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Teach-Repeat-Replan: A Complete and Robust
System for Aggressive Flight in

Complex Environments
Fei Gao , Luqi Wang , Boyu Zhou , Xin Zhou , Jie Pan , and Shaojie Shen

Abstract—In this article, we propose a complete and robust
system for the aggressive flight of autonomous quadrotors. The
proposed system is built upon on the classical teach-and-repeat
framework, which is widely adopted in infrastructure inspection,
aerial transportation, and search-and-rescue. For these applica-
tions, a human’s intention is essential for deciding the topologi-
cal structure of the flight trajectory of the drone. However, poor
teaching trajectories and changing environments prevent a simple
teach-and-repeat system from being applied flexibly and robustly.
In this article, instead of commanding the drone to precisely follow a
teaching trajectory, we propose a method to automatically convert a
human-piloted trajectory, which can be arbitrarily jerky, to a topo-
logically equivalent one. The generated trajectory is guaranteed to
be smooth, safe, and dynamically feasible, with a human preferable
aggressiveness. Also, to avoid unmapped or moving obstacles dur-
ing flights, a fast local perception method and a sliding-windowed
replanning method are integrated into our system, to generate safe
and dynamically feasible local trajectories onboard. We name our
system as teach–repeat–replan. It can capture users’ intention of
a flight mission, convert an arbitrarily jerky teaching path to a
smooth repeating trajectory, and generate safe local replans to
avoid unexpected collisions. The proposed planning system is inte-
grated into a complete autonomous quadrotor with global and local
perception and localization submodules. Our system is validated
by performing aggressive flights in challenging indoor/outdoor
environments. We release all components in our quadrotor system
as open-source ros packages.

Index Terms—Aerial systems: applications, motion, and path
planning, autonomous vehicle navigation, collision avoidance.

I. INTRODUCTION

A S THE development of autonomy in aerial robots, micro
aerial vehicles, especially quadrotors, have been more
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and more involved in our daily life. Among all applications that
have emerged in recent years, quadrotor teach-and-repeat has
shown significant potentials in aerial videography, industrial
inspection, and human–robot interaction. In this article, we
investigate and answer the problem of what is the best way to
incorporate a human’s intention in autonomous and aggressive
flight, and what is a flexible, robust, and complete aerial
teach-and-repeat system.

There is a massive market for consumer drones nowadays.
However, we observe that most of the operators of consumer
drones are not professional pilots and would struggle in gener-
ating their ideal trajectory for a long time. In some scenarios,
such as drone racing or aerial filming, it is impossible for a
beginner-level pilot to control the drone to finish the race safely
or take an aerial video smoothly without months of training.
In a drone racing competition, each quadrotor is controlled by
a human pilot to fly through several gates toward the terminal
as quickly as possible. In the racing flight, collisions must be
avoided to ensure safety, while the flight aggressiveness is ex-
pected to be extremely high. However, it is hard for a human pilot
to master the skill of balancing speed and safety. As opposed to
drone racing, aerial filming/videography does not prefer high
speed, but good motion smoothness, because gentle transitions
are typically good for generating aesthetical videos.

For industrial applications, there is also considerable demand
in applying drones to repetitive inspections or search-and-rescue
missions, where a human provides a preferable routine. In these
situations, demonstrating a desirable trajectory and letting the
drone to repeat it is a common requirement. However, the taught
trajectory generated by an unskilled pilot is usually incredibly
hard or dynamically infeasible to repeat, especially in some
cluttered environments. Moreover, most of the vision-based
teach-and-repeat applications [1]–[3], such as our previous
work [1], are sensitive to changing environments. In [1], even if
the environment changes very slightly, the global map has to be
rebuilt, and the teaching process has to be redone.

Based on these observations, in this article, instead of asking
the drone to follow the human-piloted trajectory exactly, we
only require the human operator to provide a rough trajectory
with an expected topological structure. Such a human’s teaching
trajectory can be arbitrarily slow or jerky, but it captures the
rough route the drone is expected to follow. Our system
then autonomously converts this poor teaching trajectory
to a topologically equivalent and energy–time-efficient one.
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The aggressiveness of the generated repeating motions is
tunable, which can meet speed requirements ranging from
drone racing to aerial filming. Moreover, during the repeating
flight, our system locally observes environmental changes and
replans sliding-windowed safe trajectories to avoid unmapped
or moving obstacles. In this way, our system can deal with
changing environments. Our proposed system extends the
classical robotics teach-and-repeat framework and is named as
teach–repeat–replan. It is complete, flexible, and robust.

In our proposed system, the surrounding environment is re-
constructed by onboard sensors. Then, the user’s demonstrated
trajectory is recorded by virtually controlling the drone in the
map with a joystick or remote controller. Then, we find a flight
corridor that preserves the topological structure of the teaching
trajectory. The global planning is decoupled as spatial and
temporal planning subproblems. Having the flight corridor, an
energy-optimal spatial trajectory, which is guaranteed to be safe,
and a time-optimal temporal trajectory, which is guaranteed to be
physically feasible, are iteratively generated. In repeating, while
the quadrotor is tracking the global spatial–temporal trajectory,
a computationally efficient local map [4] is fused onboard by
stereo cameras. Based on local observations, our proposed sys-
tem uses a fast sliding-window replanning method [5] to avoid
possible collisions. The replanning module utilizes gradient
information to locally wrap the global trajectory to generate
safe and dynamically feasible local plans against unmapped or
moving obstacles.

The concept of generating optimal topology-equivalent tra-
jectories for quadrotor teach-and-repeat was first proposed in
our previous research [1]. In [1], once the repeating trajectory
is generated, the drone executes it without any other considera-
tions. In that work [1], the environment must remain intact during
the repeating, and the localization of the drone is assumed to be
perfect. These requirements are certainly not guaranteed in prac-
tice and, therefore, prevent the system from wider applications.
Also, in [1], the flight corridor is represented by axis-aligned
cubes. Cubes are easily found but inferior for grouping large
free space in highly nonconvex surroundings. The flight corridor
may, therefore, fail to cover a whole teaching trajectory or result
in only a poor solution. In this article, to adapt to arbitrarily
cluttered maps and provide sufficient solution space, we propose
a method to generate general, free, large convex polyhedrons.
To summarize, in this article, we extend the framework of the
classical teach-and-repeat and propose several new contributions
to make our system complete, robust, and flexible. We present a
whole set of experiments, as shown in Fig. 1, and comparisons in
various scenarios to validate our system. Detailed contributions
are the following.

1) We advance our flight corridor generation method. Com-
pared to our previous work [1], the flight corridor we use
now provides much more optimization freedom, which fa-
cilitates the generation of more efficient and smooth global
trajectories. Moreover, we propose methods to accelerate
the corridor generation on CPU and GPU.

2) We integrate our previous works on online mapping [4]
and replanning [5] into our system, to improve the
robustness against errors of global maps, drifts of

Fig. 1. Experiments in a challenging indoor drone racing site and an outdoor
forest. A high-resolution video is available at: https://youtu.be/urEC2AAGEDs.
(a) Snapshot of the indoor quadrotor flight. (b) Snapshot of the outdoor quadrotor
flight.

localization, and environmental changes and moving
obstacles.

3) We release all components in the proposed system as open-
source packages, named Teach–Repeat–Replan,1 which
include local/global planning, perception, localization,
onboard controller, as well as a quadrotor simulator, for
the reference of the community.

In what follows, we discuss related literature works in
Section II and introduce our system in Section III. Our methods
for finding a flight corridor consisting of large convex polyhe-
drons and spatial–temporal trajectory optimization are detailed
in Sections IV and V, respectively. The local replanning is
introduced in Section VI. Experimental and benchmarked results
are given in Section VII. Section VIII concludes this article.

II. RELATED WORKS

A. Robotic Teach-and-Repeat

Many robotics teach-and-repeat works, especially for mobile
robots, have been published in recent years. Most of them focus
on improving the accuracy or robustness in repeating/following
the path given by operators, which is fundamentally different
from our motivation. A lidar-based teach-and-repeat system
is proposed in [6], where laser scans are used to localize the

1[Online]. Available: https://github.com/HKUST-Aerial-Robotics/Teach-
Repeat-Replan
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ground vehicle against its taught path driven by the user. Fur-
gale et al. [7], [8] also develop a lidar-based ground robot,
which is especially designed for repeating long-term motions
in highly dynamic environments. This system equips a local
motion planner that samples local trajectory to avoid dynamic
elements during route following. A map maintenance module
is used to identify moving objects and estimate their velocities.
An iterative learning controller is proposed in [9] to reduce the
tracking error during the repeating of the robot. This controller
can compensate disturbances such as unmodeled terrains and
environmental changes by learning a feedforward control policy.
Vision-based teaching-and-repeat systems are also proposed in
several works, such as the visual localization used by the rover
in [3]. In this work, the authors build a manifold map during
the teaching and then use it for localization in the repeating.
In [10], a multiexperience localization algorithm is proposed to
address the issue of environmental changes. The ground robot
is localized robustly against several past experiences. In [11]
and [12], to further improve the accuracy and robustness in
localization, illumination and terrain appearances are considered
in their proposed visual navigation system used for teach-and-
repeat.

Compared to ground teach-and-repeat works, research on
aerial teach-and-repeat is few. In [2], a vision-based drone
is used to inspect infrastructure repetitively. In the teaching
phase, the desired trajectory is demonstrated by the operator,
and some keyframes in the visual simultaneous localization and
mapping are recorded as checkpoints. While repeating, local
trajectories are generated to connect those checkpoints by us-
ing the minimum-snap polynomials [13]. To function properly,
in [2], the teaching trajectory itself must be smooth, and the
environment must have no changes during the whole repeating
process. In contrast, our proposed system can convert an arbi-
trarily poor path to a safe and efficient trajectory with expected
flying aggressiveness. Moreover, our system is flexible. Since it
records the teaching path by virtually controlling the drone in
simulation, a manually piloted teaching process is not necessary.
Finally, our proposed system is robust to environmental changes
and can even avoid moving obstacles.

B. Quadrotor Trajectory Planning

Trajectory optimization is essential in generating safe and
executable repeating trajectories from poor teaching. The
minimum-snap trajectory optimization is proposed by Mellinger
and Kumar [13]. In [13], piecewise polynomials are used to
represent the quadrotor trajectory and are optimized by quadratic
programs (QPs). A method for obtaining a closed-form so-
lution of the minimum-snap program is proposed in [14]. In
this work, a safe geometric path is first found to guide the
generation of the trajectory. By adding intermediate waypoints
to the path iteratively, a safe trajectory is finally generated after
solving the minimum-snap problem several times. Our previous
works [15]–[17] carve a flight corridor consisting of simple
convex shapes (sphere and cube) in a complex environment.
The flight corridor constructed by a series of axis-aligned cubes
or spheres can be extracted very fast on an occupancy map or a
Kd-tree. Then, we use the flight corridor and physical limits to

constrain a piecewise Bézier curve, to generate a guaranteed safe
and dynamically feasible trajectory. Other works are proposed to
find general convex polyhedrons for constraining the trajectory.
In [18], a piecewise linear path is used to guide and initialize
the polyhedron generation. In [19], by assuming all obstacles
are convex, semidefinite optimization and QPs are iteratively
solved to find the maximum polyhedron seeded at a random
coordinate in 3-D space. Gradient information in maps is also
valuable for local trajectory optimization. In CHOMP [20], the
trajectory optimization problem is formulated as a nonlinear
optimization over the penalty of safety and smoothness. In [21]
and [22], gradient-based methods are combined with piecewise
polynomials for local planning of quadrotors. In this article, we
also utilize gradient-based optimization for local replanning.

Time optimization or the so-called optimal time parameteriza-
tion is used to optimize the time profile of a trajectory, given the
physical limits of a robot. Methods can be divided as direct meth-
ods [23] and indirect methods [24]. Direct methods generate an
optimal spatial–temporal trajectory directly in the configuration
space. For indirect methods, a trajectory independent of time is
first generated; then, the relationship between the time and the
trajectory is optimized by an additional optimization process.
The method in [25] finds a mapping function between the time
and the trajectory, by recursively adding key points into the
function, and squeezes out the infeasibility of the time profile.
This method obtains an optimal local solution and is computa-
tionally expensive. Roberts and Hanrahan [24] also propose a
mapping function, which maps time to a virtual parameteriza-
tion of the trajectory. This mapping function is then optimized
under a complicated nonlinear formulation. However, its global
optimality is not guaranteed, and a feasible initial solution is
required to bootstrap the optimization. Convex optimization [26]
and numerical integration [27] are two typical methods for
robotics time-optimal path parameterization problem. Although
numerical integration [27], [28] has shown superior performance
in computing efficiency, convex optimization [26] has the ad-
vantage of adding regularization terms other than the total time
into its objective function. This specialty suits well for our
application, where the user defines an expected aggressiveness
of the drone, as sometimes the drone may not be expected to
fly as fast as possible. As for efficiency, since we do temporal
optimization offline before the repeating, computing time is not
critical.

III. SYSTEM OVERVIEW

A. System Architecture

Our hardware architecture is given in Fig. 2. The quadrotor
is equipped with an Intel RealSense2 stereo camera pair for
imagery and depth sensing, a DJI N33 autopilot for stabilizing
the drone and feeding inertial measurement unit data, a DJI
manifold 2-C4 for onboard computing, and a DJI Lightbridge25

for manual piloting and remote monitoring. A more detailed

2[Online]. Available: https://www.intelrealsense.com/depth-camera-d435/
3[Online]. Available: https://www.dji.com/n3
4[Online]. Available: https://www.dji.com//manifold-2
5[Online]. Available: https://www.dji.com/lightbridge-2

https://www.intelrealsense.com/depth-camera-d435/
https://www.dji.com/n3
https://www.dji.com//manifold-2
https://www.dji.com/lightbridge-2
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Fig. 2. Hardware setting of our autonomous drone system.

hardware specification, including the selection of the drone
frame and the dynamic system, and the design of customized
components can be found in the project webpage.6

The overall software architecture of our quadrotor system is
shown in Fig. 3. Global mapping, flight corridor generation,
and global spatial–temporal planning are done on an offboard
computer. Other processing runs onboard the drone during
flights. Before teaching, a global map is built by sensors. During
teaching, a flight corridor is generated by inflating the teaching
trajectory. Then, the spatial and temporal trajectories are opti-
mized iteratively within the flight corridor under a coordinate
descent scheme [29]. A local planner runs onboard to avoid
unexpected obstacles observed in repeating flights. We use a
geometric controller [30] for trajectory tracking.

B. Globally Consistent Localization and Mapping

We use VINS [31], a robust visual–inertial odometry (VIO)
framework, to localize the drone. Moreover, loop closure detec-
tion and global pose graph optimization are used in our system,
to globally correct the pose estimation. The global mapping is
done by fusing depth measurements from the stereo cameras
with the pose estimation. By using our previous research on
the deformable map [32], our global mapping module maintains
a series of submaps with each attached to a keyframe of the
pose graph. In this way, the map is attached to the pose graph
and is, therefore, globally driftless. During the mapping, when a
loop closure is detected, keyframes in the global pose graph are
corrected, and all submaps are deformed accordingly. The global
pose graph optimization is also activated during the repeating.
When loop closure is detected, the pose of the drone is corrected
accordingly to eliminate the drift.

C. Global Spatial–Temporal Planning

Given an extremely poor teaching trajectory, both the geomet-
ric shape and the time profile of it are far from optimal. They are,
therefore, useless or even harmful for conducting optimization.
However, the topological information of the teaching trajectory
is essential, since it reflects the human’s intention. To preserve
the topological information, we group the free space around the

6[Online]. Available: https://github.com/HKUST-Aerial-Robotics/Teach-
Repeat-Replan/tree/experiment

teaching trajectory to form a flight corridor (see Section IV). The
corridor shares the same topological structure as the teaching
trajectory and provides large freedom for trajectory optimiza-
tion. It is hard to concurrently optimize a trajectory spatially
and temporally in the flight corridor. However, generating a safe
spatial trajectory given a fixed time allocation (see Section V-A)
and optimizing the time profile of a fixed spatial trajectory (see
Section V-B) are both conquerable. Therefore, we iteratively
optimize the trajectory in the space–time joint solution space by
designing a coordinate descent [29] framework. An objective
with weighted energy and time duration is defined for opti-
mization. We first generate a spatial trajectory whose energy is
minimized, and then, we use the temporal optimization to obtain
the optimal time profile of it. The optimal time profile is used to
parameterize the trajectory again for next spatial optimization.
The spatial–temporal optimizations are done iteratively until the
total cost cannot be reduced any more.

D. Local Collision Avoidance

In practice, the accumulated drift of VIO is unavoidable, and
the recall rate of loop closure is unstable. Although we build a
dense global map, when the drift is significant and not corrected
by loop detection in time, the quadrotor may have collisions with
obstacles. Moreover, the environment may change or contain
moving obstacles. Our previous work [1] has to rebuild the map
when changes happen and cannot deal with dynamic obstacles.
To resolve the above issues, we integrate our previous local map
fusion module [4] into our system to detect collisions locally and
serve the local trajectory optimization. Moreover, we propose a
sliding-window local replanning method based on our previous
research on quadrotor local planning [5] to avoid collisions on
the flight.

In the repeating phase, the drone controls its yaw angle to face
its flying direction and builds a local map by stereo cameras. We
consistently check the local trajectory within a replanning time
horizon. If any collision along the local trajectory is reported, re-
planning is triggered to wrap the trajectory away from obstacles
by gradient-based optimization [5].

IV. FLIGHT CORRIDOR GENERATION

As stated in Section III-C, the first step of our global plan-
ning is to build a flight corridor around the teaching trajectory
for spatial–temporal trajectory optimization. In our previous
work [1], the flight corridor is constructed by finding a series of
axis-aligned cubes, which may sacrifice much space, especially
in a highly nonconvex environment, as shown in Fig. 4. A more
illustrative comparison is shown in Fig. 5, where the convex
polyhedron captures much more free space than the simple cube.
Using simple axis-aligned cubes significantly limits the solution
space of trajectory optimization, which may result in a poor
solution. What is more, in situations where the free space is very
limited, such as flying through a very narrow circle, a cube-based
corridor [1] may even fail to cover all teaching trajectory and
result in no solutions existing in the corridor. Therefore, to utilize
the free space more sufficiently and adapt to even extremely
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Fig. 3. Software architecture of our quadrotor system. Global mapping, planning, and visualization are running on a ground station, while state estimation, local
sensing, and replanning are running onboard.

Fig. 4. Illustration of free space captured by an axis-aligned cube and a general
polyhedron. Obstacles are shown in dashed lines. The blue curve is the teaching
trajectory of humans. The red triangle is the seed for finding local free space. The
axis-aligned cube and a corresponding general convex polyhedron are shown in
yellow and green, respectively.

cluttered maps, we propose a method to generate general, free,
and large convex polyhedrons.

Since the human’s teaching trajectory may be arbitrarily
jerky, we cannot assume that there is a piecewise linear path
to initiate the polyhedron generation, as in [18]. We also make
no requirements on the convexity of obstacles in the map as
in [19]. Our method is based on convex set clustering, which is
similar to [33], but is different and advanced at the following.

1) We make no assumption of the growing directions of
convex clusters and generate completely collision-free
polyhedrons based on our dense occupancy map.

2) We introduce several careful engineering considerations,
which significantly speed up the clustering.

Fig. 5. Comparison of an axis-aligned cube and a general convex polyhedron.
The cube and the polyhedron are generated to their largest volume, from the
same seed coordinate. The way to inflate the cube is stated in our previous
paper [1]. The method to find the general free polyhedron will be detailed later
in Section IV-A. (a) Side view and (b) front view of the axis-aligned cube.
(c) Side view and (d) front view of the general convex polyhedron.

3) We fully utilize the parallel structure of this algorithm and
accelerate it over an order of magnitude in GPUs.

4) We introduce a complete pipeline from building the con-
vex polyhedron clusters to establishing constraints in tra-
jectory optimization.
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A. Convex Cluster Inflation

The core algorithm for the construction of the flight corridor is
to find the largest convex free polyhedron at a given coordinate.
In this article, we use an occupancy grid map to represent the
environment. Each polyhedron in the flight corridor is the convex
hull of a voxel set, which is convex and contains only free voxels.
The voxel set is found by clustering as many free voxels as
possible around an arbitrary seed voxel. In this article, we name
the voxel set as convex cluster, and the process of finding such
a set as convex cluster inflation. Our method for finding such a
convex cluster is based on the following definition of the convex
set.

Definition: A set S in a vector space overR is called a convex
set if the line segment joining any pair of points of S lies entirely
in S . [34].

The pipeline for iteratively inflating such a cluster while
preserving convexity is stated in Algorithm 1. Our method op-
erates on a 3-D occupancy mapM, where voxels are labeled as
obstacle or free. Three voxel sets are maintained in the algorithm.
C stands for the targeting convex voxel cluster. C+ is the set of
voxels that are tentative to be added to C in this iteration. C∗
contains newly added voxels, which preserve the convexity. The
cluster inflation starts by adding the seed voxel p to C and adding
all neighboring voxels of p to C+. In an iteration, each voxel
p+ in C+ is checked whether it can preserve convexity using
the function CHECK_CONVEXITY(p+, C,M). This function,
as shown in Algorithm 2, casts rays from p+ to each existing
voxel in C. According to the definition of the convex set, M
with p+ is convex if and only if all of its rays are collision
free. Based on this criterion, qualified voxels are considered
as active voxels and are added into C and C∗. Neighboring
voxels of all active voxels p∗ are traversed and collected by
the function GET_NEIGHBORS(C∗) for the next iteration. The
inflation ends when C+ becomes empty, which implies that no
additional voxels can be added into C. Fig. 6 also illustrates the
procedure of the convex cluster inflation.

Having a convex cluster of voxels, we convert it to the al-
gebraic representation of a polyhedron for the following spatial
trajectory optimization. The quickhull algorithm [35] is adopted
here for quickly finding the convex hull of all clustered voxels.
The convex hull lies in vertex representation (V-representation)
{V0, V1, . . ., Vm} and is then converted to its equivalent hyper-
plane representation (H-representation) by using the double de-
scription method [36]. The H-representation of a 3-D polyhedron
is a set of affine functions

axi · x+ ayi · y + azi · z ≤ ki, i = 1, . . ., N. (1)

Here, {axi , a
y
i , a

z
i } is the normal vector of a 3-D hyperplane, ki

is a constant, and N is the number of hyperplanes.

B. CPU Acceleration

As shown in Algorithm 1, to determine whether a voxel
preserves the convexity, we need to conduct ray casting to all
existing voxels in the convex cluster. Iterating with all voxels
and rays makes this algorithm impossible to run in real time,
especially when the occupancy grid map has a fine resolution. To

Fig. 6. Illustration of the convex cluster inflation. In (a) and (b), all qualified
neighbor voxels are added to the convex cluster. In (c) and (d), since an occupied
voxel occludes a ray (the green arrow) to one of the clustered voxels, the testing
voxel (in yellow) is excluded to the convex cluster.

Algorithm 1: Convex Cluster Inflation.
1: Notation:
2: Seed Voxel: ps, Grid Map:M, Convex Cluster: C,
3: Candidate Voxel Set: C+, Active Voxel Set: C∗
4: Input: ps,M, Output: C
5: function CONVEX_INFLATION{ps,M}
6: C ← {ps}
7: C∗ ← ∅

8: C+ ← GET_NEIGHBORS(C)
9: while C+ �= ∅ do

10: for each p+ ∈ C+ do
11: if CHECK_CONVEXITY(p+, C,M) then
12: C ← C ∪ p+

13: C∗ ← C∗ ∪ p+

14: end if
15: end for
16: C+ ← ∅

17: C+ ← C+∪ GET_NEIGHBORS(C∗)
18: C∗ ← ∅

19: end while
20: return C
21: end Function

generate the polyhedron in real time, we take careful engineering
considerations on the implementations and propose some critical
techniques that increase the overall efficiency significantly.

1) Polyhedron Initialization: We initialize each convex clus-
ter as an axis-aligned cube using our previous method [15],
which can be done very fast, since only index query (O(1))
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Algorithm 2: Convexity Checking.
1: Notation:
2: Ray Cast: l, Candidate voxel: p+

3: Input: p+, C,M, Output: True / False
4: function CHECK_CONVEXITY(p+, C,M)
5: for each p ∈ C do
6: l← CAST_RAY(p+, p)
7: if PASS_OBS(l,M) then
8: returnFalse
9: end if

10: end for
11: returnTrue
12: end Function

operations are needed. After inflating the cube to its maximum
volume, as in Fig. 4, we switch to the convex clustering to further
group convex free space around the cube.

The proposed polyhedron initialization may result in a final
polyhedron different from the one which is clustered from
scratch. This is because an axis-aligned cube only inflates in
x, y, z directions, while a convex cluster grows in all possible
directions (26 connections in a 3-D grid map). However, this
initialization process is reasonable. Our purpose is not to make
each polyhedron optimal but to capture as much free space as
possible that a simple cube cannot. In practice, the initialization
process provides a fast discovery of nearby space, which is
easily to group, and does not prevent the following convex
cluster inflation to refine the polyhedron. In Section VII-C1,
we show that the initialization process significantly improves
the computing efficiency with only a neglectable sacrifice on
the volume of the final polyhedron.

2) Early Termination: We label all voxels in the cluster as
inner voxels, which are inside the convex cluster, and outer
voxels, which are on the boundary of the convex cluster. When
traversing a ray from a candidate voxel to a voxel in the convex
cluster, we early terminate the ray casting when it arrives at a
voxel labeled as inner.

Theorem 1: The early termination at inner voxels is sufficient
for checking convexity.

Proof: According to the definition of convex set, a ray con-
necting an inner voxel to any other voxel in the convex cluster
lies entirely in the convex cluster. Hence, the extension line of
an inner voxel must lie inside the convex cluster, and therefore,
it always passes the convexity check. �

3) Voxel Selection: To further reduce the number of voxels
that need to cast rays, given a candidate voxel, only outer voxels
are used to check its convexity.

Theorem 2: Using outer voxels of a convex cluster is suffi-
cient for checking convexity.

Proof: Obviously, the convex cluster is a closed set with outer
voxels at its boundary. The candidate voxel is outside this set.
Therefore, casting a ray from any inner voxel to the candidate
voxel must pass one of the outer voxels. According to Theorem
1, checking convexity of this ray can be terminated after the
ray passes an outer voxel. This means for a candidate voxel,
checking rays cast to outer voxels is sufficient. �

Algorithm 3: Parallel Convex Cluster Inflation.
1: Notation:
2: Parallel Raycasting Result: r
3: Input: ps,M, Output: C
4: function PARA_CONVEX_INFLATIONps,M
5: C ← {ps}
6: C∗ ← ∅

7: C+ ← GET_NEIGHBORS(C)
8: while C+ �= ∅ do
9: /* GPU data uploads */

10: r ← PARA_CHECK_CONVEXITY(C+, C,
M)

11: /* GPU data downloads */
12: C∗ ← CHECK_RESULTS(r)
13: C ← C ∪ C∗
14: C+ ← GET_NEIGHBORS(C∗)
15: end while
16: Output: C
17: end Function

By introducing the above techniques, the proposed convex
cluster inflation can work in real time for a mediate grid reso-
lution (0.2 m) on a general portable CPU. The efficacy of these
techniques is numerically validated in Section VII-C1.

C. GPU Acceleration

We propose a parallel computing scheme that significantly
speeds up the inflation by one order of magnitude if a GPU is
available. As shown in Section IV-A, when the convex cluster
discovers a new neighboring voxel, sequentially traversing and
checking all rays is naturally parallelizable. With the help of a
multicore GPU, we can cast rays and check collisions parallelly.
Moreover, to fully utilize the massively parallel capability of a
GPU, reduce the serialize operations, and minimize the amount
of data transferring between CPU and GPU, we examine all
potential voxels of the cluster parallelly in one iteration. Instead
of discovering a new voxel and checking its rays, we find
all neighbors of the active set C∗ and check their rays all in
parallel. The detailed procedure is presented in Algorithm 3,
where GET_NEIGHBORS(C) collects all neighbors of a set of
voxels, and PARA_CHECK_CONVEXITY(C+, C,M) checks
the convexity of all candidate voxels parallelly in the GPU. Note
that in the serialized version of the proposed method, the voxel
discovered earlier may prevent later ones from being clustered,
as illustrated in Fig. 6. However, in the parallel clustering, voxels
examined at the same time may add conflicting voxels to the clus-
ter. Therefore, we introduce an additional variable r to record
sequential information of voxels. As shown in Algorithm 4, the
kernel function runs on the GPU per block. It checks the ray
cast from every candidate voxel in C+ to a cluster voxel in C and
to each other candidate voxel that has a prior index. After that,
the function CHECK_RESULTS(r) selects all qualified voxels
and adds them into C. First, candidate voxels that have collisions
with C are directly excluded. After that, candidate voxels having
collisions with other candidates that have already been added
into C are excluded. In this way, we finally get the same result
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Fig. 7. (a)–(e) Flight corridor generation process. Red dots are coordinates along the teaching trajectory. In (b), a new convex polyhedron is generated and added
to the flight corridor when the drone leaves the corridor enters undiscovered space. In (c), the drone leaves the last polyhedron and returns back to the second to
last one, so the last polyhedron is deleted from the corridor.

Algorithm 4: Parallel Convexity Checking.

1: Input: C+, C,M, Output: r
2: function PARA_CHECK_CONVEXITYC+, C,M
3: for each p+i ∈ C+ do
4: r[i].status← True
5: for each p ∈ C do
6: /* Kernel function starts */
7: l← CAST_RAY(p+i , p)
8: if PASS_OBS(l,M) then
9: r[i].status← False

10: end if
11: /* Kernel function ends */
12: end for
13: for each p+j ∈ C+ AND j < i do
14: /* Kernel function starts */
15: l← CAST_RAY(p+i , p+j )
16: if PASS_OBS(l,M) then
17: r[i].status← Pending
18: r[i].list.push_back(j)
19: end if
20: /* Kernel function ends */
21: end for
22: end for
23: returnr
24: end Function
25:
26: Input: r, C+, Output: C∗
27: function CHECK_RESULTSr, C+
28: for each p+i ∈ C+ do
29: if r[i].status == True then
30: C∗ ← C∗ ∪ p+

31: else if r[i].status == Pending then
32: for each j ∈ r[i].list do
33: if p+j ∈ C∗ then
34: go to 28
35: end if
36: end for
37: C∗ ← C∗ ∪ p+

38: end ifend forreturnC∗end Function
39: end for
40: return
41: end function

Algorithm 5: Flight Corridor Generation.
1: Notation: Flight Corridor G, Drone Position p,

Convex Polyhedron P
2: P ← CONVEX_INFLATION(p,M)
3: G.push_back(P)
4: while Teaching do
5: p← UPDATE_POSE()
6: if OUTSIDE(p, G[-1]) then
7: if INSIDE(p, G[-2]) then
8: G.pop_back()
9: else

10: P = CONVEX_INFLATION(p,M)
11: G.push_back(P)
12: end if
13: end if
14: end while
15: return G

as in the serialized version of the clustering. The efficacy of the
parallel computing scheme is shown in Section VII-C1.

D. Corridor Generation and Loop Elimination

Since the trajectory provided by a user may be arbitrarily jerky
and contain local loops, we introduce an especially designed
mechanism to eliminate unnecessary loops, i.e., repeatable poly-
hedrons. The exclusion of repeatable polyhedrons is essential.
In the following trajectory optimization (see Section V), each
polyhedron is assigned with one piece of the trajectory. Re-
peatable polyhedrons would result in an optimized trajectory
loop as the user does, which is obviously not efficient. The
pipeline of the corridor generation is shown in Algorithm 5
and Fig. 7. At the beginning of the teaching, the flight corridor
is initialized by finding the maximum polyhedron around the
position of the drone. Then, as the human pilots the drone to
move, we keep checking the drone’s position. If it goes outside
the last polyhedron (G[−1]), we further check whether the drone
discovers new free space or not. If the drone is contained within
the second last polyhedron (G[−2]), we can determine that the
teaching trajectory has a loop, as shown in Fig. 7(c). Then, the
last polyhedron in the corridor is regarded as repeatable and is,
therefore, popped out from the corridor. Otherwise, as shown in
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Fig. 7(d), the drone is piloted to discover new space. Then, a new
polyhedron P is inflated and added to the tail of the corridor.
The corridor generation is terminated when the teaching finishes.
Since no obstacles are included in the corridor, the final flight
corridor shares the same topological structure as the teaching
trajectory. Moreover, the corridor has no unnecessary loops.

In some situations where the drone is piloted to collide with
obstacles, no matter by intention or occasion, the teaching
trajectory and the flight corridor would be broken. To utilize
such a rough path to complete the teaching, we locally find the
shortest path to bypass the obstacle that blocks the teaching
trajectory. Therefore, the corridor generation method always
finds a solution.

V. SPATIAL–TEMPORAL GLOBAL TRAJECTORY OPTIMIZATION

Inside the flight corridor found in Section IV, our proposed
system generates a global flight trajectory. Since the teaching
trajectory may be arbitrarily jerky, its time profile cannot be
used by the repeating trajectory. We, thus, cannot obtain an
efficient space–time trajectory by merely smoothing the path
spatially without temporal optimization. Instead, we solve the
global trajectory generation problem by spatial and temporal
alternative optimization.

A. Spatial Trajectory Optimization

For the spatial optimization, we use the Bernstein basis to
represent the trajectory as a piecewise Bézier curve, since it
can be easily constrained in the flight corridor by enforcing
constraints on control points. An ith-order Bernstein basis is

bin(t) =

(
n

i

)
· ti · (1− t)n−i (2)

wheren is the degree of the basis,
(
n
i

)
is the binomial coefficient,

and t is the variable parameterizing the trajectory. An N -piece
piecewise Bézier curve is written as

fµ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑n
i=0 c

i
µ,1b

i
n(t/T1), t ∈ [0, T1]∑n

i=0 c
i
µ,2b

i
n(t/T2), t ∈ [0, T2]

...
...∑n

i=0 c
i
µ,Nbin(t/TN ), t ∈ [0, TN ]

. (3)

For the mth piece of the curve, ciµ.m is the ith control point, and
Tm is the time duration. The spatial trajectory is generated in
x, y, z dimensions, and μ ∈ x, y, z. μ is omitted in the following
derivation for brevity. In this equation, t is scaled by Tm, since
a standard Bézier curve is defined on [0,1].

We minimize the third-order derivative (jerk) of the Bézier
curve, following the minimum-snap formulation [13]. The jerk
of a curve corresponds to the angular velocity; the minimization
of jerks alleviates the rotation and, therefore, facilitates visual
tracking. The objective of the piecewise curve is

J =

x,y,z∑
µ

N∑
m=1

∫ Tm

0

(
d3fµ,m(t)

dt3

)2

dt (4)

which is in a quadratic form denoted as cTQc. Here, c is
composed of all control points in x, y, z dimensions. Q is a
semidefinite Hessian matrix.

For a Bézier curve, its higher order derivatives can be rep-
resented by linear combinations of corresponding lower order
control points. For the first- and second-order derivatives of the
mth piece of the curve in (3), we have

f ′m(t) =

n−1∑
i=0

n(ci+1
m − cim)bin−1

(
t

Tm

)

f ′′m(t) =

n−2∑
i=0

n(n− 1)(ci+2
m − 2ci+1

m + cim)bin−2

(
t

Tm

)
.

(5)

1) Boundary Constraints: The trajectory has boundary con-
straints on the initial state (p0, v0, a0) and the final state
(pf , vf , af ) of the quadrotor. Since a Bézier curve always passes
the first and the last control points, we enforce the boundary con-
straints by directly setting equality constraints on corresponding
control points in each dimension

c00 = p0

cnN = pf

n(c10 − c00) = v0

n(cnN − cn−1N ) = vf

n(n− 1)(c20 − 2c10 + c00) = a0

n(n− 1)(cnN − 2cn−1N + cn−2N ) = af . (6)

2) Continuity Constraints: To ensure smoothness, the
minimum-jerk trajectory must be continuous for derivatives
up to second order at all connecting points on the piecewise
trajectory. The continuity constraints are enforced by setting
equality constraints between corresponding control points of
two consecutive curves. For the jth and (j + 1)th pieces of the
curve, we can write the equations in each dimension as

cnj = c0j+1

(cnj − cn−1j )/Tj = (c1j+1 − c0j+1)/Tj+1

(cnj − 2cn−1j + cn−2j )/T 2
j = (c2j+1 − 2c1j+1 + c0j+1)/T

2
j+1.

(7)

3) Safety Constraints: By enforcing each piece of the curve
inside the corresponding polyhedron, the safety of the trajectory
is guaranteed. Thanks to the convex hull property, an entire
Bézier curve is confined within the convex hull formed by
all its control points. Therefore, we constrain control points
using hyperplane functions obtained in (1). For the ith control
point cij,x, c

i
j,y, c

i
j,z of the jth piece of the trajectory in x, y, z

dimensions, constraints are

ax0 · cij,x + ay0 · cij,y + az0 · cij,z ≤ k0

ax1 · cij,x + ay1 · cij,y + az1 · cij,z ≤ k1

...

axn · cij,x + ayn · cij,y + azn · cij,z ≤ kn. (8)
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Fig. 8. Effect of the temporal optimization. t and τ are the time profiles of the
spatial trajectory before and after optimization.

Constraints in (6) and (7) are affine equality constraints
(Aeqc = beq) and (8) is in affine inequality formulation (Aiec ≤
bie). Finally, the spatial trajectory optimization problem is for-
mulated as a QP as follows:

min cTQc

s.t. Aeqc = beq

Aiec ≤ bie. (9)

Unlike our previous works on a corridor-constrained trajec-
tory [15], [17], herein, the kinodynamic feasibility (velocity
and acceleration) is not guaranteed by adding higher order
constraints into this optimization program, but by temporal
optimization (see Section V-B). For a rest-to-rest trajectory, (9)
always has a mathematically feasible solution.

Note that, in our system, all intentional teaching loops will
be removed after the global planning, since each piece of the
repeating trajectory is assigned to a polygon and repeating
polygons are all canceled out (see Section IV-D). This may
violate the human’s original intention if a loop is necessary
for some inspection reasons. To add repeating loops, one can
directly add extra intermediate waypoint constraints into (9).
Enforcing a trajectory to pass these waypoints is trivial, as shown
in early works such as [13] and [14]. It is equivalent as adding
extra linear boundary constraints, as in (6), with only position
terms. Since waypoints only pose affine constraints, the overall
optimization program [see (9)] retains convex.

B. Temporal Trajectory Optimization

In spatial optimization, a corridor-constrained spatial trajec-
tory is generated given a fixed time allocation. To optimize the
trajectory temporally, we design a retiming function {t(τ) : τ →
t} to map the original time variable t to a variable τ . The relation
between τ and t is shown in Fig. 8. In this article, the retiming
function t(τ) is named as the temporal trajectory, and finding the
optimal t(τ) is called the temporal optimization. For theN -piece
spatial curve defined in (3), we write t(τ) as a corresponding
N -piece formulation:

t(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1(τ), t1(0) = 0, t1(T ∗1 ) = T1, t1 ∈ [0, T1]

t2(τ), t2(0) = 0, t2(T ∗2 ) = T2, t2 ∈ [0, T2]
...

...

tN (τ), tN (0) = 0, tN (T ∗N ) = TN , tN ∈ [0, TN ]
(10)

where T1, T2, . . .TN are original time durations of the spatial
curve fµ(t), and T ∗1 , T ∗2 , . . .T ∗N are time durations after tem-
poral optimization. Since physically time only increases, t(τ)

is a monotonically increasing function. Therefore, we have
ṫ(τ) ≥ 0. For clarity, in what follows, we use c′ = dc/dt to
denote taking derivatives with respect to t, and ċ = dc/dτ for
taking derivatives with respect to τ . By substituting t with t(τ)
in fµ(t) and taking derivatives with chain rule, we can write the
velocity as

ḟ(t(τ)) = f ′(t) · ṫ

and acceleration as

f̈(t(τ)) = f ′(t) · ẗ+ f ′′(t) · ṫ2. (11)

The velocity and acceleration are also piecewise functions.

C. Minimum-Time Formulation

1) Objective: The total time T of the temporal trajectory can
be written as

T =

∫ T
0

1dτ =
N∑

m=1

∫ Tm

0

1
˙tm
dt (12)

considering ṫ = dt/dτ . We can introduce a regularization term
that penalizes the changing rate of t, to trade off the minimiza-
tion of time and control extremeness, or the so-called motion
aggressiveness, in our final temporal trajectory. The objective
function is then written as

J =
N∑

m=1

∫ Tm

1

(
1
˙tm

+ ρ · ¨tm
2
)
dt (13)

where ρ is a weight of the aggressiveness. By setting a larger ρ,
we can obtain more gentle motions in the temporal trajectory.
If ρ = 0, the temporal optimization is solved for generating
motions as fast as possible. The motions generated with a large
ρ can be viewed in our previous work [1].

Following the direct transcription method in [26], α(t) and
β(t) are introduced as two additional piecewise functions

αm(t) = ẗm, βm(t) = ṫ2m, m = 1, 2, . . ., N. (14)

According to the relationship between ẗm and ṫ, we can have

βm(t) ≥ 0, β′m(t) = 2 · αm(t). (15)

Then, the objective function in (13) is reformulated as

J =

N∑
m=1

∫ Tm

0

(
1√
βm(t)

+ ρ · αm(t)2

)
dt, (16)

2) Constraints: The continuities of t(τ) are enforced by
setting constraints between every two consecutive pieces of it.
In each dimension μ ∈ x, y, z, we have

f ′µ,m(Tm) ·
√
βm(Tm) = f ′µ,m+1(0) ·

√
βm+1(0) (17)

f ′µ,m(Tm) · αm(Tm) + f ′′µ,m(Tm) · βm(Tm)

= f ′µ,m+1(0) · αm+1(0) + f ′′µ,m+1(0) · βm+1(0). (18)

Then, to satisfy the initial and the final velocity and acceleration
a0, v0, af , vf , we set boundary constraints

f ′µ,1(0) ·
√

β1(0) = v0 (19)



1536 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 5, OCTOBER 2020

f ′µ,N (TN ) ·
√
βN (TN ) = vf (20)

f ′µ,1(0) · α1(0) + f ′′µ,1(0) · β1(0) = a0 (21)

f ′µ,N (TN ) · αN (TN ) + f ′′µ,N (TN ) · βN (TN ) = af . (22)

Finally, kinodynamic feasibility constraints are set as

− vmax ≤ f ′µ,m(t) ·
√
βm(t) ≤ vmax (23)

− amax ≤ f ′µ,m(t) · αm(t) + f ′′µ,m(t) · βm(t) ≤ amax (24)

where vmax and amax are the physical limits of the drone.
3) Second-Order Cone Program (SOCP) Reformulation:

The above optimization problem has convex objective and
constraints and is, therefore, a convex program. To make it
easily solvable, for each piece of the trajectory, tm ∈ [0, Tm]
is discretized to t0m, t1m, . . .tKm

m according to a given resolution
δt.Km = �Tm/δt�+ 1. Then,αm(t) is considered as piecewise
constant at each discretization point. According to (15), βm(t) is
piecewise linear. In this way, αm(t) and βm(t) are modeled by
a series of discrete variables αk

m and βk
m, where βk

m is evaluated
at tkm and αk

m is evaluated at (tkm + tk+1
m )/2.

By applying the above discretization, the objective in (16) is
derived as

J =

N∑
m=1

Ki−1∑
k=0

(
2√

βk+1
m +

√
βk
m

+ ρ · (αk
m)2

)
· δt (25)

which is mathematically equivalent to the affine formulation

N∑
m=1

Ki−1∑
k=0

(
2 · γk

m + ρ · (αk
i )

2
)
· δt (26)

by introducing γk
m and

1√
βk+1
m +

√
βk
m

≤ γk
m, k = 0, . . .Ki − 1;m = 1, . . ., N

(27)
as slack variables and additional constraints.

Equation (27) is further derived to a quadratic form as

1

ζk+1
m + ζkm

≤ γk
m, k = 0, . . .Ki − 1;m = 1, . . ., N (28)

ζkm ≤
√

βk
m, k = 0, . . .Ki; m = 1, . . ., N (29)

by introducing ζkm as slack variables.
Equation (28) can be formulated as a standard rotated

quadratic cone

2 · γk
m ·
(
ζk+1
m + ζkm

)
≥
√
2
2

(30)

which is denoted as

(γk
m, ζk+1

m + ζkm,
√
2) ∈ Q3

r. (31)

Also, (29) can be written as a standard (nonrotated) quadratic
cone (

βk
m + 1

)2 ≥ (βk
m − 1

)2
+
(
2 · ζkm

)2
(32)

and is denoted as

(βk
m + 1, βk

m − 1, 2ζkm) ∈ Q3. (33)

Finally, a slack variable s is introduced to transform the objective
in (26) to an affine function

N∑
m=1

Ki−1∑
k=0

(2 · γk
m + ρ · s) · δt (34)

with a rotated quadratic cone

2 · s · 1 ≥
N∑

m=1

Ki−1∑
k=0

(αk
m)2 (35)

i.e.

(s, 1,α) ∈ Q
2+

∑N
m=1(Ki)

r (36)

where α contains αk
m in all pieces of the trajectory.

Also, the discretization is applied to αm(t) and βm(t) in
constraints listed in Section V-C2. Details are omitted for brevity.
After that, we reformulate these constraints as affine equality and
inequality functions. Besides, although we assume αk is piece-
wise constant, we bound the changing rate of αk considering the
response time of the actuators of our quadrotor. We also write
this changing rate constraint in an affine form

−δα ≤ (αk
m − αk−1

m )/δt ≤ −δα (37)

where δα (not jerk) is a predefined bound of the changing rate
of acceleration. Since the difference of τ between tkm and tk−1m

cannot be determined during the optimization, we only bound
the changing rate of αk in t domain.

The temporal optimization problem in Section V-C is formu-
lated as a standard SOCP as follows:

min hTγ + ρ · s
s.t. Aeq · x = beq

Aie · x ≤ bie

(s, 1,α) ∈ Q
2+

∑N
m=1(Ki)

r , m = 1, . . .N

(γk
m, ζk+1

m + ζkm,
√
2) ∈ Q3

r, k = 0, . . .,Ki − 1

(βk
m + 1, βk

m − 1, 2ζkm) ∈ Q3, k = 0, . . .,Ki. (38)

Here, γ and x consist of all γk and αk, βk, ζk, γk. δt is the
resolution of discretization of the problem. The effect of different
ρ and δt to the temporal trajectory and a more detailed derivation
of the SOCP can be viewed in [37].

In our teach–repeat–replan system, since the global repeating
trajectory always has static initial and final states, (38) is always
mathematically feasible regardless of the solution of spatial op-
timization. That’s because a feasible solution of the optimization
program can always be found by infinitely enlarging the time.
Combined with the fact that the spatial optimization also always
has a solution (see Section V-A), once a flight corridor is given,
a spatial–temporal trajectory must exist.

VI. ONLINE LOCAL REPLANNING

In our previous work [1], once the global planning finished,
the drone would execute the trajectory without other consider-
ations. This strategy is based on assumptions that 1) the map
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Fig. 9. Illustration of colliding with obstacles when there are significant pose
drifts but no timely loop closure corrections. Obstacles are depicted in the global
frame. The flight path of the drone in the VIO frame is shown in the red curve,
and the actual trajectory in the global frame is the blue curve, which collides
with obstacles on the global map.

of the environment is perfectly built and remains intact and
2) globally consistent pose estimation is provided. We use a
VIO system with loop closure to correct local pose drifts, and
our dense map is globally deformed according to the global
pose graph. However, the first assumption does not always
hold, especially when new obstacles suddenly appear or the
environment changes. As for the second assumption, our global
pose estimation relies on the loop closure detection, which also
does not guarantee an extremely high recall rate. In situations
where there are significant pose drifts but no timely loop closure
corrections, the drone may have collisions with obstacles, as
in Fig. 9.

A. Local Replanning Framework

To address the above issues fundamentally, we propose a
local replanning framework, which reactively wraps the global
trajectory to avoid unmodeled obstacles. A sliding local map
is maintained onboard, where obstacles are fused, and an Eu-
clidean signed distance field (ESDF) [38] is updated accordingly.
Note that the dense global map is attached to the global pose
graph, but the local map introduced here is associated with the
local VIO frame and slides with the drone.

1) ESDF Mapping: We adopt our previous work FIESTA [4],
which is an advanced incremental ESDF [39] mapping frame-
work, to build the local map for online replanning. FIESTA fuses
the depth information into a voxel-hashed occupancy map [40]
and updates the distance value of voxels as few as possible using
a breadth-first search framework. It is lightweight and efficient
and produces near-optimal results. Details can be checked in [4].
The ESDF is necessary for the following gradient-based trajec-
tory wrapping. An example of a local occupancy map and its
corresponding ESDF map are shown in Fig. 10. Note that, in
our system, the range of current depth observation decides the
range of the local map.

2) Sliding-Window Replanning: Due to limited onboard
sensing range and computing resource, it is impossible and
unnecessary to conduct global replanning. In this article, we

Fig. 10. Local occupancy map its corresponding ESDF map visualized at a
given height of 0.6 m.

maintain a temporal window sliding along the global tra-
jectory and conduct local replanning within it. As shown
in Fig. 11, when obstacles are observed to block the tra-
jectory in the window, a replanned trajectory is gener-
ated to avoid obstacles and rejoin the global trajectory
afterward.

B. Gradient-Based B-Spline Optimization

1) B-Spline Trajectory Formulation: A B-spline is a piece-
wise polynomial function defined by a series of control points
{Q0,Q1, . . . ,QN} and knot vector [t0, t1, . . . , tm]. For a p-
degree B-spline, we havem = N + p+ 1. Following the matrix
representation of the de Boor–Cox formula [41], the value of a
B-spline can be evaluated as

P (u) = [1, u, . . . , up] ·Mp+1 · [Qi−p,Qi−p+1, . . . ,Qi]
T .
(39)

Here, Mp+1 is a constant matrix depends only on p, and u =
(t− ti)/(ti+1 − ti), for t ∈ [ti, ti+1).

2) B-Spline Initialization: We initialize the local trajectory
optimization by reparameterizing the trajectory in the replan-
ning horizon as a uniform B-spline. The reason we use uni-
form B-spline is that it has a simple mathematical formula
that is easy to evaluate in the following optimization. For
a uniform B-spline, each knot span Δti = ti+1 − ti has an
identical value Δt. The local trajectory is first discretized to
a set of points according to a given Δt. Then, these points
are fitted to a uniform B-spline by solving a min-least-squares
problem.

Note that a p-degree uniform B-spline is naturally p− 1 order
continuous between consecutive spans. Therefore, there is no
need to enforce continuity constraints in the following opti-
mization explicitly. Besides, for a p-degree B-spline trajectory
defined byN + 1 control points, the first and last p control points
are fixed due to the continuous requirement of the starting and
ending states of the local trajectory.

3) Elastic Band Optimization: The basic requirements of
the replanned B-spline are threefolds: smoothness, safety, and
dynamical feasibility. We define the smoothness cost Js using a
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Fig. 11. (a) and (b) Illustration of the online replanning mechanism. The blue and green curves are the global trajectory and the actual flight path of the drone,
respectively. The purple curve and dots are the global trajectory in the sliding window and its corresponding control points. The red curve and dots are the replanned
local trajectory and its control points. The yellow frustum shows the sensing horizon of the drone.

jerk-penalized elastic band cost function [42], [43]

Js =

N−1∑
i=1

‖ (Qi+2 − 2Qi+1 +Qi)︸ ︷︷ ︸
Fi+1,i

− (Qi+1 − 2Qi +Qi−1)︸ ︷︷ ︸
Fi−1,i

‖2

=

N−1∑
i=1

‖Qi+2 − 3Qi+1 + 3Qi −Qi−1‖2 (40)

which can be viewed as a sum of the squared jerk of control
points on the B-spline. Note here that we use this formulation,
which is independent of the time parameterization of the trajec-
tory instead of the traditional time-integrated cost function [13].
Because the time duration in each span of the B-spline may be
adjusted after the optimization (see Section VI-B4), (40) cap-
tures the geometric shape of the B-spline regardless of the time
parameterization. Besides, (40) bypasses the costly evaluation
of the integration and is, therefore, more numerically robust and
computationally efficient in optimization.

The safety and dynamical feasibility requirements of the B-
spline are enforced as soft constraints and added to the cost
function. Also, the collision cost Jc, dynamical feasibility cost
Jv , and Ja are evaluated at only control points. The collision
cost Jc is formulated as the accumulated L2-penalized closest
distance to obstacles along the trajectory, which is written as

Jc =

N−p∑
i=p

Fc(d(Qi)) (41)

where d(Qi) is the distance between Qi to its closest obstacle
and is recorded in the ESDF. Fc is defined as

Fc(d) =

{
(d− d0)

2, d ≤ d0

0, d > d0
(42)

where d0 is the expected path clearance. Jv and Ja are applied to
velocities and accelerations, which exceed the physical limits.
The formulations of Jv and Ja are similar to (41) and are omitted

here. The overall cost function is

Jtotal = λ1Js + λ2Jc + λ3(Jv + Ja) (43)

where λ1, λ2, and λ3 are weighting coefficients. Jtotal can be
minimized for a local optimal solution by general optimization
methods such as Gauss–Newton or Levenberg–Marquardt.

In practice, a proper selection of weighting parameters is vital
for robust replanning and should be tuned in simulation until a
satisfactory performance. Weighting parameters are relative to
flight speed and obstacle density, as well as replanning horizon.
Basically, larger λ1 results in shorter/smoother local trajectories,
but with lower clearance to obstacles. A default parameter setting
is given in our open-source project.

4) Iterative Refinement: In the above optimization problem,
although collisions and dynamical infeasibilities are penalized,
there is no hard guarantee on generating a strictly feasible
solution. To improve the success rate in practice, we add a
postprocess to refine the trajectory iteratively. In each iteration,
we check collisions and feasibilities of all optimized control
points. If collisions are detected, we increase the collision term
Jc by increasing λ2 and solve the optimization problem [see
(43)] again.

Since we wrap the local trajectory to go around obstacles, the
trajectory is always lengthened after the optimization. Conse-
quently, using the original time parameterization will unavoid-
ably result in a higher aggressiveness, which means that the
quadrotor tends to fly faster. Then, its velocity and acceleration
would easily exceed the predefined limits. Therefore, we adjust
the time parameterization of the local trajectory to squeeze out
dynamical infeasibilities. We slightly enlarge infeasible knots
spans of the B-spline by the following heuristic:

Δt
′

i = min

{
α,max

{
vm
vmax

,

(
am
amax

) 1
2

}}
·Δti (44)

whereα is a constant slightly larger than 1, vm and am are infea-
sible velocity and acceleration, respectively, and vmax and amax

are maximum allowed acceleration and velocity of the drone,
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respectively. The time duration is iteratively enlarged until ob-
taining a feasible solution or exceeding the maximum iteration
limit. If no feasible solution exists after the time adjustment, λ3

is increased, and the trajectory is optimized again.

VII. RESULTS

In this section, we validate the robustness and effectiveness of
our proposed system by presenting several benchmark testing re-
sults. First, we test our overall system, conduct benchmark com-
parisons, and analyze the performance of several submodules in
simulation. Second, we conduct aggressive teach–repeat–replan
flights in both static and dynamic indoor complex environments.
Finally, we test our system in two different outdoor environ-
ments.

A. Implementation Details

The global planning method proposed in this article is imple-
mented with a QP solver OOQP7 and a SOCP solver Mosek.8

The local replanning depends on a nonlinear optimization solver
NLopt.9 The source code of all modules in our quadrotor system,
including local/global localization, mapping, and planning, is
released as ros packages for the reference of the community.
Readers of this article can easily replicate all the presented
results. The state estimation, pose graph optimization, local
mapping, local replanning, and the controller run onboard. Other
modules are running on an offboard laptop, which has a GTX
108010 graphics card.

Our global map is built to attach to a global pose graph. Both
the map and the pose graph are saved for repeating. Before
the repeating, the drone is handheld to close the loop of the
current VIO frame with the saved global pose graph. The relative
transformation of these two frames is used to project control
commands to the VIO frame. During the repeating, pose graph
optimization is also activated to calculate the pose drift and
compensate for the control command.

B. Simulated Flight Test

We first test our global and local planning methods in simula-
tions. The simulated environments are randomly deployed with
various types of obstacles and circles for drone racing, as shown
in Fig. 12. The simulating tool we use is a lightweight simu-
lator MockaFly,11 which contains quadrotor dynamics model,
controller, and map generator. The simulator is also released as
an open-source package with this article. In the simulation, a
drone is controlled by a joystick to demonstrate the teaching
trajectory. The simulated drone is equipped with a depth camera
whose depth measurements are real time rendered in GPU by
back-projecting the drone’s surrounding obstacles. We randomly
add noise on the depth measurements to mimic a real sensor. The
replanning module is activated in the simulation and is triggered
by the noise added on the depth. The teaching trajectory and

7[Online]. Available: http://pages.cs.wisc.edu/ swright/ooqp/
8[Online]. Available: https://www.mosek.com
9[Online]. Available: https://nlopt.readthedocs.io
10[Online]. Available: https://www.nvidia.com/en-us/geforce/20-series/
11[Online]. Available: https://github.com/HKUST-Aerial-

Robotics/mockasimulator

Fig. 12. Trajectory generated in a complex simulated environment. The flight
corridor consists of large free convex polyhedrons are shown in (a), and the
optimized space–time trajectory is shown in (b). (a) Flight corridor captures
local free space. (b) Local replanning trajectory and current depth image.

the flight corridor is shown in Fig. 12(a). The global trajectory,
local replanned trajectory, and depth measurement are shown in
Fig. 12(b). More details about the simulation are presented in
the attached video.

C. Benchmark Comparisons

1) Corridor Generation: We test the performance of the
flight corridor generation (see Section IV) to show the efficacy of
the proposed techniques for CPU (see Section IV-B) and GPU
(see Section IV-C) accelerations. For convenience, we denote
the basic process for doing convex cluster inflation as CPU_raw;
CPU_raw with cube initialization as CPU+; the one with cube
initialization, vertex selection, and early termination as CPU++;
and the parallel version of the convex cluster inflation as GPU.
We first compare the time consumed for finding the largest flight
corridor with these methods to validate the improvements of
efficiency by using our proposed CPU and GPU acceleration
techniques. Then, we compare the ratio of space capturing by

http://pages.cs.wisc.edu/
https://www.mosek.com
https://www.nvidia.com/en-us/geforce/20-series/
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TABLE I
COMPARISON OF COMPUTING TIME OF CORRIDOR GENERATION

TABLE II
COMPARISON OF SPACE CAPTURED OF CORRIDOR GENERATION

methods with and without the polyhedron initialization, and by
our previous method [1]. The motivation of the latter comparison
is twofold.

1) It serves to show superior performance by replacing cubes
with polyhedrons.

2) As discussed in Section IV-B, the initialization process
would result in different final clustering results compared
to the pure convex cluster inflation. This comparison
also validates that the initialization process only does
neglectable harm to free space capturing.

We generate ten random maps, with 10–20 random teaching
trajectories given in each map. The average length of teaching
trajectories is 20 m. Results are given in Tables I and II .

As shown in Table I, as the resolution of the map being finer,
the computing time of the simple convex cluster inflation quickly
becomes unacceptably high. In CPU, with the help of polyhedron
initialization, the computational efficiency is improved several
times. Moreover, according to Table I, introducing the voxel
selection and early termination can increase the speed more than
one order of magnitude in a fine resolution. The efficacy of the
GPU acceleration is even more significant. As shown in Table I,
the GPU version improves the computing speed 30 times at a
fine resolution (0.075 m) and ten times at a coarse resolution
(0.25 m). For a finer resolution, more candidate voxels are dis-
covered in one iteration of Algorithm 3; thus, more computations
are conducted parallelly to save time.

For the second comparison, we count the number of free
voxels included in the flight corridor found by each method.
At each resolution, we take the result of the method without
initialization as 100% and compare others against it, as shown
in Fig. 13. Table II indicates two conclusions.

1) Using polyhedrons instead of axis-aligned cubes can sig-
nificantly increase the volume of the flight corridor.

2) Using initialization only slightly sacrifices the volume of
the flight corridor, and the sacrifice is neglectable in a
medium or coarse resolution (0.15–0.25 m).

The first conclusion holds because a simple cube only dis-
covers free space in x, y, z directions and sacrifices much space
in a highly nonconvex environment, as in Fig. 4. The second

Fig. 13. (a) and (b) Flight corridor generated with and without the initialization
process. Polyhedrons with bounding edges in white and red are found by methods
with and without the initialization, respectively.

Fig. 14. Comparison of trajectories optimized by different methods. The
manual flight trajectory is shown as the purple curve. Blue, red, green, and yellow
trajectories are generated by our proposed method, our previous method [1],
gradient-based method [44], and waypoint-based method [14], respectively.

conclusion comes from the fact that in a highly nonconvex
environment, a regular shaped polyhedron (a cube) does not
prevent the following voxel clustering in its nearby space. It
shows that the initialization plus the clustering refinement does
not harm the volume of the final polyhedron and is acceptable
in practice, especially for a coarse resolution.

Besides, we conduct an additional test of the corridor gen-
eration against teaching with different levels of smoothness to
show our method is insensitive to users’ piloting skills. Details
can be viewed in the supplementary video.12

2) Global Planning: We compare the proposed global plan-
ning method against our previous work [1] and other rep-
resentative optimization-based trajectory generation methods,
such as the waypoint-based method [14] and the gradient-based
method [44]. For the latter two benchmarked methods, there is no
explicit way to capture the topological structure of the teaching
trajectory. Therefore, we convert the teaching trajectory to a
piecewise path by recursively finding a collision-free straight
line path along with it. Then, we use this path to initialize
these methods [14], [44]. For a fair comparison, parameters
in benchmarked methods are tuned to achieve the best perfor-
mances before the test. We randomly generate ten simulated

12[Online]. Available: https://youtu.be/r0pLwPlKS2E
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TABLE III
COMPARISON OF TRAJECTORY OPTIMIZATION

environments with dense obstacles, as in Section VII-B, and
conduct ten teach-and-repeat trials in each map. A sample result
is shown in Fig. 14.

As shown in Table III, our proposed method outperforms in
all length, time, and energy aspects. The waypoint-based [14]
method can only add extra intermediate waypoints on the ini-
tial path. Therefore, it is mostly dominated by its initializa-
tion and likely to output a low-quality solution. The gradient-
based [44] method has no such restriction and can adjust the
path automatically by utilizing gradient information. However,
its optimization formulation is underlying nonconvex, since
the collision cost is defined on a nonconvex ESDF. There-
fore, the gradient-based [44] method can only find a locally
optimal solution around its initial guess. Compared to these
two methods, our method is initialization free and enjoys the
convexity to find the global energy-optimal and time-optimal
solutions in the flight corridor. Also, a smoother trajectory tends
to generate a faster time profile. Therefore, finally, under the
same coordinate descent framework, our method always out-
performs [44] and [14]. Compared to [1], the proposed corridor
generation method (see Section IV) can always capture more free
space, as shown in Section VII-C1. Naturally, it provides much
more freedom for global planning and results in much better
solutions.

3) Local Replanning: We also present a case study of our
local replanning module. We test the average computing time
and the iteration number of the iterative refinement operation
(see Section VI-B4), with different flight aggressiveness and
environments. Simulated flights are first conducted in a random
complex environments similar to Fig. 14, as shown in Fig. 15(a).
Then, we manually generate three testing scenarios with differ-
ent difficulty levels, named Simple, Normal, and Hard, as shown
in Fig. 15(b). In Table IV, the Nominal Velocity only means a
rough expected flight speed of the drone, and the Approaching
Velocity is the real speed when the drone starts to replan a
trajectory. In each testing scenario, we incrementally increase
the expected aggressiveness and record results until the drone
fails to replan successfully. Note that, in each test, due to the
limited sensing field of view and horizon, the drone may replan
several times even there is only one obstacle. The computing
time and the iteration number are measured by taking an average
of all replannings occurred in five flights of each scenario. As
shown in Table IV, our local replanner survives at up to 5.5,
4.5, and 3.5 m/s approaching velocity. In each scenario, the
average of computing time is around 5–6 ms, which is totally
acceptable for onboard usage. Considering that this case study is
done on a Laptop with i5-6300HQ CPU, which is far less potent
than our i7-8550 U onboard computer (almost 1.4 times more

Fig. 15. Benchmark test of the local replanning system. (a) Complex test.
(b) Simple, normal, and hard tests from the top-down. Transparent blue polyhe-
drons represent the flight corridor. Other marks are interpreted as the same as in
Fig. 14.

TABLE IV
BENCHMARK STUDY OF LOCAL REPLANNER

powerful13), the efficiency of our local replanner is validated.
Also, as shown in Table IV, our replanner usually only iterates
one to two times before it finally finds a feasible solution.

13[Online]. Available: https://cpubenchmark.net/compare/Intel-i7-8550U-vs-
Intel-i5-6300HQ/3064vs2632
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Fig. 16. Experimental setup of the fast indoor drone racing flights. (a) Obstacle
deployment. (b) Prebuilt globally consistent map. The colored code indicates the
height of obstacles. (a) Indoor testing environment. (b) Global consistent dense
map.

D. Indoor Flight Test

1) Fast Flight in a Static Environment: First, we conduct an
experiment in a cluttered drone racing scenario. This experiment
validates the robustness of our proposed system and also pushes
the boundary of the aggressive flight of quadrotors. Several dif-
ferent types of obstacles, including circles, arches, and tunnels,
are deployed randomly to composite a complex environment,
as shown in Fig. 16(a). The smallest circle only has a diameter
of 0.6 m, which is very narrow compared to the 0.3 × 0.3 m
tip-to-tip size of our drone. The maximum velocity and acceler-
ation of the drone are set as 3 and 3 m/s2, respectively, and the
parameter ρ in (13) is set as 0, which means that the quadrotor
is expected to fly as fast as possible as long as it respects the
dynamical limits. A dense global consistent map is prebuilt
using the method stated in Section III-B. During the teaching
phase, the quadrotor is virtually piloted by a human to move
amid obstacles. Then, the quadrotor autonomously converts this
teaching trajectory to a global repeating trajectory and starts to
track it. Snapshots of the drone in the flight are shown in Fig. 17.
The teaching trajectory and the convex safe flight corridor are
visualized in Fig 18(a), and the global repeating trajectory is
shown in Fig. 18(b).

2) Local Replanning Against Unknown Obstacles: Our sys-
tem can deal with changing environments and moving obstacles.
In this experiment, we test our system also in the drone racing
site to validate our local replanning module. Several obstacles
are moved or added to change the drone racing environment
significantly, and some others are dynamically added during the
repeating flight, as shown in Fig. 19. In this experiment, the
maximum velocity and acceleration for the quadrotor are set as

Fig. 17. (a)–(d) Snapshots of the fast autonomous flight in a static environment.

Fig. 18. Indoor flight in a static environment. In (a), the flight corridor is rep-
resented by transparent blue polyhedrons. In (b), blue, green, and purple curves
are global trajectory, local trajectory, and quadrotor flight path, respectively.
(a) Teaching trajectory and the flight corridor. (b) Spatial–temporal optimal
repeating trajectory.

2 and 2 m/s2, respectively. The local ESDF map is sliding with
the drone using a ring-buffered updating mechanism [45]. The
resolution of the local perception is 0.075 m. The size of the map
is decided by points observed spreading in the current frame. The
horizon and frequency of the local replanning are 3.5 s and 15 Hz,
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Fig. 19. Local replanning experiment against unmapped and moving obsta-
cles. The drone and unmapped obstacles are labeled by the red and blue dashed
rectangles, respectively, for clear visualization. (a) Side view. (b) Onboard
first-person view.

Fig. 20. Indoor flight in a dynamic environment. In (a) and (b), the unmapped
new obstacle and moving obstacles are labeled by red dashed rectangles, and
colored voxels represent local obstacle maps. In (c), colored voxels show the
global map. Other marks are interpreted as the same as in previous figures.
(a) Replanning, unmapped obstacle. (b) Replanning, moving obstacle.
(c) Overview of all replanning trajectories.

respectively. Replanning is triggered eight times during the flight
in this experiment, and local safe and dynamical feasible splines
are generated on time accordingly. Local trajectories, local maps,
and the overview of this experiment are shown in Fig. 20. We
refer readers to the attached video for more details.

E. Outdoor Flight Test

Finally, we conduct quadrotor flight experiments with a much
higher aggressiveness in two different outdoor scenes, as in
Fig. 21, to show the robustness of our system in natural environ-
ments. Although these experiments are conducted outdoor, GPS

Fig. 21. Snapshots of the fast autonomous flights in outdoor environments.
(a) Outdoor experiment, trial 1. (b) Outdoor experiment, trial 2.

Fig. 22. Outdoor flights in two different scenarios. Marks are interpreted as
the same as in Fig. 18. (a) Outdoor experiment, trial 1. (b) Outdoor experiment,
trial 2. A closeup view is in the right-down side.

or other external positioning devices are not used. The teach–
repeat–replan pipeline is as the same as indoor experiments VII-
D. The velocity and acceleration limits for these two trials are
set as 5 m/s, 6 m/s2 and 7 m/s, 6 m/s2, respectively. Since the
flight speed is significantly higher than indoor experiments,
we set a smaller replanning horizon as 2.0 s. Results such as
the global and local trajectory and the global map are visualized
in Fig. 22. More clear visualizations of outdoor experiments are
given in the video.

VIII. DISCUSSION, CONCLUSION, AND FUTURE WORK

A. Discussion

In our system, the robustness of the replanning module de-
pends on properly tuned parameters, i.e., weights in (43). Since
the replanning problem has a highly nonlinear and nonconvex
objective function, and an infeasible initial guess, it cannot be
theoretically guaranteed a strict feasibility. In practice, we keep
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replanning and try to find a feasible solution before the drone has
to brake. A benchmark study of the replanner against different
aggressiveness and obstacle densities is given in Section VII-C3.
In our recent work [46], we significantly improve the success rate
of the replanning, by using a topological path finder to guide the
following B-spline optimization. In this way, several paths with
distinct topologies serve as different guidance and, therefore,
provide many solution alternatives subject to different local
minima. The best solution is then selected from all optimized
trajectories.

Our proposed system can also work in scenarios where a
global map and an optimized global reference trajectory are not
available. Also, in our recent work [46], we present an experi-
ment where no prior map information is given, and the global
trajectory is set as a simple straight line. In this scenario, our
system shows aggressive flight performance with full autonomy
by only local replanning.

B. Conclusion

In this article, we proposed a complete and robust robotic
system, teach–repeat–replan, for quadrotor aggressive flights
in complex environments. The main idea of this article was to
find the topological equivalent free space of the user’s teach-
ing trajectory. Then, we used spatial–temporal optimization to
obtain an energy–time-efficient repeating trajectory and incor-
porate online perception and local replanning to ensure the
safety against environmental changes, moving obstacles, and
localization drifts. The repeating trajectory captures a user’s
intention and respects an expected flight aggressiveness, which
enables autonomous flights much more aggressive than manual
piloting in complex environments. Our system is also flexible
and easily replicable, as evidenced by various types of experi-
ments presented in this article, and a third-party application.14

We released all components of our system for the reference of
the community.

C. Future Work

Most vision-based aerial vehicles, such as our platform, do not
have omnidirectional perception capability. For these systems,
the planning of yaw angle, or the so-called view planning,
plays an essential role in choosing which direction to observe
during flights. Currently, view planning is not considered in
either global or local planning of our system. The yaw angle
of our drone is controlled independently to follow the tangential
direction along the global or local trajectory. However, this is
apparently not the best strategy for commanding the yaw angle
of the drone. One practical strategy is to treat all unknown
space as occupied and plan trajectories only in known free
space. However, this is contradictory to the wish of high flight
aggressiveness. In the future, we plan to study the optimal view
planning of the vision-based drone, considering localization
uncertainty and map constraints.

14Flight demos at the Department of Electrical and Mechanical Ser-
vices, Hong Kong government. Video: [Online]. Available: https://youtu.be/
Ut8WT0BURrM
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