
1780 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

Continuous Collision Detection of Pairs of Robot
Motions Under Velocity Uncertainty

Edvin Åblad , Domenico Spensieri , Robert Bohlin , and Ann-Brith Strömberg

Abstract—In automotive manufacturing, production systems
typically involve multiple robots and, today, are being individu-
alized by utilizing the concept of digital twins. Therefore, the robot
programs need to be verified for each individual product. A crucial
aspect is to avoid collisions between robots by velocity tuning: This
involves an efficient analysis of pairs of robot paths and determining
if swept volumes of (sub) paths are disjoint. In general, velocity
uncertain motions require disjoint sweep volumes to be safe. We op-
timize a clearance lower bounding function to provide new sample
points for clearance computations. Due to the computational cost
of each distance query, our sampling strategy aims to maximize the
information gained at each query. The algorithm terminates when
robot paths are verified to be disjoint or a collision is detected.
Our approach for disjoint paths is inspired by the technique for
continuous collision detection known as conservative advancement.
Our tests indicate that the proposed sampling method is reliable
and computationally much faster than creating and intersecting
octrees representing the swept volumes.

Index Terms—Conservative advancement (CA), continuous
collision detection (CCD), Lipschitz optimization, Manhattan
distance, multiple robots, Smart Assembly 4.0, swept volumes.

I. INTRODUCTION

MOTION planning and coordination algorithms spend
much time checking whether a robot’s path is acceptable

(collision-free) w.r.t. the environment and/or another robot’s
path. Hence, key ingredients in these algorithms are efficient
ways of determining whether paths, or pairs of paths, are
collision-free.

Ensuring that a robot path is collision-free w.r.t. a static
environment is, however, a current challenge. As an example,
checking that certain waypoints are free is not sufficient; special
care is required to ensure that the entire path is collision-free,
regardless of the planning method used, being it based on

Manuscript received July 4, 2020; accepted December 26, 2020. Date of
publication January 25, 2021; date of current version October 1, 2021. This
work was supported in part by the project Smart Assembly 4.0, in part by the
Swedish Foundation for Strategic Research (SSF), and in part by the Sustainable
Production Initiative and the Production Area of Advance at Chalmers University
of Technology. This article was recommended for publication by Associate
Editor J. O’Kane and Editor M. Yim upon evaluation of the reviewers’ comments.
(Corresponding author: Edvin Åblad.)

The authors are with the Geometry and Motion Planning Group, Fraun-
Hofer-Chalmers Research Centre for Industrial Mathematics, 41288 Gothen-
burg, Sweden (e-mail: edvin.ablad@fcc.chalmers.se; domenico.spensieri
@fcc.chalmers.se; robert.bohlin@fcc.chalmers.se; anstr@chalmers.se).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/TRO.2021.
3050011.

Digital Object Identifier 10.1109/TRO.2021.3050011

Fig. 1. Illustration of the minimal clearance between the sweeps of two
industrial robots traveling along their weld task interpaths. The paths are said to
be disjoint if the minimal clearance exceeds a specified threshold.

probabilistic roadmap [1], [2], rapidly exploring random tree [3],
feedback-based information roadmap [4], or mixed integer linear
programming (MILP) [5].

The same issue applies when checking if two independent
robot motions are collision-free with respect to each other, i.e.,
their swept volumes are disjoint; see Fig. 1. Usually, each robot
has its own control system; therefore, the relative positioning of
two robots along their motions cannot be guaranteed continu-
ously. This means that their geometric paths are known, but their
trajectories are uncertain. We call this velocity uncertainty in
the trajectories, in contrast to the positioning one. If positioning
accuracy is also low, then it is not enough to check that their paths
are collision-free, but they are safe if being a distance always
greater than a certain threshold value, accounting for modeling
positioning uncertainty. This is what we model in this article and
propose an efficient computational algorithm to verify.

The seminal paper of O’ Donnell and Lozano-Pérez [6] pro-
vided a method to coordinate robot motions in time based on
the assumption of trajectory unpredictability. Their target appli-
cations were arc welding where the speed might be adjusted in
response to observed weld parameters or, more in general, when
some robot operations involve a sensor-based duration change.
One of the main reasons to guarantee two robot paths between the
two respective waypoints to be disjoint is unpredictable stops of
the robot in the middle of a motion. Note that this is typical since
enforcing the entire paths to be disjoint is very conservative; it
suffices that certain short subpaths are disjoint to construct safe
trajectories.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-4627-4360
https://orcid.org/0000-0002-0124-9022
https://orcid.org/0000-0003-0961-8811
https://orcid.org/0000-0003-1962-7279
mailto:edvin.ablad@fcc.chalmers.se
mailto:domenico.spensieri@fcc.chalmers.se
mailto:robert.bohlin@fcc.chalmers.se
mailto:anstr@chalmers.se
https://doi.org/10.1109/TRO.2021.3050011

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1781

Another reason to consider velocity uncertain trajectories is
to simplify the multirobot path planning problem by planning
each robot path independently. And in order to prevent colli-
sion among robots, a fixed-path coordination [7, ch. 7.2.2] is
employed; cf., [8]–[10]. In [8], subpaths are checked for being
disjoint in order to decide optimal trajectory velocities.

Another aspect of velocity uncertainty is the robustness of
a solution. If the robots can deviate for a nominal trajectory
without causing collision, we can consider safe modifications
of the trajectories to, e.g., minimize the energy usage of the
robots [11], or we can consider uncertain trajectories, e.g., a
robot being human agent [12]. Finally, the geometric operation
of checking that two (sub) paths are disjoint can be an important
tool when analyzing a solution.

Moreover, factories—automotive in particular—are currently
changing from a mass production to a product individualized
workflow. The challenges of this transformation are considered
in the project Smart Assembly 4.0 (SA4.0) that utilizes the
concept of digital twins [13]. Here, every product item has
its own digital representation, including geometrical variations.
Hence, nominal paths of the industrial robot manipulators need
to be verified online, and possibly modified and coordinated,
to comply with the specific product item geometry. Hence, an
efficient routine to verify subpaths to be disjoint is our main goal
of this research.

A. Article Outline

We propose a novel sampling method for determining whether
a pair of robot paths is disjoint, which also specializes to a
collision check for motions. This method is inspired by the well-
established technique of conservative advancement (CA), cf.,
[14], and inherits the crucial property that it is exact, i.e., without
false-positive or true-negative outcomes. Its main enabler is the
efficient optimization of a clearance lower bounding function.

Section II presents published methods related to either the
collision-free or the disjoint query and current works utilizing
those methods. Our contributions are derived in Section III: the
clearance bounding function, the disjoint query, analysis of com-
putational complexity, generalizations to identify disjoint subre-
gions, and first/last points of collision. For reference, Section IV
shortly presents a well-established method for the disjoint query
based on an approximation of the robot paths’ sweeps. Section V
presents test instances, numerical comparisons of the disjoint
query, and its two generalizations. Section VI concludes this
article.

B. Scope and Limitations

Our algorithm utilizes that the robot paths are parametrized
with a maximum velocity of 1 m/s, called a unit-velocity
parametrization; see Definition 1. However, as the derivation of
such a parametrization depends on the robot type, it is outside
the scope of this contribution. The parametrization is usually
the product of a path sensitivity analysis to estimate a so-called
Lipschitz constant(s) that bounds the maximum velocity of any
part of the robot. This can be done either by a sampling or
analytical method, typically assuming a specific robot type. For

example, [15] presents bounds on the displacement of robots
consisting of prismatic and revolute joints; a similar idea is
explained in [7, ch. 5.3.4].

Hence, our algorithm is applicable to any type of robot path
for which the unit-velocity parametrization can be retrieved. The
robots can be, e.g., nonconvex rigid bodies, a union of rigid
bodies, or even nonrigid. We consider methods based on more
specific assumptions on the robots and their paths to be outside
the scope of this contribution. Moreover, by the motivation of
SA4.0, we focus on an assembly cell in the automotive factory.
Hence, our computational experiments and results are based on
such instances.

Definition 1. (Unit-velocity parametrization): A parametriza-
tion of a robot path that bounds the maximum velocity of any
point on the robot by 1 m/s.

II. RELATED WORK

There are several algorithms for checking collision between
moving objects, i.e., continuous collision detection (CCD). Typ-
ically, these algorithms address the problem with sampling, i.e.,
ensuring that a continuous motion, and not only certain points
of it, is free from collision. Three main approaches are: CA,
different sweep representations, and to build a custom bounding
volume hierarchy (BVH) based on the trajectory. Such algo-
rithms are then used by motion planning algorithms and libraries
(e.g., [16]) to validate that the used paths are collision-free.

Some path planning algorithms use collision-free paths pro-
vided by a low-level motion planner and consider the multirobot
path planning problem defined in a discrete graph. For example,
in [17], the robots collide if they simultaneously either occupy
the same vertex or traverse the same edge in opposite directions.
However, they do not consider the case when two different
vertices correspond to robot poses that collide. In [18] and [19],
we propose an algorithm for resolving this issue by enforcing
a space partition of the workspace. The article [21] suggests
a method for solving the multirobot planning problem on a
graph with complicated constraints: The framework enables
the formulation of a static space partition such that certain
pairs of vertices or edges are not allowed to be traversed by
different robots. However, the framework is not suitable for
time-dependent constraints.

Anyway, the fundamental problem of CCD still needs to be
addressed at some level of any path planning algorithm. One
of the most popular approaches for a single path is that of
using a BVH, which is dynamically refined: When a collision
is detected, the BVH is rebuilt on smaller time intervals and the
collision detection continues recursively; see [7]. The authors
of [22] present a CCD based on BVH using line swept spheres
(LSS). The method applies multiple levels of approximations,
using higher precision for links of the robots (i.e., rigid bodies)
only when needed; the main test uses interval arithmetic and
motion bounding functions to check whether oriented bounding
boxes (OBBs) are in collision during the motion. The time
interval is subdivided in order to increase the fitness of the
bounds; at termination, if the OBBs still overlap, an exact

1782 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

query is executed for the primitives contained in the OBBs;
see [23].

Another popular approach for CCD is that of CA, which
basically utilizes the Lipschitz constant of a robot path to de-
termine a safe traversal along the path. An early example of
CA was suggested in [14], which uses an adaptive sampling
technique. In [24], a similar technique is used, but it assumes
a bounded acceleration to derive a safe step length. In [25],
it is illustrated how CA can be improved by not sampling
the path from start to end but using, e.g., a binary strategy
(cf., [26]) that checks equally many points if the segment is
collision-free but has a chance of finding an existing collision
with fewer samples. This idea is adopted in [27], which claim
that for their robot, this approach is superior to generating or
approximating the swept volume. The chapter [15] presents an
example of CA and adaptive sampling, which uses a binary
strategy rather than considering the trajectory sequentially; it
also utilizes that the distance at the static position need not be
computed exactly but only bounded from below. Another idea is
to combine CA and BVH, using the BVH to exclude paths that
are clearly disjoint, and using CA to find the first point of contact;
cf., [28].

The idea of CA and binary search has also been applied within
sampling-based motion planning algorithms. In [29], the (lower
bounds of) clearances at two discrete configurations are used
to deduce if the connecting geodesic segment is collision-free.
Moreover, utilizing a maximum robot displacement caused by
a configuration perturbation has also been incorporated in path
planning algorithms, e.g., in [30], and in [31], the direction of
movement is also accounted for.

A straightforward approach is to first build an approximation
of each robot’s paths sweep at a desired accuracy and then
determine if this sweep intersects the static geometry or another
sweep. This is done in [10] to detect if two quadcopter paths can
be safely traversed regardless of time. The authors consider the
intersection of sets of points swept by the robots. The paper [32]
proposes an adaptive approximation of the swept volume based
on axis-aligned boxes (AAB) containing the swept volume; the
AABs are derived from the trajectory using interval arithmetic.
The paper [33] studies a robot for which simple primitives
approximate its volume well; the sweep of these primitives is
analytically derived and checked for collisions against a world
octree, containing all static objects. In [34], octrees for each
moving object are generated and then checked for collisions
against a world octree.

The type of collision detection algorithm to use is usually
determined by the application. Some applications accept crude
models of their objects, e.g., ellipsoid of quadcopters [10].
Others require much more precise models, e.g., robotic arm and
tool in an assembly process [8]. In our case, when the robots
are forced to work close to each other and to the environment,
more accurate collision models are appropriate while crude
conservative approaches are inapplicable.

Our work assumes that a unit-velocity parametrization (Def-
inition 1) can be retrieved, similar to that in [4], which uses it
for complexity analysis rather than to guarantee collision-free
motions. In [4], it is assumed that the sampled points are dense

enough. However, the motions include an uncertainty, and path
collision probabilities are estimated by a path sampling method;
hence, an exact CCD might be computationally too heavy and
its outcome is not so important.

One of our main contributions is the efficient minimization
of the clearance lower bounding function, as derived directly
from the clearances at discrete robot poses and from the Lips-
chitz constant that determines the unit-velocity parametrization.
In [35] and [36], the optimization of an unknown function, where
only a Lipschitz constant is assumed to be known, is studied.
These works employ, however, the Euclidean norm, which is
a common choice; cf., [37]. In our application, in which two
separate motions contribute to the uncertainty, the L1 norm is
instead retrieved. It should be noted that our lower bounding
function based on the L1 norm is closely related to a Voronoi
diagram using the Manhattan distance and additively weighted
input sites. This is due to the global minimum being retrieved
at some edge of this Voronoi diagram. Such a diagram is rather
nonstandard; e.g., [38] considers it only briefly and gives no hints
on incremental algorithms. However, the Manhattan distance
Voronoi diagram can be incrementally created in O(n log n)
time; see, e.g., [39].

To the best of our knowledge, there are few examples of effi-
cient exact methods for verifying a pair of robot paths disjoint,
apart from constructing their respective sweeps, which is often
computationally expensive. We investigate how a method based
on CA compares to a method based on sweeps. Our method also
provides efficient detection of the first and last points of collision,
i.e., when one robot enters the other’s sweep. Moreover, it
utilizes and improves a lower bounding function to determine
where, along the paths, to sample. This preserves all information
from previous clearance computations. Note that our algorithm
can be specialized to instead detect collisions between pairs of
robot motions; it then resembles the method of using a binary
search from [15].

III. PATH–PATH COLLISION TEST

We say that two paths are disjoint if the robots’ swept volumes
do not intersect or, more generally, are separated by a specified
threshold. Specifically, let the clearance g(tA, tB) be the Eu-
clidean distance between two robots, A and B, positioned at
time tA and tB along their corresponding parametrized paths.
Then, the paths of two robots, A and B, are disjoint if and only
if

g(tA, tB) > τ, (tA, tB) ∈ D (1)

where τ ∈ R+ is a given threshold and D := [0, TA]× [0, TB]
is the time domain. Note that verifying (1) corresponds to ex-
ploring the rectangular domainD, i.e., find a point (tA, tB) ∈ D
violating (1) or verify that no such point exists.

However, D contains infinitely many points; thus, guaran-
teeing that all points in D are collision-free requires additional
assumptions on the paths and their parametrizations. We assume
that each robot path admits a unit-velocity parametrization (re-
call Definition 1). Consequently, without loss of generality, we
can assume that the domainD is composed by two such rescaled

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1783

Fig. 2. Domain representing the two paths is decomposed into regions, within
each of which the piecewise linear lower bounding function is convex. The
black lines denote region boundaries and the rhombus-shaped markers represent
collision-free points in which the function g is evaluated.

paths. Thus, the clearance function g is nonsmooth, nonconvex,
and it admits a unit L1 Lipschitz constant.

Using that the maximum velocity of the robots equals 1,
we can determine regions in which the paths are disjoint. For
instance, given N collision-free points t̄i := (t̄A, t̄B)i with
clearances δ̄i := g(t̄i) > τ , i = 1, . . . , N , we retrieve a lower
bounding function on the clearance, g(t), namely

max
i=1,...,N

{
δ̄i − ‖t− t̄i‖1

}
︸ ︷︷ ︸

=: δ(t)

≤ g(t), t ∈ D. (2)

Hence, the (rhombus-shaped) regions defined by{
t ∈ D | δ̄i − ‖t− t̄i‖1 > τ

}
, i = 1, . . . , N

are guaranteed to be free of collision. Note that these regions are
square but rotated; thus, we refer to them as rhombuses.

We can thus argue that by evaluating the clearance function g
in finitely many points, we can either find a point corresponding
to a collision or conclude that the paths are disjoint. This follows
by the practical assumption that the distance test (1) uses a
tolerance ε > 0; hence, g(t̄i) ≤ τ + ε means a collision. Thus,
each point that is collision-free implies a free 2ε2 m2 rhombus
shaped area; it can be verified that less than �ε−1�2 points are
sufficient to verify the disjointness criterion (1).

A. Main Algorithm

Since each evaluated point involves both a kinematic eval-
uation of the robots and a distance query between the robots,
the number of samples should be rationed. A sampling method
can either choose samples close to near collision points or
assume that the paths are disjoint and choose samples far from
previous points in order to gain as much information as possible
(minimizing the overlap with the known collision-free regions).
We suggest a tradeoff utilizing the information from the lower
bounding function (2), which is illustrated in Fig. 2. Namely, to
choose the global minimum of the clearance lower bound since
it is a promising candidate for a collision point, and it is also far
from all previous samples. Moreover, we get two easily checked

Algorithm 1: Verify that a Pair of Robot Paths are Disjoint.

1: procedure L1-min samplingD, τ
2: input: A domain D and a threshold τ .
3: output: Whether (1) holds.
4: N := 1
5: t̄1 := (TA, TB)/2
6: repeat
7: δ̄N := g(t̄N)
8: if δ̄N ≤ τ + ε then
9: return false

10: end if
11: δ(t) := max{δ(t), δ̄N − ‖t− t̄N‖1}
12: N := N + 1
13: t̄N := arg mint∈Dδ(t)
14: until δ(t̄N) > τ
15: return true
16: end procedure

termination criteria: 1) a collision-point is found and 2) the lower
bound is above τ in the minimum point, and, thus, (1) holds and
the paths are disjoint.

Note that Algorithm 1 contains the following two nontrivial
statements:

1) the evaluation of g that includes the kinematic evaluation
as well as the clearance computation;

2) the minimization of δ defined in (2).
Since the first is a well-studied problem (see [7], [40], and

[41]), we consider here the minimization problem; note, how-
ever, that—as in [15]—the algorithm allows g to be bounded
from below if g(t̄N) > τ ; see Section III-G.

The function δ, illustrated in Fig. 2, is clearly nonconvex
and thus nontrivial to minimize. However, D can be partitioned
into rectangular regions Dk in each of which δ is convex and
piecewise linear. This can be done iteratively, starting with
D1 := D; then for each new point t̄i included in (2) (on line
11 of Algorithm 1), find k such that Dk � t̄i and search along
the vertical and horizontal lines through t̄i until the index i no
longer defines the maximum term of (2). During this search,
divide all visited regions (including Dk) by these lines, and let
the new subregions replace the divided ones; cf., Fig. 2.

Given the resulting partition of D, a global minimum of the
function δ can be obtained by minimizing δ in each region Dk.
In which, we have that (cf., Fig. 2)

δ(t) = max
i,j∈{0,1}

{
δkij − ‖t− tkij‖1

}
, t ∈ Dk (3)

where δkij := δ(tkij) and tkij is a corner of Dk. Note that (3) is
given by four supporting hyperplanes and the minimum must
be supported by a diagonal pair. Due to linear dependency,
the intersection line of such a pair has a constant level and
‖t− t0j‖1 + ‖t− t1(1−j)‖1 = ΔT k

A +ΔT k
B , j = 0, 1, where

ΔT k
A and ΔT k

B denote the width and height of the region Dk,
respectively. Equating the levels of these lines yields

min
t∈Dk

δ(t) = max
j∈{0,1}

δk0j + δk1(1−j) −ΔT k
A −ΔT k

B

2
. (4)

1784 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

Thus, to access the global minimum, a heap-based priority
queue, sorted by the regions’ minimum values, can be used and
updated.

The computational complexity of the L1-min sampling strat-
egy can now be analyzed. Each iteration includes one evaluation
of g, an update of the lower bounding function δ, and a com-
putation of the next minimum position t̄N . While evaluating g
is expensive, it is, however, independent of the number N of
evaluated points and the number M of regions. An update of the
lower bounding function δ requires finding the MN regions that
are affected by the new measurement δ̄N by using an adjacency
graph of the vertices and a binary tree of the regions: This is an
O(logM +MN) operation. Updating the keys in the priority
queue for these regions requires O(MN logM) operations and
accessing the minimum region requires only O(1) operations.
Moreover, the number MN of affected regions Dk cannot be
large since only a neighborhood of t̄N that cannot include any
previous t̄i’s needs to be updated. Since this neighborhood is in-
dependent of all other regions, it follows that MN is bounded by
a constant; by a similar argument, it holds that O(M) = O(N).
Thus, each iteration involves the evaluation of g and O(logN)
operations to update the function δ.

B. Numerical Results on Clearance Bound Minimization

The below numerical investigation of Algorithm 1 is aimed
to 1) establish the argued time complexity and 2) compare it
with a standard MILP optimization procedure. To this end,
we will present some CPU times; see Section V for system
specifications.

To test the time complexity of our algorithm for minimizing
δ, we use the arguable worst possible clearance function g(t) :=
τ + c since the entire region will need to be carefully explored
for small values of c > 0. Note that any sampling strategy re-
quires at least N ≥ TATB

2c2 iterations, where equality holds when
none of the collision-free rhombuses overlap. Choosing the do-
mainD := [0, 60]× [0, 30] and c := 0.05 yieldsN ≥ 3.6 · 105,
which is a large enough value to visualize the computational
complexity.

The test reveals that the routine is fast, requiring only a few
seconds to complete 8 · 105 iterations, which is several mag-
nitudes faster than distance queries involving complex geome-
try. Moreover, the argued time complexity of O(N logN) fits
slightly better than, e.g., O(N log2 ˜N). Fitting the measured
values toO(N logk N) by minimizing the sum of squared errors
yielded k = 1.12. That the fit is not perfect may be due to a
number of practical reasons, such as N not being large enough,
cache misses (i.e., memory access is not an O(1) operation),
or memory reallocations (a sequential data storage was used to
enhance cache locality).

From the test, we also noted that N ≈ 8 · 105 iterations are
required for this case; it is roughly twice the potential minimum.
This might seem as target for improvement, but it is quite good
due to the following two reasons.

1) Since an evaluation is required to get information of g,
some overlap is inevitable, e.g., consider a divide-and-
conquer algorithm. Cover a square domain (e.g., [0, TB]×

[0, TB]) with a rhombus, then, recursively divide the rhom-
bus into four equally sized rhombuses, until its area is
sufficiently small (less than 2c2 in the above example). To

cover the entire domainD,N ≥ 4�log4
TBTB

c2
� ≈ 106, such

rhombuses are needed—for another size of square, there is
an expected factor E[4θ] of too many samples, a uniform
θ ∈ [0, 1] yields a factor of 3

ln 4 ≈ 2.16—i.e., there is a
lot of overlap in the last subdivision. This illustrates the
issue that the optimal rhombus region area (2c2) is only
implicitly available in the algorithm.

2) In our sampling method, overlaps start occurring already at
iteration 2 · 105, which is good, since, if g is not a dummy
function but involves a clearance computation, then tight
bounds imply that g can be computed approximately; see
Section III-G. Thus, the L1-min sampling strategy can
be interpreted as 2 · 105 expensive iterations (search for
a collision point) and 6 · 105 cheaper iterations (verify
disjointness).

For comparison, consider computing the global minimum of
δ using the Gurobi MILP solver [42] on line 13 in Algorithm 1.
Several MILP models were tested, and none competed with our
suggested algorithm. The most promising model had 2N + 2 bi-
nary variables to select an x and y interval between input points;
within these intervals, the problem is linear since the L1-norms
in (2) become linear. However, already 1000 clearance points
resulted in several hours of computation time. Another tested
formulation was perfect (i.e., integer restrictions are redundant);
it decomposed over the (N + 1)2 regions composed by the
above x and y intervals. This model reduces to solving (N + 1)2

LP problems, each containing three variables andN constraints.
However, these (N + 1)2 LP problems have analytical solutions,
namely (4); hence, this decomposition approach has a potential
time complexity of O(N2).

As noted in Section II, it is possible to minimize δ by main-
taining the Manhattan distance Voronoi diagram with additively
weighted input sites (i.e., t̄i weighted by δi). However, to the
best of our knowledge, no such algorithm is directly available,
and the special case of uniform weights leads to a complexity of
O(N logN); cf., [39]. Hence, this idea is useful only if it is the
minimization of δ that is the bottleneck, e.g., if g is very fast to
evaluate.

C. Initializing the Disjoint Query

In our L1-min sampling strategy for verifying the condition
(1), the initial sample is chosen to be in the center of the
domain D. This seems like a reasonable choice since if we
sample close to the boundary, some information (collision-free
rhombus region) might be outside D and thus useless. However,
an immediate consequence of using the center as starting point
will be that the next four samples will be located in the corners of
D, hence resulting in the very situation that should be avoided.

We suggest two remedies to this issue: one general approach
and one approach for the case of cyclic boundaries.

The general approach relies on the fact that the lower bounding
function δ defined in (2) is only used for the disjoint test (1);
hence, an artificial bound δ̄i ≤ τ can be introduced at any desired

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1785

location t̄i ∈ D. We suggest introducing one artificial bound in
each corner ofD, at the level δ̄i = 0, since the function δ remains
a valid lower bound of g. Higher values of δ̄i can be considered
to further reduce the risk of sampling too close to the boundary,
but then δ might not be a proper lower bound of g, and if a
corner corresponds to a collision, more iterations will be needed
to find it. Moreover, since τ is often quite small relative to g,
using δ̄i = 0 is a reasonable choice. Note also that with these
four artificial bounding points, the minimum of δ is at the center
of D; hence, Algorithm 1 remains the same.

A relevant note is that artificial bounds can also be intro-
duced in order to exclude parts of the region D from being
considered. This can be useful in cases where the robots is
expected to roughly traverse the paths at a predetermined speed,
in which case only a diagonal region of D is of interest; see also
Section III-D.

If g is known to be cyclic at the boundaries of D, i.e.,
g(0, t) = g(TA, t), g(t, 0) = g(t, TB) ∀t, then a sample close
to a boundary yields information about the opposite boundary;
hence, no special action of the initial query point needs to be
taken. One typical case in which g is cyclic is when the robot
paths themselves are cycles (starting and ending at the same
positions).

Another possible way of reducing the boundary effect is to
consider larger domains D, i.e., longer robot paths. However,
then one might need more information than being the paths
disjoint or not: for example, the time of the first collision or
the disjoint subintervals of the paths. Such generalizations are
available and considered next.

D. Generalization of the Sampling Method

First, assume that the paths considered are sequences of
subpaths, consisting of, for example, robot tasks or operations,
and some of these subpaths need to be disjoint. Let us suppose the
first and second paths consist of m and n subpaths, respectively:
One query for each pair of subpaths of interest then generates up
to mn queries. However, this would cause a lot of information
loss at the boundaries, as discussed in Section III-C. Therefore,
one can partition D into the mn subdomains Dsub

ij correspond-
ing to the subpaths and execute a slightly modified version of
Algorithm 1 on D.

Second, finding the first/last points of collision on the paths is
sometimes of interest; e.g., in [23] and [28], it is included in the
definition of CCD. We denote the first and last collision times by
tfA, tlA, tfB , and tlB , where, e.g., tfA is the first time at which robot
A can collide with B, i.e., any t ∈ [0, tfA)× [0, TB] is free of
collision and, in general, tfA �= tfB . A common motive for using
CA for CCD is that the first collision time is a byproduct; this
motive is, however, lost for the efficient binary search version
of CA [15] that we generalize here. A naive approach to find
tfA ∈ [0, TA] would repeatedly split the interval in two, using the
first half if it contains collisions and the second half, otherwise.
However, such an approach could reuse a lot of information
between these subintervals; we will show how our sampling
strategy can be modified to find the first/last point directly.

Fig. 3. Illustration of the lower bound (2) in a region Dk , cf., Fig. 2, with the
additional lower bounds on the boundaries and the notation used to compute the
minimum (5). The black lines denote the intersection of two lower bounding
planes and the black circle denotes the obtained minimum t̄.

The common feature and difference of these two generalized
disjoint queries compared to the original query of disjoint paths
(1) is that the sampling should not be aborted once a collision
point is found but take some other action. In both cases, i.e., 1)
finding the Dsub

ij that corresponds to disjoint paths, or 2) finding
the extreme collision times, we need to mark some rectangular
region(s) of D that are no longer of interest. We suggest to use
artificial bounds, i.e., in each such rectangular region R define
δ(t) := τ + ε, t ∈ R. We will describe a procedure that enables
this property, but first describe its use to finding the answer to
our two other queries. Once a collision is detected, the inequality
δ̄N ≤ τ + ε holds and there is a corresponding rhombus region
where g(t) ≤ τ + ε holds. Hence, in case 1), we can exclude
all subdomains Dsub

ij that overlap this rhombus, and in case 2),
we can exclude the rectangle [tfA, t

l
A]× [tfB , t

l
B] that includes

this and previously found rhombuses. Thus, in each iteration,
we either (as before) verify a rhombus part of D to be disjoint
or extend the subset R of D that is no longer of interest.

The extension of the function δ that is defined by lower bounds
in rectangular regions, and not only at points as in definition (2),
can be done efficiently. The key insight is that when enforcing a
lower bound along a boundary of a region Dk (recall Fig. 2), the
lower bounding function δ in the adjacent regions will remain
convex. Thus, to introduce a lower bound in a rectangular region
R, first, include it as a region of D by splitting some regions Dk,
then add the lower bound in corners of R as before, and finally
propagate the bounds of boundary lines of R to horizontally and
vertically adjacent lines as long as their bounds improve.

The extension also modifies the computation of the minimum
of each region Dk [recall (4)]; the solution is still analytical
but involves four new terms, namely the bounds along the
boundaries of Dk. We denote them as δkA0, δkA1, δk0B , and δk1B ,
where, e.g., δkA0 denotes the bound along the lower boundary
of Dk; see Fig. 3. The derivation is as follows: First, assume
that the bounds are consistent, i.e., one bound cannot be used to
strengthen another, then each bound will define a plane tilting
inward into the region. Thus, the minimum value will be at the
intersection of three supporting planes and there are two cases:
Either the gradients of two planes are linearly dependent and
thus create a line where the minimum is achieved [similar to
(4)] or there is no pairwise linear dependence and the minimum
is achieved in a single point. In the latter case, we have two cases:

1786 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

Fig. 4. Illustration of the differences in the sampling strategies for the special
case of collision detection among a pair of robot motions; comparison of our
suggested method (denoted L1-min), i.e., minimizing δ, with the published CA
using binary search, cf., [15].

Either one of the planes corresponds to a side and two planes
correspond to corners, or the opposite. However, the consistency
assumption implies that the plane corresponding to a side is
above the intersection (line) of the two planes corresponding
to the corners of the side; hence, this intersection will not
correspond to the minimum. To summarize, the minimum in
the region Dk is the maximum of eight cases, four of them
similar to (4) and defined by two opposing sides or corners, and
four defined by two adjacent sides and the opposite corner. The
minimum defined by

min
t∈Dk

δ(t) = max

{
max

j∈{0,1}
δk0j + δk1(1−j) −ΔT k

A −ΔT k
B

2
,

δkA0 + δkA1 −ΔT k
B

2
,
δk0B + δk1B −ΔT k

A

2
,

max
i,j∈{0,1}

δkij + δkA(1−j) + δk(1−i)B −ΔT k
A −ΔT k

B

3

}
(5)

replaces (4) as priority in the queue.

E. Specializations of the Sampling Method

The focus of this article has been to determine if two robot
paths are disjoint. However, the L1-min sampling strategy can
be specialized to the case when one of the robots is a static
environment. The domain D then becomes a line and thus
the data structure for optimizing δ(t) is simplified accordingly.
Similarly, if two robot motions are to be checked for collision,
i.e., that g(t, t) ≤ τ for some t ∈ [0, T], then this corresponds
to analyzing a path φ(t) in the domain D. Moreover, by adding
the two robots’ velocities along the path φ(t), the collision test
becomes essentially same as in the static environment case.

The resulting sampling strategy is a version of the binary
strategy commonly used within CA; cf., [15]. The difference
is that our method utilizes more information from previous
samples to derive the position of the next sample point. The
effect is that the next sample point is not centered between
previous samples; it is instead centered in the largest interval
that is not yet determined as collision-free; see Fig. 4. Note
that in this example, our sampling method completes after one
iteration while the binary search requires two iterations.

Finally, in the light of this resemblance, the L1-min sampling
is a variant of CA that verifies a pair of paths to be disjoint, while
utilizing all computed clearance information.

F. Robot Decomposition

There is another significant difference to the binary sampling
strategy suggested in [15]: This approach decomposes the robot
into one part per link. By doing this, they retrieve more detailed
information: For example, a slow-moving part can easily be ver-
ified disjoint even though the clearance is low. Moreover, their
binary search strategy ensures that the parts are still evaluated
at the same position of the motion, which allows for efficient
caching of the kinematic results.

In our framework, this decomposition would result in one
lower bounding function δ for each pair of links such that the
next sample equals the minimum of all these functions and g is
evaluated for each pair of links (i.e., a previously partial result).
However, for our instances (cf., Section V-A), preliminary re-
sults showed little to no gain in the lower bound as well as in the
number of clearance evaluations required. This is because, for
our instances, it is very frequent that the tools (attached to the
robot faceplate) have both the greatest velocities and the lowest
clearances.

Not decomposing the robot also has benefits when it comes to
evaluating g. In fact, we only need to compute the exact distance
between pairs of parts if their distance is smaller than for any
previously computed pair. This aspect is described more in detail
in Section III-G.

G. Greedy Clearance Computation

Our L1-min sampling strategy does not require that the clear-
ance function g(t̄N) is computed (line 7) if g(t̄N) > τ , in which
case any δ̄N such that τ < δ̄N ≤ g(t̄N) suffices. This has a great
benefit, as computing the clearance between two rigid bodies
using BVH allows for early termination, i.e., if g(t̄N) > τ ,
then it holds that g(t̄N) ≥ δ̄N > τ , but if g(t̄N) ≤ τ , then the
computation is carried out exactly and δ̄N := g(t̄N). However,
here a tradeoff occurs; a large value of δ̄N maximizes the
excluded region, while a small value enables a faster clearance
computation. Here, we use the strategy of computing g inexactly
when there is risk of redundant information; hence, we use
τ +min{τ − δ(t̄N), τmax} as a break point (note that δ(t̄N) is
already computed, on line 13). The term τ − δ(t̄N) “mirrors” the
lower bound in the threshold level τ ; hence, computing a distance
larger than this term will cause overlaps with regions known to
be disjoint. The term τmax is as a heuristic improvement that
applies in early iterations before the lower bounding function
δ becomes tight enough. For our instances (cf., Section V-A),
τmax := 0.1 m is a reasonable choice.

One advantage of using the lower bounding function δ to
determine the precision of the clearance computation is that a
tight bound yields a faster evaluation of g. Preliminary results
indicated that the last iterations were several times faster than
the first ones and that equally much time was spent on the first
30% and last 70% of the iterations, respectively. This is despite
the observed complexity of optimizing δ (Section III-B). This

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1787

relates to the discussion (see Section III-B) on large overlaps for
the artificial clearance functiong = τ + c that resulted in a rather
large number of iterations. However, as the majority of those
iterations had a tight lower bound, it can be argued that these
overlaps are not an issue but could even be beneficial in terms of
computation time when g is much cheaper to approximate than
to compute.

Moreover, note that these kinds of thresholds can be used to
accelerate clearance routines other than those based on BVH;
see, e.g., [43] and [44]. Hence, such routines could also be used
in conjunction with our sampling strategy.

IV. SWEPT VOLUME GENERATION AND DISTANCE TEST

An alternative approach to verify that two paths are disjoint
[see (1)] is to check if the swept volumes of the paths are
separated by the desired threshold. This could be done implicitly
by using a conservative BVH approach, such as OBB or LSS;
however, since most BVH approaches depend on higher-order
information, cf., [28], we consider this an unfair comparison
and outside the scope of this contribution, recall Section I-B.
Moreover, it might be beneficial to build the swept volumes
explicitly (with a certain precision) to enable their reutilization
in later queries.

One way to find out when explicit sweeps might be beneficial
is to consider the case when two large sets of M independent
paths each are to be checked for pairwise collision. Then the
number of tests is O(M2), whence the aim is to reduce the
computational effort spent in each test: Generating the sweeps is
anO(M)operation, which is computationally cheaper whenever
M is sufficiently large. This section challenges the method in
Section III, and Section V finds the breaking point at which the
swept volume approach becomes preferable.

There are many ways to implement a swept volume generation
(cf., [32]–[34], [45]); however, one needs to decide whether it
needs to be exact or if an approximation is good enough. Our
initial attempt aimed at using an exact swept volume algorithm
(tracing the triangles). Preliminary tests resulted, however, in
an unreasonably large value of M . Therefore, we focused on
octree approximations, which were roughly a hundred times
faster to compute, using an octree depth of eight. Moreover,
this choice was also motivated by the fact that checking if two
aligned octrees overlap is a very cheap operation and can be
neglected in the analysis of M . An exact approach, on the
other hand, would require computing the distance between two
triangular meshes. Likewise, since the goal is to evaluate our
suggested sampling strategy (Algorithm 1), we decided that a
straightforward approach is the most suitable.

To generate an octree representing the swept volume, we
utilize a spherical cover of each link of the robot, i.e., spheres
with radii τp covering the links. In our work, we ensure that

τp ≤ Dcell(d)
4 , i.e., a quarter of the leaf octree cell diameter of

the given octree depth d. Moreover, the path is sampled such that
the distance between two consecutive samples is less than 2τp
(thus, the computing time scales linearly with the path length).
Thus, to ensure that the entire sweep is contained in the octree,
spheres with radius 2τp are inserted for each sphere and path

Fig. 5. Illustration of the robot and tool geometries used in our instances, apart
from the geometry visualized in Fig. 1. (a) Cam. (b) Spot.

sample. Note that, when there is a clearance demand in (1),
i.e., τ > 0, τp remains unchanged but the cover of spheres is
generated to enclose the links padded with τ/2. The result is
that the octree intersection test becomes conservative, i.e., if
two octrees are disjoint, then so are the corresponding paths,
whereas the reversed implication does not hold.

V. RESULTS

Our computational experiments were conducted on a com-
puter with a 3.5-GHz Intel i7-4770 K CPU, implemented in C++,
and to simplify the analysis, all algorithms run on a single thread,
and, thus, the computing time and CPU time are essentially the
same.

A. Test Instances

Our test instances are from three industrial scenarios cor-
responding to three types of robot tools: 1) a stud weld tool
(cf., Fig. 1), 2) a sensor tool [cf., Fig. 5(a)], and 3) a spot
weld tool [cf., Fig. 5(b)]. The number of triangles (robot and
tool) were 92 627, 360 270, and 642 125, respectively. In all
cases, the robots are situated in a working cell consisting of four
robots with some tasks to perform on an assembly workpiece.
For each scenario, a load balanced solution was computed,
resulting in several robot paths for each task sequence. Normally,
a fixed-path coordination scheme (cf., [8]) prevents robot–robot
collisions by utilizing that such paths are disjoint.

To retrieve more paths of greater variety, we performed
the following operations. First, since these paths are naturally
rather short (originating from optimized sequences), they can
be merged, resulting in a longer path. Second, by perturbing the
location of the tasks, other sequences, and associated paths, were
found and included in the test set. Overall, at least 300 paths were
generated and analyzed for each tool; this is in order to ensure
sufficiently many samples when generating the octrees, recall
Section IV, and sufficiently many path pairs with a large enough
clearance for verifying them disjoint—recall Algorithm 1.

In our applications, we use τ = 0.1 m, whereas the robots are
a few meters long. For the unit-velocity parametrization, a con-
servative adaptive sampling technique was used; see Section I-B
for other alternatives. The resulting path lengths vary from 0.01
to 4 m; most are, however, around 0.2 m.

1788 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

Fig. 6. Binary sampling strategy without the robot decomposition (Bin), its
decomposed version (Binde), and the decomposed version of L1-min sampling
strategy (L1

de-min), all relative to the L1-min sampling strategy. The statistics
compared are number of distance computations between links (Dist) and the
number of kinematic evaluations (Kin). For each statistic and considered motion
pair, a score is computed as the ratio between one of the three strategies and the
L1-min strategy, and the boxplots illustrate resulting distribution.

B. Special Case of Motions

We now consider the special case of detecting collisions
among pairs of motions; cf., Section III-E. The motions are
retrieved from the paths by using the robots’ maximum veloci-
ties. We compare the L1-min and the binary sampling strategies
by the number of kinematic and distance evaluations used.
We consider two variations of each strategy, with and without
decomposing the robots into one part per link; cf., Section III-F.

The results are illustrated in Fig. 6. The L1-min sampling
strategy uses roughly 15% fewer kinematic and distance com-
putations compared to a variant of the binary sampling that do
not decompose the robot (Bin). When decomposing the robot
into one part per link, we see similar trends for both the Binde

and the L1
de-min strategies, i.e., much fewer distance computa-

tions (the computational effort is, however, only 20% smaller;
cf., Section III-G). Moreover, the kinematic caching used in
Binde results in almost half as many kinematic evaluations
compared to L1

de-min, which, on the other hand, use 12% fewer
distance computations on average. Thus, for this special case,
our sampling method provides a competitive and comparable
alternative to existing algorithms.

C. Time to Verify Disjointness

In order to compare our suggested method for verifying two
path disjoints (Algorithm 1) with the basic approach of approxi-
mating the swept volumes with an octree, we begin by presenting
the results for the latter. This will then be used to determine
how many paths (M) that are required before the swept volume
approach is preferable to Algorithm 1. Note, however, that the
swept volume approach presented here is conservative; hence,
it cannot deduce that two paths intersect but only that they are
disjoint or that they are close and might intersect. But as the
precision, or maximum depth, of the octree increases, the results
become more reliable (as the cell sizes decrease).

Fig. 7 presents the CPU time for generating an octree of the
swept volume of a path divided by the length of the path, for three
different robot tools, and four different depths of the octree. In

Fig. 7. CPU time of generating sweep volume approximation for three dif-
ferent tools (camera, spot-weld, and stud-weld) using four different precisions
(octree depths). The domain of the octree was always a 8˜m3 cube, and, thus,
the cell sizes are in the interval [2−5, 2−2]m3. For each tool and depth, at least
300 sweeps were approximated and the boxplot of the resulting CPU time per
path length [TA or TB in (1)] is presented; recall Section IV motivating this
linear relation.

Section IV, it was deduced that there is a linear relation between
the path length and the CPU time (and the number of inserted
spheres). Hence, their ratio is presented. For example, a sequence
typically has a few meters path length; approximating its sweep
with an octree using low precision (0.25 m) is computed within
hundreds of a second, whereas a higher precision (0.03 m) may
require a second.

Note that there is a spread in the linear coefficient, i.e., the
CPU time is determined not only by the length of the path. Other
properties, such that the total volume or surface area of the swept
volume, may correlate better with the CPU time. One reason
can be that the path length is defined by the maximum velocity
(typically the velocity of the tool) which typically represents
only a small part of the swept volume. This results in spheres
being inserted in already allocated octree cells, which is faster
than allocating a new cell.

The main results concerning the CPU time of our L1-min
sampling strategy (Algorithm 1) are displayed in Fig. 8(a). To
enable a comparison with the octree sweep approximation, the
minimum clearances are grouped into bins corresponding to
octree depth. Thus, all path pairs in a bin can be determined
disjoint by the octree approximation of the corresponding depth.
The first four bins correspond to the depths reported in Fig. 7 and
the last bin to instances that required deeper (possibly infinitely
deep) octrees.

The CPU time is normalized here by the so-called path area,
i.e., the product of the two path lengths. This is reasonable since
the CPU time is roughly proportional to the number of clearance
computations (recall Section III-A), which, in turn, determines
an area free of collision points (cf., Fig. 2). However, the results
presented in Fig. 8(a) shows that there is greater spread within
each bin as compared to Fig. 7. This is, first, since the excluded
area depends on the clearance, but a path pair with only a small
region with low clearance can be verified faster than a pair with
low clearance in a large region. And second, since the clearance
computations are faster for large clearances; cf., Section III-G.

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1789

Fig. 8. CPU time of verifying robot pairs of paths disjoint, for three different tools (camera, spot-weld, and stud-weld) and for five different clearances of the
swept paths. These five bins correspond to the sum of the diagonal of an octree cell and the tolerance τ , cf., Fig. 7, to enable comparing the two approaches. Each
tool and clearance bin comprise 20–400 pairs of paths. The resulting boxplot for the ratio of the CPU time and the path area TATB is presented. (a) Unrelated
paths are assumed and Algorithm 1 is used. (b) Paths are assumed to be part of sequences and the generalization of Algorithm 1 from Section III-D is used.

These two effects contribute to the observed spread within each
bin.

Since the paths in our test instances originate from sequences
of paths, we can utilize the generalization of Algorithm 1 de-
scribed in Section III-D. Recall that this generalization reuses
the information from previous queries. The result is presented
in Fig. 8(b), which shows several factors of reduction in CPU
time compared to not reusing the information [as in Fig. 8(a)].

The reason for the heavy lower tails in the boxes of Fig. 8(b)
is that a pair of paths with high clearances can be determined
disjoint using clearance computations from neighboring paths
in the sequence. Hence, in this data, there are lots of zeroes
for shorter paths with high clearance. Moreover, the axis is cut
off at 2 · 10−7 to have the same scale as Fig. 8(a) and since all
measurements below this correspond to zeroes.

Also, by utilizing that our paths are parts of sequences, we also
noted that the reduction in the number of clearance computations
was even larger than the reduction in CPU time. This may be due
to that most (including our) clearance computations are warm
started; hence, good locality (in the sample set) can speed up
computations. Thus, there is room for improvement considering
long paths; see Section VI-A.

Comparing Figs. 7 and 8(a), we may investigate the number
of paths of a certain length that are needed before the sweep
octree approximation becomes a useful filter. Assume M paths
of similar length≈ l for each robot. Let tp(c)denote the expected
CPU time per path area to verify a path pair with minimum
clearance c and to(c) denote the expected CPU time per path
length to generate a sweep with octree depth sufficient for c.
A preliminary result showed that the CPU time of the octree
intersections are magnitudes faster than tp(c). We yield that
when tp(c)l

2˜M2 ≥ 2to(c)lM , the octree is a useful filter. This
reduces to

M ≥ 2to(c)

ltp(c)
(6)

which is used together with the results presented in Figs. 7
and 8(a) to retrieve Fig. 9. Moreover, note that the relation (6)

Fig. 9. Illustration of the breaking point (6), i.e., when the sweep approxima-
tion becomes faster than Algorithm 1 to verify disjointness. This is in terms of
the number of paths per robot and their length. Here, d is the octree depth, and
tp(c) and to(c) are taken to be the median in the respective bins. Moreover,
tp(c) is computed by not assuming the paths that are part of a sequence, i.e.,
from Fig. 8(a).

is a very simplistic model and is not intended to be used for
finding the exact breaking point but rather to visualize trends
and magnitudes. For example, the neglected CPU time for the
octree intersection test might be significant for deep octrees.

The figure shows that the breaking point at which filtering
using the sweep approximation becomes beneficial depends on
both the robot type and the minimum clearance of the paths.
Hence, if it is known beforehand that the paths are likely to
have a high clearance, then using a shallow octree is beneficial.
However, only for very long or numerous paths should a deep
octree be applied. The sequences from our test case contain
mostly short paths (movements between adjacent tasks) and only
a few longer ones. Hence, using the octree sweep approximation
at any depth will not speed up computations much, if at all.
Moreover, since the paths are part of sequences, as illustrated in
Fig. 8(b), the generalized sampling strategy is significantly faster
for high clearances. As a result, all lines in Fig. 9 will roughly

1790 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021

pass through (l,M) = (10−2, 105) by using the sequence as-
sumption. Thus, even long paths need to be numerous before
there is any gain in applying the octree approach; e.g., (l ≈ 1 m)
requires thousands of paths and thus millions of pairs.

VI. CONCLUSION

In this article, we proposed a method for minimizing a bivari-
ate function with a known L1 Lipschitz constant and utilized
it to determine if a pair of robot paths is disjoint, i.e., if their
respective swept volumes are disjoint. Our method is related to
the traditional CA techniques that determine if a pair of robot
motions collide; our method can be specialized to check this and
is then similar to CA using binary sampling.

We showed that even though the sampling strategy involves
solving a bivariate L1 Lipschitz optimization problem, the in-
troduced overhead is small compared to the time of positioning
the robots and computing clearances. Moreover, we showed that
this will remain true even when a very large number of sample
points is required.

One main observation made is if the paths are parts of longer
paths, then there is great gain in modifying the sampling strategy
to consider two longer paths and simply record all found collid-
ing pairs of paths. This is because a lot of clearance information
is discarded by considering all pairs of paths separately. This is
of great importance since it is often more informational to know
the regions of configurations that are collision-free compared to
an existence certificate.

Finally, we compared our sampling strategy with the inter-
section test of octrees that represent the swept volumes of the
robot paths: We noticed that the octrees would seldom be of use,
unless there are many pairs of long paths that are well-separated.
Moreover, when considering subpaths, our sampling strategy
performed much better, hence verifying the paths disjoint using
octrees are not useful in such situations.

A. Further Work

In the framework of smart assembly, we can utilize this new
collision query to efficiently detect critical positions of the robot
paths, which can be used by motion planning algorithms.

We suggest four potential improvements of the sampling
strategy. First, great improvement potentials rely on the par-
allelization of the search, regarding several distributed points
and not only the global minimum. Second, the possibility to
localize a minimum point, e.g., preferring points close to pre-
vious points, to get better bounds that accelerate the distance
computations or to store some data structure for warm starting
the clearance computation based on previous results. Third,
using directional information and not only maximum velocity
along the respective robot path. This could be done within the
framework of a volume bounding hierarchy; cf., [41]. However,
it would require additional computational effort since not only
distance but also direction between the bounding volumes would
need to be computed. Moreover, since the shortest distance
directions depend on the positions of both robots, the clearance
bound would not be directly dependent on the L1 distance in the
time domain. Fourth, consider using higher-order information

to construct BVH based on Taylor expansion, cf., [28], should
provide a better filter than our direct octree approach provided
that the higher-order information is available and a special BVH
traversal for the disjoint test is developed.

Finally, we like to apply our sampling algorithm to other
applications, e.g., another robot type, mobile automated guided
vehicles or other bivariate functions with known L1 Lipschitz
constants.

ACKNOWLEDGMENT

Finally, we would like to thank the anonymous reviewers for
their valuable feedback.

REFERENCES

[1] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in
Proc. ICRA. Millennium Conf. Int. Conf. Robot. Autom., vol. 1, 2000,
pp. 521–528.

[2] L. Palmieri, L. Bruns, M. Meurer, and K. O. Arras, “Dispertio: Optimal
sampling for safe deterministic motion planning,” IEEE Robot. Autom.
Lett., vol. 5, no. 2, pp. 362–368, Apr. 2020.

[3] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Comput. Sci. Dept., Iowa State University, Ames, IA, USA,
Tech. Rep. 98–11, 1998.

[4] A. Agha-Mohammadi, S. Agarwal, S. Kim, S. Chakravorty, and N.
M. Amato, “SLAP: Simultaneous localization and planning under
uncertainty via dynamic replanning in belief space,” IEEE Trans.
Robot., vol. 34, no. 5, pp. 1195–1214, Oct. 2018.

[5] M. da Silva Arantes, C. F. M. Toledo, B. C. Williams, and M. Ono,
“Collision-free encoding for chance-constrained nonconvex path plan-
ning,” IEEE Trans. Robot., vol. 35, no. 2, pp. 433–448, Apr. 2019.

[6] P. A. O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-free
coordination of two robot manipulators,” in Proc. IEEE Int. Conf. Robot.
Autom., vol. 1, 1989, pp. 484–489.

[7] S. M. LaValle, “Hierarchical methods,” in Planning Algorithms. Cam-
bridge, U.K.: Cambridge University Press, 2006, pp. 210–212.

[8] D. Spensieri, R. Bohlin, and J. S. Carlson, “Coordination of robot paths
for cycle time minimization,” in Proc. IEEE Int. Conf. Autom. Sci. Eng.,
2013, pp. 522–527.

[9] D. Hömberg, C. Landry, M. Skutella, and W. A. Welz, “Automatic re-
configuration of robotic welding cells,” in Math for the Digital Factory.
Berlin, Germany: Springer, 2017, pp. 183–203.

[10] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and
N. Ayanian, “Trajectory planning for quadrotor swarms,” IEEE Trans.
Robot., vol. 34, no. 4, pp. 856–869, Aug. 2018.

[11] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Trajectory
planning in robotics,” Math. Comput. Sci., vol. 6, no. 3, pp. 269–279,
2012.

[12] M. Ragaglia, A. M. Zanchettin, and P. Rocco, “Trajectory generation
algorithm for safe human-robot collaboration based on multiple depth
sensor measurements,” Mechatronics, vol. 55, pp. 267–281, 2018.

[13] R. Söderberg, K. Wärmefjord, J. S. Carlson, and L. Lindkvist,
“Toward a digital twin for real-time geometry assurance in in-
dividualized production,” Corporate Insolvency Resolution Process
Ann., vol. 66, no. 1, pp. 137–140, 2017.

[14] R. Culley and K. Kempf, “Collision detection algorithm based on velocity
and distance bounds,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 3.,
1986, pp. 1064–1069.

[15] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking of
robot paths,” in Algorithmic Foundations of Robot V. Berlin, Germany:
Springer, 2004, pp. 25–41.

[16] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[17] J. Yu and S. M. LaValle, “Optimal multirobot path planning on
graphs: Complete algorithms and effective heuristics,” IEEE Trans.
Robot., vol. 32, no. 5, pp. 1163–1177, Oct. 2016.

[18] E. Åblad, “Intersection-free load balancing for industrial robots,” Master’s
thesis, Dept. Math. Sci., Chalmers Univ. Technol. Univ. Gothenburg,
Gothenburg, Sweden, 2016.

ÅBLAD et al.: CONTINUOUS COLLISION DETECTION OF PAIRS OF ROBOT MOTIONS UNDER VELOCITY UNCERTAINTY 1791

[19] E. Åblad, D. Spensieri, R. Bohlin, and J. S. Carlson, “Intersection-
free geometrical partitioning of multirobot stations for cycle time opti-
mization,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 842–851,
Apr. 2018.

[20] E. Åblad, A.-B. Strömberg, and D. Spensieri, “Mathematical modelling
for load balancing and minimization of coordination losses in multirobot
stations,” Licentiate thesis, Dept. Math. Sci., Chalmers Univ. Technol.
Univ. Gothenburg, 2020.

[21] F. Imeson and S. L. Smith, “An SMT-based approach to motion
planning for multiple robots with complex constraints,” IEEE Trans.
Robot., vol. 35, no. 3, pp. 669–684, Jun. 2019.

[22] S. Redon, M. C. Lin, D. Manocha, and Y. J. Kim, “Fast continu-
ous collision detection for articulated models,” J. Comput. Inf. Sci.
Eng., vol. 5, no. 2, pp. 126–137, 2005.

[23] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision
detection between rigid bodies,” in Computer Graphics Forum, vol. 21,
no. 3. Wiley Online Library, 2002, pp. 279–287.

[24] P. M. Hubbard, “Collision detection for interactive graphics applications,”
IEEE Trans. Vis. Comput. Graphics, vol. 1, no. 3, pp. 218–230, Sep. 1995.

[25] R. Geraerts and M. H. Overmars, “Sampling techniques for probabilis-
tic roadmap planners,” in Proc. Int. Conf. Intell. Auton. Syst., 2004,
pp. 600–609.

[26] G. Sánchez and J.-C. Latombe, “Single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” in Robotics Research.
Berlin: Springer, 2003, pp. 403–417.

[27] X. Xu, F. Sun, Y. Luo, and Y. Xu, “Collision-free path planning of
tensegrity structures,” J. Struct. Eng., vol. 140, no. 4, pp. 1–9, 2013.

[28] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision detection
for articulated models using taylor models and temporal culling,” ACM
Trans. Graph., vol. 26, no. 3, pp. 15–es, 2007.

[29] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision
checking in sampling-based motion planning via safety certificates,” Int.
J. Robot. Res., vol. 35, no. 7, pp. 767–796, 2016.

[30] B. Lacevic, D. Osmankovic, and A. Ademovic, “Path planning using
adaptive burs of free configuration space,” in Proc. XXVI Int. Conf.
Inf., Commun. Autom. Technol., Sarajevo, Bosnia-Herzegovina, 2017,
pp. 1–6.

[31] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using
velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–772, 1998.

[32] A. Foisy and V. Hayward, “A safe swept volume method for collision
detection,” in Proc. 6th Int. Symp. Robot. Res.,1994, pp. 62–68.

[33] M. Herman, “Fast, three-dimensional, collision-free motion planning,” in
Proc. IEEE Int. Conf. Robot. Autom., vol. 3, 1986, pp. 1056–1063.

[34] N. Ahuja, R. T. Chien, R. Yen, and N. Bridwell, “Interference detection
and collision avoidance among three dimensional objects,” in Proc. 1st
AAAI Conf. Artif. Intell., 1980, pp. 44–48.

[35] R. H. Mladineo, “An algorithm for finding the global maximum of a multi-
modal, multivariate function,” Math. Program., vol. 34, no. 2, pp. 188–200,
1986.

[36] S. Jakobsson, P. Lindroth, and A.-B. Strömberg, “A minimax
strategy for global optimization,” 2011. [Online]. Available:
https://research.chalmers.se/publication/140359

[37] Y. D. Sergeyev and D. E. Kvasov, “Lipschitz global optimization,”
in Deterministic Global Optimization. New York, NY, USA: Springer,
2017, pp. 1–17.

[38] F. Aurenhammer and R. Klein, “Voronoi diagrams,” in Handbook of
Computational Geometry, J.-R. Sack and J. Urrutia, Eds. New York, NY,
USA: Elsevier, 2000, pp. 201–290.

[39] M. Jünger, V. Kaibel, and S. Thienel, “Computing Delaunay triangulations
in Manhattan and maximum metric,” Institut für Informatik, Universität
zu Köln, Tech. Rep. 94.124, 1995.

[40] P. Jiménez, F. Thomas, and C. Torras, “Collision detection algorithms
for motion planning,” in Robot Motion Planning and Control. Berlin,
Germany: Springer, 1998, pp. 305–343.

[41] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast distance
queries with rectangular swept sphere volumes,” in Proc. IEEE Int. Conf.
Robot. Autom. Millennium Conf., vol. 4., 2000, pp. 3719–3726.

[42] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2019.
[Online]. Available: http://www.gurobi.com

[43] D. Schneider, E. Schömer, and N. Wolpert, “Collision detection for 3D
rigid body motion planning with narrow passages,” in Proc. IEEE Int.
Conf. Robot. Autom., Singapore, 2017, pp. 4365–4370.

[44] M.Ghosh, S.Thomas, and N. M.Amato, “Fast collision detection for mo-
tion planning using shape primitive skeletons,” in Algorithmic Foundations
of Robot. XIII, Ser. Springer Proc. Advanced Robot., vol. 14., M. Morales,
L. Tapia, G. Sánchez-Ante, and S. Hutchinson, Eds. Cham, Switzerland:
Springer, 2018, pp. 36–51.

[45] K. Abdel-Malek, J. Yang, D. Blackmore, and K. Joy, “Swept vol-
umes: Foundation, perspectives, and applications,” Int. J. Shape
Model., vol. 12, no. 1, pp. 87–127, 2006.

Edvin Åblad was born in 1991. He received the
M.S. degree in engineering mathematics and com-
putational science from the Chalmers University of
Technology, Gothenburg, Sweden, in 2016. His M.S.
thesis was on intersection-free load balancing for
industrial robots. He is currently working toward the
Ph.D. degree in mathematics on load balancing mul-
tirobot stations at the Geometry and Motion Planning
Department, Fraunhofer-Chalmers Research Cen-
tre for Industrial Mathematics and the Department
of Mathematical Sciences, Chalmers University of

Technology.
His current research interests include computational geometry, multiagent

modeling, and optimization algorithms.

Domenico Spensieri was born in 1978. He received
the “Laurea” degree in computer engineering and
control systems from the University of Pisa, Pisa,
Italy, in 2003, and the Licentiate degree in product and
production development from the Chalmers Univer-
sity of Technology, Gothenburg, Sweden, in 2017. He
is currently a Ph.D. candidate with the Department of
Industrial and Materials Science working on product
and production development.

He joined the Fraunhofer-Chalmers Centre,
Gothenburg, Sweden, in 2004, where he works with

the Geometry and Motion Planning Group as an Applied Researcher and System
Developer. His current main research interests include multiagent optimization,
assembly planning, and robotics.

Robert Bohlin was born in 1972. He received the
Ph.D. degree in mathematics on robot path planning
from Chalmers University of Technology, Gothen-
burg, Sweden, in 2002.

He is a Researcher and Project Manager with
the Geometry and Motion Planning Department,
Fraunhofer-Chalmers Research Centre for Industrial
Mathematics (FCC), Gothenburg. His research inter-
ests include methods, algorithms, and tools for virtual
product realization and in particular automatic path
planning, collision detection, simulation of flexible

material, optimization, and kinematics.

Ann-Brith Strömberg was born in 1961. She re-
ceived the Ph.D. degree in mathematics on subgradi-
ent methods from Linköping University, Linköping,
Sweden, in 1997.

She is a Professor of Mathematical Optimiza-
tion with the Department of Mathematical Sciences,
Chalmers University of Technology, Gothenburg,
Sweden, and the University of Gothenburg, Gothen-
burg. Her research concerns mathematical model-
ing and solution of optimization problems, including
discrete, convex nonsmooth, simulation based, and

multiobjective optimization. Much of her research is carried out in cooperation
with academy and industry and includes scheduling of production and mainte-
nance, load balancing, integration of variable electricity generation in the energy
system, and transport planning.

http://www.gurobi.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

