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TossingBot: Learning to Throw Arbitrary Objects
With Residual Physics

Andy Zeng , Shuran Song, Johnny Lee, Alberto Rodriguez , and Thomas Funkhouser

Abstract—We investigate whether a robot arm can learn to pick
and throw arbitrary rigid objects into selected boxes quickly and
accurately. Throwing has the potential to increase the physical
reachability and picking speed of a robot arm. However, precisely
throwing arbitrary objects in unstructured settings presents many
challenges: from acquiring objects in grasps suitable for reliable
throwing, to handling varying object-centric properties (e.g., mass
distribution, friction, shape) and complex aerodynamics. In this
work, we propose an end-to-end formulation that jointly learns
to infer control parameters for grasping and throwing motion
primitives from visual observations (RGB-D images of arbitrary
objects in a bin) through trial and error. Within this formulation,
we investigate the synergies between grasping and throwing (i.e.,
learning grasps that enable more accurate throws) and between
simulation and deep learning (i.e., using deep networks to predict
residuals on top of control parameters predicted by a physics
simulator). The resulting system, TossingBot, is able to grasp and
successfully throw arbitrary objects into boxes located outside its
maximum reach range at 500+ mean picks per hour (600+ grasps
per hour with 85% throwing accuracy); and generalizes to new
objects and target locations.

Index Terms—Deep learning, perception, robotic manipulation.

I. INTRODUCTION

THROWING is a means to increase the capabilities of a
manipulator by exploiting dynamics, a form of dynamic

extrinsic dexterity [5]. In the case of pick-and-place, throwing
enables a robot arm to place objects rapidly into boxes located
outside its maximum kinematic range, which not only reduces
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Fig. 1. TossingBot learns to grasp arbitrary objects from an unstructured bin
and to throw them into target boxes located outside its maximum kinematic
reach range. The aerial trajectory of different objects are controlled by jointly
optimizing grasping policies and throwing release velocities.

the total physical space used by the robot, but also maximizes
its picking efficiency. Rather than having to transport objects
to their destination before executing the next pick, objects are
instead immediately “passed to Newton” (see Fig. 1).

However, precisely throwing arbitrary objects in unstructured
settings is challenging because it depends on many factors: from
prethrow conditions (e.g., initial grasp of the object) to varying
object-centric properties (e.g., mass distribution, friction, shape)
and dynamics (e.g., aerodynamics). For example, grasping a
screwdriver near the tip before throwing it can cause centripetal
accelerations to swing it forward with significantly higher re-
lease velocities—resulting in drastically different projectile tra-
jectories than if it were grasped closer to its center of mass
(CoM) (see Fig. 2). Yet regardless of how it is grasped, its aerial
trajectory would differ from that of a thrown ping pong ball,
which can significantly decelerate after release due to air resis-
tance. Many of these factors are notoriously difficult to model or
measure analytically [22], [25]—hence, prior studies are often
confined to assuming homogeneous prethrow conditions (e.g.,
object fixtured in gripper or manually reset after each throw) with
predetermined, homogeneous objects (e.g., balls or darts). Such
assumptions rarely hold in real unstructured settings, where a
throwing system needs to acquire its own prethrow conditions
(via grasping) and adapt its throws to account for varying prop-
erties and dynamics of arbitrary objects.

In this work, we present TossingBot, an end-to-end formu-
lation that uses trial and error to learn how to plan control

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4319-2159
https://orcid.org/0000-0002-1119-4512
mailto:andyz@cs.princeton.edu
mailto:funk@cs.princeton.edu
mailto:shurans@princeton.edu
mailto:jcl5m1@gmail.com
mailto:albertor@mit.edu
http://tossingbot.cs.princeton.edu
https://ieeexplore.ieee.org


1308 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 2. (a) Projectile trajectories of a thrown ping pong ball, (b) screwdriver
grasped and thrown by its handle, and (c) same screwdriver grasped and thrown
by its shaft. The difference between (a) and (b) is largely due to aerodynamics,
while the difference between (b) and (c) is largely due to grasping at different
offsets from the object’s CoM (near the handle). Our goal is to learn joint
grasping and throwing policies that can compensate for these differences to
achieve accurate targeted throws.

parameters for grasping and throwing from visual observa-
tions. The formulation learns grasping and throwing jointly—
discovering grasps that enable accurate throws, while learning
throws that compensate for the dynamics of arbitrary objects.
There are the following two key aspects to our system.

1) Joint learning of grasping and throwing policies: With a
deep neural network that maps from visual observations
(of objects in a bin) to control grasping and throwing
parameters: the likelihood of grasping success for a dense
pixel-wise sampling of end effector orientations and loca-
tions [42], and the throwing release velocities for each
sampled grasp. Grasping is directly supervised by the
accuracy of throws (grasp success = accurate throw),
while throws are directly conditioned on specific grasps
(via dense predictions). As a result, the end-to-end policy
learns to execute stable grasps that lead to predictable
throws, as well as throwing velocities that account for the
variations in object-centric properties and dynamics that
can be inferred from visual information.

2) Residual learning of throw release velocities: δ on top
of velocities v̂ predicted by a physics controller based on
an ideal ballistic motion. The complete controller uses
the superposition of the two predictions to obtain a final
throwing release velocity v = v̂ + δ. The physics-based
controller uses ballistics to provide consistent estimates of
v̂ that generalize well to different landing locations, while
the data-driven residuals learn to exploit those grasps, and
compensate for object-centric properties and dynamics.
Our experiments show that this hybrid data-driven method,
residual physics, leads to significantly more accurate
throws than baseline alternatives.

This formulation enables our system to grasp and throw
arbitrary objects reliably into target boxes located outside its

maximum reach range at 500+ mean picks per hour (MPPH),
and generalizes to new objects and target landing locations.

The primary contribution of this paper is to provide new per-
spectives on throwing: in particular—its relationship to grasping,
its efficient learning by combining physics with trial and error,
and its potential to improve practical real-world picking systems.
We provide several experiments and ablation studies in both
simulated and real settings to evaluate the key components of
our system. We observe that throwing performance strongly cor-
relates with the quality of grasps, and experimental results show
that our formulation is capable of learning synergistic grasping
and throwing policies for arbitrary objects in real settings. An
after-the-fact analysis of what the deep network learns, shows
that the deep features internal to TossingBot effectively use
visual appearance to cluster objects based on geometric and
physical attributes—without any explicit supervision other than
the goal to throw with accuracy. This journal paper is a revision of
a conference paper appearing in Robotics: Science and Systems
(RSS) 2019.

Most importantly, this version includes additional experi-
ments in Section VI-H to visualize emerging visual deep features
learned by TossingBot, demonstrating that it is possible to im-
plicitly learn object-level semantics from physical interactions
alone. Other additional changes include: more system details
(i.e., on training and timing), algorithmic details on inferring
throwing primitive parameters ‖v‖ and r, details of human
baseline experiments, visualizations and analysis of learned
grasps, and an illustration of the simulation environment.

II. RELATED WORK

A. Analytical Models for Throwing

Many previous systems built for throwing [10], [25], [26],
[33], [35] rely on handcrafting or approximating dynamics based
on frictional rigid body mechanics, and then optimizing control
parameters to execute a throw such that the projectile (typically a
ball) lands at a target location. However, as highlighted by Mason
and Lynch in [25], accurately modeling throwing dynamics is
challenging. It requires knowledge of physical properties that
are difficult to estimate (e.g., aerodynamics, inertia, coefficients
of restitution, friction, shape, mass distribution, etc.) for both ob-
jects and manipulators. As a result, these model-based systems
often observe limited throwing accuracy (e.g., 40% success rate
in [33]), and have difficulty generalizing to changing dynamics
over time (e.g., deteriorating friction on gripper finger contact
surfaces from repeated throwing). In our work, we leverage deep
learning and self-supervision to compensate for the dynamics
that are not explicitly accounted for in contact/ballistic models,
and we train our policies online via trial and error so that they
can adapt to new situations on the fly (e.g., new object and
manipulator dynamics).

B. Learning Models for Throwing

More recently, learning-based systems for robotic throwing
[2], [11], [16], [20] have also been proposed, which ignore
low-level dynamics and directly optimize for task-level success
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Fig. 3. Learning residual models and policies. (a) Analytical solutions that
determine action a from state s. (b) Data-driven policies that learn the direct
mapping from states to actions. (c) Hybrid models that combine analytical
models with learning to predict future states st+1. (d) Hybrid policies (like
ours) that combine analytical solutions with learning to determine action a.

signals (e.g., did the projectile land on the target?). These
methods have demonstrated better accuracy than those which
solely rely only on analytical models, but have two primary
drawbacks: 1) limited generalization to new object types (be-
yond balls, blocks, or darts), and 2) limited prethrow conditions
(e.g., human operators are required to manually reset objects
and manipulators to match a prescribed initial state before every
throw), which makes training from trial and error costly. Both
drawbacks prevent their use in real unstructured settings.

In contrast to prior work, we make no assumptions on the
physical properties of thrown objects, nor do we assume that
the objects are at a fixed pose in the gripper before each throw.
Instead, we propose an object-agnostic pick-and-throw formu-
lation that jointly learns to acquire its own prethrow conditions
(via grasping) while learning throwing control parameters that
compensate for varying object properties and dynamics. The
system learns through self-supervised trial and error, and resets
it own training so that human intervention is kept at a minimum.

C. Learning Residual Models and Policies

Our approach to data-efficient learning, residual physics, falls
under a broader category of hybrid controllers [1], [15], [29] that
leverage both 1) analytical models to provide initial estimates
of control parameters, and 2) learned residuals on top of those
estimates to compensate for unknown dynamics [see Fig. 3(d)].
In contrast to prior work on learning residuals on predictions of
future states for model-based control [3], [19] or data-augmented
models [9], [17], [36], we instead directly learn the residuals on
control parameters (i.e., action space) with deep networks. This
approach provides a wider range of data-driven corrections that
can compensate for noisy observations as well as dynamics that
are not explicitly modeled. These benefits are also observed in
concurrent work on residual reinforcement learning [18], [34]
in block-assembly and object manipulation tasks.

III. METHOD OVERVIEW

TossingBot consists of a neural network f(I, p) that takes
as input a visual observation I of objects in a bin and the

three-dimensional (3-D) position of a target landing location
p, and outputs a prediction of parameters φg and φt used by two
motion primitives for grasping and throwing, respectively, (see
Fig. 4). The learning objective is to optimize the predictions of
parameters φg and φt such that executing the grasping primitive
using φg followed by the throwing primitive using φt results in
an object (observed in I) landing on p at each time-step.

The network f consists of the following three parts:
1) a perception module that accepts visual input I and outputs

a spatial feature representation μ; this is shared as input
into;

2) a grasping module that predicts φg;
3) a throwing module that predicts φt.
f is trained end-to-end through self-supervision from trial

and error by tracking the ground truth landing positions of
thrown objects. The following sections provide an overview of
these three modules, while the following two sections delve into
details of the most novel aspects of the system.

A. Perception Module: Learning Visual Representations

We represent the visual input I as an RGB-D heightmap
image of the workspace (i.e., a bin of objects). To compute
this heightmap, we capture RGB-D images from a fixed-mount
camera, project the data onto a 3-D point cloud, and orthograph-
ically back-project upward in the gravity direction to construct
a heightmap image representation with both color (RGB) and
height-from-bottom (D) channels. The RGB and D channels are
normalized (mean-subtracted and divided by standard deviation
from a prerecorded dataset of 100 images) so that learned
convolutional filters can be shared across the two modalities.

The edges of the heightmaps are defined with respect to the
boundaries of the robot’s picking workspace. In our experiments,
this area covers a 0.9× 0.7 m tabletop surface, on top of which
we place a bin of objects. Our heightmaps have a pixel resolution
of 180× 140, hence, each pixel i ∈ I represents a 5× 5 mm
vertical column of 3-D space in the robot’s workspace. Using its
height-from-bottom value, each pixel thereby corresponds to a
unique 3-D location in the robot’s workspace. The input I is fed
into the perception network, a seven-layer fully convolutional
residual network [4], [14], [21] (interleaved with two layers
of spatial 2× 2 max-pooling), which outputs a spatial feature
representation μ of size 45× 35× 512 that is then fed into the
grasping and throwing modules.

B. Grasping Module: Learning Parallel-Jaw Grasps

The grasping module consists of a grasping network that
predicts the probability of grasping success for a predefined
grasping primitive across a dense pixel-wise sampling of end
effector locations and orientations in I .

1) Grasping Primitive: The grasping primitive takes as input
parameters φg = (x, θ) and executes a top-down parallel-jaw
grasp centered at a 3-D location x = (xx, xy, xz) oriented θ◦

around the gravity direction. During execution, the open gripper
approachesx along the gravity direction until the 3-D position of
the middle point between the gripper fingertips meetsx, at which
point the gripper closes, and lifts upward 10 cm. This primitive
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Fig. 4. Overview. An RGB-D heightmap of the scene is fed into a perception module to compute spatial features µ. In parallel, target location p is fed into a
physics-based controller to provide an initial estimate of throwing release velocity v̂, which is concatenated with µ then fed into grasping and throwing modules.
Grasping module predicts probability of grasp success for a dense pixel-wise sampling of horizontal grasps, while throwing module outputs dense prediction of
residuals (per sampled grasp), which are added to v̂ to get final predictions of throwing release velocities. We rotate input heightmaps by 16 orientations to account
for 16 grasping angles. Robot executes the grasp with the highest score, followed by a throw using its corresponding predicted velocity.

is open-loop, with robot arm motion planning executed using a
stable, collision-free IK solver [8].

2) Grasping Network: The grasping network is a seven-layer
fully convolutional residual network [4], [14], [21] (interleaved
with two layers of spatial bilinear 2× upsampling). This ac-
cepts the visual feature representation μ as input, and outputs
a probability map Qg with the same image size and resolution
as that of the input heightmap I . Each value of a pixel qi ∈ Qg

represents the predicted probability of grasping success (i.e.,
grasping affordance) when executing a top-down parallel-jaw
grasp centered at the 3-D location of i ∈ I with the gripper
oriented horizontally with respect to the heightmap I .

As in [38], [39], [42], and [43], we account for different
grasping angles by rotating the input heightmap by 16 orien-
tations (multiples of 22.5◦) before feeding into the network.
Rotations are done with nearest-neighbor sampling to avoid
blurring artifacts, as well as 0-padding to maintain fixed image
sizes. The pixel with the highest predicted probability among all
16 maps determines the parameters φg = (x, θ) for the grasping
primitive to be executed: the 3-D location of a pixel determines
the grasping position x, and the orientation of the heightmap de-
termines grasping angle θ. This visual state and action represen-
tation has been shown to provide sample efficiency when used
in conjunction with fully convolutional action-value functions
for grasping and pushing [42], [43]. Each pixel-wise prediction
shares convolutional features for all grasping locations and
orientations (i.e., translation and rotation equivariance).

C. Throwing Module: Learning Throwing Velocities

The goal of the throwing module is to predict the release
position and velocity of a predefined throwing primitive for
each possible grasp (over the dense pixel-wise sampling of end
effector locations and orientations in I).

1) Throwing Primitive: The throwing primitive takes as in-
put parameters φt = (r, v) and executes an end effector tra-
jectory such that the mid-point between the gripper fingertips

reaches a desired release position r = (rx, ry, rz) and veloc-
ity v = (vx, vy, vz), at which point the gripper opens and re-
leases the object. During execution, the robot arm curls inward
while grasping onto an object, then uncurls outward at high
speed, releasing the object at the desired position and velocity.
Throughout this motion, the gripper is oriented such that the axis
between the fingertips is orthogonal to the plane of the intended
aerial trajectory. In our system, the direction of curling/uncurling
aligns with (vx, vy). Fig. 2 visualizes this motion primitive and
its end effector trajectory. The throwing primitive is executed
after each successful grasp attempt (checked by thresholding
the distance between fingertips).

2) Planning the Release Position: In most real-world set-
tings, only a handful of release positions are physically acces-
sible by the robot for throwing. So for simplicity in our system,
we directly constrain the release position r from the given target
landing location p using two assumptions: 1) the aerial trajectory
of a projectile is linear on the xy-horizontal-plane and in the
same direction as vx,y = (vx, vy). In other words, we assume
that the forces of aerodynamic drag orthogonal to vx,y are
negligible. This is not to be confused with the primary forces
of drag that exist in parallel to vx,y, which our system will
learn to compensate. We also assume 2) that the release distance√
r2x + r2y is at a fixed value cd from the robot base origin, and

that rz is at a fixed constant height ch. Formally, these constraints

can be written as: (rx,y − ptx,y
)× vx,y = 0 and

√
r2x + r2y = cd

and rz = ch. In our experiments, we select constant values of ch
and cd such that all release positions are accessible by the robot:
ch = 0.04 m and cd = 0.7 m in simulation, and ch = 0.02 m
and cd = 0.76 m in real settings.

3) Planning the Release Velocity: Given a target landing lo-
cation p and release position r, there could be multiple solutions
of the release velocity v for which the object lands on p. To re-
move this ambiguity, we further constrain the direction of v to be
angled 45◦ upward in the direction of p. Formally, this constraint
can be defined as ‖vx,y‖ = vz . Under all the aforementioned
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constraints, the only unknown variable for throwing is ‖vx,y‖,
which represents the magnitude of the final release velocity.
Specifically, assuming a fixed throwing release height rz , fixed
release distance cd from robot base origin, and release velocity
direction angled 45◦ upward: for any given target landing lo-
cation p = (px, py, pz), we can derive a release position r and
release velocity magnitude ‖v‖ that achieves the target landing
location p assuming equations of linear projectile motion

θ = arctan

(
py
px

)

rx = cd sin(θ)

ry = cd cos(θ) (1)

‖v‖ =

√√√√ a(p2x + p2y)

(rz − pz −
√

p2x + p2y)
(2)

where a is acceleration from gravity.
These equations are valid for any given target landing location

p, as long as both ‖v‖ and r are within robot physical limits.
Hence assuming no aerial obstacles, varying only the velocity
magnitude ‖v‖ is sufficient to cover the space of all possible pro-
jectile landing locations. In the following section, we describe
how the throwing module predicts ‖vx,y‖.

IV. LEARNING RESIDUAL PHYSICS FOR THROWING

A key aspect of TossingBot’s throwing module is that it learns
to predict a residual δ on top of the estimated release velocity
‖v̂x,y‖ from a physics-based controller (i.e., ballistic equations
of projectile motion), then uses the superposition of the two pre-
dictions to compute a final release velocity ‖vx,y‖ = ‖v̂x,y‖+ δ
for the throwing primitive. Conceptually, this enables our models
to leverage the advantages of physics-based controllers (e.g.,
generalization via analytical models), while still maintaining the
capacity (via data-driven residual δ) to account for aerodynamic
drag and offsets to the real-world projectile velocity (conditioned
on the grasp), which are otherwise not analytically modeled. Our
experiments in Section VI show that this approach, a.k.a. resid-
ual physics, even when using a simple ballistics model, yields
significant improvements in both accuracy and generalization
of throwing arbitrary objects compared to baseline alternatives:
e.g., using only the physics-based controller [see Fig. 3(a)], or a
fully data-driven training of f to regress ‖vx,y‖ [see Fig. 3(b)].

1) Physics-Based Controller: The physics-based controller
uses the standard equations of linear projectile motion, by
assuming a grasp on the CoM of the object, to analytically
solve back for the release velocity v̂ given the target landing
location p and release position r of the throwing primitive:
p = r + v̂t+ 1

2at
2. This controller assumes that the object is

a point particle and that the aerial trajectory of the projectile
moves along a ballistic path affected only by gravity, which
imparts a downward acceleration az = −9.8 m/s2.

We also provide the estimated physics-based release velocity
v̂ as input into both the grasping and throwing networks by con-
catenating the visual feature representation μ with a k-channel
image (k = 128) where each pixel holds the value of v̂, repeated

across channels. Providing v̂ as input enables our grasping and
throwing predictions to be conditioned on v̂ – i.e., larger values
of v̂ for farther target locations can lead to a different set of
effective grasps.

This physics-based controller has several advantages in that
it provides a closed-form solution, generalizes well to new
landing locations p, and serves as a consistent approximation
for v. However, it also relies on several assumptions that do not
generally hold. First, it assumes that the effects of aerodynamic
drag are negligible. However, as we show in our experiments
in Fig. 2, the aerial trajectory for lightweight objects like ping
pong balls can be substantially influenced by drag. Second, it
assumes that the gripper release velocity v directly determines
the velocity of the projectile. This is not true since the object
is often not grasped at the CoM, nor is the object completely
immobilized by the grasp prior to release. For example, as
illustrated in Fig. 2, a screwdriver picked up by the shaft can
be flung forward with a significantly higher velocity than the
gripper release velocity due to centripetal forces, resulting in a
farther aerial trajectory.

2) Residual Physics-Based Controller: To compensate for
the shortcomings of the physics-based controller, the throwing
module includes a throwing network that predicts a residual δ
on top of the estimated release velocity ‖v̂x,y‖ for each possible
grasp. The throwing network is a seven-layer fully convolutional
residual network [14] interleaved with two layers of spatial bilin-
ear 2× upsampling that accepts the visual feature representation
μ as input, and outputs an image Qt with the same size and
resolution as that of the input heightmap I . Qt has a pixel-wise
one-to-one spatial correspondence with I , thus, each pixel in
Qt also corresponds one-to-one with the pixel-wise probability
predictions of grasping success qi ∈ Qg (for all possible grasps
using rotating input I). Each pixel inQt holds a prediction of the
residual value δi added on top of the estimated release velocity
‖v̂x,y‖ from a physics-based controller, to compute the final
release velocity vi of the throwing primitive after executing the
grasp at pixel i. The better the prediction of δi, the more likely
the grasped and thrown object will land on the target location p.

V. JOINTLY LEARNING GRASPING AND THROWING

Our full network f (including the perception, grasping, and
residual throwing modules) is trained end-to-end using the
following loss function: L = Lg + yiLt, where Lg is the bi-
nary cross-entropy error from predictions of grasping success
classification

Lg = −(yi log qi + (1− yi) log(1− qi))

and Lt is the continuous Huber loss from regressing the residual
throwing velocity δi

Lt =

{
1
2 (δi − δ̄i)

2, for |δi − δ̄i| < 1

|δi − δ̄i| − 1
2 , otherwise

where yi is the binary ground truth grasp success label and δ̄i is
the ground truth residual label. We use a Huber loss [12] instead
of an MSE loss for regression since we find that it is less sensitive
to inaccurate outlier labels. We pass gradients only through the
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single pixel i on which the grasping primitive was executed. All
other pixels backpropagate with 0 loss.

We train our network f by stochastic gradient descent with
momentum, using fixed learning rates of 10−4, momentum of
0.9, and weight decay 2−5. Our models are trained from scratch
(i.e., random Xavier initialization [13], without any image-based
pretraining [37]) in PyTorch with an NVIDIA Titan X on an
Intel Xeon CPU E5-2699 v3 clocked at 2.30GHz. We train with
prioritized experience replay [32] using stochastic rank-based
prioritization, approximated with a power-law distribution. Our
exploration strategy is ε-greedy, with ε initialized at 0.5 then
annealed over training to 0.1. Specifically, when executing a
grasp, the robot has an ε chance to sample a random grasp within
the robot’s workspace for picking; likewise when executing a
throw, the robot has an ε chance to explore a random positive
release velocity.

1) Network Architecture Details: Our network architecture
consists of the following layers for each module:

1) Perception: C(3,64)-MP-RB(128)-MP-RB(256)-
RB(512);

2) Grasping: RB(256)-RB(128)-UP-RB(64)-UP-C(1,2);
3) Throwing: RB(256)-RB(128)-UP-RB(64)-UP-C(1,1).

where C(k, c) denotes a convolutional layer with k × k filters
and c channels, RB(c) denotes a residual block [14] with two
convolutional layers using 3 × 3 filters and c channels, MP
denotes a 3 × 3 max pooling layer with stride = 2, and UP
denotes a bilinear 2× upsampling layer.

2) Training Via Self-Supervision: We obtain our ground truth
training labels yi and δ̄i through trial and error. At each training
step, the robot captures RGB-D images to construct visual input
I , performs a forward pass of f(I, p) to make a prediction of
primitive parameters φg and φt, executes the grasping primitive
using φg , then executes the throwing primitive using φt. We ob-
tain ground truth grasp success labels yi by one of the following
two ways.

1) Success after grasping, by checking the distance between
gripper fingertips after the grasping primitive.

2) Success after throwing, by checking the binary signal of
whether or not a throw lands in the correct box.

As we show in Section VI-F, supervising grasps by the
accuracy of throws eventually leads to more stable grasps
and better overall throwing performance. The grasping policy
learns to favor grasps that lead to successful throws, which is
a stronger requirement than simple grasp success. After each
throw, we approximate the object’s actual landing location p̂
using a calibrated overhead RGB-D camera to detect, which bin
it landed in (i.e., detect visual changes in the landing zone before
and after the throw). Regardless of where the object lands, its
actual landing location p̂ and the executed release velocity v is
recorded and saved to the experience replay buffer as a training
sample, with which we obtain the ground truth residual label
δ̄i = ‖vx,y‖ − ‖v̂x,y‖p̂.

In experiments in Section VI, we train our models by self-
supervision with the same procedure: n objects are randomly
dropped into the 0.9× 0.7 m workspace in front of the robot.
The robot performs data collection until the workspace is void
of objects, at which point n objects are again randomly dropped

into the workspace. In simulation n = 12, while in real-world
experiments n = 80+. In our real-world setup, the landing zone
(on which target boxes are positioned) is slightly tilted at a
15◦ angle adjacent to the bin to simplify resetting. When the
workspace is void of objects, the robot lifts the bottomless boxes
such that the objects slide back into the bin. In this way, human
intervention is kept at a minimum during the training process.

VI. EVALUATION

We execute a series of experiments in simulated and real
settings to evaluate the learned grasping and throwing policies.
The goal of the experiments are four-fold:

1) to evaluate the overall accuracy and efficiency of our pick-
and-throw system on arbitrary objects,

2) to test its generalization to new objects and target locations
unseen during training,

3) to investigate how learned grasps can improve the accu-
racy of subsequent throws, and

4) to compare our proposed method based on residual physics
to other baseline alternatives.

Evaluation Metrics: Evaluation metrics are defined in the
following points: 1) grasping success: the percent rate, which
an object remains in the gripper after executing the grasping
primitive (by measuring distance between fingertips), and 2)
throwing success: the percent rate, which a thrown object lands
in the intended target box (tracked by an overhead camera).

A. Experimental Setup

We evaluate each policy on its ability to grasp and throw
various objects into 12 boxes located outside a UR5 robot arm’s
maximum reach range (as shown in Fig. 1). Specifically, the task
is to pick objects from a cluttered bin and stow them uniformly
into the boxes such that all boxes have the same number of
objects, regardless of object type. Since boxes are outside the
robot’s reach range, throwing is necessary to succeed in the task.
Each box is 20 cm tall with a 25× 15 cm opening. The middle
of the top opening of each box is used as the input target landing
position p to the formulation f(I, p).

1) Simulation Setup: The simulation environment (shown
in Fig. 5) is built using PyBullet [6]. We use eight different
objects: four seen during training and four unseen for testing.
Training objects are chosen in order of increasing difficulty:
4 cm-diameter ball, 4× 4× 4 cm cube, 3 cm-diameter 16 cm-
long rod, and a 16 cm-long hammer (union of 2 cm-diameter
12 cm-long rod with 10× 4× 2.5 cm block). Throwing diffi-
culty is determined by how much an object’s projectile trajectory
changes depending on its initial grasp and CoM. For example,
the trajectory of the ball is mostly agnostic to grasp location and
orientation, while both rod (CoM in middle) and hammer objects
(CoM between handle and shaft) can have drastically different
projectile trajectories depending on the grasping point. Objects
are illustrated in Fig. 6—their CoMs indicated with a red sphere.
Multiple copies of each object (12 in total) are randomly colored
and dropped into the bin during training and testing.

Although simulation provides a consistent and controlled en-
vironment for fair ablative analyses, the simulated environment
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Fig. 5. Simulation environment in PyBullet [6]. This snapshot illustrates the
aerial motion trajectory of a purple ball being thrown into the target landing box
highlighted in green. The top right image depicts the view captured from the
simulated RGB-D camera before the ball was grasped and thrown.

Fig. 6. Objects used in simulated (top) and real (bottom) experiments, split
by seen objects (left), and unseen objects (right). The CoM of each simulated
object is indicated with a red sphere (for illustration).

does not model aerodynamics and only approximates frictional
interactions. As a result, the performance in simulation does not
necessarily reflect performance in the real world. Therefore, we
also provide quantitative experiments on a real system.

2) Real-World Setup: We use a UR5 arm with an RG2 gripper
to pick and throw a collection of 80+ different toy blocks,
fake fruit, decorative items, and office objects (see Fig. 6). For
perception data, we capture 640× 480 RGB-D images using a
calibrated Intel RealSense D415 statically mounted overlooking
the bin of objects from the side. The camera is localized with
respect to the robot base using an automatic calibration proce-
dure from [42]. A second RealSense D415 is mounted above the
boxes looking downward to track landing locations of thrown
objects by measuring changes between images captured before
and after executed throws.

B. Baseline Methods

1) Residual-Physics: Denotes our approach described in
Section III. Since there are no comparable available algorithms
that can learn joint grasping and throwing policies, we com-
pare our approach to three baselines based on variations of the
proposed method.

TABLE I
THROWING PERFORMANCE IN SIMULATION (MEAN %)

The bold numbers indicate the best performance.

TABLE II
GRASPING PERFORMANCE IN SIMULATION (MEAN %)

The bold numbers indicate the best performance.

2) Regression: It is a variant of our approach where the
throwing network is trained to directly regress the final release
velocity v, instead of the residual δ. Specifically, each pixel in
the output Qt of the throwing network holds a prediction of
the final release velocity ‖vx,y‖ for the throwing primitive. The
physics-based controller is removed from this baseline, but in
order to ensure a fair comparison, we concatenate the visual
features μ with the xy-distance d between the target landing
location and release position (i.e., d = ‖rx,y − ptx,y

‖) before
feeding into the grasping and throwing networks. Conceptually,
this variant of our approach is forced to learn physics from
scratch instead of bootstrapping on physics-based control.

3) Physics-Only: It is also a variant of our approach where
the throwing network is removed and completely replaced by
velocity predictions made by the physics-based controller. In
other words, this variant only learns grasping and uses physics
for throwing (without learning a residual).

4) Regression-Pretrained-on-Physics: It is a version of Re-
gression that is pretrained on release velocity predictions v̂ made
by the physics-based controller described in Section III-C. The
shorthand name for this method is Regression-PoP.

C. Baseline Comparisons

In simulated and real settings, we train our models via trial
and error for 15 000 steps, then test each model for 1000 steps
and report their average grasping and throwing success rates.

1) Simulation Results: They are reported in Tables I and II.
Each column of the table represents a different set of test objects,
e.g., “Hammers” is a set of n hammers, “Seen” is a mixed set of
objects seen during training, “Unseen” is a mixed set of objects
not seen during training.

The throwing results in Table I indicate that learning residuals
(Residual-physics) on top of a physics-based controller provides
the most accurate throws. Physics-only performs competitively
in simulation, where the environment is void of aerodynamics
and unstable contact dynamics, but falls short of performance
in comparison to Residual-physics—particularly for difficult
objects like rods or hammers of which the grasping offsets from



1314 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 7. Our method (Residual-physics) outperforms baseline alternatives in
terms of throwing success rates in simulation on the Hammers object set.

TABLE III
GRASPING AND THROWING PERFORMANCE IN REAL (MEAN %)

Bold signifies numbers are the best performing numbers (for clarity).

CoM can significantly change projectile trajectories. We also
observe that regression pretrained on physics (Regression-PoP)
always consistently outperforms regression alone. On the other
hand, the results in Table II show that the grasping performance
remains roughly the same across all methods. All policies ex-
perience moderately lower grasping and throwing success rates
for unseen testing objects.

Fig. 7 plots the average throwing performance of all baseline
methods over training steps on the hardest seen object set:
hammers. Throwing performance is measured by throwing suc-
cess rates over the last j = 1000 attempts. Numbers reported at
earlier training steps (i.e., iteration i < j) in Fig. 7 are weighted
by i

j . The plot shows that as soon as the performance of physics-
only begins to asymptote, residual-physics starts to outperform
physics-only by learning residual throwing velocities that com-
pensate for grasping offsets from the object CoM.

2) Real-World Results: They are reported in Table III on seen
and unseen object sets. The results show that residual-physics
continues to provide more accurate throws than the baseline
methods. Most notably, in contrast to simulation, physics-only
does not perform as competitively to residual-physics in the
real world. This is likely because the ballistic model used by
physics-only does not account for the unmodeled and uncertain
contact- and aero-dynamics in the real world. Residual-physics
can compensate for them in one of two ways: either improving
the model (learning good residuals), or avoiding regions of the
model that are not predictable (avoiding complex grasps). This

TABLE IV
PICKING SPEED VERSUS STATE-OF-THE-ART SYSTEMS

The bold numbers indicate the best performance.

allows TossingBot to maintain a throwing accuracy above 80%
for both seen and unseen objects.

Interestingly, our system also seems to match or even slightly
exceed the average performance of an untrained human (i.e.,
with no training time provided beforehand). To measure human
throwing performance, we asked 15 willing participants (aver-
age height: 174.0 ± 8.3 cm, most of whom were engineers) to
stand in place of the robot in the real-world setup and then grasp
and throw 80 objects from the bin into the target boxes round-
robin. Objects came from the collection of unseen test objects
used in the robot experiments, and were kept consistent across
runs. Participants were asked to pick-and-throw at whichever
speed felt most comfortable (i.e., we did not compare picking
speeds).

Surprisingly, the human performance was lower than we
expected. The largest contributor to the poor performance was
fatigue—the accuracy of throws deteriorates over time, partic-
ularly after around the 20th object regardless of picking speed.
The second largest contributor to the performance was the phys-
ical height of the participant (taller performed better)—this may
be due to differences in throwing distance (measured from grasp
release to object landing locations, which is smaller for taller
participants with longer arms) and the throwing strategies (taller
participants more often preferred overhand throws to underhand
ones). Other common throwing strategies included the following
points:

1) largely relying tactile feedback to grasp objects in the bin
to maintain visual attention on target boxes,

2) grasping objects with one hand and throwing with the
other so that the throwing arm can make more repeatable
movements,

3) grouping objects by weight, then correspondingly chang-
ing to different grasping and throwing strategies.

These additional strategies were interesting, but did not seem
to correlate with the better performance. Also, most strategies
seem designed to overcome human limitations in terms of re-
stricted attention spans, limited viewpoints, limited motor con-
trol calibration, or fatigue, which do not hinder robotic systems.

D. Pick-and-Place Efficiency

Throwing enables our system (TossingBot) to achieve picking
speeds of 514 MPPH, where 1 pick = successful grasp and
accurate throw. Specifically, the system performs 608 grasps per
hour (measured over two hours), and achieves 84.7% throwing
accuracy, yielding 514 MPPH. In Table IV, we compare against
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Algorithm 1: System Pipeline.
1: Initialize robot.
2: Initialize policy with model f .
3: Initialize replay buffer.
4: while step i < N and not terminate do
5: Ii = robot.CaptureState()
6: pi = robot.SelectTarget()
7: φi

g, φ
i
t = f .Inference(Ii, pi)

8: while robot.is_grasping do
9: f .Train(buffer)

10: yi−1 = robot.CheckGraspSuccess()
11: robot.ExecuteThrow(φi−1

t , pi−1) �
asynchronous

12: while robot.is_throwing do
13: f .Train(buffer)
14: robot.ExecuteGrasp(φi

g) � asynchronous
15: p̂ i−1 = robot.TrackLanding()
16: buffer.SaveData(Ii−1, pi−1, φi−1

g , φi−1
t , yi−1, p̂ i−1)

17: i = i+ 1

other state-of-the-art picking systems found in the literature:
Cartman [27], Dex-Net 2.0 [23], FC-GQ-CNN [31], Dex-Net
4.0 [24], and a variant of TossingBot that places objects into a
box 0.8 m away from the bin without throwing. This is not a like-
for-like comparison, since throwing is only practical for certain
types of objects (e.g., not eggs) and hardware, and placing is only
practical for limited distance ranges. Yet, the results suggest that
throwing may be useful to improve the overall MPPH in some
applications.

In addition to throwing, there are the following three other
aspects that enable our system’s picking speeds:

1) fast algorithmic run-time speeds (220 ms for inference),
2) real-time TSDF fusion [7], [28], [30], [41] of RGB-D data,

which enables us to capture and aggregate observed 3-D
data of the scene simultaneously as the robot moves around
within the field-of-view, and

3) online training and inference in parallel to robot actions
(described in Algorithm 1).

E. Learning Stable Grasps for Throwing

We next investigate the importance of supervising grasps with
the accuracy of throws. To this end, we train two variants of
residual-physics: 1) grasping network supervised by accuracy
of throws (i.e., grasp success = object landed on target), and
2) grasping network supervised by checking grasp width after
grasping primitive (i.e., grasp success = object in gripper). We
plot their grasping and throwing success rates over training steps
in Fig. 8 on the hammer object set.

The results indicate that throwing performance significantly
improves when grasping is supervised by the accuracy of throws.
This not only suggests that the grasping policies are capable
of learning to execute the subset of grasps that lead to more
predictable throws, but also indirectly that throwing accuracy is
strongly influenced by the quality of grasps. Interestingly, the

Fig. 8. Both grasping and throwing success rates of residual-physics policies
in simulation improve when grasps are supervised by the accuracy of throws
(blue), versus when grasps are supervised by a heuristic that checks gripper
width (purple).

Fig. 9. Projected 2-D histograms of successful grasping positions on hammers
in simulation: show that 1) leveraging accuracy of throws as supervision enables
the grasping policy to learn a more restricted but stable set of grasps, while 2)
learning throwing in general helps to relax this constraint.

results also show that grasping performance slightly increases
when supervised by the accuracy of throws.

We also investigate the quality of learned grasps by visu-
alizing 2-D histograms of successful grasps, mapped directly
on the hammer object in Fig. 9. To create this visualization
from simulation, we record each grasping position by saving
the 3-D location (with respect to the hammer) of the middle
point between gripper fingertips after each successful grasp. We
then project the grasping positions recorded over 15 000 training
steps onto a 2-D histogram, where darker regions indicate more
grasps. The silhouette of the hammer is outlined in black, with a
green dot indicating its CoM. We illustrate the grasp histograms
of three policies: Residual-physics with grasping supervised
by heuristic that checks grasp width after grasping primitive
(left), residual-physics with grasping supervised by accuracy of
throws (middle), and physics-only with grasping supervised by
accuracy of throws (right).

The differences between left and middle histograms indicate
that leveraging accurate throws as a supervisory signal encour-
ages the grasping policy to learn a more restricted but stable
and homogeneous set of grasps: slightly further from the CoM
to avoid unintentional collisions between the fingers and rest of
the object at the moment of release, but also further from the ends
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Fig. 10. Additional grasping histograms of all simulation objects. Histograms are generated for successful grasps, grasps that lead to successful throws, and
grasps that lead to failed throws—recorded over 15 000 training steps. Darker regions indicate more grasps. The silhouette of each object is outlined in black, with
a green dot indicating its CoM.

of the handle to avoid less predictable throws. The differences
between middle and right histograms show that when using
only ballistics for the throwing module (i.e., without learning
throwing), the grasping policy seems to further optimize for
grasps that are closer to the CoM. This leads to a more restricted
set of grasps in contrast to Residual-physics, where the throwing
can learn to compensate, respectively.

We also provide similar 2-D grasp histogram visualizations
in Fig. 10 for all simulation objects. Across all policies, the
histograms visualizing grasps, which lead to successful throws

(columns 2, 5, 8) share large overlaps with the grasps that lead to
failed throws (red columns 3, 6, 9). This suggests grasping and
throwing might have been learned simultaneously, rather than
one after the other—likely because the way the robot throws is
conditioned on how it grasps in a nontrivial manner.

F. Generalizing to New Target Locations

One of the key benefits from any residual physics approach is
that the physics-based part of the controller naturally generalizes
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Fig. 11. Emerging semantics from interaction. Visualizing pixel-wise deep features µ learned by TossingBot (c) and (e) overlaid on the input heightmap image
(b) generated from an RGB-D side-view (a) of a bin of objects. (c) Heatmap of pixel-wise feature distances (hotter = smaller distance) from the feature vector
of a query pixel on a ping pong ball (labeled 1). Likewise, (e) Heatmap of pixel-wise feature distances from the feature vector of a query pixel on a pink marker
pen (labeled 2). These visualizations show that TossingBot learns features that distinguish object categories from each other without explicit supervision (i.e., only
task-level grasping and throwing). (d) and (f) For reference, the same visualization technique is used on deep features generated by a ResNet-18 pre-trained on
ImageNet.

TABLE V
THROWING TO UNSEEN LOCATIONS (MEAN %)

The bold numbers indicate the best performance.

to conditions outside the collected data, for example, to new
target locations. To explore how well our trained TossingBot
policies generalize to new target locations, we displace the
locations of the boxes in both the horizontal plane from where
they were during training, such that there is no overlap between
training and testing locations. For this experiment, we set in
simulation 12 training boxes and 12 testing boxes; while in real
settings, we set four training and four testing boxes (limited by
physical setup). We record each model’s throwing performance
on seen objects over these new box locations across 1000 testing
steps in Table V.

We observe that both in simulated and in real experiments,
residual-physics significantly outperforms the regression base-
line. The performance margin in this scenario illustrates how
Residual-physics leverages the generalization of the ballistic
equations to adapt to new target locations.

G. Deep Object Semantics Emerging From Task Training

In this section, we explore the deep features being learned by
the neural networkf and answer the questions: “What does Toss-
ingBot learn from grasping and throwing arbitrary objects?” and
“Do they convey any meaningful structure or representation?”
We do this by analyzing how similarly or differently the learned
network handles different objects.

To this end, we place several training objects in the bin (well-
isolated from each other for visualization purposes), capture
RGB-D images to construct a heightmap I of the scene, and
feed it through the network f (already trained for 15 000 steps
from real experiments). The training objects include marker
pens, ping pong balls, and wooden toy blocks of different shapes
(see Fig. 11). We then extract the intermediate spatial feature
representation of the network μ (described in Section III-A),

which contains a 512-dimensional feature vector for each pixel
of the heightmap I (after 4× upsampling to the same resolution).
We then extract the feature vector from a query pixel belonging
to one of the objects in the bin (ping pong ball in this case), and
visualize its distance to all other pixel-wise features as a heatmap
in Fig. 11(a) (where hotter regions indicate smaller distances),
overlaid on the original input heightmap. More specifically, we
rank each pixel based on its �2 feature distance to the query
pixel feature, then colorize it based on its rank (i.e., higher rank
= closer feature distance = hotter color).

The procedure creates a form of similarity map between
pixels. Interestingly, when choosing the pixel from a ping-pong
ball, the visualization immediately localizes all other ping-pong
balls in the scene—presumably because they share similar deep
features. It is also interesting to note that the orange wooden
block, despite sharing a similar color, does not get picked up by
the query. Similarly, Fig. 11(b) illustrates the feature distances
between a query pixel on a pink marker pen to all other pixels
of the scene. The visualization immediately localizes all other
marker pens, which share similar shape and mass, but do not
necessarily share color textures.

These interesting results suggest that the deep network is
learning to bias the features (i.e., learning a prior) based on
the objects’ shapes more so than their visual textures or color.
The network likely learns that geometric cues are more use-
ful for learning grasping and throwing policies—i.e., provides
more information related to grasping interactions and projectile
behaviors. In addition to shape, one could also argue that the
learned deep features reflect the second-order (beyond visual or
geometric) physical attributes of objects, which influence their
aerial behaviors when thrown. This perspective is also plausible,
since the throwing policies are effectively learning to compen-
sate for these physical attributes, respectively. For comparison,
these visualizations generated by features from TossingBot are
more informative in this setting than those generated using deep
features from a 18-layer ResNet pretrained on ImageNet (also
shown in Fig. 11).

These emerging features were learned implicitly from scratch
without any explicit supervision beyond task-level grasping
and throwing. Yet, they seem to be sufficient for enabling the
system to distinguish between ping-pong balls and markers. As
such, this experiment speaks out to a broader concept related to
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machine vision: how should robots learn the semantics of the
visual world? From the perspective of classic computer vision,
semantics are often predefined using human-fabricated image
datasets and manually constructed class categories (i.e., this
is a “hammer,” and this is a “pen”). However, our experiment
suggests that it is possible to implicitly learn such object-level
semantics from physical interactions alone (as long as they mat-
ter for the task at hand). The more complex these interactions, the
higher the resolution of the semantics. Toward more generally
intelligent robots—perhaps it is sufficient for them to develop
their own notion of semantics through interaction [36], without
human guidance.

VII. DISCUSSION AND FUTURE WORK

This article presents a framework for jointly learning grasping
and throwing policies that enable TossingBot to pick-and-throw
arbitrary objects from an unstructured bin into boxes located
outside its maximum reach range at 500+ MPPH. We show that
a key is the use of residual physics, a hybrid controller that
leverages deep learning to predict residuals on top of control
parameters estimated with physics. The combination enables
the data-driven predictions to focus on learning the aspects of
dynamics that are difficult to model analytically. Our experi-
ments in both simulation and real settings show that the system:
1) learns to improve grasps for throwing through joint training
from trial and error, and 2) performs significantly better with
residual physics than comparable alternatives.

The proposed system is a prototype with several limitations
that suggest directions for future work. First, it assumes that
objects are rigid and robust enough to withstand forces encoun-
tered when thrown—further work is required to train networks
to predict motions that account for fragile, articulated, or de-
formable objects. Second, it infers object-centric properties and
dynamics only from visual data (an RGB-D image of the bin)—
exploring additional sensing modalities such as force-torque or
tactile may enable the system to better react to new objects
and better adapt its throwing velocities. Third, it is only able
to infer the parameters needed to get an object to land in a target
location—it would be interesting to explore how to achieve more
fine-grained control of the pose (including orientation) of an
object in flight, potentially to reach a target landing pose while
avoiding or leveraging external obstacles. Finally, we have so far
demonstrated the benefits of residual physics only in the context
of throwing—investigating how the idea generalizes to other
tasks is a promising direction for future research.
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