
IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020 1115

Long-Range Indoor Navigation With PRM-RL
Anthony Francis , Member, IEEE, Aleksandra Faust , Senior Member, IEEE, Hao-Tien (Lewis)

Chiang , Member, IEEE, Jasmine Hsu , Member, IEEE, J. Chase Kew , Member, IEEE,
Marek Fiser, Member, IEEE, and Tsang-Wei Edward Lee

Abstract—Long-range indoor navigation requires guiding
robots with noisy sensors and controls through cluttered environ-
ments along paths that span a variety of buildings. We achieve
this with PRM-RL, a hierarchical robot navigation method in
which reinforcement learning (RL) agents that map noisy sensors to
robot controls learn to solve short-range obstacle avoidance tasks,
and then sampling-based planners map where these agents can
reliably navigate in simulation; these roadmaps and agents are
then deployed on robots, guiding them along the shortest path
where the agents are likely to succeed. In this article, we use
probabilistic roadmaps (PRMs) as the sampling-based planner, and
AutoRL as the RL method in the indoor navigation context. We
evaluate the method with a simulation for kinematic differential
drive and kinodynamic car-like robots in several environments,
and on differential-drive robots at three physical sites. Our results
show that PRM-RL with AutoRL is more successful than several
baselines, is robust to noise, and can guide robots over hundreds of
meters in the face of noise and obstacles in both simulation and on
robots, including over 5.8 km of physical robot navigation.

Index Terms—Probabilistic roadmaps (PRMs), reinforcement
learning (RL), robotics, navigation, sampling-based planning.

I. INTRODUCTION

LONG-RANGE indoor robot navigation requires
human-scale robots, as shown in Fig. 1(a), to move

safely over building-scale distances, as shown in Fig. 1(b).
To robustly navigate long distances in novel environments,
we factor the problem into long-range path planning and
end-to-end local control, while assuming the robot has mapping
and localization. Long-range path planning finds collision-free
paths to distant goals not reachable by local control [43].
End-to-end local control produces feasible controls to follow
ideal paths while avoiding obstacles, e.g., [40] and [24], and
compensating for noisy sensors and localization [12]. We enable
end-to-end local control to inform long-range path planning
through sampling-based planning.

Sampling-based planners, such as probabilistic roadmaps
(PRMs) [39] and rapidly exploring random trees (RRTs) [42],

Manuscript received March 4, 2019; accepted January 16, 2020. Date of
publication April 15, 2020; date of current version August 5, 2020. This research
was funded solely by Google. This article was recommended for publication by
Associate Editor F. Stulp and Editor Francois Chaumette upon evaluation of the
reviewers’ comments. (Corresponding author: Anthony Francis.)

The authors are with the Robotics at Google, Mountain View, CA 94043
USA (e-mail: centaur@google.com; sandrafaust@google.com; lewispro@
google.com; hellojas@google.com; jkew@google.com; mfiser@google.com;
tsangwei@google.com).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2020.2975428

Fig. 1. Long-range indoor navigation task. (a) Approximately cylindrical
differential drive robot. (b) Deployment environments are office buildings.

[44], plan efficiently by approximating the topology of the
configuration space (C), the set of all possible robot poses, with a
graph or tree constructed by sampling points in the collision-free
subset of configuration space (Cfree), and connecting these points
if there is a collision-free local path between them. Typically,
these local paths are created by line-of-sight tests or an inexpen-
sive local planner, and are then connected in a sequence to form
the full collision-free path.

Regardless of how a planner generates a path, executing a
path requires handling sensor noise, unmodeled dynamics, and
environment changes. Recently, reinforcement learning (RL)
agents [41] have solved complex robot control problems [68],
generated trajectories under task constraints [22], demonstrated
robustness to noise [21], and learned complex skills [57], [55],
making them good choices to deal with task constraints. Many
simple navigation tasks only require low-dimensional sensors
and controls, such as lidar and differential drive, and can be
solved with easily trainable networks [7], [29], [71]. However,
as we increase the problem’s complexity by requiring longer
episodes or providing only sparse rewards [20], RL agents
become harder to train and do not consistently transfer well to
new environments [35], [34].

Long-range navigation presents all these challenges. Sparse
rewards and long episodes make long-range agents hard to
train. On complex maps, short-range agents are vulnerable to
local minima such as wide barriers and narrow passages. Even
within deployment categories, environments have vast variety:
the SunCG dataset had 45 000 houselike environments [64], and
the US alone has over 5.6 million office buildings [9].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7772-7601
https://orcid.org/0000-0002-3268-8685
https://orcid.org/0000-0001-5418-6371
https://orcid.org/0000-0002-2342-8312
https://orcid.org/0000-0003-2850-0894
https://orcid.org/0000-0002-9462-015X
mailto:centaur@google.com
mailto:sandrafaust@google.com
mailto:lewispro@google.com
mailto:hellojas@google.com
mailto:jkew@google.com
mailto:mfiser@google.com
mailto:tsangwei@google.com
http://ieeexplore.ieee.org

1116 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 2. Quad-building complex—288 × 163 m: A large roadmap derived from real building plans, which PRM-RL successfully navigated 57.3% of the time
in simulation. The connected segment in the upper center corresponds to the upper floor of Building 1 used in our evaluations and contains the space where we
collected our SLAM map in Fig. 6. Blue dots are sampled points and yellow lines are roadmap connections navigable in simulation with the AutoRL policy. This
roadmap has 15 900 samples and had 1.4 million candidate edges prior to connection attempts, of which 689 000 edges were added. It took 4 days to build using
300 workers in a cluster, requiring 1.1 billion collision checks. The upper right inset is the training environment from Fig. 3(a), to scale; the quad-building complex
is approximately 200 times larger in map area.

We present PRM-RL, an approach to long-range naviga-
tion, which combines PRMs and RL to overcome each other’s
shortfalls. In PRM-RL, an RL agent learns a local point-to-point
(P2P) task, incorporating system dynamics and sensor noise
independent of long-range environment structure. The agent’s
learned behavior then influences roadmap construction; PRM-
RL builds a roadmap by connecting two workspace points only
if the agent consistently navigates between them in configu-
ration space without collision, thereby learning the long-range
environment structure. PRM-RL roadmaps perform better than
roadmaps based on pure Cfree connectivity because they respect
robot dynamics. RL agents perform better with roadmap guid-
ance, avoiding local minima. PRM-RL, thus, combines PRM
efficiency with RL resilience, creating a long-range navigation
planner that not only avoids local-minima traps, but transfers
well to new environments, as shown in Fig. 2, where a policy
trained on a small training environment scales to a quad-building
complex almost 200 times larger in map area.

This article contributes PRM-RL as a hierarchical kinody-
namic planner for navigation in large environments for robots
with noisy sensors. This article is a journal extension of our
conference paper [23], which contributes the original PRM-RL
method. Here, we investigate PRM-RL in the navigation context
and make the following contributions beyond the original paper:

1) Algorithm 2 for PRM-RL roadmap building; 2) Algorithm 3
for robot deployment; 3) PRM-RL application to kinodynamic
planning on a car model with inertia; and 4) in-depth analysis of
PRM-RL, including: 4.1) correlation between the quality of the
local planner and the overall hierarchical planner; 4.2) impact
of improving planners and changing parameters on PRM-RL
computational time complexity; 4.3) impact of a robust local
planner on the effective connectivity of samples in the graph;
and 4.4) resilience of PRM-RL to noise and dynamic obstacles.
All the evaluations and experiments are new and original to
this article. We evaluate PRM-RL with a more effective local
planner [12], compare it in simulation against six baselines in
eight different buildings, and deploy it to three physical robot
testbed environments.

Overall, we show improved performance over both baselines
and our prior work, more successful roadmaps, and easier trans-
fer from simulation to robots, including a 37.5% increase in nav-
igation success over [23], while maintaining good performance
despite increasing noise. We also show that only adding edges
when agents can always navigate them makes roadmaps cheaper
to build and improves navigation success; denser roadmaps also
have higher simulated success rates, but at substantial roadmap
construction cost. Floorplans are not always available or up to
date, but we show roadmaps built from SLAM maps close the

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1117

Fig. 3. Environments used for indoor navigation are derived from real building plans. (a) Smallest environment is used to train the RL agent for faster training
and iteration. (b)–(d) PRMs for deployment environments are built using agents trained in the training environment. Red regions are deemed too close to obstacles
and cause episode termination when the robot enters them; light gray is free space from which the starts and goals are selected. Blue lines connect PRM waypoints,
and the RL agent’s executed trajectory is black.

simulation to reality gap by producing planners, which perform
almost as well on robot as they do in simulation. SLAM-based
PRM-RL enables real robot deployments with up to +200 m
collision-free trajectories at three different sites on two different
robots with success rates as high as 92.0%. We also show that
PRM-RL functions well on robots with dynamic constraints,
with an 83.4% success rate in simulation.

While this article focuses on navigation, the analysis and
empirical findings will be of interest to the wider motion plan-
ning community for two reasons. First, PRM-RL presented here
is an example of a hierarchical motion planner that factors
models of sensor, localization, and control uncertainties into
roadmap construction, resulting in planners that perform as
well in simulation as they do on robots. Second, we present
a comprehensive analysis of the tradeoffs between performance
and computational complexity and the interplay between local
and global planners that is not specific to navigation.

II. RELATED WORK

A. Probabilistic Roadmaps

PRMs [39] have been used in a wide variety of planning
problems from robotics [30], [51] to molecular folding [3], [59],
[66]. They have also been integrated with RL for state-space

dimensionality reduction [49], [59] by using PRM nodes as the
state space for the RL agent. In contrast, our work applies RL
to the full state space as a local planner for PRMs. In prior work
for an aerial cargo delivery task, we trained RL agents to track
paths generated from PRMs constructed using a straight-line
local planner [22]. Researchers have modified PRMs to handle
moving obstacles [32], [61], noisy sensors [50], and localization
errors [2], [4]. Safety PRM [50] uses probabilistic collision
checking with a straight-line planner, associating a measure of
potential collision with all nodes and edges. All those methods
address one source of errors at a time. In contrast, PRM-RL uses
an RL-based local planner capable of avoiding obstacles and
handling noisy sensors and dynamics, and at the node connection
phase, the RL local planner does Monte Carlo path rollouts with
deterministic collision checking. We only add edges if the path
can be consistently navigated within a tunable success threshold.
Additionally, PRMs built with straight-line geometric planners
require a tracking method (often model-based, such as [67]) to
compensate for sensor and dynamics uncertainties not known at
the planning time. PRM-RL eliminates the need for path tracking
and mathematical models for sensor and dynamics uncertainties,
because sensor-to-control RL local planners are model-free, and
the Monte Carlo rollouts ensure that the feasibility is accounted
when connecting the nodes.

1118 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

PRMs are easy to parallelize, either through parallel
edge connections [5], sampling [8], or building subregional
roadmaps [17] in parallel. To speed up building large-scale
roadmaps, we use an approach similar to [5] across different
computers in a cluster. Individual Monte Carlo rollouts to con-
nect edges can be parallelized across multiple processors or run
sequentially to allow for early termination.

1) RL in Motion Planning: RL has recently gained popularity
in solving motion planning problems for systems with unknown
dynamics [41], and has enabled robots to learn tasks that have
been previously difficult or impossible [1], [10], [45]. For exam-
ple, deep deterministic policy gradient (DDPG) [46] works with
high-dimensional continuous state/action spaces and can learn
to control robots using unprocessed sensor observations [45].

Researchers have successfully applied deep RL to navigation
for robots, including visual navigation with simplified naviga-
tion controllers [7], [16], [29], [56], [62], [72], more realistic
controllers in game-like environments [6], [15], [54], and ex-
tracting navigation features from realistic environments [10],
[26]. In local planner settings similar to ours, differential drive
robots with 2-D lidar sensing, several approaches emerged
recently using asynchronous DDPG [65], expert demonstra-
tions [60], DDPG [47], curriculum learning [70], and Au-
toRL [12]. While any sensor-to-controls obstacle-avoidance
agent could be used as both a local planner in PRM-RL and
a controller for reactive obstacle avoidance, we choose AutoRL
for its simplicity of training, as it automates the search for reward
and network architecture.

Recent works [48], [70] learn planning in 2-D navigation
mazes and measure transferability of learning to new environ-
ments. Using the terminology of this article, this work falls
between long-range planning and local control. Their naviga-
tion environments vary between task instances, as in both our
AutoRL and PRM-RL setting. The mazes appear to be similar in
size and complexity to the maps used in our local planning [12],
[23]. However, those methods, based on Q-learning, use dis-
cretized actions to produce their paths, leading to three conse-
quences. First, the robot’s action discretization inherently limits
how close to the optimal path the solution can reach. Second, the
method must have a lower-level controller or steering function
that tracks the resulting path. Third, while these planners avoid
obstacles, they do not take robot dynamics or path feasibility
into account. In our work, we rely on continuous action RL
algorithms, which can better approximate optimal paths than
discrete actions, eliminate the tracking controller, and learn
dynamically feasible steering functions that produce linear and
angular velocities [13].

B. Hierarchical Planners With RL

Several recent works feature hierarchical planners combined
with RL, either over a grid [19] or manually selected way-
points [37]. These works connect roadmap points with a straight-
line planner and use the RL agent as an execution policy at
run-time. We use the obstacle-avoidance RL policy as both an
execution policy and a local planner for connecting the edges

in the roadmap. This approach results in roadmap connectivity
that is tuned to the abilities of the particular robot.

III. PROBLEM STATEMENT

This section defines key terms for path planning, for trajectory
planning, for the navigation problem for robots with noisy depth
sensors and actuators, and for the differential drive and car-like
robots, which are our primary focus in this article.

The configuration space, C, is the set of possible robot poses.
The configuration spaces for differential drive and car-like robots
areCdd = R2 × S1 andCcar = R2 × S1 × S1, respectively. The
workspace,W , is the physical space that a robot operates in with
dimensionality DW of 2 or 3. The workspace and the robot’s
kinematics divide the configuration space into valid (Cfree) and
invalid partitions. Cfree is a set of all robot poses that are free of
self-collision, collisions in the workspace, and satisfy relevant
kinodynamic constraints. To that end, we consider the workspace
to be a closed segment on a 2-D manifold, and model the
robots’ kinematics with a unicycle or Type (2,0) model [63] for
differential drive robots, and single-track model [58] for car-like
robots.

The robot state space is the full internal state of the robot
including pose, velocity, observations, etc. We assume this state
to be hidden and nonobservable. The observable state space,
O ⊂ RNsθn × C2free, is the same for both robot types and consists
of sensor observations (Ns lidar rays observed over the last
θn discrete time steps) as well as the current and goal robot
poses, assumed to be in Cfree. The robot action space, A ⊂ R2,
consists of linear and angular velocitiesa = (v, φ) ∈ A for both
types of robots. We assume sensor observation and actuators
to be noisy. The sensor observations are produced by a sensor
process Fs : Cfree → O that can be modeled as a combination
of inherent sensor dynamics and a source of noise: Fs(x) ∼
Ds(x) +Ns. Similarly, actions in the robot’s action space A
have a state-dependent effect Fa : Cfree ×A→ C, which also
can be modeled as a combination of inherent robot dynamics
and a source of noise: Fa(x,a) ∼ Da(x,a) +Na.

A path, P, is a sequence of workspace points pi ∈ W, i ∈
[0, N] from the beginning p0 to the end pN of the trajectory.
A valid path consists of only valid waypoints: ∀pi ∈ P : pi ∈
W ∩ Cfree, i = 1, . . . , Np. We consider a trajectory, T , to be a
sequence of robot valid poses xj ∈ Cfree, j = 1, . . . , Nt such
that xj+1 is reachable from xj within Cfree under the robot’s
kinematic model within a fixed discrete time step ΔT, for
any two consecutive points xj+1, xj , j = 1, . . . , Nt − 1. We
assume that the robot is at rest at the beginning and end of the
trajectory, i.e., ẋ1 = 0, ẋN = 0.

In this article, a P2P policy, π : O → A, maps robot ob-
servations to linear and angular velocities in order to generate
trajectories. Given a valid start configuration xS and a policy π,
an executed trajectory T is a sequence of configuration states
that result from drawing actions from the policy and its noise
processes: T : x0 = xS ∧ xi ∼ Fa(xi−1,π(Fs(xi−1))). An
executed trajectory is a failure if it produces a point that exits
Cfree, or if it exceeds a task-specific time-step limit Kω without

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1119

reaching a goal. Given a valid observable goal pose, xG, a non-
failed trajectory is a success if it reaches a point xi sufficiently
close to the goal with respect to a task-dependent threshold
‖xi − xG‖ ≤ dG, at which point the task has completed.

Graph search over PRMs creates a path, P . Waypoints in the
path serve as intermediate goals for the trajectory generating
policy π. A path following policy with respect to a path P
and P2P policy π, πpf (x|P,π), produces a trajectory that
traverses the waypoints in path P using the P2P policy π.
A valid executable path with respect to a P2P policy is a
path, which the P2P policy can reliably execute to achieve task
completion—guiding the agent from the start state xS of P to
within dG of the goal state xG within Kω time steps. Because
noise makes execution stochastic, we define a path to be reliable
if the policy’s probability of task completion using the path
exceeds a task-dependent success threshold ps.

The key problem that PRM-RL addresses is how to construct
a reliable path and path following policy for a given P2P policy
in the context of indoor navigation. To that end, we define an
agent that performs its task without knowledge of the workspace
topology as one in which the transfer function ẋ = f(x,a) that
leads the system to task completion is only conditioned on what
the robot can observe and what it has been commanded to do.
Formally, we learn policies to control an agent that we model as
a partially observable Markov decision process represented as
a tuple (O,A,D,N,R, γ) of observations, actions, dynamics,
noise, reward, and discount. The characteristics of the robot
determine observations, actions, dynamics, and noise; these
are continuous and multidimensional. Reward and discount are
determined by the requirements of the task: γ ∈ (0, 1) is a scalar
discount factor, whereas the reward R has a more complicated
structure (G, r), including a true scalar objective G representing
the task and a weighted dense scalar reward r : O ×RNθ → R,
based on observable features O and a reward parameterization
θ ∈ RNθ . We assume a presence of a simplified black-box
simulator without knowing the full nonlinear system dynamics.
The dynamics D and noise N are implicit in the real world but
are encoded separately in simulation in the system dynamics and
an added noise model.

IV. METHODS

The PRM-RL method has three stages: training an
environment-independent local planner policy with RL, creating
a roadmap specific to that local planner and an environment,
and deploying that roadmap and policy to the environment for
querying, trajectory generation, and execution. Fig. 4 illustrates
the method.

First, in the training stage, as shown in Fig. 4(a), to enable
a robot to perform a specific task, we train an agent with RL.
For indoor navigation, that task is short-range P2P navigation
end-to-end from sensors to actions. This task is independent of
the environment in which the robot will eventually operate. The
RL agent learns to perform a task on an environment comparable
to the deployment environment, but smaller in size to make
simulation faster and training more tractable. This is a Monte
Carlo simulation process: we train multiple policies and select

Fig. 4. PRM-RL approach. (a) RL learns a model of task and system dynamics.
This enables the construction of a local planner and the generation of a PRM-RL
roadmap. This roadmap and policy can then be executed on the robot using
the same local planner. (b) Same policy can generate roadmaps for different
floorplans, enabling deployment to many sites.

the fittest one for the next stage of PRM-RL, regardless of the
learning algorithm used.

Next, in the creation phase, as shown in Fig. 4(b) upper, to
prepare a robot to work in a specific environment, we use this
best policy as a local planner to build a PRM with respect to the
target site. Obstacle maps, such as floor plans or SLAM maps,
can be used for any robot we wish to deploy as long as the policy
transfers well to the real world. This is a one-time setup per robot
and environment. Unlike PRM-SL, in which points are sampled
from Cfree, PRM-RL samples points from the workspaceW but
then rolls out trajectories in C, adding an edge to the roadmap
only when the agent can navigate it in simulation with greater
probability than ps over nω trials. Rather than being determined
by the geometry of free space, the resulting roadmap is tuned to
capabilities of the particular robot, so different robots over the
same floor plan may generate different roadmaps with different
connectivity.

Finally, in the deployment phase, as shown in Fig. 4(b)
lower, to perform the task in the environment, the constructed
roadmap is queried to generate trajectories, which are executed

1120 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

by the same RL agent used to generate the roadmap. In the
geometric PRM-SL framework, querying a roadmap involves
connecting the start and goal to the roadmap graph and finding
the shortest path between them. In the simulation-based PRM-
RL framework, we can optionally record additional data about
executed trajectories to enable other trajectory metrics (such
as minimal energy consumption, shortest time, and so on) that
are not generally available with geometry-only approaches. At
execution time, the RL agent navigates to the first waypoint.
Once the agent is within dG distance from the waypoint, the
next waypoint becomes its new goal; the process repeats until
the agent has traversed the whole trajectory.

A. RL Agent Training

PRM-RL‘s global planner is strongly decoupled from the
details of the local planner’s construction and training. We
explore this with two different agent models: differential drive
and car-like robots.

1) P2P for Differential Drive Robots: The true objective of
the P2P agent is to maximize the probability of reaching the goal
without collisions

GP2P(xi,xG) = I(‖xi − xG‖ < dG) (1)

where I is an indicator function, xG is the goal position, and
dG is the goal radius. The zero-collision property is enforced by
terminating episodes on collisions. The goal observation og is
the relative goal position in polar coordinates, which is readily
available from localization. The reward for P2P for differential
drive robots is the dot product of the parameters and reward
components

RθrDD
= θ

ᵀ
rDD

[rgoal rgoalDist rcollision rclearance rstep rturning]
ᵀ (2)

where rgoal is 1 when the agent reaches the goal and 0 otherwise,
rgoalDist is the negative Euclidean distance to the goal, rcollision is 1
when the agent collides with obstacles and 0 otherwise, rclearance

is the distance to the closest obstacle, rstep is a constant penalty
step with value 1, and rturning is the negative angular speed.
We train this model with AutoRL [12] over the DDPG [46]
algorithm, which simultaneously finds the reward weights θrDD

and trains the agent. AutoRL automates hyperparameter search
in RL using an evolutionary approach. AutoRL takes as inputs a
true objective used to evaluate the agent, a parameterized dense
reward that the agent uses to train itself, and optionally neural
network architecture and algorithm hyperparameters. To train
the agent, AutoRL typically optimizes these hyperparameters
in phases. First, given an arbitrary or hand-tuned architecture,
it trains several populations of RL agents with different reward
parameters and optimizes over the true objective. Optionally, a
second phase repeats the process with the dense reward fixed
while searching over neural network architectures instead.

2) P2P for Car-Like Robots: The true objective of P2P does
not change for car drive, but because the turning radius of the car
is limited and the car must perform more complex maneuvers,
we choose a slightly different reward model

RθrCM
= θ

ᵀ
rCM

[rgoal rgoalProg rcollision rstep rbackward]
ᵀ (3)

where all values are the same as for diff drive except rgoalProg

rewards the delta change of Euclidean distance to goal, and
rbackwards is the negative of backwards speed and 0 for forward
speed. We dropped rgoalDist, rclearance, and rturning to reduce the
space of hyperparameter optimization based on analysis of
which parameters seemed to have the most positive impact upon
learning differential drive models. We train this model with
hyperparameter tuning with Vizier [28] over the DDPG [46]
algorithm in a different training regime in which the car model is
allowed to collide up to ten times in training, but is still evaluated
on the true objective of zero collisions.

B. PRM Construction

The basic PRM method works by sampling robot configura-
tions in the robot’s configuration space, retaining only collision-
free samples as nodes in the roadmap. PRMs then attempt to
connect the samples to their nearest neighbors using a local
planner. If an obstacle-free path between nodes exists, PRMs
add an edge to the roadmap.

We modify the basic PRM by changing the way nodes are
connected. Formally, we represent PRMs with graphs modeled
as a tuple (V,E) of nodes and edges. Nodes are always in free
space,Vi ∈ Cfree, and edges always connect valid nodes (Vi, Vj),
but we do not require that the line of sight ViVj between those
nodes is in Cfree, allowing edges that “go around” corners. Since
we are primarily interested in robustness to noise and adherence
to the task, we only connect configurations if the RL agent can
consistently perform the P2P task between two points.

Algorithm 1 describes how PRM-RL adds edges to the PRMs.
We sample multiple points from the configuration space, around
the start and goal in the workspace, and attempt to connect
the two points over nω trials. An attempt is successful only
if the agent reaches sufficiently close to the goal point. Even
with a high success threshold, PRM-RL trajectories are not
guaranteed to be collision-free because of sensor and action
noise. To compute the total length of a trajectory, we sum the
distances for all steps plus the remaining distance to the goal. The
length we associate with the edge is the average of the distance
of successful edges. The algorithm adds the edge to the roadmap
if the success probability successrate is above the threshold ps.

The worst-case number of collision checks in Algorithm 1
is O(Kω ∗ nω), because multiple attempts are required for
each edge to determine successrate. Each trial of checking the
trajectory can be parallelized with nω processors; alternately,
trajectory checking within Algorithm 1 can be serialized, ter-
minating early if the tests fail too many times. Mathematically,
for a given success threshold and desired number of attempts,
at least ns = �ps ∗ nω trials must succeed; therefore, we can
terminate when ns > ps ∗ nω , or when the failures exceed the
complementary probability nf > (1− ps) ∗ nω . This can pro-
vide substantial savings if ps is high, as shown in Section V-D.
Much of PRM-RL construction can be parallelized; parallel calls
to Algorithm 1 can speed roadmap construction, and roadmaps
can be constructed in parallel.

We use a custom kinematic three-dimensional simulator,
which provides drive models for agents and supports visual
sensors such as cameras and lidars. The simulator also provides

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1121

Algorithm 1; PRM-RL AddEdge.
Input: s, g ∈ W ∩ Cfree: Start and goal in workspace.
Input: ps ∈ [0, 1] Success threshold.
Input: nω: Number of attempts.
Input: dG: Sufficient distance to the goal.
Input: Kω: Maximum steps for trajectory.
Input: L(s): Task predicate.
Input: π: RL agent’s policy.
Input: D Generative model of system dynamics.
Output: addedge, successrate, length
1: successrate ← 0, failure← 0, length← 0
2: for i = 1, · · ·nω do
3: // Run in parallel, or sequential for early termination.
4: ss ← s.SampleConfigSpace() // Sample from the
5: sg ← g.SampleConfigSpace() // Cfree space.
6: success← 0, steps← 0, s← ss
7: lengthtrial ← 0
8: while

steps < Kω ∧ ‖p(s)− p(sg)‖ > dG ∧ p(s) ∈ Cfree
do

9: sp ← s, a← π(s)
10: s← D.predictState(s,a)
11: steps← steps+ 1
12: lengthtrial ← lengthtrial + ‖s− sp‖
13: end while
14: if ‖p(s)− p(sg)‖ < dG then
15: success← success+ 1
16: lengthtrial ← lengthtrial + ‖p(s)− p(g)‖
17: else
18: failure← failure+ 1
19: end if
20: if (1− ps) < failure/nω then
21: return False, 0, 0 // Not enough success, we can

terminate.
22: end if
23: length← length+ lengthtrial

24: end for
25: length← length

success , successrate ← success
nω

26: return successrate > ps, successrate, length

parameterized noise models for actions, observations, and robot
localization, which improves model training and robustness.
Stepping is fast compared to full-physics simulations because
our simulator is kinematic. This speeds up RL training and
roadmap building.

Algorithm 2 describes the roadmap building procedure, where
an RL agent is trained once, and used on several environments.
While building a roadmap for each environment, we first sample
the obstacle map to the given density and store all candidate
edges. Two nodes that are within the RL policy range, dπ,
are considered candidates. Next, we partition all the candidate
edges into subsets for distributed processing. The PRM builder
considers each candidate edge and adds it, along with its nodes,
to the roadmap if the AddEdge Monte Carlo rollouts returns
success above threshold.

Algorithm 2: PRM-RL Build Roadmaps.

Input: Obstacle maps: [m1, ..,mn]
Input: π: RL agent’s policy.
Input: D: Generative model of system dynamics.
Input: ρω: Sampling density.
Input: dπ: Policy range.
Input: np: Number of processors.
Input: ps ∈ [0, 1]: Success threshold.
Input: nω: Number of attempts.
Output: RL policy, π, Roadmaps, [roadmap1, .., roadmapn]
1: Train RL agent with [12] given D as described in

Section IV-A.
2: for m in [m1, ..,mn] /* In parallel for each env. */ do
3: Sample environment map m with density ρω and store

candidate edges w.r.t. dπ .
4: Partition candidate edges in np subsets, [e1, . . ., enp

].
5: foredges in [e1, . . ., enp

] /* In parallel over workers. */ do
6: for e in edges /* In parallel over threads. */ do
7: if AddEdge: Run Alg 1 with π. then
8: Add nodes if not in roadmap.
9: Add edge e to the roadmap.
10: end if
11: end for
12: end for
13: end for
14: return RL policy, π, Roadmaps,

[roadmap1, .., roadmapn]

C. Navigation

Finally, Algorithm 3 describes the navigation procedure,
which takes a start and a goal position. These are added to the
roadmap if not present. Then, the roadmap is queried for a list of
waypoints. If no waypoints are returned, the algorithm returns
the start and goal as the path to give the RL agent the opportunity
to attempt to navigate on its own. In execution, a higher-level
PRM agent gives the RL agent one waypoint at the time as a
subgoal, clearing these goals sequentially as the RL agent gets
within goal distance dG, until the final destination is reached or
Kω is exceeded.

V. RESULTS

We evaluate PRM-RL’s performance on both floorplan maps
and SLAM maps with respect to comparable baselines, con-
struction parameters, simulated noise, and dynamic obsta-
cles, as well as with experiments on robots. Section V-A
describes the robot and training setup, evaluation environ-
ments, and baselines. Section V-B demonstrates PRM-RL’s
superior performance on floormaps with respect to baselines,
while the following sections examine PRM-RL’s character-
istics in more depth. Section V-C demonstrates PRM-RL’s
robustness to noise, and Section V-D explores quality and
cost tradeoffs with success threshold and sampling density.
Since one of our goals is to assess PRM-RL for real-world

1122 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Algorithm 3: PRM-RL Navigate.
Input: PRM roadmap.
Input: π: RL agent’s policy.
Input: s, g ∈ Cfree: Start and goal.
Input: dG: Sufficient distance to the goal.
Input: Kω: Maximum steps for trajectory.

1: Add start and goal s, g ∈ Cfree, to roadmap if needed.
2: Query roadmap and receive list of waypoints

[w1, .., wN], w1 = s, wN = g.
3: for w in [w2, .., wN], do
4: Set w as a goal for the RL agent π.
5: Set current state, c as start state s.
6: steps← 0
7: while c is not within dG from w do
8: Apply action π(c), and observe the resulting state

as new current state c.
9: steps← steps+ 1

10: if c is in collision then
11: returnError: Collision.
12: end if
13: if steps > Kω then
14: return Error: Timeout.
15: end if
16: end while
17: end for
18: return Success.

navigation, Sections V-E and V-F show PRM-RL’s applicability
to SLAM and large-scale maps, and Section V-G analyzes
sim2real experiments on real robots. Finally, to demonstrate
the extensibility of PRM-RL to new situations, Section V-H
shows PRM-RL works well on simulated robots with dynamic
constraints, Section V-I explores PRM-RL’s robustness in the
face of dynamic obstacles, and Section V-J compares PRM-RL’s
performance on a suite of maps used by a visual policy baseline.

A. Methodology

1) Robot Setup: We use two different robot kinematic mod-
els, differential drive [43] and simple car model [43], [58]. We
control both models with linear and angular velocities com-
manded at 5 Hz, receive goal observations from off-the-shelf
localization, and represent both as circles with 0.3 m radius.
The obstacle observations are from 2-D lidar data, as shown in
Fig. 5, with a 220◦ field of view (FOV) resampled to 64 rays.
Following [55], we use an observation trace of the last θn frames
to provide a simple notion of time to the agent, with θnCM = 3
and θnDD = 1 for the car model and diff-drive, respectively. We
use Fetch robots [53] for physical experiments.

2) Obstacle-Avoidance Local Planner Training: We train
P2P agents with AutoRL over DDPG [12] with reward and
network tuning for the differential drive robot, and reward tuning
for the car robot. In both cases, the true objective for training the
local planner is to navigate within 0.25 m of the goal, allowing
the RL agent to cope with noisy sensors and dynamics. Table I
depicts learned reward hyperparameters. DDPG actor and critic

Fig. 5. Lidar observation that the robot uses for navigation. The background
image shows a hallway with a clear path ahead of the robot and walls to the left
and a right. The inset shows the lidar image: white regions indicate no obstacles
within 5 m, and progressively darker regions indicate closer and closer obstacles.

TABLE I
P2P REWARD COMPONENTS AND THEIR AUTORL-TUNED VALUES

TABLE II
ENVIRONMENTS

are feed-forward fully connected networks. Actor networks
are three layers deep, while the critics consists of a one or
two-layer observation networks joined with the action networks
by two fully connected layers. Actor, critic joint, and critic
observation layer widths are (241, 12, 20)× (607, 242)× (84)
for the reward-and-network trained differential drive model
and (50, 20, 10)× (10, 10)× (50, 20) for the reward-trained car
model. Appendix A contains the training hyperparameter details.
The training environment is 14 m× 17 m, as shown in Fig. 3(a).
To simulate imperfect real-world sensing, the simulator adds
Gaussian noise, N (0, 0.1), to its observations.

3) Evaluation Environments: Table II lists our simulation
environments, all derived from real-world buildings. Training,
Building 1–3, depicted in Fig. 3, and Building Complex (see
Fig. 2) are metric maps derived from real building floor plans.
They are between 12 to 200 times larger than the training envi-
ronment by area. Physical Testbed 1, as shown in Fig. 6, Physical

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1123

Fig. 6. PRMs for robot deployments are built over SLAM maps of the target environment. (a) SLAM map collected at the site of a robot deployment. (b) PRM-RL
learns the effective connectivity of the map for the policy. (c) PRM-RL achieves 83% success on the robot.

TABLE III
BASELINES

Testbed 2 and Physical Testbed 3, as shown in Fig. 11(c), are
derived from SLAM maps used for robot deployment environ-
ments.

4) Roadmap Building: For simplicity, we use uniform ran-
dom sampling to build roadmaps. We connect PRMs with a
ps effective threshold of ≥ 90% over 20 attempts, with a max
connection distance dω of 10 m based on the effective navigation
radius dπ for our P2P agents per [12], except where otherwise
stated.

5) Baselines: Table III shows four selected baselines. The
baselines differ in the local planner, used for building the
roadmap, and the execution policy, which guides the robot. We
select baselines given their ability to avoid obstacles and deal
with stochasticity. Recall that PRM-RL relies on a stochastic
policy capable of obstacle-avoidance to connect nodes in the
roadmap using Monte Carlo rollouts of the policy.

The baselines for experimental comparison include a local
planner based on AutoRL [12], PRM-SL [39], PRM-guided
artificial potential field (GAPF) (a modification of [11]), and
PRM-dynamic window avoidance (DWA). PRM-SL [39] uses
roadmaps built with a straight-line planner and a straight-line ex-
ecution policy. PRM-GAPF uses PRMs built with a straight-line
planner, and an execution policy of APF, an artificial potential

field planner [40], guided by the PRM-SL path, similar to [11].
PRM-DWA is similar to PRM-GAPF using DWA, a dynamic
window avoidance local planner [24].

In addition, we compare against two other baselines numeri-
cally: PRM-hand tuned reinforcement learning (HTRL) [23] is
our original PRM-RL with hand-tuned DDPG as the planner;
where not otherwise specified, PRM-RL refers to our current
approach. Successor Features (SF) [70] is a visual-based navi-
gation approach using discretized actions. We do not compare
PRM-RL with RRTs here because this work focuses on solv-
ing the multiquery problem, while RRTs solve single-query
problems, making them comparatively expensive for building
long-range trajectories on the fly, especially when incorporating
end-to-end controls. While large roadmaps can be expensive
to construct, they can be reused for many queries across many
robots, and queries are fast. For example, RRT solves a single
query in the same environment in about 100 s [13], while PRM-
RL produces a path in less than a second for a prebuilt roadmap
(see Table IV), although the roadmap takes hours to build.

For comparisons to baselines, unless otherwise stated, each
roadmap is evaluated on 250 queries selected from the Cfree
between start and goal positions from 1.5 to 100 m. We measure
start to goal distance by the shortest feasible path as estimated

1124 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

TABLE IV
PRM-RL PERFORMANCE VERSUS BASELINES

Fig. 7. PRM-RL outperforms the AutoRL local planner as well as PRM-SL, PRM-guided versions of GAPF and DWA, and our prior work PRM-HTRL.
(a) PRM-RL’s success is up to 93% on floorplan maps. (b) PRM-RL’s success is up to 89% on SLAM maps.

by our simulation framework using a queen’s-move discretized
A* search with adequate clearance for the robot to travel without
collision.

B. PRM-RL Performance on Floorplan Maps

Table IV shows PRM-RL’s performance compared to base-
lines on Buildings 1-3 of our floorplan maps, using both sparse
and dense PRMs; Fig. 7(a) also shows for reference our prior
work PRM-HTRL. PRM-RL’s average success rate in the dense
condition is 91.7% over all three maps, which outperforms the
baselines by 83.2% for pure AutoRL, 82.2% for dense PRM-SL,
and 51.6% for dense PRM-DWA. Outperforming AutoRL’s
nonguided local policies is not surprising as they do not have
the knowledge of the obstacle map, but we include it for com-
pleteness. Successful paths executed by AutoRL are shortest,
but dense PRM-SL and dense PRM-RL are within 10% of the
shortest feasible path as estimated by our simulation framework.
DWA path lengths are much longer because DWA exhibits safe
looping behavior in box canyons given the action space and noisy
observations, but DWA maintains the best clearance to obstacles.

Analyzing collision checks (the complexity of building a
roadmap), planning time, and execution time reveals interesting
tradeoffs. First, PRM-RL requires 1–2 orders of magnitude
more collision checks than PRM-SL; increasing map density
only consistently helps PRM-RL. This is because of the Monte
Carlo rollouts. At runtime, path finding requires no collision
checking, as it performs a graph search on a prebuilt roadmap. At
runtime, planning with a roadmap requires no collision checks,
though local control policies may carry out collision checks in
execution, e.g., DWA collision checks trajectories in velocity

space. Second, PRM-RL planning time is up to twice as long as
PRM-SL, because the PRM-RL roadmaps contain more edges
due to the RL local planner connecting to nodes that are not in
the clear line of sight. Still, planning takes less than a second
even for the densest maps, an insignificant part of execution time
in both simulation and robot deployment. Finally, the execution
time for PRM-RL is almost five times longer than PRM-SL
because PRM-RL succeeds at longer trajectories thanks to RL
control policy that adapts on-the-go to uncertainties not present
in planning time, i.e., moving obstacles or sensor noise.

We can draw three observations from these results. First,
guiding a local planner with PRM-RL can vastly improve the
planner’s success rate; this is not surprising as our local planners
are not designed to travel long distances. Second, PRM-RL suc-
cessfully enables local planners to transfer to new environments:
the AutoRL policy only saw the Training Map in training, yet
performs at a 91% success rate on our evaluation maps. Third,
the PRM success rate is correlated with the success of the local
planner. PRM-RL with an AutoRL policy and a sparse PRM
build achieves 86.5% success, a 37.5% increase over the sparse
49% success rate reported in PRM-HTRL. This is evidence that
investing in a high-fidelity local planner increases PRM-RL’s
performance of the overall navigation task. In contrast, moving
to a denser PRM map (which we discuss in more detail in
Section V-D) provides a lesser increase of 5.2%; this is still
significant for deployment, however, as it also represents a
38.6% decrease in errors.

C. PRM-RL Robustness to Noise

Sensors and actuators are not perfect, so navigation methods
should be resilient to noise. Fig. 8 shows the evaluation of

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1125

Fig. 8. PRM-RL is more robust to noise than PRM-GAPF or PRM-DWA. (a) As lidar noise increases, PRM-RL degrades slowly, showing a 28% drop at a noise
level of 1 m, whereas PRM-GAPF and PRM-DWA degrade quickly to roughly 1% performance at noise of 0.75 m. (b) All methods show resistance to position
noise (modeled as goal uncertainty). (c) As action noise increases, PRM-RL degrades slowly, showing a 37% drop at noise of 1 m; PRM-GAPF and PRM-DWA
are degraded up to 39% and 54% of their peak performance, respectively.

Fig. 9. Increasing sampling density improves performance at the cost of roadmap construction time. (a) As density increases, RL agents guided by PRM-RL
succeed more often with a sweet spot of 1 node per square meter. (b) Cost rises prohibitively as sampling rises; over 1 node/m2, collision checks for the training
map surpass our largest floorplan roadmap collected at 0.4/m2.

PRM-RL, PRM-GAPF, and PRM-DWA on the Training map,
Buildings 1–3 and Physical Testbed 1 over simulated Gaussian
noise sources with mean 0.0 and σ in the following ranges.

1) Lidar sensor noise σl from 0 to 0.9 m, over three times
the radius of the robot.

2) Goal position noise σg from 0 to 0.9 m, over three times
the radius of the goal target.

3) Action noise of velocity σv 0 to 0.9 m/s and angular
velocity σa 0.9 rad/s.

As lidar and action position noise increase, PRM-RL shows
only a slight degradation of 28% on lidar noise and 37% on action
noise, even at 0.9 m. In contrast, PRM-GAPF and PRM-DWA
degrade steeply with respect to lidar noise, with success rates
dropping to less than 1%. These methods seem to be more
resistant to increased action noise, but still drop to 39% and
54% of their peak scores for PRM-GAPF and PRM-DWA,
respectively. All methods were relatively resistant to goal noise,
with less than 10% falloff. PRM-RL outperformed PRM-GAPF
and PRM-DWA in all conditions.

PRM-RL is resilient to lidar, localization, and actuator noise
on the order of tens of centimeters, which is larger than the
typical lidar, localization, and actuator errors we observe on our
robot platforms, indicating that PRM-RL is a feasible approach
to deal with the kinds of errors our robots actually encounter.
This is similar to the trend to noise sensitivity reported in [12],
and suggests that overall navigation resilience to noise is corre-
lated to that of the local planner.

D. Impact of Sampling Density and Success Thresholds

To deploy PRM-RL on real robots, we need to choose sam-
pling density and success threshold parameters that provide
the best performance. Fig. 9 shows that PRM-RL success rate
increases steadily up to a sampling density of 1.0 samples/m,
which is roughly twice the size of our robot, and, then, levels
off. At the same time, collision checks increase rapidly with
sampling density; we have observed that over 1.0 samples/m,
the roadmap for the training environment requires more collision

1126 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 10. Increasing required edge connection success improves performance and reduces collision checks. (a) As the threshold for connecting nodes in the PRM
rises, RL agents guided by PRM-RL succeed more often with a sweet spot of 90% and higher. (b) Furthermore, early termination enables PRM-RL to skip unneeded
connectivity checks for savings exceeding 60%, an effect important on large roadmaps.

Fig. 11. Trajectories collected from PRM-RL execution on real robots. Trajectories are in color, circles represent successful navigation, X’s represent emergency
stops. (a) Several queries executed on a differential drive robot and tracked with onboard localization in a real office environment in Physical Testbed 2. The longest
successful single trajectory was 221.3 m. The floorplan and PRM connectivity are not displayed for privacy. (b)–(c) Physical Testbed 3 is a simulated living room,
where 128 trajectories collected with sparse and dense map densities. The denser map achieved 6% higher success rate and produced on average 2.5 m shorter
paths.

checks than some of the larger evaluation roadmaps collected at
0.4 samples/m. While PRM-SL theory predicts that performance
would continue to improve with increased sampling [38], [33],
this suggests that beyond a critical density PRM-RL perfor-
mance is robot-noise-bound, and that sampling beyond this
density provides little benefit at a rapidly increasing cost.

These experiments evaluate global planning; however, note
the average distance of points at 2.0 samples/m2 is roughly 0.5 m,
the true objective distance used to train our AutoRL local plan-
ners. This suggests the asymptotic behavior in these experiments
could be explained by the PRM sampling density approaching
a distance where the local planner can almost always find a path
to a nearby PRM node. Also note the car model’s success rate
differs from the diff-drive model, suggesting that success rate is
model bound rather than map bound.

Fig. 10 shows that PRM-RL’s success rate increases with
the required connection success rate. Because our connection
algorithm terminates earlier for higher thresholds when it detects
failures, collision checks drop as the success threshold rises. At
the end, for larger roadmaps, the success threshold of 100% not
only produces the most reliable roadmaps, but requires fewer
collision checks to build them.

These results suggest choosing map densities up to 1.0 sam-
ples/m with as high a success connection threshold as possible.
In this article, we compare sparse and dense parameters: a
sampling density of 0.4 samples/m and an effective success
connection threshold of ≥ 90%, which enables comparison
with [23], and a density 1.0 samples/m with a threshold of 100%;
in almost all evaluations, we observe better performance with
the dense parameters.

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1127

E. PRM-RL Performance on SLAM Maps

Floorplans are not always available or up-to-date, but many
robots can readily generate SLAM maps and update them as
buildings change. To assess the feasibility of using SLAM maps,
we evaluate PRM-RL on SLAM maps generated from some of
the same buildings as our floorplan roadmaps. Fig. 6 illustrates
a sample roadmap built from a SLAM map generated with
the ROS distribution of the GMapping algorithm [27] with the
default resolution of 5 cm per pixel. This map corresponds to
Physical Testbed 1, part of floor 2 of Building 1 in Fig. 3(d) and
the upper center section of the large-scale roadmap in Fig. 2.
This SLAM-derived roadmap has 195 nodes and 1488 edges
with 2.1 million collision checks.

We compare PRM-RL with our baselines on the three Physical
Testbed SLAM maps. PRM-RL’s success rate is 89% on the
dense PRM, a 97% relative increase over PRM-DWA and a
157% increase over PRM-GAPF.

These results show that the performance of PRM-RL with
an AutoRL policy is weak but comparable to its performance
on floorplan maps, and exceeds all other baselines; it is even
superior to PRM-HTRL on floorplan maps. These results indi-
cate PRM-RL performs well enough to merit tests on roadmaps
intended for real robots at physical sites, which we discuss in
the following two sections.

F. Scaling PRM-RL to Large-Scale Maps

Our robot deployment sites are substantially larger than our
simulated test maps, raising the question of how PRM-RL would
scale up. For example, the SLAM map discussed in the previous
section is only part of one building within a quad-building
complex. Where the SLAM map is 78 × 44 m, a map of the
quad-building complex is 288 × 163 m. To assess PRM-RL’s
performance on large-scale maps, we build and test roadmaps
for maps covering all deployment sites.

Fig. 2 depicts a large floorplan roadmap from the quad-
building complex. This roadmap has 15 900 samples and 1.4
million candidate edges prior to connection attempts, of which
689 000 edges were confirmed at a 90% success threshold. This
roadmap took 4 days to build using 300 workers in a cluster,
and required 1.1 billion collision checks. PRM-RL successfully
navigates this roadmap 57.3% of the time, evaluated over 1000
random navigation attempts with a maximum path distance
of 1000 m. Note our other experiments use a maximum path
distance of 100 m, which generally will not cross the skybridge
in this larger map. For reference, using our default evaluation
settings, PRM-RL navigates this roadmap 82.3% of the time.

For our other candidate robot deployment site, we use a large
SLAM map, 203 × 135 m. We constructed a roadmap with
2069 nodes and 53 800 edges, collected with 42 million colli-
sion checks at the higher success threshold of 100%. PRM-RL
successfully navigated this 58.8% of the time, evaluated over
1000 random navigation attempts. As on our smaller SLAM
map, the failure cases indicate that the more complex geometry
recorded by SLAM proves problematic for our current policies.

These results indicate that PRM-RL’s simulated performance
on large-scale roadmaps surpasses the average success threshold

Fig. 12. PRM-RL closes the sim to real gap. Performance in simulation and
on robots is similar, despite an e-stop policy that stops robots more aggressively
than in simulation. Note that on Physical Testbed 2, a dense PRM overcomes an
obstacle that thwarted a sparse PRM.

we observed previously in [23], making it worthwhile to test on
real robots at the physical sites.

G. Transfer of PRM-RL to Physical Robots

We empirically evaluate PRM-RL on three physical envi-
ronments on two differential-drive robots. First, we evaluate
PRM-RL with the AutoRL policy for a differential-drive robot
in Physical Testbed 1, as shown in Fig. 6(a). We collected 27
trajectories over 831 m of travel with an overall success rate of
85.2%; the longest successful trajectory was 83.1 m. Fig. 6(c)
shows the trajectories of 12 runs.

Second, we evaluate PRM-RL in Physical Testbed 2. For a
variant of the roadmap generated at 90% success rate with a
density of 0.4 samples/m, we collected eight trajectories over
487.2 m of travel; the longest successful trajectory was 96.9 m.
We cannot directly compare this evaluation to our simulated runs
because the e-stop policies designed to protect the robot do not
match our simulation termination conditions. Nevertheless, we
recorded three successful runs out of eight, a 37.5% success rate.
We, then, tested a variant of the roadmap generated at 100%
success rate and a density of 1.0 samples/m over 13 runs on
2542.1 m of travel for an improved 84.6% success rate, shown
in Fig. 11(a); the longest successful trajectory was 221.3 m.

Third, we apply the same evaluation parameters from Physical
Testbed 2 onto a novel environment, Physical Testbed 3. We
collected 128 runs, 64 for each variant of the roadmap, testing
both with the same sets of start/goal points. The denser map
achieved a 92.2% success rate compared to 85.9% for the sparse
map. Since Physical Testbed 3 contains large sections of free
space, using a denser map resulted in more optimized node
connections and reduced robot traversal by an average of 2.5 m
per run.

Fig. 12 summarizes these results. Despite more aggres-
sive episode termination policies on robots (near-collisions are
treated as failures), we nonetheless observe similar results: over
several different roadmaps constructed at different densities and
success criteria, PRM-RL achieves 85.8% success on robots
with an average sim2real gap of 7.43%. These results show that
the performance of PRM-RL on robots is correlated with the
performance of PRM-RL in simulation. This makes PRM-RL a

1128 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 13. PRMs can be built for agents with dynamic constraints. (a) Roadmap built for our training environment using a nonholonomic car model. (b) Example
car model trajectory; the upper right shows a 3-point turn to change the robot orientation. Yellow lines are the PRM path, the blue line is the agent’s trajectory,
white lines indicate progress toward the goal, and light green dots represents previous evals.

Fig. 14. PRM-RL is resilient in the presence of dynamic obstacles. With 40
moving agents, performance degrades to 53.1%, a higher score than PRM-GAPF
and PRM-DWA achieve in the default condition.

useful method for closing the sim-to-real gap, as improvements
or regressions in simulation are likely to be reflected in perfor-
mance on robots.

H. PRM-RL With Kinodynamic Constraints

To demonstrate that PRM-RL could guide more complicated
robots, we develop a drive model for a simulated F1/10 car [18]
with dynamics following [58] with velocity and acceleration
constraints enforced by our simulator. In this setup, AutoRL
learns a steering function for a robot with kinodynamical con-
strains, effectively learning to respect velocity and acceleration
constraints. Algorithm 1 encodes those constrains globally by
connecting only reachable nodes, making PRM-RL effectively a
kinodynamic planner [14]. Average success over the four maps
in Fig. 3 is 85.8% with a standard deviation of 1.0%; average
success in simulation on Physical Testbed 1 with a goal distance
of 0.25 m is 85.8%. Fig. 13(a) illustrates a roadmap built with
this model over our training map with 0.4 samples/m connected

with a 90% success rate; this roadmap has 32 nodes and 313
edges connected after 403 000 edge checks. On this roadmap,
PRM-RL exhibits an 83.4% success rate, including cases where
the car needs to make a complex maneuver to turn around, as
shown in Fig. 13(b). These results are comparable to results
on the robot, indicating that PRM-RL is a viable candidate for
further testing on more complicated robot models.

I. PRM-RL With Dynamic Obstacles

PRM-RL is also resilient in the face of dynamic obstacles, re-
lying on the local planner to avoid them without explicit replan-
ning. We simulated pedestrians with the social force model [31]
and tested PRM-RL, PRM-GAPF, and PRM-DWA on Buildings
1–3 with 0–40 added agents (Fig. 14). While all methods showed
a similar degradation in the presence of obstacles, on average
39.0%, PRM-RL’s performance only dropped to 53.1% with
40 obstacles, superior to PRM-GAPF (28.7%) and PRM-DWA
(40.3%) even in the zero-obstacle condition. Thus, a resilient
local planner can enable PRM-RL to handle dynamic obstacles
even though the framework has no explicit support for dynamic
replanning.

J. PRM-RL in Synthetic Environments

The SFs visual navigation approach achieves 100% success
on training maps and 98% success on transfer to new maps [70].
SFs navigates to single targets using vision and a discretized
action space. In contrast, PRM-RL navigates to arbitrary targets
using lidar and a continuous action space. Nevertheless, both
approaches navigate in spaces qualitatively similar to each other
in simulation and in testing on robots.

Therefore, we evaluate PRM-RL and our baselines in simu-
lation on close approximations of the maps used in [70], which
include four maze-like simulated maps and two physical testbed
environments. Fig. 15 shows the results: Both AutoRL and

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1129

Fig. 15. PRM-RL is competitive with SFs [70]. On transfer maps, PRM-RL
achieves over 94% success with noisy lidar, continuous actions, and arbitrary
goals, whereas SFs reports 98% success with vision, discrete action, and a single
goal.

PRM-RL achieved over 90% success on the synthetic maps,
with PRM-RL on a dense map achieving 94.6% success. While
SFs’s 98% success is 3.4% higher than PRM-RL, it has access
to a visual sensor, executes discretized actions, and navigates to
a single target.

We can draw two conclusions from these findings. First,
PRM-RL generalizes well to environments, which are different
from both our training environment and our previous testing
environments. Second, PRM-RL is competitive with methods
specifically designed for other environments.

VI. ANALYSIS

In the previous section, we empirically established correla-
tions between the local planner’s competence and PRM-RL’s
resilience to noise. We also explored the contributions of sam-
pling densities, success thresholds, and obstacle map sources to
the success of overall navigation. We concluded that 1) using an
execution policy that is resilient to noise and avoids obstacles as
a local planner improves the overall success of the hierarchical
planner; 2) a success threshold of 100% improves overall navi-
gation success, 3) the upper bound to navigation success is not
dependent on density but policy performance and robot type,
and 4) using realistic obstacle maps, such as SLAM maps, as a
basis for building roadmaps provides simulation results closer
to reality.

This section provides a deeper analysis of those empirical
findings. Section VI-A analyzes the impact of local planner’s ob-
stacle avoidance and noise resilience on roadmap construction.
Section VI-B examines the computational complexity of PRM-
RL, Section VI-C discusses causes of failure for trajectories over
multiple waypoints, and Section VI-D discusses limitations of
the method and future work.

A. PRM-RL Roadmap Connectivity

Unlike straight-line planners, RL agents can often go around
corners and smaller obstacles; Fig. 16 shows how this effectively
transforms the configuration space to make obstacles smaller.
While the agent never traverses these corner points, as they
are not in Cfree, they nevertheless do not serve to block the

agent’s path, unlike central portions of a larger body, which
might block or trap the control agent in a local minimum. If
we model this as an effective reduction in radius of a circular
obstacle fπ with respect to a policy π, and model the connection
region as a disc filled with randomly sampled obstacles from
0% to 100% in total area density ρo, we can estimate an upper
bound on connection success in the idealized case in which
obstacles do not occlude and the chance of connection is just the
complementary probability of encountering an obstacle over a
region of space, 1− ρo. This corresponds to the looser bound
1− ρofπ

2 in the RL case. Therefore, a conservative estimate of
the ratio of samples connected by PRM-RL to those connected
by PRM-SL is

connPRM-RL

connPRM-SL
=

1− ρofπ
2

1− ρo
. (4)

This simplified model indicates that it becomes harder to con-
nect points as obstacle density increases, but PRM-RL has an
increasing advantage over PRM-SL in connecting these difficult
roadmaps as RL’s ability to cut corners increases. Hence, in
environments with dense obstacles, it makes sense to invest
in execution policies that avoid obstacles really well, and use
them as local planners. Alternately, it suggests that policies
that can learn strategies for dealing with frequently occurring
obstacle topologies, such as box canyons and corners, are a
fruitful area for future work. Because the branching factor of
roadmap planning is proportional to the points in the connectiv-
ity neighborhood, planning cost can increase exponentially with
connection radius, and following [25], we set neighborhood size
empirically to balance the benefits of finding points within the
effective navigation radius of the planner against the drawbacks
of a connectivity neighborhood, which contains so many points
that planning becomes infeasible.

Conversely, PRM-RL does not connect nodes in a roadmap
where a policy cannot navigate reliably. This is the key difference
from PRM-SL, and is the cause for the upper limit on perfor-
mance improvements as the roadmaps increase in density—the
roadmaps are policy-bound, rather than sampling bound. One
question to ask is why local control policies cannot learn to drive
safe by repeatedly replanning the path (e.g., via A* searches or
variants). However, an analysis of how noise impacts the behav-
ior of policies indicates that policies, which do not memorize the
environment may overestimate their ability to navigate because
the hazards that they can observe locally may not represent an
accurate picture of the hazards of the global environment.

To see why, suppose a policy has learned to navigate safely in
the presence of noise by maintaining a distancedsafety from walls.
Modeling time as discrete and assuming the robot is traveling at
a constant speed, so that on each time slice, the robot moves
a constant distance dstep units forward, let us further model
sources of variability as transient Gaussian noise orthogonal to
the robot’s travel Npos(0, σpos) with zero mean and standard
deviation σpos. This results in a probability of collision per
step of 1

2erfc(dsafety√
2σpos

) (the cumulative distribution function of
the Gaussian noise model Npos evaluated at −dsafety, expressed
in terms of the complementary Gauss error function erfc(x)).
Fig. 17(a) shows that when the robot is traveling in a narrow

1130 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

Fig. 16. PRM-RL enables capturing valid samples not visible by line of sight. (a) Ability of RL to go around corners makes obstacles effectively smaller in
configuration space. (b) This means more connections can be made for a given connectivity neighborhood. Solid black arrows represent valid connections for either
PRM-SL or PRM-RL, dotted red arrows represent invalid connections for either method, and blue arrows indicate valid trajectories recovered by PRM-RL. (c)
Compared to PRM-SL, PRM-RL recovers many more potential connections as obstacles grow denser and RL gets better.

Fig. 17. PRM-RL enables capturing hazards in the environment difficult to learn with RL. (a) RL agents may learn to avoid obstacles, but not every location in
the environment has identical clearance; on the left, the robot can hug one wall, but on the right, it must pass between two walls, so uncertainty in controls leads to
two possible failure modes. (b) Therefore, as paths lengthen, the chance of navigating reliably drops faster in corridors than in wall hugging (blue region). (c) This
leads to RL overconfidence in a regime between where both PRM-RL and RL are reliable and where they both are not; PRM-RL can encode this in the roadmap
by deleting the right edge in (a).

corridor, it is twice as likely to collide as it does when hugging
a wall, even though it may be maintaining dsafety from any given
wall at all times. Over a path of length dcorr, a conservative
lower bound on the chance of collision rises exponentially with
the number of steps it takes to traverse the path

Psurvival =

(
1− 1

2
nwallserfc

(
dsafety√
2σpos

)) dcorr
dstep

(5)

causing the narrow corridor case to become unsafe faster than the
wall-hugging case as shown in the blue region of Fig. 17(b). This
means that an RL policy that judges its safety based on locally
observable features can overestimate the safety of a path in the
region between where both PRM-RL and RL would succeed
and where both PRM-RL and RL would fail [see Fig. 17(c)].
The same would be true of RL guided by PRM-SL based
on clearance, such as in grid-based sampling [19] and Safety
PRM [50]. In this case, RL or RL guided by PRM-SL can make
erroneous navigation choices, whereas PRM-RL simply does
not add that link to the roadmap. While in theory, an agent could
be designed to cope with this specific issue, other scenarios
can present similar problems: no local prediction of collision
probability can give a true guarantee of trajectory safety. While
this is an idealized analysis, our experience is that real-world

environments can be more pathological—for example, at one
site, curtains behind a glass wall induced a persistent 0.5 m error
in the robot’s perceived location, causing it to drive dangerously
close to the wall for long distances despite the presence of a
safety layer. PRM-RL provides an automated method to avoid
adding those unreliable connections in the roadmap, resulting
in the roadmaps that more sparsely connect but transfer more
reliably to the robot.

B. PRM-RL Computational Complexity

In this section, we assess the computational complexity of
building a PRM-RL roadmap with known RL policy range dπ ,
sampling density ρω , workspace volume VW , and connection
attempts nω . The cost of building a PRM with n nodes is
dominated by the cost of two distinct steps. The first step identi-
fies potential edges by finding m potential nearest neighbors
for each of the n nodes. While approaches such as PRM*
can construct PRMs with O(n log n) edge tests, achieving this
performance requires limits on m, such as connecting only the
m nearest neighbors or shrinking the radius of connection as
n increases [36]. Approaches using a fixed connection radius,
such as Simplified PRM [38], requireO(n2) edge tests [36]. The
second step evaluates the validity of each of the nm candidate

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1131

edges by performing collision checks along each edge, and adds
valid edges to the graph.

PRM-RL samples nodes in the workspaceW and attempts to
connect all neighbors within range of the policydπ , which can be
determined empirically [12] and is independent of the workspace
volume VW . Similarly, in Section V-D, PRM-RL’s performance
shows diminishing returns beyond a sampling density ρω , also
independent of workspace volume. Capping sampling at density
ρω makes the number of nodes a function of the workspace
volume

nW = VWρω = O(dDWρω) (6)

where DW ≤ 3 is the workspace dimensionality, and d is the
radius of the smallest DW -dimensional sphere that contains the
workspaceW.However, because the neighbor volume is a func-
tion of policy range and workspace dimensionality, Vπ ∝ dDWπ ,
the number of neighbors

mπ = Vπρω = O(dDWπ ρω) (7)

is a variable independent from nW , although their ratio is fixed
for any given workspace. Let dπ = cd for some constant c ∈ R.
More capable policies have c closer to 1, while less capable
policies have c closer to 0. For simplicity, we assume that 0 <
c ≤ 1, when limiting the search radius, even if policy‘s radius
might exceed the workspace’s radius. Thus

mπ

nW
∝ dDWπ ρω

dDWρω
= cDW ≤ 1. (8)

Therefore, we analyze PRM-RL with respect to nodes nW
and neighborsmπ in terms of the source variables that determine
them: workspace volumeVW , sampling density ρω , and effective
range dπ . First, the edge identification step is O(nW log nW)
because the number of nearest neighbors given in (7) is inde-
pendent of the total number of nodes nW and can be found in
O(log nW)with efficient approximate nearest neighbor searches,
as described in [36]. From there

O(nW log nW) = O(dDWρω log dDWρω), due to (6) (9)

= O(dDWρω log dρω), DW is constant. (10)

Second, for the edge validation phase, PRM-RL validates mπ ∗
nW candidate edges with nω rollouts. To validate one edge
rollout, PRM-RL performs on the order of O(dπ) collision
checks. Therefore, the cost of adding neighbors to the roadmap
is

O(nWmπnωdπ) = O(dDWρ2ωd
DW+1
π nω) (11)

by substituting (6) and (7) and rearranging. Combining (10) and
(11), we arrive at the total cost

O(dDWρω log dρω + dDWρ2ωd
DW+1
π nω) (12)

= O(dDWdDW+1
π ρ2ωnω) (13)

because for a typical map ρωd
DW
π dominates log dρω.

Equation (13) exposes the following power sources.
1) Complexity is O(dπ

2DW+1) in the policy range, so local
planners that can reliably cover longer distances increase

the computational cost of the roadmap. We recommended
choosing a shorter connection distance dω < dπ even if
the policy is capable of longer connections.

2) When the workspace is much larger than the reach of
the policy (0 < c� 1), the complexity is almost linear
in workspace volume.

3) Complexity is linear in connection attempts nω .
4) Complexity is quadratic in sampling density ρω , making it

worthwhile to assess the limiting sampling density before
building large numbers of roadmaps.

Each edge connection attempt is independent, so roadmap
building can be parallelized up to the expected number of sam-
ples VWρω . If parallel rollouts are performed instead of early
termination, this can be parallelized further by an additional
factor of nω . Thus, given np ≤ VWρωnω processors, the effec-
tive time complexity can be reduced up to O(VWρωnω

np
ρωdπ

DW+1),

possibly alleviating some of the time cost of increased sampling.
Finally, note that when using early termination, increasing the

success threshold ps often (but not always) reduces the required
number of connection attempts ns. In the worst-case scenario
where we require ps = 0.5, early termination can at best cut
ns to nω

2 , but as ps increases the number of failures needed to
exclude an edge, nω

1−ps , drops toward 1. Conversely, if navigation
is successful, then, the full nω samples need to be collected for
an edge; the distribution of successes and failures, thus, has a
large effect on the cost. One way to control this cost is to reduce
the max connection distance dω to less than the effective policy
navigation distance dπ; in this case, the agent is more often
expected to succeed, andnω can potentially be reduced. We have
observed that these tradeoffs can significantly affect the cost of
a run, but must be studied empirically for the environments of
interest.

C. PRM-RL Trajectory Execution

Because PRM-RL construction calculates the probability of
success before adding an edge, we can estimate the expected
probability of success of a long-range path that passes through
several waypoints. Recall that to add an edge to the roadmap, we
collect nω = 20 Monte Carlo rollouts and require an observed
proportion of successes ps typically of 90% and 100%. Given
that expected probability of success of a Bernoulli trial observing
ns successes out of nω samples is [52]

E[ps] =
ns + 1

nω + 2
(14)

the actual probability of successful navigation pn over an edge
with ps = 100% successful samples is 95.5%, and similarly
pn = 86.3% for thresholds of ps = 90%. Extrapolating over
the sequence of edges in a PRM-RL path, the expected success
rate is pn

nw where nw is number of waypoints. In [23], we
observe PRM-RL paths with 10.25 waypoints averaged over
our three deployment maps, yielding an estimated probability of
success of 22.0% for the 90% threshold and 62.3% for the 100%
threshold. Therefore, for the lengths of paths we observe in our
typical deployment environments, the 100% threshold improves

1132 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

PRM-RL’s theoretical performance to the point that it is more
likely to succeed than not, which is what we observe empirically.

D. Limitations

While AutoRL can handle moving obstacles [12], PRM
roadmaps remain static after construction, causing two failure
modes. First, PRM-RL does not replan. If dynamic obstacle
avoidance steers a local planner closer to a subsequent waypoint,
PRM-RL could replan and provide that waypoint as the next
waypoint. Second, large changes in the environment can inval-
idate edges or create new paths, e.g., adding/removing a wall.
Replanning with a roadmap update could handle this scenario,
e.g., with iterative reshaping [69].

Another limitation of PRM-RL is that it requires a map. With
a sufficiently good local policy, a SLAM algorithm, and an in-
crementally updatable PRM, it would be possible to build a PRM
online by progressively exploring an environment and building
the roadmap and SLAM map together. However, while adding
online features to a roadmap are certainly feasible, developing
an exploration policy is challenging in its own right, and goes
hand in hand with improving the quality of the local planner so
it can be trusted to execute reliably.

This work focuses on evaluating roadmap construction and
performance, so we leave replanning, exploration policies, and
online map building for future work.

VII. CONCLUSION

In this article, we presented PRM-RL, a hierarchical planning
method for long-range navigation that combines sampling-based
path planning with RL agent as a local planner in very large
environments. The core of the method was that roadmap nodes
are connected only when the RL agent can connect them con-
sistently in the face of noise and obstacles. This extension
of [23] contributed roadmap construction and robot deployment
algorithms, along with roadmap connectivity, computational
complexity, and navigation performance analysis. We evaluated
the method on a differential drive and a car model with inertia
used on floormaps from five building, two noisy obstacle maps,
and on three physical testbed environments.

We showed that 1) the navigation quality and resilience to
noise of the execution policy directly transfers to the hierarchical
planner; 2) a 100% success threshold in roadmap construction
yields both the highest quality and most computationally effi-
cient roadmaps; and 3) building roadmaps from the noisy SLAM
maps that the robot uses at execution time virtually closes the
sim2real gap, yielding simulation success rates very similar to
those observed on robots. PRM-RL with SLAM maps embed
information into the roadmap that the robot uses at execution
time, providing a better estimate of performance on the robot.
Failure modes included pathologies of the local policy, poorly
positioned samples, and sparsely connected roadmaps. In future
work, we will examine improved policies with more resistance
to noise, better sampling techniques to position the samples
strategically, and techniques for improving map coverage with
better localization and obstacle maps.

APPENDIX

TABLE OF SYMBOLS

APPENDIX

TRAINING HYPERPARAMETERS

Both actor and critic use the AdamOptimizer with β1 = 0.9,
β2 = 0.999, ε = 1e− 08; the actor’s learning rate is1e− 05 and
the critic’s is 0.0005. The actor uses DQDA gradient clipping
and the critic uses γ = 0.995 with the Huber loss for temporal
difference errors. In total, 10 000 initial stabilization steps are
followed by a soft target network update of 0.0001 on every
step. Our training batch size is 512 and our replay buffer has
a capacity of 0.5 million. We train for 5 million steps, but save
policies every25 000 steps and select the best policy over the run.

ACKNOWLEDGMENT

The authors thank J. Bingham, J. Davidson, B. Ichter, K.
Oslund, P. Pastor, O. Ramirez, C. Richards, L. Tapia, A. Toshev,
and V. Vanhoucke for helpful discussions and contributions to
this project. They also thank the editors and reviewers for their
detailed reviews and thoughtful comments.

REFERENCES

[1] D. Abel, A. Agarwal, F. Diaz, A. Krishnamurthy, and R. E. Schapire,
“Exploratory gradient boosting for reinforcement learning in complex
domains,” 2016, arXiv:1603.04119.

[2] A. Agha-mohammadi, S. Chakravorty, and N. Amato, “FIRM: Sampling-
based feedback motion planning under motion uncertainty and imperfect
measurements,” Int. J. Robot. Res., vol. 33, no. 2, pp. 268–304, 2014.

[3] I. Al-Bluwi, T. Siméon, and J. Cortés, “Motion planning algorithms
for molecular simulations: A survey,” Comput. Sci. Rev., vol. 6, no. 4,
pp. 125–143, 2012.

FRANCIS et al.: LONG-RANGE INDOOR NAVIGATION WITH PRM-RL 1133

[4] R. Alterovitz, T. Simeon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with markov motion un-
certainty,” in Proc. Robot.: Sci. Syst., Atlanta, GA, USA, Jun. 2007,
pp. 246–253.

[5] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are em-
barrassingly parallel,” in Proc. IEEE Int. Conf. Robot. Autom., May 1999,
vol. 1, pp. 688–694.

[6] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli, N. Siddharth, and
P. H. Torr, “Playing doom with slam-augmented deep reinforcement
learning,” 2016, arXiv:1612.00380.

[7] S. Brahmbhatt and J. Hays, “Deepnav: Learning to navigate large cities,”
2017, arXiv:1701.09135.

[8] C. Ichnowski and C. Alterovitz, “Parallel sampling-based motion planning
with superlinear speedup,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2012, pp. 1206–1212.

[9] A Look at the U.S. Commercial Building Stock: Results from EIA’s 2012
Commercial Buildings Energy Consumption Survey (CBECS). 2012. [On-
line]. Available: https://www.eia.gov/consumption/commercial/reports/
2012/buildstock/

[10] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 2722–2730.

[11] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-guided
artificial potential fields with stochastic reachable sets for motion planning
in highly dynamic environments,” in Proc. IEEE Int. Conf. Robot. Autom.,
2015, pp. 2347–2354.

[12] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation
behaviors end-to-end with autorl,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 2007–2014, Apr. 2019.

[13] H. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “RL-RRT: Kin-
odynamic motion planning via learning reachability estimators from RL
policies,” in IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4298–4305, Oct.
2019.

[14] B. Donald, P. Xavier, J. Canny, J. Canny, J. Reif, and J. Reif, “Kinodynamic
motion planning,” J. ACM, vol. 40, no. 5, pp. 1048–1066, Nov. 1993.

[15] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,”
2016, arXiv:1611.01779.

[16] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel,
“RL2: Fast reinforcement learning via slow reinforcement learning,” 2016,
arXiv:1611.02779.

[17] C. Ekenna, S. A. Jacobs, S. Thomas, and N. M. Amato, “Adaptive neighbor
connection for PRMS: A natural fit for heterogeneous environments and
parallelism,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov. 2013,
pp. 1249–1256.

[18] M. O’Kelly et al., “F1/10: An open-source autonomous cyber-physical
platform,” 2019, arXiv:1611.02779.

[19] T. Fan et al., “Getting robots unfrozen and unlost in dense pedestrian
crowds,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1178–1185, Apr. 2019.

[20] A. Faust, H.-T. Chiang, and L. Tapia, “PEARL: Preference appraisal
reinforcement learning for motion planning,” 2018, arXiv:1811.12651.

[21] A. Faust, N. Malone, and L. Tapia, “Preference-balancing motion planning
under stochastic disturbances,” in Proc. IEEE Int. Conf. Robot. Autom.,
2015, pp. 3555–3562.

[22] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Automated aerial
suspended cargo delivery through reinforcement learning,” Artif. Intell.,
vol. 247, pp. 381–398, 2017.

[23] A. Faust et al., “PRM-RL: long-range robotic navigation tasks by combin-
ing reinforcement learning and sampling-based planning,” in Proc. IEEE
Int. Conf. Robot. Automat., Brisbane, QLD, 2018, pp. 5113–5120.

[24] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[25] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic
roadmap planners,” in Algorithmic Foundations of Robotics V. New York,
NY, USA: Springer, 2004, pp. 43–57.

[26] A. Giusti et al., “A machine learning approach to visual perception of
forest trails for mobile robots,” IEEE Robot. Autom. Lett., vol. 1, no. 2,
pp. 661–667, Jul. 2016.

[27] Gmapping - ROS Wiki, 2019. [Online]. Available: http://wiki.ros.org/
gmapping

[28] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Scul-
ley, “Google vizier: A service for black-box optimization,” in Proc.
ACM Int. Conf. Knowl. Discovery Data Mining, ACM, 2017, pp. 1487–
1495.

[29] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive
mapping and planning for visual navigation,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., Honolulu, HI, 2017, pp. 7272–7281.

[30] K. Hauser, T. Bretl, J. Latombe, and B. Wilcox, “Motion planning for a
sixlegged lunar robot,” in Proc. 7th Int. Workshop the Algorithmic Found.
Robot., 2006, pp. 16–18.

[31] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Phys. Rev. E, vol. 51 no. 5, 1995, Art. no. 4282.

[32] D. Hsu, R. Kindel, J.-C. Latombe, and S. M. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” Int. J. Robot. Res., vol. 21,
no. 3, pp. 233–256, 2002.

[33] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic founda-
tions of probabilistic roadmap planning,” in Robotics Research. New York,
NY, USA: Springer, 2007, pp. 83–97.

[34] A. Irpan, “Deep reinforcement learning doesn’t work yet,” 2018. [Online].
Available: https://www.alexirpan.com/2018/02/14/rl-hard.html

[35] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[36] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[37] Y. Kato, K. Kamiyama, and K. Morioka, “Autonomous robot navigation
system with learning based on deep q-network and topological maps,” in
Proc. IEEE/SICE Int. Symp. Syst. Integration, Dec. 2017, pp. 1040–1046.

[38] L. E. Kavraki and J. C. Latombe, “Probabilistic roadmaps for robot path
planning,” in Practical motion planning in robotics: current approaches
and future challenges, K. Gupta and A. P. Pobil, Eds. Hoboken, NJ, USA:
Wiley, 1998, pp. 33–53.

[39] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[40] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[41] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[42] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to single-
query path planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2000,
vol. 2, pp. 995–1001.

[43] S. M. LaValle, Planning Algorithms Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[44] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New Direc-
tions. Boston, MA, USA: A. K. Peters, 2000, pp. 293–308.

[45] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 39, pp. 1–40, 2016.

[46] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Representations, 2016. [On-
line]. Avaliable: https://deepmind.com/research/publications/continuous-
control-deep-reinforcement-learning

[47] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement
learning,” in Proc. IEEE Int. Conf. Robot. Autom., Brisbane, Australia,
May 21–25, 2018, pp. 6252–6259.

[48] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path planning of
a mobile robot using improved q-learning,” Robot. Auton. Syst., vol. 115,
pp. 143–161, 2019.

[49] N. Malone, A. Faust, B. Rohrer, R. Lumia, J. Wood, and L. Tapia, “Efficient
motion-based task learning for a serial link manipulator,” Trans. Control
Mech. Syst., vol. 3, no. 1, pp. 25–35, 2014.

[50] N. Malone, K. Manavi, J. Wood, and L. Tapia, “Construction and use of
roadmaps that incorporate workspace modeling errors,” in Proc. IEEE Int.
Conf. Intell. Robot. Syst., Nov. 2013, pp. 1264–1271.

[51] N. Malone, B. Rohrer, L. Tapia, R. Lumia, and J. Wood, “Implementation
of an embodied general reinforcement learner on a serial link manipulator,”
in Proc. IEEE Int. Conf. Robot. Autom., May 2012, pp. 862–869.

[52] N. D. Megill and M. Pavicic, “Estimating bernoulli trial probability from
a small sample,” 2011, arXiv:1105.1486.

[53] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
& freight: Standard platforms for service robot applications,” in Proc.
Workshop Auton. Mobile Service Robots Held Int. Joint Conf. Artif. Intell.,
2016. [Online]. Available: https://fetchrobotics.com/wp-content/uploads/
2018/04/Fetch-and-Freight-Workshop-Paper.pdf

[54] P. Mirowski et al., “Learning to navigate in complex environments,” 2016,
arXiv:1611.03673.

[55] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[56] A. Wahid, A. Toshev, M. Fiser, and T. E. Lee, “Long range neural
navigation policies for the real world,” Intell. Robots Syst. 2019 IEEE/RSJ
Int. Conf., pp. 82–89, 2019.

[57] K. Mülling, J. Kober, and J. Peters, “A biomimetic approach to robot table
tennis,” Adaptive Behav., vol. 19, no. 5, pp. 359–376, 2011.

https://www.eia.gov/consumption/commercial/reports/2012/buildstock/
http://wiki.ros.org/gmapping
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://deepmind.com/research/publications/continuous-control-deep-reinforcement-learning
https://fetchrobotics.com/wp-content/uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf

1134 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020

[58] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
in EEE Trans. Intell. Vehicles, vol. 1, no. 1, pp. 33–55, Mar. 2016.

[59] J.-J. Park, J.-H. Kim, and J.-B. Song, “Path planning for a robot manipu-
lator based on probabilistic roadmap and reinforcement learning,” Int. J.
Control, Autom., Syst., vol. 5, pp. 674–680, 2008.

[60] M. Pfeiffer, M. Schaeuble, J. I. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in Proc. IEEE Int. Conf. Robot.
Autom., 2017, pp. 1527–1533.

[61] S. Rodríguez, J.-M. Lien, and N. M. Amato, “A framework for planning
motion in environments with moving obstacles,” in Proc. IEEE Int. Conf.
Intel. Rob. Syst., 2007, pp. 3309–3314.

[62] A. Seff and J. Xiao, “Learning from maps: Visual common sense for
autonomous driving,” 2016, arXiv:1611.08583.

[63] B. Siciliano and O. Khatib, Springer Handbook of Robotics. New York,
NY, USA: Springer, 2016.

[64] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2017.

[65] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2017, pp. 31–36.

[66] L. Tapia, S. Thomas, and N. M. Amato, “A motion planning approach to
studying molecular motions,” Commun. Inf. Syst., vol. 10, no. 1, pp. 53–68,
2010.

[67] J. van den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state informa-
tion,” Int. J. Robot. Res., vol. 30, no. 7, pp. 895–913, 2011.

[68] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective
robot reinforcement learning with distributed asynchronous guided policy
search,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Vancouver, BC,
2017, pp. 79–86.

[69] E. Yoshida, C. Esteves, I. Belousov, J. Laumond, T. Sakaguchi, and
K. Yokoi, “Planning 3-d collision-free dynamic robotic motion through
iterative reshaping,” IEEE Trans. Robot., vol. 24, no. 5, pp. 1186–1198,
Oct. 2008.

[70] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across sim-
ilar environments,” in Proc. IEEE Int. Conf. Intel. Robot. Syst., 2017,
pp. 2371–2378.

[71] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” 2016, arXiv:1609.05143.

[72] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using deep
reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom., 2017,
pp. 3357–3364.

Anthony Francis (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the Georgia Institute of
Technology, Atlanta, GA, USA, in 1991, 1996, and
2000, respectively, all in computer science, along with
a Certificate in Cognitive Science in 1999.

He is currently a Senior Software Engineer with
Robotics at Google, Mountain View, CA, USA, spe-
cializing in reinforcement learning for robot naviga-
tion. Previously, he worked on emotional long-term
memory for robot pets at Georgia Tech’s PEPE robot
pet project, on models of human memory for infor-

mation retrieval at Enkia Corporation, and on large-scale metadata search and
3-D object visualization at Google.

Dr. Francis won the ICRA 2018 Best Paper Award for Service Robotics. His
work has been featured in the New York Times.

Aleksandra Faust (Senior Member, IEEE) received
the master’s degree in computer science from the
University of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, in 2004, and the Ph.D. degree (with
distinction) in computer science from the University
of New Mexico, Albuquerque, NM, USA, in 2014.

She is currently a Staff Research Scientist with
Robotics, Google, Mountain View, CA, USA, spe-
cializing in robot motion planning and reinforcement
learning.

Dr. Faust’s work has been featured in the New
York Times, ZdNet, and was awarded the Best Paper in Service Robotics at
ICRA 2018.

Hao-Tien (Lewis) Chiang (Member, IEEE) received
his M.S. degree in physics and Ph.D. in computer
science from the University of New Mexico, Albu-
querque, NM, USA, in 2015 and 2020, respectively.

He was also a Student Researcher at Robotics at
Google from 2018 to 2019. His research focuses on
improving and integrating robot motion planning and
machine learning. His work combines efficient search
techniques from motion planning with noise-tolerant,
adaptive reinforcement learning. This line of research
resulted in his work being featured in the Google AI

Blog, IEEE Spectrum PC Magazine and VentureBeat.com. He co-organized the
popular Third Workshop in Machine Learning in the Planning and Control of
Robot Motion at ICRA 2018 and two Becoming A Robot Guru workshops at
RSS 2016 and WAFR 2018.

Jasmine Hsu (Member, IEEE) received the B.A.
degree in cognitive science from the University of
Virginia, Charlottesville, VA, USA, in 2012, and the
M.S. degree in computer science from New York
University, New York City, NY, USA, in 2015.

She previously worked in the defense industry
and has been a Software Engineer with Robotics at
Google, Mountain View, CA, USA, since 2016. Her
previous work has been focused on reinforcement
learning for grasping, learning representations, and
currently motion-planning.

J. Chase Kew (Member, IEEE) received the B.S.
degree in computer science and mechanical engi-
neering from the California Institute of Technology,
Pasadena, CA, USA, in 2017.

She is currently a Software Engineer with Robotics,
Google, Mountain View, CA, USA, working on ma-
chine learning for robotic navigation.

Marek Fiser received the master’s degree in com-
puter science from Purdue University, West Lafayette,
IN, USA, in 2015.

He is currently a Software Engineer with Robotics
at Google, Mountain View, CA, USA, working on
systems that can learn navigation policies with rein-
forcement learning, including creation and integra-
tion of simulated environments, designing and train-
ing agents using RL, and deploying learnt policies on
real robots.

Mr. Fiser’s work was awarded the Best Paper in
Service Robotics in 2018.

Tsang-Wei Edward Lee received the B.S. degree in
computer science and electrical engineering from the
University of California, Riverside, Riverside, CA,
USA, in 2002.

He is currently a Test Engineer with Robotics at
Google, Mountain View, CA, USA, designing test
plans, supporting robot operations, and conducting
on robot experiments.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

