nash equilibrium
of the POMDP best response game in Problem 1, such that it
satisfies

Qi(b0,u
i, π¬i) ≥ Qi(b0, π

i, π¬i), ∀i ∈ {1, 2, . . . , N} (9)

for all ui in the neighborhood of πi.
More intuitively, in the Nash equilibrium no player has any-

thing to gain by changing only their own strategy. Based on
the necessary condition of Problem 2, we will derive a local
necessary condition for each subproblem in the backward pass
of our game-theoretic variant of belief iLQG.
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A. Problem Formulation

The difficulty in solving POMDPs stems from the infinite-
dimensional space of all beliefs, and that in general the value
function cannot be expressed in parametric form. To over-
come these challenges we describe beliefs by Gaussian distri-
butions, approximating the belief dynamics using an EKF, and a
quadratic approximation of the value function about a nominal
trajectory through the belief space. We iteratively compute a
local Nash equilibrium over all agents in the proximity of the
nominal trajectory by solving the necessary condition (9) of
Problem 2 at each timestep during a belief-space variant of
iLQG to perform the Bellman backward recursion in (8). Due
to its similarity to iLQG we benefit from linear scaling O(l)
in the planning horizon l, in contrast to point-based POMDP
algorithms which scale exponentially.

We are given nonlinear stochastic dynamics and observation
models in state-transition notation

xk+1 = f(xk,uk,mk), mk ∼ N (0, I) (10)

zk = h(xk,nk) nk ∼ N (0, I) (11)

where mk and nk are the motion and measurement noise,
respectively. Without loss of generality, we draw both the motion
and measurement noise from independent Gaussian distribu-
tions with zero mean and unit variance since the noise can be
arbitrarily transformed inside these functions. Depending on the
system, motion, and sensing noise may be state and control
dependent.

Note that formulating the general dynamics and measurement
functions jointly of all agents includes, but is not limited to, the
special case of independent functions for each agent i as in

f(xk,uk,mk) = [f1(x1
k,u

1
k,m

1
k)
�, . . . ,

fN (xN
k ,uN

k ,mN
k )�]� (12)

h(xk,nk) = [h1(x1
k,n

1
k)
�, . . . , hN (xN

k ,nN
k )�]�. (13)

We define the Gaussian belief as bk = (x̂�k ,Σk), by the
mean state x̂k and the variance Σk of the normal distribution
describing the stochastic state xk ∼ N (x̂k,Σk).

III. TECHNICAL APPROACH

Before detailing the value iteration method for the Nash
equilibrium solution based on a game-theoretic belief-space
variant of iLQG in Section III-C, we need to derive two im-
portant components. First, we describe the approximation of the
general Bayesian filter update (4) by an EKF in Section III-A
to formulate the Gaussian belief dynamics. This allows us to
forward propagate Gaussian beliefs given an initial belief and a
control trajectory which we utilitze in the game-theoretic variant
of belief-space iLQG. Second, we show that the necessary con-
dition of Problem 2, the Nash equilibrium, is equivalent to a local
necessary condition at each timestep in the Bellman recursion
in Section III-B. The full algorithm is detailed in Section III-E.

A. Bayesian Filter and Belief Dynamics

The Bayesian filter in (4) defines the general belief dynamics
of a current belief bk and measurement zk+1. To make the

belief propagation tractable we follow [28] and approximate
the Bayesian filter by an EKF, suitable for nonlinear Gaussian
beliefs as well as nonlinear dynamics and measurement models.
For well-defined transition models, the EKF is the standard
for nonlinear state estimation [34], [35]. The EKF makes a
first-order approximation of f with respect to the stochastic
variable x, such that for a given belief bk = (x̂k,Σk) we have
the standard EKF update equations [28], [31]

x̂k+1 = f(x̂k,uk, 0) +Kk(zk+1 − h(f(x̂k,uk, 0), 0))

Σk+1 = Γk+1 −KkHkΓk+1 (14)

with corresponding matrices defined by

Γk+1 = AkΣkA
T
k +MkM

T
k

Kk = Γk+1H
�
k (HkΓk+1H

�
k +NkN

�
k )
−1

Ak =
∂f

∂x
(x̂k,uk, 0), Mk =

∂f

∂m
(x̂k,uk, 0)

Hk =
∂h

∂x
(f(x̂k,uk, 0), 0), Nk =

∂h

∂n
(f(x̂k,uk, 0), 0).

(15)

The noisy measurement zk in the belief update makes the
belief dynamics stochastic. We define bk = [x̂�k , vec(Σk)

�]�,
where vec(Σk) is the matrix Σk reshaped into vector form and
formulate the stochastic belief dynamics

bk+1 = g(bk,uk) +W (bk,uk)ξk, ξk ∼ N (0, I) (16)

with

gk(bk,uk) =

[
f(x̂k,uk, 0)

vec(Γk+1 −KkHkΓk+1)

]
(17)

Wk(bk,uk) =

[√
KkHkΓk+1

0

]
. (18)

Here, ξk is a Gaussian with dimension nx that is applied to the
stochastic part of bk, i.e., the stochastic state variable xk. In this
form ξk represents both measurement noisenk and motion noise
mk mapped onto the belief transition. The stochastic Gaussian
belief dynamics allow us to propagate beliefs efficiently during
the forward pass of the game-theoretic variant of belief-space
iLQG.

B. Nash Equilibrium Necessary Condition

While formulating how to propagate uncertainty for the con-
tinous POMDP, we also need to define a tractable procedure
to solve for Nash equilibria. One common method to solve for
Nash equilibria is the method of iterated best response [9], [11],
where control policies are exchanged after each agent’s separate
and independent optimization iteration. In contrast, we directly
integrate the necessary condition of the Nash equilibrium into the
backward pass of a belief space variant of iLQG. Specifically, we
solve a quadratic game at each stage of the backward pass with
a unique solution. First, we formulate the necessary condition
of Problem 2 as

∂Qi(b0,u)

∂ui
= 0 ∀i ∈ {1, 2, . . . , N} (19)
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which allows us to compute local Nash equilibria by solving
(19). Theorem 1 states an equivalent condition for Qi

k(bk,uk),
the value function from time k to l, defined in the Bellman
recursion (8).

Theorem 1: The necessary condition of the local Nash equi-
librium (19) is equivalent to

∂Qi
k(bk,uk)

∂ui
k

= 0 (20)

for all i ∈ {1, 2, . . . , N}, and k ∈ {0, 1, . . . , l − 1}.
Proof: Recall that the conventional POMDP formulation (6)

in Problem 1 is equivalent to the recursive Bellman equation (8).
Maximizing Qi

k(bk,uk) with respect toui
k in (8) yields the cor-

responding necessary optimality condition ∂Qi
k(bk,uk)

∂ui
k

= 0, the
same as (20). Therefore, the necessary optimality condition (19)
of Problem 1 is equivalent to the recursive Bellman necessary
optimality condition (20) in Theorem 1. �

Alternatively, we can split the action-value from time 0 into
the action-value from k and the cost accumulated until k

Qi(b0,u) = Qi
k(bk,uk) + E

z

[
k−1∑
t=0

cit(bt,ut)

]
. (21)

Taking the derivative of both sides with respect to ui
k directly

implies that ∂Qi
k(bk,uk)

∂ui
k

= ∂Qi(b0,u)
∂ui

k

, since the cost accumu-

lated until k, the second term on the right hand side, does not
depend on ui

k. Intuitively, current actions cannot affect costs
accumulated in the past.

Concluding, if each agent ifinds an optimizing policyπi
k to the

Bellman recursion, all ∂Qi
k(bk,uk)

∂ui
k

= 0 necessary conditions are

fulfilled at time k. Note that each agents’ policyπi(u¬i) depends
on the other agents’ inputs u¬i, where ¬i indicates all other
agents. Therefore, solving the Bellman recursion simultaneously
for all agents defines a static game [32], but more importantly a
game at each stage k of the backward-pass.

In the next section, we describe our solution for integrating
the Nash equilibrium necessary condition at every time k into
the backward pass of a belief-space variant of iLQG.

C. Iterative Dynamic Programming

In this section we describe our belief-space variant of iLQG
for computing local Nash equilibria by solving the Bellman
recursion defined in (8). We denote the nominal belief as
b̄ = b− δb, the nominal controls ū = u− δu, and s̄ = s− δs,
with s̄ = [b̄�, ū�]� and local perturbations δu, δb, δs. At each
iteration, the algorithm performs a backward pass and a forward
pass on the current estimate of the belief b̄ = [b̄0, b̄1, . . . , b̄l]
and control trajectory ū = [ū0, ū1, . . . , ūl−1], i.e., the nominal
trajectories. In the backward pass, the algorithm approximates
the value functions for each agent as a quadratic function

V i
k (b̄k + δbk) ≈ V i

k + V i,�
b,k δbk +

1

2
δb�k+1V

i
bb,kδbk

along the nominal trajectory, and computes a linear feedback
policyπ1 for the robot and predicted linear feedback policiesπ¬1

for all other agents. The value function is propagated backward

in time. In the forward pass we produce a new nominal trajectory
based on the value function computed in the backward pass
and apply the associated feedback policy. This iterative process
continues toward a locally optimal solution to the Nash equi-
librium in belief space. The key idea is to maintain a quadratic
approximation of Qi

k(bk,uk) and the value functions V i
k (bk).

We first derive the quadratic form of Qi
k(bk,uk) in Theo-

rem 2 by a Taylor expansion of the dynamics and costs, then
find the minimizing control policy πk = [π1,�

k , . . . , πN,�
k ]� by

solving the static game and computing the Nash equilibrium
over all agents. From this result we compute the value functions
V i
k (bk) = Qi

k(bk, πk) and derive an update law forV backward
in time.

Theorem 2: By linear expansion of the belief dynamics and
quadratic expansion of the cost and value function, Qi

k(sk) is a
quadratic of the form

Qi
k(s̄k + δsk) ≈ Qi

k +Qi,�
s,kδsk +

1

2
δs�kQ

i
ss,kδsk (22)

where

Qi
k = cik + V i

k+1 +
1

2

nx∑
j=1

W
(j),�
k V i

bb,k+1W
(j)
k (23)

Qi
s,k = cis,k + g�s,kV

i
b,k+1 +

nx∑
j=1

W
(j),�
s,k V i

bb,k+1W
(j)
k (24)

Qi
ss,k = ciss,k + g�s,kV

i
bb,k+1gs,k +

nx∑
j=1

W
(j),�
s,k V i

bb,k+1W
(j)
s,k .

(25)

Similar derivations in iLQG [36], and belief-space iLQG [28]
showed an agent’s action-value Q function to be quadratic with
respect to the agent’s controls and state or belief. In contrast, we
show that agent i’s action-value function Qi is also a quadratic
with respect to the joint state and controls which is critical to
formulate the static quadratic game in the backward pass.

Proof: We start by expanding the terms of the action-value
function of the Bellman recursion (8)

Qi
k(bk,uk) = cik(bk,uk)

+ E
ξk

[
V i
k+1(gk(bk,uk) +Wk(bk,uk)ξk)

]
(26)

to second order around the nominal control and belief s̄k =
[b̄�k , ū

�
k ]
�. The term cik(bk,uk) becomes

cik(s̄k + δsk) ≈ cik + ci,�s,kδsk +
1

2
δs�k c

i
ss,kδsk (27)

with cik = cik(s̄), where cis,k and ciss,k are the Jacobian and
Hessian of cik evaluated at s̄k. To expand the second term on
the right hands side of (26) we first expand the stochastic joint
belief dynamics to

gk(s̄k + δsk) ≈ gk + gs,kδsk (28)

W
(j)
k (s̄k + δsk) ≈W

(j)
k +W

(j)
s,k δsk (29)
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with terms gk = gk(s̄k), W
(j)
k = W

(j)
k (s̄k), and gs,k, W (j)

s,k the

respective Jacobians evaluated at s̄k. W
(j)
k denotes the jth

column of matrix Wk.
We now formulate the second term of (26). We define the

value function as a quadratic around b̄k+1

V i
k+1(b̄k+1 + δbk+1) (30)

≈ V i
k+1 + V i,�

b,k+1δbk+1 +
1

2
δb�k+1V

i
bb,k+1δbk+1

= V i
k+1 + V i,�

b,k+1(bk+1 − b̄k+1)

+
1

2
(bk+1 − b̄k+1)

�V i
bb,k+1(bk+1 − b̄k+1) (31)

with δbk+1 = bk+1 − b̄k+1 for convenience. Inserting the ex-
panded dynamics (28) and (29) into the second term of (26),
defined by (31), and evaluating the expectation over ξk yields

E
ξk

[
V i
k+1(gk(sk) +Wk(sk)ξk)

]
(32)

≈ E
ξk

[
V i
k+1 + V i,�

b,k+1

(
gk(sk) +Wk(sk)ξk − b̄k+1

)

+
1

2

(
gk(sk) +Wk(sk)ξk − b̄k+1

)�
V i
bb,k+1 (gk(sk)

+ Wk(sk)ξk − b̄k+1

) ]
(33)

= V i
k+1 + V i,�

b,k+1

(
gk(sk)− b̄k+1

)
(34)

+
1

2

(
gk(sk)− b̄k+1

)�
V i
bb,k+1

(
gk(sk)− b̄k+1

)
+

1

2
tr
(
Wk(sk)

�V i
bb,k+1Wk(sk)

)
= V i

k+1 + V i,�
b,k+1gs,kδsk +

1

2
δs�k g

�
s,kV

i
bb,k+1gs,kδsk

+
1

2

nx∑
j=1

(W
(j)
k +W

(j)
s,k δsk)

�V i
bb,k+1(W

(j)
k +W

(j)
s,k δsk)

�.

(35)

Here we use the value function expansion (31) in (33), and the
fact that b̄k+1 = gk(s̄k) in (34) in the form of

gk(sk)− b̄k+1 = gk(sk)− gk(s̄k) ≈ gs,kδsk. (36)

Collecting and grouping all first and second-order terms of (35)
and (27) we have that the resulting Qi

k(s̄k + δsk) is a quadratic
with coefficients given by (23)–(25). �

For notational convenience we will drop the time index k for
the Q matrices. We can also recover other partial derivatives of
Qi from (23)–(25)

Qi
s =

⎡
⎢⎢⎢⎢⎣
Qi

b

Qi
u1

...

Qi
uN

⎤
⎥⎥⎥⎥⎦ , Qi

ss =

⎡
⎢⎢⎢⎢⎣
Qi

bb Qi
bu1 · · · Qi

buN

Qi
u1b Qi

u1u1 · · · Qi
u1uN

...
...

. . .
...

Qi
uNb Qi

uNu1 · · · Qi
uNuN

⎤
⎥⎥⎥⎥⎦ .

(37)

With Qi
k(s̄k + δsk) in quadratic form from Theorem 2, at stage

k each agent i solves the quadratic problem

δui,∗
k = arg min

δui
k

Qi,�
s,kδsk +

1

2
δs�kQ

i
ss,kδsk (38)

yielding a quadratic game in the variables δuk. Note that each
agent’s optimal δui,∗

k depends on all other agents’ δu¬ik as they
are contained in δsk. In comparison to other related methods
such as iLQR [37], iLQG [36], or differential dynamic pro-
gramming (DDP) [38] that solve a single quadratic optimiza-
tion in the backward pass, we have to solve N interdependent
quadratic optimizations. Nonetheless, we obtain a unique and
simple solution to the quadratic game [32] by stacking the
N optimality conditions of each interdependent optimization.
Solving the resulting system of equations amounts to solving
all interdependent quadratic optimizations at once. Theorem 3
presents this solution.

Theorem 3: The solution to the quadratic game (38) is

δu∗k = −Q̂−1uu

(
Q̂u + Q̂ubδbk

)
(39)

where Q̂uu, Q̂ub, Q̂u, are populated from (37), and defined

Q̂uu =

⎡
⎢⎢⎢⎢⎣
Q1

u1u

Q2
u2u
...

QN
uNu

⎤
⎥⎥⎥⎥⎦ , Q̂ub =

⎡
⎢⎢⎢⎢⎣
Q1

u1b

Q2
u2b
...

QN
uNb

⎤
⎥⎥⎥⎥⎦ , Q̂u =

⎡
⎢⎢⎢⎢⎣
Q1

u1

Q2
u2

...

QN
uN

⎤
⎥⎥⎥⎥⎦ . (40)

Proof: By taking the derivative of the objective of (38) and
equating it to zero, the stationarity condition of (38) yields

[
Qi

uiui Qi
uiu¬i

] [ δui
k

δu¬ik

]
+Qi

uibδbk +Qi
ui = 0. (41)

Stacking the stationarity conditions of all N agents into a single
system of equations we find the joint stationarity condition for
all interdependent quadratic optimizations

Q̂uuδuk + Q̂ubδbk + Q̂u = 0 (42)

where (39) is the solution to this system of equations. �
The local necessary condition of Problem 2, derived in Sec-

tion III-B holds as shown below.
Corollary 1: The solution (39) fulfills the necessary condition

of the local Nash equilibrium (19) at time k.

Proof: From (41), we see that ∂Qi
k(bk,uk)

∂ui
k

= 0. �
We can immediately derive the linear feedback policy for all

agents at planning time k of the form

πk = ūk + jk +Kkδbk (43)

with jk = −Q̂−1uuQ̂u the feed forward term and Kk =
−Q̂−1uuQ̂ub the feedback term. Note that πk contains the optimal
policy of the robot π1

k and also the predicted policies for all other
(N−1) agents π¬1k . The interdependence has been resolved by
solving (42). The predicted linear policies π¬1k depend on the
change in joint belief δbk. The predicted actions will adapt if
the robot, the other agents, or the environment behave differently
as expected, causing the estimated belief bk at future times k
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to diverge from the predicted nominal belief b̄k. Similarly, the
robot’s linear policy π1

k will allow it to adapt if other agents
deviate from predicted behavior. In contrast, this flexibility
would be impossible with a static optimal control trajectory
instead of a policy.

We now formulate the backward equations to propagate the
value functions V i backward, hence defining the backward pass.

Corollary 2: The discrete backward differential equations of
the value functions V i are

V i
k = Qi +Qi,�

u jk +
1

2
j�k Q

i
uujk (44)

V i
b,k = Qi

b +K�k Q
i
uujk +K�k Q

i
u +Qi,�

ubjk (45)

V i
bb,k = Qi

bb +K�k Q
i
uuKk +K�k Q

i
ub +Qi,�

ubKk (46)

with terminal constraints

V i
l = cil(b̄l), V i

b,l =
∂cil(b)

∂b

∣∣∣∣
b=b̄l

, V i
bb,l =

∂2cil(b)

∂b2

∣∣∣∣
b=b̄l

.

(47)

Proof: Substituting the solution (39) and (43) back into the
quadratic (22) yields the value function V i

k (b̄k + δbk).

V i
k (b̄k + δbk) = Qi

k(b̄k + δbk, πk)

= Qi +Qi,�
u (jk +Kkδbk) +Qi,�

b δbk

+
1

2
(jk +Kkδbk)

�Qi
uu(jk +Kkδbk) +

1

2
δb�kQ

i
bbδbk

+
1

2
(jk +Kkδbk)

�Qi
ubδbk +

1

2
δb�kQ

i
bu(jk +Kkδbk).

Collecting first and second-order terms in δbk gives (44)–(46)
in the form of (31). The terminal constraints (47) result from a
Taylor expansion of the final cost cil around the final nominal
belief b̄l. �

Based on results of Theorem 3 and Corollary 2 we can prop-
agate the quadratic value functions backward in time starting
from the terminal constraints at time l.

D. Regularization

With any Newton-like method, care must be taken when the
Hessian Q̂uu is not positive-definite or when the minimum is
not close and the quadratic model inaccurate. To ensure that
the algorithm converges regardless of initial conditions, we
implement a Levenberg–Marquardt style regularization [39].

1) Control Regularization: The control regularization is
achieved by adding a diagonal term of magnitude μu to the
diagonal of Q̂uu, yielding

Q̃i
uu = Q̂i

uu + μuI. (48)

This simple Levenberg–Marquardt style modification results in
adding a quadratic cost around the current control sequence,
which forces the new optimal control inputs computed by the
backward pass to stay closer to the previous iteration.

2) Belief Regularization: The drawback of the control-based
regularization scheme is that even small control perturbations
can cause large deviations in the state trajectory potentially

inhibiting convergence. To ensure that the updated belief tra-
jectory does not deviate too far from the previous iteration, we
introduce a scheme that penalizes deviations from beliefs rather
than controls with parameter μb

Q̃i
ss,k = ciss,k + gTs,k

(
V i
bb,k+1 + μbI

)
gs,k

+

n∑
i=1

W
(j),T
s,k

(
V i
bb,k+1 + μbI

)
W

(j)
s,k . (49)

The belief-based regularization results in placing a quadratic
belief-cost around the previous belief trajectory, similarly
to [40], where a state-based regularization was employed. In
contrast to the standard control-based regularization, the feed-
back gains Kk do not go to zero as μb →∞, but rather force
the new trajectory closer to the old one. In practice, we find this
to improve the robustness of convergence.

E. Algorithm for Dynamic Game Belief Space Planning

We summarize our findings of solving Nash equilibria of dy-
namic games in belief space in Algorithm 1. Theorem 2 lays the
foundation for the quadratic game solved in the backward pass
of Algorithm 1. The solution to the quadratic game presented in
Theorem 3 yields a linear feedback policy πk for all agents. We
propagate the value function in the backward pass according
to Corollary 2 starting with the terminal conditions from the
terminal cost.

Algorithm 1 starts from the current belief estimate b0, in
our experiments provided from an EKF, and an initial control
trajectory guess. We found initializing controls to all zeros to
work well in practice. We update the nominal control and belief
trajectories in the forward pass based on rolling out the belief dy-
namics model and applying the updated feedback policyπk . If all
agents’ action-value functions improved, we accept the updated
nominal belief and control trajectories and reduce regularization.
Otherwise, we reject the trajectories and increase regularization.
The iteration of backward and forward pass continues until each
agents’ action value functionQi has converged and changes less
than a specified threshold ε.

The algorithm yields a linear feedback policy π1 and a pre-
dicted belief trajectory b1 of the robot. It also gives predicted
feedback policies π¬1 and predicted belief trajectories b¬1 for
all other agents over the full time horizon.

F. Runtime Analysis

The dominant runtime complexity in a single backward step
isO(N7ni,6

x ). A full iteration of Algorithm 1 solves l quadratic
games leading the final runtime complexity to O(lN7ni,6

x ).
Scaling linearly in the planning horizon l enables real-time
deployment whereas other POMDP algorithms scale exponen-
tially, even without taking any game dynamics into account. The
following provides a brief summary of our runtime analysis.

We analyze the runtime by first recalling that the dimension
of the joint state is O(nx), and assume for the sake of analysis
that the agents’ state dimensions are equal, such that O(nx) =
O(Nni

x). To simplify the analysis, we also assume the joint input
(nu) and the joint measurement dimensions (nz) to be O(nx).
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Algorithm 1: Nash Equillibrium of Dynamic Games in
Belief Space.

Input: Initial belief b0, control ū, models cik, cil , f , h
Output: Predicted trajectories b̄, ū, feedback law π
1: b̄← Propagate b0 with g and ū
2: while |Qi(b̄new, ūnew)−Qi(b̄, ū)| > ε do
3: Backward pass:
4: V i

b,l,V
i
bb,l←From terminal boundary conditions (47)

5: for k from l − 1 to 0 do
6: πi

k, jik, Ki
k ← Solve quadratic game (43)

7: V i
b,k, V

i
bb,k ← Propagate value function (45), (46)

8: end for
9: Forward pass:

10: b̄new, ūnew ← Propagate b0 with g and π
11: if Qi(b̄new, ūnew) ≤ Qi(b̄, ū) then
12: b̄, ū← b̄new, ūnew,
13: lower regularization (48), (49)
14: else increase regularization
15: end if
16: end while

The covariance matrix of the joint state contains n2
x/2 unique

elements. Since the joint belief b contains the covariance of the
state in addition to the state itself, it entails O(n2

x) elements.
Now consider the matrix multiplicative terms in the itera-

tive dynamic programming procedure. A computational bot-
tleneck occurs when updating the action-value function Qi

ss

in (25). Evaluating the product g�s V
i
bbgs requires the multipli-

cation of matrices with dimensions O(n2
x)×O(n2

x), resulting
in O(n6

x) = O(N6ni,6
x ) complexity. This operation has to be

completed for each of the N agents, such that the complexity
increases toO(N7ni,6

x ). The term W
(j),�
s V i

bbW
(j)
s in (25) must

be computed nx times, but can be evaluated inO(n5
x), since W

only contains nx nonzero elements. See (18) for the definition
of W . We solve the quadratic game at each stage by finding
the inverse of the nu × nu matrix Q̂uu in (40), which has
complexityO(n3

x). Therefore,O(N7ni,6
x ) remains the dominant

runtime complexity.
Next, we investigate the complexity of evaluating derivatives,

Hessians, and Jacobians. The cost Hessian ciss only contains
O(n4

x) elements. Automatic differentiation through source code
transformation yields O(1) complexity for each element, such
that the cost Hessian term has no significant impact on the overall
runtime complexity. The EKF belief dynamics can be evaluated
inO(n3

x), such that linearizing the belief dynamics to obtain Ws

and gs, both with O(n2
x) entries, results in O(n5

x).
Thus, we find the dominant runtime complexity in a single

backward step is O(N7ni,6
x ), and a final runtime complexity of

O(lN7ni,6
x ) in a full iteration of Algorithm 1.

IV. CASE STUDIES

We demonstrate the performance and flexibility of our al-
gorithm in three case studies that combine the information-
seeking behavior with our game-theoretic formulation. These

Fig. 2. By nudging Agent 2 onto the circular light source Agent 1 is able to
reduce the uncertainty over Agent 1’s state at the end of the planning horizon.
The lower left inset shows the same scenario without any information gain. As
a result, Agent 1 has no incentive to manipulate Agent 2’s behavior since there
is no way to influence its uncertainty. Both agents start with positive velocity in
the x-direction.

case studies examine how the agents interact in the game, gain
information, and use the information gain to improve their
control policies. We choose these illustrative examples due
to their variations in agent interactions and demonstration of
broader capabilities. Each of the case studies employs a different
dynamics and observation model as well as distinct objectives
for the agents. We find the Nash equilibrium to each of these
games through Algorithm 1.

A. Active Surveillance

In this case study, Agents 1 and 2 are in an environment with
variable lighting conditions. Agent 1 is tasked with observing
Agent 2, but the quality of the observations depends on the
available lighting at the location in the environment. Agent 2 has
no goal but is assigned the objective of maintaining a constant
velocity while avoiding Agent 1. In the provided examples,
the agents do not directly exchange information. Instead, they
perceive themselves and the other agent only through obser-
vations. At the time of initialization, neither agent has perfect
information of the other but only a noisy state estimate defining
the initial belief b0. Using our approach, we show that Agent 1
can successfully herd Agent 2 into the lighted region to achieve
its surveillance objective, which would not be possible without
incorporating the BSP into the dynamic game. Figs. 1 and 2
show the planned trajectories in two environments. Our case
study goes beyond the commonly studied multirobot herding
problem [41]–[44] which has the goal of herding agents into a
specified location. In contrast, our goal is to reduce uncertainty in
the final state of another agent, which happens to coincide with
pushing the other agent into the light. Algorithms commonly
applied to the herding problem are not applicable here as they
do not reason about the uncertainty of other agents.

The state of both car-like robots x(i) = [x(i), y(i), θ(i), v(i)]
consists of their position (x, y), orientation θ, and speed v.
The control inputs u(i) = [u

(i)
acc,k, u

(i)
steer,k] are acceleration uacc,k
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and steering wheel angle usteer,k. The deterministic continuous
dynamics of both agents are given by

ẋ
(i)
k =

[
v
(i)
k cos θ

(i)
k , ˜v

(i)
k sin θ

(i)
k , u

(i)
acc,k,

v
(i)
k

L tan(u
(i)
steer,k)

]�

where L is the length of the robots. The discrete time dynamics
are defined by

xk+1 = f(xk,uk,mk) = xk + ẋkτ +M(uk) ·mk

with timestep τ . M(uk) scales the motion noise mk propor-
tional to the control input uk, such that uncertainty increases if
excessive controls are executed. We encode the agent’s objective
and goals in this game by defining the current and terminal costs
for Agent 1 and Agent 2 as

c
(1)
k (bk,uk) = u

(1),�
k Ru

(1)
k

c
(1)
l (bl) = det(Σ(2)

x,y,l)

c
(2)
k (bk,uk) = u

(2),�
k Ru

(2)
k + a1(v

(2)
k − v

(2)
k,des)

2 + a2ccoll(xk)

c
(2)
l (bl) = a1(v

(2)
l − v

(2)
l,des)

2 + a2ccoll(xl).

Agent 1’s overall objective is to lower the uncertainty about the
position of Agent 2 at the end of the planning horizon, encoded
by c

(1)
l (bl). The term det(Σ(2)

x,y) is equivalent to the area of the
1σ-threshold ellipse of Agent 2 and representative of the location
uncertainty of Agent 2 at the end of the planning horizon.
Note that both agents penalize control effort by u

(i),�
k Ru

(i)
k ,

and Agent 2 has additional objectives for maintaining a desired
velocity vdes and avoiding collisions via an exponential barrier
ccoll(xk) = exp(−d(xk)). Here d(xk) is the expected Euclidean
distance until collision between the two agents, taking their
outline into account.

We restrict the robots’ sensing abilities to only include noisy
position measurements. The observation model varies across the
environment based on the available light at a particular location

z
(i)
k = h(x

(i)
k ,n

(i)
k ) = [x

(i)
k , y

(i)
k ]T +N(x

(i)
k ) · n(i)

k

where the matrix N(x
(i)
k ) scales the measurement noise based

on the current position (x, y) in the map. We show the nominal
trajectories and the associated beliefs of the solution computed
using Algorithm 1 in Figs. 1 and 2. In both cases Agent 1
(blue) is able to force Agent 2 into the light to successfully
reduce uncertainty. The emergent behavior would not have
been possible without BSP, reasoning about another agent’s
uncertainty, and without the dynamic game, estimating how
their own actions influence another agent’s actions. We show
the resulting behavior without BSP and without any reasoning
about Agent 2’s uncertainty in the inset of Fig. 2.

B. Guide Dog for Blind Agent

In this scenario, Agent 2 guides Agent 1 toward a goal location
while choosing a path that reduces the uncertainty in Agent 1’s
position. The game is won if Agent 1 knows it reaches the goal
location with a low uncertainty about its state. However, Agent

1 does not have the ability to navigate itself. We refer to Agent
1 as the “blind” agent. Following this analogy, Agent 2 acts as
the “guide dog” for the blind agent. The guide dog can gather
information about its own state and the blind agent’s state by
passing through light sources in the environment which reduces
uncertainty. The agents are tethered together, which we model
with spring dynamics and refer to the tether as the “leash.” If the
guide takes the blind agent on the direct path to the goal, the guide
would not have sufficient information to know it brought the
blind agent to the goal location. Under our approach, the guide
dog detours to key areas to reduce the blind agent’s uncertainty.
We use the analogy of a guide dog leading a blind agent to create
an intuitive visual for the reader, however, this system is relevant
to many other robotic applications.

We model the system dynamics as two masses on a surface
with friction connected by a spring tether. The states of the blind
agent and the guide dog are x(i) = [r(i),v(i)] the 2D position
r and velocities v. The inputs u(i) = F (i) are their respective
force vectors. The blind agent and guide dog have masses cmass,h

and cmass,d, respectively, and are bound to friction coefficients
cfric,h and cfric,d. The accelerations are

a(1) = 1/cmass,h(u
(1) − fspring(Δr)− cfric,hv

(1))

a(2) = 1/cmass,d(u
(2) + fspring(Δr)− cfric,dv

(2))

and influenced by the spring force

fspring(Δr) =
Δr

||Δr||cspring max(||Δr|| − cleash, 0)

which is dependent on the distance vector Δ(r) = [r(1) − r(2)].
The dog’s leash is flexible with spring constant cspring and has
length cleash, such that it only generates a spring force if extended
beyond cleash and is otherwise slack. The deterministic continu-
ous dynamics are ẋ(i) = [v(i),�,a(i),�]�, and the discrete time
dynamics

f(xk,uk,mk) = xk + ẋkτ +M(uk) ·mk

for timestep τ and where M(uk) scales the motion noise pro-
portional to the inputs uk.

We use the cost functions to encode the behaviors and objects
of each agent. Similar to the previous case study, minimizing
det(Σ(1)

r,l ) reduces the uncertainty at the end of the planning
horizon. We define

c
(1)
k (bk,uk) = u

(1),�
k Ru

(1)
k + cacc,ha

(1),�
k a

(1)
k

c
(1)
l (bl) = 0

c
(2)
k (bk,uk) = u

(2),�
k Ru

(2)
k

c
(2)
l (bl) = det(Σ(1)

r,l ) + ||r(1)l − rgoal||2.
Here, the term ||r(1)l − rgoal||2 drives the guide dog to relocate
the blind agent to the goal. We reduce the control efforts of each
agent by u

(i),�
k Ru

(i)
k , and the blind agent has the additional

objective of reducing accelerations with cacc,ha
(1),�
k a

(1)
k . We use

a noisy observation model

z
(i)
k = h(x

(i)
k ,n

(i)
k ) = x

(i)
k +N(x

(i)
k ) · n(i)

k (50)



SCHWARTING et al.: STOCHASTIC DYNAMIC GAMES IN BELIEF SPACE 2167

Fig. 3. Guide dog (orange) with leash (black line) guides the blind agent (blue)
toward the goal location (green). While doing so it passes by both light sources
to reduce the uncertainty of the blind person’s position at the goal location. The
top right inset shows the case, where the guide dog is indifferent about the blind
person’s uncertainty.

where the matrix N(x
(i)
k ) scales the measurement noise based

on the environment shown in Fig. 3.
The resulting behavior is shown in Fig. 3: The guide dog

(orange) guides the blind agent (blue) from its initial position
to the blind person’s goal location (green) while reducing the
uncertainty of the blind agent’s final state by planning a slight
detour through the light sources instead of directly toward the
goal location. The guide does so while also taking the complex
interaction originating from the blind person’s forces on the
tether into account. The inset on Fig. 3 is the path taken by
the dog with no optimization over the blind agent’s uncertainty.
While it takes a direct path to the goal, the final uncertainty of
the blind agent is large.

C. Autonomous Racing

Finally, we demonstrate our approach in competitive racing,
a common problem in dynamic games. By incorporating BSP
into the dynamic game formulation, we show a significant in-
crease in racing performance. This allows the agents to reduce
uncertainty and decrease chance constraints. Thus, maneuvers
like overtaking on tight road segments become possible.

In all racing runs each agent maintains a separate instance
of Algorithm 1. This means that each agent separately com-
putes their own optimal control actions, the predictions of other
respective agents, and their own Nash equilibrium. No other
additional information, such as state estimates, beliefs, policies,
or initializations are shared among agents. Since each agent
executes a separate instance of Algorithm 1, Assumption 2 may
not be accurate, i.e., the belief computed by agent j over agent
i may only inaccurately resemble the belief of agent i over
itself. Nonetheless, we will show that despite a first-order belief
assumption, the presented approach yields superior performance
to all other baselines.

Each agent’s state x(i) = [x(i), y(i), θ(i), v(i)] and controls
u(i) = [u

(i)
acc,k, u

(i)
steer,k] are the same as in the active surveillance

Fig. 4. Agent 1 (blue) is pushing Agent 2 (orange) into the light to reduce
the uncertainty over Agent 2 at the end of the planning horizon. Uncertainties
are visualized by covariance ellipses. Both agents are initialized with positive
velocity in the x-direction.

experiment but the different deterministic continuous dynamics
are of the from

ẋ
(i)
k =

[
v
(i)
k cos(θ

(i)
k ), v

(i)
k sin(θ

(i)
k )u

(i)
acc,k

−cdrag,iv
(i)
k − cslip,i(θ̇

(i))2, θ̇(i)
]�

with yaw rate θ̇(i) = v
(i)
k /L tan(u

(i)
steer,k), and drag- cdrag,i and

slip coefficient cslip,i. The stochastic discrete time dynamics

xk+1 = f(xk,uk,mk) = xk + ẋkτ +M(bk,uk) ·mk

are subject to noise scaled by M(bk,uk) proportional to the
control input uk as well as the squared yaw rate (θ̇(i))2 of each
agent i separately. The observation model

z
(i)
k = h(x

(i)
k ,n

(i)
k ) = x

(i)
k +N(x

(i)
k ) · n(i)

k

is subject to noise scaled by N(x
(i)
k ), depending on the position

on the race track map. As shown in Fig. 4, we indicate zones of
low measurement noise as red. It may be beneficial for agents
to plan to drive through these low-measurement noise regions
to increase information gain and to reduce uncertainty.

Each agent’s goal is to maximize progress along the race track
while staying on the track and not colliding with other agents. We
define the progress along the track for any pointp = (x, y) as the
arc-length progress r(p) of the closest point on the centerline.
Likewise, we define d(p) as the distance of the closest point on
the track to p. We visualize both the distance transform as well
as the progress transform of the race track shown in Figs. 4 and 5.
For competitive racing, each agent tries to maximize the relative
progress over other agents r(p(i))− r(p(¬i)). Consequently,
agents will engage in competitive blocking and cutting behavior.
We design the current and terminal costs of each agent as

c
(i)
k (bk,uk) = u

(i),�
k Ru

(i)
k + c

(i)
track(bk) + c

(i)
coll(bk)

c
(i)
l (bl) = −r(p(i)l ) + r(p

(¬i)
l )

penalizing control effort by R, while c
(i)
track(bk) and c

(i)
coll(bk)

keep the agent on the track and out of collision. We achieve this
by finding the upper bound of the 2σ positional uncertainty Σ

(i)
x,y
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Fig. 5. Top: (Distance Transform) Map of the distances to the closest point
on the center line d(p) of the race track shown in Fig. 4. Bottom: (Progress
Transform) Map of the progress r(p) along the race track of the closest point
on the center line.

as α = 2

√
max(eig(Σ(i))

x,y )). We can then formulate a chance

collision constraint with other agents (limiting ||p(i) − p(j)||)
and the boundary of the race track (limiting d(p)) by restricting
positions in the α vicinity. Finally, to arrive at c(i)track(bk) and

c
(i)
coll(bk) we convert the constraints to soft constraints, penal-

izing constraint violation exponentially strong, as suggested
in [28]. Additionally, we also limit control inputs uk by soft
constraints.

1) Competitive Racing: In our racing simulation, each car
executes the current commanded control computed by their
own separate instance of Algorithm 1. The environment’s dy-
namics are propagated forward subject to significant amount of
noise. Subsequently, a noisy observation is generated to simulate
measurement uncertainty and the current belief is updated by
an EKF step. Each agent runs an individual and independent
EKF and maintains their own separate belief over themselves
and others. Each agent receives noisy measurements with noise
drawn independently from other agents. Agents do not share
any information, such as policies, measurements, initializations,
state estimates, or beliefs, during online operation. To test ro-
bustness, we simulate substantial amounts of noise, such that

Fig. 6. Top: Blue agent cuts in front of the red agent, forcing the red agent to
break. As a result, the blue agent can remain in front of the red agent at the end
of the turn. Bottom: The red agent blocks the blue agent’s overtaking maneuver
forcing the blue agent to stay behind and take a wider line in the upcoming right
turn. Significant amount of noise is simulated visualized by the deviation of the
true trajectory (solid lines) and the predicted mean of the belief (dashed lines).

the belief b may significantly deviate from the true state of the
system x, shown in Figs. 4 and 6.

We encourage interaction by starting one agent with lower
drag coefficient (and therefore higher speed) behind another
slower agent. The faster agent will eventually catch up to the
previous agent and initiate an overtaking maneuver. The better
the interactions that are predicted and integrated into planning,
the more successful overtaking maneuvers will occur.

The algorithm described in this article is able to synthe-
size competitive emergent behavior such as blocking of other
vehicles and cutting in front of others, illustrated in Fig. 6.
Additionally, although tight racing lines cut corners very closely,
the chance constraints are successful in prohibiting collisions
under the presence of motion and observation noise.

2) Benefits of Dynamic Game Planning: We compare the
performance of dynamic game (DG) planning to conventional
methods such as model predictive control (MPC). Both DG and
MPC agents plan in belief space. The MPC agent has the exact
same cost structure, but observes the other agents’ executed
actions and predicts agents to continue with the same action.
The MPC baseline therefore predicts agents to not react to
changes of their own actions and cannot leverage the effects
of their own actions on other agents. The MPC is capable of



SCHWARTING et al.: STOCHASTIC DYNAMIC GAMES IN BELIEF SPACE 2169

Fig. 7. Top: Traces of agents comparing MPC and DG. In both cases the
MPC method moves away from the ideal racing line more often due to failed
overtaking attempts. It cannot foresee its influence on the DG agent’s actions
and thus, is less efficient. It is also not able to take advantage of estimating its
implicit control over the other agent like the DG agent. The agents start from
random initialization locations around the origin. Bottom: Histograms of the
Δarc-length lead of the faster agent over the slower agent. Green indicates that
the faster agent won the race against the agent starting in the lead, whereas red
indicates the opposite. In comparison, the DG method won more races than the
MPC method and had a higher average lead.

TABLE II
RACING PERFORMANCE: DG VERSUS MPC AND BSP VERSUS NON-BSP

TABLE III
RACING PERFORMANCE: WINNING RATIO

synthesizing competitive racing trajectories, shown in Fig. 7,
which are identical to the DG trajectories when no other agents
are present. The performance of the DG planning distinguishes
itself when interactions occur.

We display the results of 200 runs in Fig. 7, Tables II and
III. The DG method wins t44% more races relative to the MPC
baseline and has a larger lead on average. These results clearly

Fig. 8. Top: The blue agent overtakes the red agent by decreasing the uncer-
tainty through the low-noise region and reducing the chance constraint (ellipses).
Bottom: The blue agent has the same uncertainty over the planning horizon and
fails to overtake since the chance constraints remain large.

illustrate the competitive advantage of our game-theoretic al-
gorithm from leveraging how others react to one’s own actions
when planning.

3) Benefits of Belief-Space Planning: We also compare the
performance of DG planning with and without BSP. In the
non-BSP case the current uncertainty Σ0 of the belief b0 is
held constant over the planning horizon and is not influenced
by expected measurements. Note that the current belief is still
updated online by an EKF for both agents. Results are reported
in Fig. 9 and Table II. The BSP variant wins 33% more races,
has a larger average lead, and the fewest number of collisions.
The non-BSP method collides nearly 10 times more often and
exhibits behavior inappropriate for observed uncertainty levels.
For example, agents are too conservative because low-noise re-
gions are not considered in the planning phase, or too aggressive
when entering sharp turns since additional motion noise due to
breaking and steering are not accounted for.

Fig. 8 gives an intuitive explanation for the competitive ad-
vantage of planning in belief space. Without information gain,
the follower will never be able to overtake due to the large chance
constraint. Whereas with information gain, the chance constraint
shrinks while moving through a low-noise zone, allowing the
blue agent to overtake the leading agent. As shown in Fig. 9, the
BSP agent can adapt their trajectories to account for increased
noise due to strong actuation, i.e., braking and steering, and
gaining information in low-noise regions.

Finally, we compare the performance when both agents use
DG BSP, Table II, and see that the faster agent wins 67% of
the races. Since the performance gain of the faster over the
slower agent is smaller than in the previous two comparisons, we
assume that the slower agent improves their blocking behavior
more than the faster agent improves their ability to overtake. In
scenarios where high uncertainty causes the chance constraints
to occupy large parts of the track’s width, the slower agent can
often block the faster agent by proceeding in the middle of the
road.
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Fig. 9. Top: Traces of agents comparing BSP and non-BSP. In both cases
the non-BSP method shows more unsafe behavior, leaving the track several
times and nearly colliding with the other agent. The BSP agent attempts more
aggressive overtaking maneuvers due to the lower uncertainty estimate over
itself and the other agent, as shown in the cutout. The agents start from random
initialization locations around the origin. Bottom: Histograms of theΔarc-length
lead of the faster agent over the slower agent. Here, the BSP method won more
races than the non-BSP method and had a higher average lead.

TABLE IV
AVERAGE COMPUTATION TIME

D. Real-Time Implementation Details

We implement our solver in the CasADi [45] framework
leveraging autodifferentiation by source code transformation,
automatic problem specific compute graph generation, C-code
generation, and sparse operations. Exploiting sparsity is highly
important to allow for real-time performance since the belief
space, encompassing the mean state and the upper triangle of
the covariance matrix can make respective Jacobian and Hessian
matrices very large. The average compute times on a Ryzen 7
1700X 3.4 GHz are reported in Table IV. Algorithm 1 was run
until convergence starting from a cold start for all experiments,
i.e., the initial control trajectoryu consists of all zeros. Nonethe-
less, it is also possible to run the algorithm sequentially by hot
starting the optimization with the previous solution. This is a
common practice in related optimization techniques for controls
such as sequential quadratic programming [46] and allows to run

Algorithm 1 at 100–200 Hz. In these cases it is often enough to
run only very few iterations to update the previous solution.

V. CONCLUSION

In this article, we propose a formulation for integrating BSP
into dynamic games, and present a real-time algorithm for
solving the local Nash equilibria of these dynamic games in
belief space. We demonstrate its performance of combining
game-theoretic planning and information gathering with three
case studies: Active surveillance, guiding blind agents, and
racing with autonomous vehicles.

While game-theoretic planning models the interaction and
dependency among agents, it does not address the quality of
information available to the agent for decision-making. Incor-
porating BSP in dynamic games allows for new capabilities not
possible with other approaches, essential in house service robots
or interacting with human agents in traffic. Reasoning about
another agent’s uncertainty and simultaneously leveraging the
effect of own actions on other agents’ actions resulted in complex
emergent behavior such as indirectly pushing and guiding others
through regions of light, without the use of any form of direct
communication.

In competitive use cases such as racing, emergent behavior
consists of cutting, blocking, forcing others to break hard with
the goal of increasing their uncertainty and slowing them down in
turns, as well as the exploitation of high-information-gain zones
for overtaking. In particular, game-theoretic BSP significantly
increased performance in dynamic racing when benchmarked
against state-of-the-art planning methods. Game-theoretic BSP
wins 44% more races when competing with a nongame-theoretic
baseline with BSP and 34% more races than a game-theoretic
baseline without BSP.

In this work we limit ourselves to first-order beliefs to avoid
the explosion in parameters for recursive beliefs over beliefs.
Nonetheless, even in cases where a first-order belief assumption
is a simplification of the true belief dynamics, such as racing,
we see improved performance to baselines that do not take the
belief over other agents into account. In future work we intend
to develop extensions beyond first-order belief spaces.

We efficiently solve for Nash equilibria in belief space and
achieve real-time performance, operating our algorithm at more
than 100 Hz. Efficiently solving a quadratic game at each stage
of the recursive backward pass of a belief-space variant of iLQG
resulted in an algorithm with runtime complexity O(lN7ni,6

x ).
Linear complexity in the planning horizon allowed for online
deployment, in comparison to point-based POMDP algorithms
with exponential complexity. While our algorithm also achieved
polynomial runtime complexity in the number of agents N ,
future work will investigate lowering the complexity further.
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