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Abstract—The human input has enabled autonomous systems
to improve their capabilities and achieve complex behaviors that
are otherwise challenging to generate automatically. Recent work
focuses on how robots can use such inputs—such as, demonstra-
tions or corrections—to learn intended objectives. These tech-
niques assume that the human‘s desired objective already exists
within the robot’s hypothesis space. In reality, this assumption is
often inaccurate: there will always be situations where the person
might care about aspects of the task that the robot does not know
about. Without this knowledge, the robot cannot infer the correct
objective. Hence, when the robot’s hypothesis space is misspecified,
even methods that keep track of uncertainty over the objective fail
because they reason about which hypothesis might be correct, and
not whether any of the hypotheses are correct. In this article, we
posit that the robot should reason explicitly about how well it can
explain human inputs given its hypothesis space and use that situ-
ational confidence to inform how it should incorporate the human
input. We demonstrate our method on a 7 degrees-of-freedom robot
manipulator in learning from two important types of human inputs:
demonstrations of motion planning tasks and physical corrections
during the robot’s task execution.

Index Terms—Bayesian inference, inverse reinforcement
learning (IRL), learning from demonstration, physical human–
robot interaction.

I. INTRODUCTION

AUTONOMOUS systems are increasingly interfacing and
collaborating with humans in a variety of contexts, such

as semiautonomous driving, automated control schemes on air-
planes, or household robots working in close proximity with
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Fig. 1. Household robotics scenario where the person physically interacts
with the robot. The person prefers the robot to keep cups closer to the table, but
accounting for the table (outside of collisions) is not in the robot’s hypothesis
space for what the person might care about. Thus, the robot’s internal situational
confidence β about what the human input means is low for all hypotheses θ.

people. While the improving capabilities of robotic systems are
opening the door to new application domains, the substantially
greater complexity and interactivity of these settings makes it
challenging for system designers to account for all relevant oper-
ating conditions and requirements ahead of time. For example, a
household robot designer may not know how an end user would
like the robot to interact with the personal possessions in the
user’s home.

In situations like these, it can be beneficial for the robot to
utilize the human input as guidance on the desired behavior. In
fact, the human input has enabled researchers and engineers to
program advanced behaviors that would have otherwise been
extremely challenging to specify. Helicopter acrobatics [1], ag-
gressive automated car maneuvers [2], and indoor navigation [3]
are three cases that exemplify the benefit of using the human
input for guiding robot behavior.

In order to utilize the human input, system designers typi-
cally equip robots with a representation of possible objectives
that the human could care about. These representations can
range from quadratic cost models [4] to complex temporal logic
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specifications [5] to neural networks [6]. However, anticipating
all motivations for the human input and specifying a complete
model are challenging. Consider Fig. 1 where a human is at-
tempting to change the robot‘s behavior in order to make it
consistently stay close to the table, but the robot’s model of
what the human might care about does not include distances to
the table. By choosing a class of functions, the system designer
implicitly assumes that what the human wants (and is giving
input about) can be represented via a member of that class.
Unfortunately, when this assumption breaks, the system can
misinterpret human guidance, perform unexpected or undesired
behavior, and degrade in overall performance.

Two approaches to mitigate this problem could be to either
start with a more complex objective space or to continuously
increase its complexity given more data. Unfortunately, even
complex models are not guaranteed to encompass all possibili-
ties and recomputing the best objective space based on human
data faces the threat of overfitting to the most recent observa-
tions. In contrast, we argue that the robot should be able to
understand when it cannot understand the input. For example,
if the end user in the home is trying to guide the robot to handle
fragile objects with care but the system does not possess a model
of fragility, the robot should deduce that this input cannot be well
explained by any of its given hypotheses.

In this work, we formalize how autonomous systems can
explicitly reason about how well they can explain given human
inputs. To do this, we observe that if a human input appears
unlikely with respect to all possible hypotheses, then the robot’s
model is misspecified. We build on previous work centered
around this observation to propose a Bayesian inference frame-
work focused on inferring both model parameters, and their
corresponding situational confidence. If the robot is in situations
as in Fig. 1, where none of the hypotheses explain the human‘s
input well, then the situational confidence will be low for all
hypotheses, indicating that the robot’s model is not sufficiently
rich to understand the human’s input. However, when the robot’s
model is well specified, our framework does not impede the robot
from inferring the correct task objectives—in fact, the situational
confidence will be high, providing an indicator of how well the
system can understand the objective.

We illustrate the utility of situational confidence estimation in
quantifying objective space misspecification for two types of hu-
man inputs: demonstrations and corrections. Our contributions
in this work are as follows.

1) We introduce a general framework for quantifying objec-
tive space misspecification when the human and the robot
are acting on the same dynamical system.

2) We showcase the framework for learning from demon-
strations using user demonstration data for an arm motion
planning task.

3) We showcase the framework for learning from physical
corrections by deriving an algorithm for online (close to
real time) inference and testing it in a user study.

We note that this work is an extension of [7], which was
originally presented at the Conference on Robot Learning,
Zürich, Switzerland, in 2018. We build on this work by
introducing a general framework for quantifying objective

space misspecification and instantiating it in a new type
of a human input: learning from demonstrations. Not only
demonstrations are the most widely used type of input for
learning objective functions, but the applicability across two
input types suggests that the approach could be adapted more
broadly to more types of human feedbacks.

The remainder of this article is organized as follows.
Section II places this work in the context of existing literature on
robots learning from humans and model confidence estimation.
Section III frames the confidence estimation problem more
formally for scenarios where the human and robot operate on
the same dynamical system. Section IV directly instantiates the
framework in Section III for the case of learning from demon-
strations. Section V presents a derivation of approximations of
the general formalism for tractable online inference from human
corrections. Section VI showcases our proposed approach in
several case studies where the robot‘s hypothesis space cannot
or only partially explain the human’s input. Section VII presents
the results of a user study of our approach as applied to a
7-degrees-of freedom (DoF) robotic manipulator learning from
human participants. Section VIII concludes this article with a
discussion of some of the limitations of our work, as well as
suggestions for future research directions.

Overall, we think that the ability to detect misspecification
when learning objectives from the human input will become
increasingly important as robotics capability advances and we
will want end users to customize how the robot behaves. Our
work takes a step in this direction by enabling robots to detect
when none of the hypotheses they have explain the user input,
and our experiments show promising results. Of course, there
are still limitations to this. One limitation is in the experi-
ments themselves, which are only for motion planning tasks
with low-dimensional hypothesis spaces. A more fundamental
limitation is that there will still be cases when the person wants
something outside the robot’s hypothesis space, but the robot
can nonetheless explain their current input relatively well with
what it has access to, thus confusing misspecification for slight
noise in the human input. This will especially be the case as
the hypothesis space is more expressive, and can only be solved
by the robot receiving a lot more human inputs: each might be
explainable by some hypothesis, but eventually no hypothesis
can explain all input. More work is needed in studying how
to query for a diverse human input, as well as how to convey
what the robot has learned back to the person, and, in general,
how to have a true collaborative interaction to detect and resolve
misspecification in the objective space.

II. RELATED WORK

We group prior work into three main categories: enabling
robots to learn from the human input, doing so while leveraging
uncertainty, and estimating model confidence.

A. Robots Learning From Humans

The programming of robots through direct human interaction
is a well-established paradigm. The human input can be given
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to the robot in a variety of forms, from teleoperation of the robot
by a user to kinesthetic teaching [8].

In such interaction paradigms, the robot aims to infer a cost
function or policy that best describes the examples that it has
received. New avenues of research focus on learning such robot
objectives from the human input through demonstrations [9],
[10], teleoperation data [11], corrections [12], [13], compar-
isons [14], examples of what constitutes a goal [15], or even
specified proxy objectives [16]. In this article, we focus on learn-
ing from two of such types of human inputs—demonstrations
and physical corrections—although we stress that the principles
outlined in our formalism are more general and could be applied
to the other interaction modes mentioned.

One approach to learning behaviors from human inputs is
inverse reinforcement learning (IRL). In the classical IRL, the
robot receives complete optimal demonstrations of how to per-
form a task, and the robot learns the human’s cost function
from these observations [10], [17], [18]. In this paradigm, it
is typically assumed that the expert is trying to optimize an
unknown cost function. The robot uses the observations of the
human’s behavior to recover the underlying objective.

Another useful form of the human input is corrections. Here,
the robot performs the task according to how it was programmed
and the user corrects aspects of the task to better match their pref-
erences. From these sparse interactions, the robot also performs
cost function inference to improve performance during the next
task iteration [19]–[21]. Examples of learning from corrections
have been explored in offline [12], [22] and online settings [13],
[23]–[25].

Although powerful, the aforementioned IRL works assume
that the human expert provides optimal demonstrations, which
is often an unrealistic assumption. A real human input, especially
during interaction with high degree-of-freedom systems, such as
robotic manipulators, is noisy and suboptimal. Second, much of
the corrections literature has focused on estimates of the human’s
objectives. However, in practice, even the most likely estimate
might not be a very likely one. Thus, in both domains, we stress
that it is important to maintain the uncertainty over the estimated
objectives.

B. Uncertainty in Robot Learning

Rather than estimating a single objective, some learning meth-
ods maintain an entire probability distribution over what the
objective might be [16], [26]–[28]. This not only enables the
robot to leverage a prior, but also to then generate its behavior in
a way that is mindful of the entire distribution, rather than just
using the maximum-likelihood estimator (MLE).

Bayesian IRL [28] treats demonstrations as evidence about
the objective, and does a Bayesian belief update on a prior
distribution. Inverse reward desing [16] treats the objective a
designer specified for a particular set of environments (a “proxy”
objective) as evidence about the true desired objective, again ob-
taining a full distribution over what the designer might actually
want. The intuition is that this observed proxy objective (that
may be misspecified) incentivizes behavior that is approximately
optimal with respect to the true objective.

Finally, specifically for the input as physical corrections, the
work in [27] reasons over the uncertainty of the estimated human
preferences through the means of a Kalman filter. The method
maintains a mean estimate and a covariance of this estimate as
a measure of confidence. These are used in planning the robot’s
trajectory such that it optimizes for features it is confident about,
while avoiding features it is uncertain about.

Although they maintain a full distribution, these works still
assume that what the human wants is in the robot’s objec-
tive space. We argue that this is not necessarily a realistic
assumption, and later showcase some consequences that arise
when it is not true. When the robot’s hypothesis space is mis-
specified, even when maintaining uncertainty over the objec-
tive, state-of-the-art methods interpret the human input as evi-
dence about which hypothesis is correct, rather than considering
whether any hypothesis is correct. In this work, we focus on the
latter.

C. Situational Confidence Estimation

Some recent works are studying how to enable robots to
understand that their models cannot explain the human input
well [29]–[31]. Fisac et al. [30] and Fridovich-Keil et al. [31]
employ a noisily optimal model of human pedestrian motion
when the human and the robot operate on separate dynamical
systems (and have separate objective functions). This article
introduces the notion of model confidence estimation and uses
the apparent likelihood of the human’s choice of actions to adjust
the confidence in predictions about their behavior.

This work draws inspiration from the notion of model con-
fidence estimation, generalizing it to the setting of inferring
what the robot’s objective ought to be. Instead of focusing
on misspecification of a discrete set of physical goal locations
for pedestrian navigation, here we study misspecification of a
relatively complex set of possible robot objectives in motion
planning tasks. As a result of focusing on robot objectives, we
also study a different form of human inputs—that is, input in the
context of operating on the same dynamical system, such as full
task demonstrations and physical corrections.

III. PROBLEM FORMULATION AND APPROACH

We consider a robot R operating in the presence of a human
H whom it seeks to assist in the execution of some task. In the
most general setting, the robot and the human are both able to
affect the evolution of the state x ∈ Rn over time through their
respective control inputs:

xt+1 = f
(
xt, ut

R, u
t
H

)
(1)

with uR ∈ UR and uH ∈ UH , where Ui (i ∈ {H,R}) are com-
pact sets. We assume that the human has some consistent pref-
erence ordering between different state trajectories and input
signals, which could in principle be expressed through a cost
function of the form

C∗(x,uR,uH) (2)

where the state trajectory is x = [x0, x1, . . . , xT ] ∈ Rn(T+1),
the robot’s control input is uR = [u0

R, u
1
R, . . . , u

T
R] ∈ Rn(T+1),
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and the human’s control input is uH = [u0
H , u1

H , . . . , uT
H ] ∈

Rn(T+1).1 Note that this hypothesized cost function C∗ can
be quite general, encoding an arbitrary preference ordering.
However, the robot does not in general have access to the
human’s preferences C∗, and must instead attempt to infer and
represent them tractably.

In order to do this, the robot can typically reason over a param-
eterized approximation of the cost function, which introduces an
inductive bias, making inference tractable at the cost of limiting
expressiveness: in some cases, the chosen set of parametric
functions may fail to encode preferences that would explain the
human’s behavior with sufficient accuracy. In this work, we will
denote by Cθ the cost function induced by parameters θ ∈ Θ,
and the robot seeks to estimate the human’s preferred θ from her
control inputs uH .

In a general setting, since the state trajectory x is determined
not only by the human’s actions uH but also by the robot’s uR,
the human would need to reason about how the robot will
respond to her decisions. This requires analyzing the interaction
in a game-theoretic framework [32], [33], which will not be the
object of this work. Instead, we focus on common interaction
scenarios in which the robot can approximately assume that
the human does not explicitly account for the coupled mutual
influence between both agents’ decisions. This happens fre-
quently if the human is either providing a demonstration for
the robot or intervening to correct the robot’s default behavior.
In these settings, the typical assumption is that the human has all
necessary information about the robot’s control input uR before
deciding on her own uH .

Thus, given observations of the human input uH from an
initial state x0, the robot needs to draw inferences on the cost
parameter θ

P (θ | x0,uR,uH) =
P (uH | x0,uR; θ)P (θ)∫

θ̄ P (uH | x0,uR; θ̄)P (θ̄)dθ̄
(3)

where P (uH | x0,uR; θ) characterizes how the robot expects
the human‘s input to be informed by her preferences, condi-
tioned on the initial state and the robot’s expected controls.

For example, if the human were assumed to act optimally, this
model would place all probability on the set of optimal states
and actions with respect to the cost Cθ. Of course, this would
be an unreasonably strong assumption given that the robot‘s
parameterized cost constitutes a best effort to approximate the
human’s preferences. Instead, a useful modeling choice can be
to characterize the human as being more likely to take actions
that are well aligned with her preferences.

One such model is inspired by the Boltzmann energy based
model satisfying the maximum entropy principle [34]. Follow-
ing its adaptations as a model of human decision making in [13],
[35], and [36], we model the human as a noisily optimal agent
that tends to choose control inputs that approximately minimize

1For deterministic dynamics (1) having x0,uR and uH are enough to fully
specify the entire state trajectory x. In this case, the cost function could be
rewritten as C∗(x0,uR,uH) by implicitly encoding (1). For clarity, we use the
more general form in (2) and make the dependence explicit where needed.

the modeled cost

P (uH | x0,uR; θ, β) =
e−βCθ(x(·;x0,uR,uH),uR,uH)

∫
ūH

e−βCθ(x(·;x0,uR,ūH),uR,ūH)dūH
.

(4)

In this model, the inverse temperature coefficient β ∈ [0,∞)
determines the degree to which the robot expects to observe
human actions that are consistent with the cost model.

The goal is to detect when the robot does not have a rich
enough hypothesis space, i.e., whenC∗ lies far outside of anyCθ.
We call this problem objective space misspecification. Rather
than only interpreting the human input as evidence about which
hypothesis is correct, we additionally focus on considering
whether any hypothesis is correct. It is thus crucial that the robot
can quantify the extent to which any parameter value θ ∈ Θ can
correctly explain the observed human input.

A. Situational Confidence Estimation

The key to our approach goes back to the inverse temperature
parameter β in (4). Typically, β is a fixed term, encoding the
degree to which the robot expects to observe human actions that
are optimal. Setting it to 0 models a randomly acting human,
whereas setting it to∞models a perfectly optimal human. How-
ever, the possibility of objective space misspecification brings
fixing β into question: when the space is correctly specified, we
would expect the human actions to indeed be somewhat close to
optimal; but when the space is misspecified, we should expect
the actions to be far from optimal for any θ. Thus, rather than
treating β as a fixed term, we build on the work in [30] and
[31] and explicitly reason over β as an additional inference
parameter along with θ. Since β directly impacts the entropy
of the human‘s decision model, it can be used as an effective
and computationally efficient measure of the robot’s confi-
dence in its parametric interpretation of the human’s preference:
we say that the robot is assessing its situational confidence for
the inference task at hand.

Thus, the robot maintains a joint Bayesian belief b(θ, β). For
each new measurement ofuH givenx0,uR, this belief is updated
as follows:

b′(θ, β) =
P (uH | x0,uR; θ, β)b(θ, β)∫

θ̄,β̄ P (uH | x0,uR; θ̄, β̄)b(θ̄, β̄)dθ̄dβ̄
(5)

where b′(θ, β) = P (θ, β | x0,uR,uH).
This inference can be seen as analogous to performing

Bayesian IRL [28] with the maximum entropy inverse optimal
control [37] observation model, where we maintain the full
belief instead of just the maximum-likelihood estimate, and we
explicitly reason over the additional scaling parameter β. By
actively performing inference over β, the robot can gain insight
into the reliability of its human model in light of new evidence.

1) Context-Dependent Usage of Situational Confidence:
How this insight should be used is dependent on the context of
the robot’s operation. Here, we provide some examples of how
situational confidence can be integrated into various human–
robot interaction scenarios and robot motion planners.
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In collaborative settings where the human and robot are
accomplishing a task together (e.g., manipulating an object
together), it may be desirable for the robot to stop and ask
for clarification from the human whenever sufficient probability
mass indicates low confidence

∀θ ∈ Θ, argmax
β

b′(β | θ) < ε. (6)

That is, for a predefined threshold ε, if all hypotheses have the
most mass on β s lower than ε, the robot can raise a flag.

In assistive applications, where the robot is carrying out a task
in close physical proximity to the human, the robot may receive
an intermittent human input to correct its task performance. In
such scenarios, it may be appropriate for the robot to simply
dismiss human corrections that it cannot explain in terms of
modeled preference parameters and carry on with its predefined
task. That is, when a human input results in b′(θ, β) that satisfies
(6), the input gets discarded.

Situational confidence could also be leveraged by robot mo-
tion planners that excel at decision making under uncertainty.
Here, the robot may use its joint posterior belief b′(θ, β) to
make goal-driven decisions in the presence of the human. To
this end, the coupling between the inference problem and the
robot’s planning problem can be viewed as a partially observ-
able Markov decision process (POMDP), where the hidden
parts of the state are the cost parameter θ and the situational
confidence β, the robot receives observations about them via
human actions uH , it takes actions uR, and it optimizes an
unknown parameterized cost Cθ. Our problem is, thus, akin to
identifying misspecification in the state space of the POMDP.
However, inference and planning in such spaces require solving
the full POMDP, which is computationally intractable for large,
real-world problems [38].

Alternative, less computationally demanding motion planning
approaches are also amenable to our framework, where the robot
plans to minimize the expected cost for the human, given its
current belief, by marginalizing over β

min
uR

E
θ∼b

[Cθ(x,uR,uH)] (7)

for an expected human input uH that will typically be 0 if the
robot is attempting to successfully perform the task without the
need for active human intervention. To understand the impli-
cation (7) as a function of the inference over β, we need to
understand the posterior belief marginalized over β that we are
taking the expectation over. At one extreme, if for all θ s, the con-
ditional distribution b′(β | θ) puts all probability mass on β = 0
(i.e., input poorly explained), since P (uH | x0,uR; θ, β = 0)
is the same for all θ s, the robot will obtain a posteriori for
θ that is equal to the prior. The abovementioned optimization
becomes the same as optimizing using the robot’s prior, i.e., the
robot ignores the human input. At the other extreme, if there is
one θ that perfectly explains the input and all others do not, the
posterior will put all probability mass on that θ, and the robot
will switch to optimizing it.

The objective expectation may also be appropriately weighted
by the robot’s situational confidence for each θ

min
uR

E
θ,β∼b

[βCθ(x,uR,uH)] (8)

which leads to the robot prioritizing those components of the
task about which it is most certain.

In Sections IV and V, we discuss some of these possibilities
in the context of learning from demonstrations and corrections.

B. Cost Representation Through Basis Functions

One way to approximate the infinite-dimensional space of
possible cost functions using a finite number of parameters is the
use of a finite family of basis functions Φi [18]. This family can
be seen as a truncation of an infinite collection of basis functions
spanning the full function space. Parametric approximations Cθ

of the cost function C∗ then have the form

Cθ(x,uR,uH) =

d∑

i=1

θiΦi(x,uR,uH) = θTΦ(x,uR,uH).

(9)
Consistent with classical utility theories [35], we further assume
that the human’s preferences can be approximated through a
cumulative return over time, and rewriting (9) as

Cθ(x,uR,uH) =
d∑

i=1

θi
T∑

t=0

φi(x
t, ut

R, u
t
H) (10)

where φi : Rn × U × U → R are fixed, prespecified, bounded
real-valued basis functions, θ is the unknown parameter that the
robot is trying to fit according to the human’s preferences, and
d is the dimensionality of its domain Θ.

In the domains presented in Sections IV and V, the func-
tions φi output feature values that encode key aspects of a
task—for example, distance between the robot body and ob-
stacles in the environment, speed of the motion, or character-
istics of a motion planning task. In general, φi can either be
hand-engineered by a system designer or more generally learned
through data-driven approaches [6].

It is important to stress that the misspecification issue we
are trying to mitigate is quite general and does not exclusively
affect objectives based on hand-crafted features: any model
could ultimately fail to capture the underlying motivation of
some human actions. While it may certainly be possible, and
desirable, to continually increase the complexity of the robot’s
model to capture a richer space of objectives, there will still be
a need to account for the presence of yet-unlearned components
of the true objective. In this sense, our work is complementary
to open-world objective modeling efforts.

Note that, using a cost model in the form of (10), the ob-
servation model (4) becomes overparameterized, since for any
(θ, β) pair with θ ∈ Θ and β ∈ [0,∞), one can always find
a different θ′ = cθ with an associated β′ = β/c leading to
the same probability distribution over human choices. This is
equivalent to using an unrestricted Θ and β = ‖θ‖. Due to this
overparameterization, the absolute value of β does not have a
universal meaning, and restricting θ to have a fixed norm is
necessary in order to make comparisons between the β values
associated to different θ hypotheses. We thus restrict our Θ to
the set of vectors with unit norm.

Consider the case where the human provides input for a cost
function in the robot’s objective space. This results in the robot
inferring high probability on the corresponding θ vector on the
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Fig. 2. (Left) Visual example of a full human-provided demonstration x.
(Right) Visual example of a human physical correction ut

H onto the robot’s
current trajectory x.

unit sphere with a high magnitudeβ. However, if the cost that the
human cares about and provides input for is outside the robot’s
hypothesis space, the robot will infer low probability on all θ
vectors in the unit sphere, with low magnitude βs.

We now proceed by describing the explicit algorithmic ap-
proaches to inferring situational confidence in the learning from
demonstrations and corrections domains.

IV. ALGORITHMIC APPROACH: DEMONSTRATIONS

A. Formulation

In learning from demonstrations, the human directly controls
the state trajectory x through her input uH , which enables her
to offer the robot a demonstration of how to perform the task.
Fig. 2 (left) is an example of such a demonstration.

During the demonstration, the robot is often put in gravity
compensation mode or is teleoperated, to grant the person full
control over the desired trajectory. As such, in this setting, the
cost function Cθ does not depend on the robot controls uR.
Additionally, since the person is primarily concerned with the
robot’s states and not with the (robot or human) actions required
to reach those states, we model the human’s internal preferences
as only dependent on the state trajectoryx. Accordingly, the cost
function in (10) becomes

Cθ(x) = θTΦ(x). (11)

The cost does not have a direct dependence on the actions, but
it has an indirect one, as x depends on uR and uH .

In our problem formulation, we would like the robot to ex-
plicitly reason about how well it can explain the demonstration
given its human model. Thus, we can adapt the model in (4) to
use this new cost function2

P (x | θ, β) = e−βθ
TΦ(x)

∫
x̄ e
−βθTΦ(x̄)dx̄

(12)

then perform the Bayesian update in (5)

b′(θ, β) =
P (x | θ, β)b(θ, β)∫

θ̄,β̄ P (x | θ̄, β̄)b(θ̄, β̄)dθ̄dβ̄ . (13)

Given b′(θ, β), we now can use any of (6), (7), or (8). Next, we
discuss making inference with (12) and (13) tractable.

2For deterministic (1), P (uH | x0,uR; θ, β) is equivalent to P (x | θ, β).

B. Approximation

Although the proposed formalism enables us to capture if
the robot‘s hypothesis space cannot explain the human’s input,
it is nontrivial to implement tractably for continuous β and
θ and large state and action spaces. Concretely, notice that
(12) and (13) constitute a doubly intractable system with de-
nominators that cannot be computed exactly. For this reason,
we employ several approximations in order to demonstrate the
benefits of estimating situational confidence. Note that we do
not consider these a contribution of our work: we choose the
simplest approximations that facilitate tractability. There are
many methods for approximate inference of θ studied in the
literature that could be used for the joint (θ, β) spaces as well,
from Metropolis Hastings [16], [39], to acquiring an MLE only
via importance sampling of the partition function [6] or via a
Laplace approximation [40].

To approximate the intractable integral in (12), we sampled a
set X of 1500 trajectories. We sampled costs according to (11)
given by random unit norm θ s, then optimized them with an
off-the-shelf trajectory optimizer. We used TrajOpt [41], which
is based on sequential quadratic programming and uses convex–
convex collision checking. This way, we obtain dynamically
feasible trajectories that optimize for different features in vary-
ing proportions. While this sampling strategy cannot be justified
theoretically, it works well in practice: the resulting optimized
trajectories are a heuristic for sampling diverse and interesting
trajectories in the environment. Future work will address this
shortcoming by either providing theoretical guarantees or using
importance sampling instead.

For the second approximation to (13), we discretized the space
of θ ∈ Θ and β ∈ B into sets ΘD and BD, which leaves us with
a finite, easy to compute posterior. For more practical details on
specific discretization schemes, see Appendix A-A.

Using the above discretization,3 we can now perform tractable
inference from demonstrations D to obtain a discrete poste-
rior b(θ, β). Algorithm 1 summarizes the full procedure: given
ΘD,BD,X , and D, our method iteratively updates the belief
using (12) and (13), resulting in the posterior b(θ, β). Lacking
any a priori information, we chose a uniform prior but our
method will work with any prior. We next present examples
for what this posterior looks like in different scenarios.

C. Examples

To provide intuition for how situational confidence can in-
dicate when a robot’s hypothesis space is misspecified, we
illustrate some examples with a robot manipulator learning from
a human demonstrator. These examples help prepare the setup
we will present in our actual experiments in Section VI.

The robot manipulator is performing a household task of
moving cups from a shelf onto the kitchen table. The robot needs

3In situations where the designer might want high-fidelity inference over
a large space of θ vectors, reasoning over a heavily discretized space would
be more computationally expensive. However, longer offline computation is
possible in our learning-from-demonstrations scenario as the inference happens
offline, after providing the robot with human demonstrations. Alternatively, we
could use Monte Carlo sampling approaches, similar to [16] and [28]
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Algorithm 1: Learning From Demonstrations (Offline).
Input: Discretized sets ΘD,BD,X , set of demonstrations
D.

Output: Posterior belief b(θ, β) inferred from D.
b(θ, β)← Uniform(θ, β).
for x in D do

for all θ ∈ ΘD, β ∈ BD do

P (x | θ, β) = e−βθT Φ(x)
∑

x̄∈X e−βθT Φ(x̄)
as per (12).

b(θ, β)← P (x|θ,β)b(θ,β)
∑

θ̄∈Θ,β̄∈B P (x|θ̄,β̄)b(θ̄,β̄)as per (13).

end for
end for

to learn from the person’s demonstrations how to best perform
this task. For this purpose, the person physically guides the robot
through one or a few demonstrations of moving the cup down
to the table, from which the robot infers the hidden objective
function.

In these examples, the robot’s hypothesis space includes three
features: efficiency (E) as sum of squared velocities over the
trajectory, keeping the cup close to the table (T), and keeping
the cup away from the laptop (L) depicted in black.

Formally, we can represent these three feature mappings as

Φ(x) =

⎡

⎢
⎢
⎢
⎢
⎣

∑T
i=1((x

i − xi−1)/Δt)2

∑T
i=0 ||xi − xtable||2

∑T
i=0 max{0, L− ||xi − xlaptop||2}

⎤

⎥
⎥
⎥
⎥
⎦

(14)

where L is the radius of a penalty sphere around the laptop, Δt
is the discrete time step between the states in the trajectory, and
the corresponding feature weight vector is θ ∈ R3.

Fig. 3 demonstrates how the feature weight θ and the situa-
tional confidence β are affected for well explained, noisy, and
poorly explained simulated human demonstration. The posterior
belief is shown for the combination of discrete parameters θ and
β. Higher β values indicate higher situational confidence. The
three circles under each column represent the θ vector for that
column, with the components being the efficiency, distance from
the table, and distance from the laptop features. A larger feature
weight is indicated by a darker colored circle, whereas a white
color indicates zero weight.

First, in Fig. 3(a), we consider the case where the demonstra-
tion is a perfectly optimal trajectory produced by TrajOpt [41].
This serves as a sanity check for when the human and the robot
have the same hypothesis space and the demonstration is perfect.
The optimal demonstration was produced by finding a trajectory
that moves the cup from the start configuration to the end while
minimizing the distance between the cup and the table. Notice
that, with a perfect demonstration, the posterior distribution
places the most probability mass on the θ that indicates high
penalties for staying away from the table but no penalties for
lack of efficiency or closeness to laptop. Moreover, the posterior
also reveals that the most likely θ also corresponds with the
highest available confidence β.

Fig. 3. Three examples of demonstrations and the inferred posterior belief
after each one of them. The robot infers the right θ = [0, 1, 0] from the two
well-explained demonstrations, but, unlike the perfect simulated demonstration
in (a), the noisy one in (b) cannot reach the highest β and has as overall more
spread-out probability distribution with a lower peak value. Finally, the perfect
simulated demonstration that is poorly explained in (c) results in a posterior
that is spread out over all θ s and the lowest βs, consistent with the robot
not being able to tell what the human’s objective was. (a) (Left) Simulated
perfect demonstration with the objective to keep the cup close to the table.
(Right) Posterior belief resulted from this demonstration. Notice that a perfect
demonstration leads to a high probability on the correct θ and high values for
β. (b) (Left) Noisy human demonstration with the objective to keep the cup
close to the table. (Right) Posterior belief resulted from this demonstration.
Notice that a noisy but well-explained demonstration leads to a high probability
on the correct θ and moderately high values for β. However, the noise in the
demonstration significantly reduces the probability at the distributional peak.
(c) (Left) Simulated perfect demonstration with the objective to keep the
cup away from the humans body. (Right) Posterior belief resulted from this
demonstration. Notice that, since this demonstration is poorly explained (the
robot is not reasoning about distance from the human), the posterior belief is
spread out approximately uniformly over all θ s and the lowest β values. This
indicates that the robot cannot tell what the demonstration was intended for.

Next, in Fig. 3(b), we recorded a real human demonstration
of the same cup-to-table behavior. The nature of demonstrations
both on hardware and from real people introduce noise into the
demonstration, making it potentially suboptimal with respect to
the robot’s model. However, in this case, the human and the
robot still share the same hypothesis space (i.e., the robot and
the human both know about the efficiency, table, and laptop
features). Here, we study how the noise in the demonstration
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affects the robot’s inference. Notice that even with an imper-
fect demonstration, the robot is able to identify the correct θ
parameter, but now with a lower confidence β.

Finally, we consider the example where the demonstration is
optimal but the robot does not have a rich enough hypothesis
space to explain it. The robot reasons about the same three
features, but now the demonstration was produced by optimizing
for an additional feature that is outside its hypothesis space:
keeping the cup away from the human’s body. We observe that
the probability distribution in Fig. 3(c) is spread over all the θ
values in the space, with the highest values on low β s. This
example shows how, in the case of poorly explained input, the
robot’s inference is unsure which objective the human had in
mind, and assigns low situational confidence to the given input.

These illustrative examples give us valuable insight into how
the (θ, β) belief changes depending on how well explained the
input is. For perfectly explained demonstrations, the inference
identifies the correct θ with high posterior probability. As the
input becomes more poorly explained, the robot loses confi-
dence in all θ s, assigning approximately uniformly spread-out
probability on the lowest situational confidence values β.

V. ALGORITHMIC APPROACH: CORRECTIONS

A. Formulation

We consider the setting in which the human input is provided
in the form of physical interventions during the robot’s task
execution. Fig. 2 (right) is an example of such a correction. The
human may provide a correction to improve some aspect of the
task execution that is not represented in the robot’s objective
space. When the robot receives an input, it should be able to
reason about its situational confidence in light of the correction
and replan its trajectory accordingly for the rest of the task
execution or until a new correction happens. Thus, the robot
must have access to an inference algorithm that can run in real
time. In this section, we will present an online version of our
situational confidence framework.

In the physical corrections setting, the robot starts with an
initial guess of the parameter θ and uses a trajectory optimization
scheme to compute a motion plan seeking to minimize the
associated cost Cθ. The robot performs the task at hand by
applying controls uR via an impedance controller in order to
track the computed trajectory x.

At any time step t during the trajectory execution, the human
may physically interact with the robot, inducing a joint torque
ut
H . When this happens, the robot can use the human input to

update its estimated θ parameter, and thereby the corresponding
objective Cθ. Given the new adapted objective, the robot replans
an optimized trajectoryx and tracks it until the next human input
is sensed or until the task is completed.

Following [13], the robot‘s representation of the task assumes
that the human does not explicitly care about the robot’s control
effort, but only about features of the state trajectory. In addition,
the human is assumed to have a preference for minimizing
her own control effort. This captures the human’s incentive to
have the robot perform the task autonomously, providing only
minimal input to guide the robot toward the correct behavior
when necessary. Encompassing these assumptions, the cost (10)

takes the form

Cθ(x, u
t
H) = θTΦ(x) + λ‖ut

H‖2. (15)

To approximately compute the trajectory resulting from the
human’s input, we follow the approach in [13] and introduce the
notion of a deformed trajectory xD. This trajectory constitutes
the robot‘s estimate of the human’s desired trajectory given
her applied torque ut

H . Given the robot’s default trajectory
xR := x(·;x0,uR,0) and having observed the instantaneous
human intervention ut

H , we compute xD by deforming the
robot’s default trajectory in the direction of ut

H

xD = xR + μA−1ũH (16)

where μ > 0 scales the magnitude of the deformation, A ∈
Rn(T+1)×n(T+1) defines a norm on the Hilbert space of
trajectories,4 and dictates the deformation shape [42], and ũH ∈
Rn(T+1) is ut

H at indices nt through n(t+ 1) and 0 otherwise.
The human is therefore modeled by (15) as trading off between
inducing a good trajectory xD with respect to θ, and minimizing
her effort.

Equipped with this cost function, we need the robot to reason
about the reliability of its objective space given new inputs in the
form of corrections. In contrast with our analysis in Section IV,
here the person does not give full demonstrations x, but instead
offers corrections ut

H based on the robot’s default trajectory xR.
Applying (4) to this setting, we have

P (ut
H | x0,uR; θ, β) =

e−β(θ
�Φ(xD)+λ‖ut

H‖2)
∫
e−β(θ�Φ(x̄D)+λ‖ū‖2)dū

(17)

where xD and x̄D are given by (16) applied to their respective
controls ut

H and ū.
Ideally, with this model of human actions, illustrated in

Fig. 4(a), we would perform inference over both the situational
confidence β and the modeled parameters θ by maintaining
a joint Bayesian belief b′(θ, β). Analogously to the demon-
strations case, our probability distribution over θ would au-
tomatically adjust for well-explained corrections, whereas for
poorly explained ones, the robot’s posterior would not deviate
significantly from its prior on θ. Unfortunately, this Bayesian
update is not generally feasible in real time, given the continuous
and possibly high-dimensional nature of the parameter space
Θ. Even in simple scenarios with a small number of contin-
uous features, discretizing Θ as we did in the demonstrations
case would generally yield an overly slow inference, making
the method impractical for use in the real-time collaborative
scenarios that we are interested in here. Thus, to evaluate the
benefits of estimating β, we need to derive an online method
that goes beyond simple discretization.

B. Approximation

To alleviate the computational challenge of performing joint
inference over β and θ, we introduce a structural assumption
that will enable us to approximately decouple the two inference
problems.

4We used a normA based on acceleration, consistent with [13] but other norm
choices are possible as well.



BOBU et al.: QUANTIFYING HYPOTHESIS SPACE MISSPECIFICATION IN LEARNING FROM HUMAN 843

Fig. 4. (a) Graphical model formulation and (b) and (c) modifications to it for real-time tractability. (a) In the true graphical model, uH is an observation of θ
and the situational confidence β. (b) We use the proxy variable Φ to first estimate β efficiently. (c) We interpret the estimate β̂ as an indirect observation of the
unobserved E, which we then use for the θ estimate.

1) Estimating β: To estimate β without dependence on θ, we
will assume that in order to decide what correction to provide,
the human will first choose the desired featuresΦ of the resulting
trajectory xD and then select an input ut

H that will obtain these
features [see Fig. 4(b)].

Based on the observed human input ut
H and the trajectory

features of the deformed trajectory Φ(xD), the robot can obtain
an estimate of β by considering how efficient the human’s input
was for the features achieved. Letting UΦ be the set of inputs
that achieves the same observed features ΦD := Φ(xD), the
Boltzmann decision model gives

P (ut
H | x0,uR; ΦD, β) =

e−β(θ
�ΦD+λ‖ut

H‖2)
∫
UΦ e−β(θ�Φ(x̄D)+λ‖ū‖2)dū

=
e−βλ‖ut

H‖2
∫
UΦ e−βλ‖ū‖2dū

(18)

since the term θ�Φ(x̄D) is constant for all ū ∈ UΦ and equal to
the term θ�ΦD in the numerator.

Using (18), the robot can obtain an estimate of β by consid-
ering how efficient the human’s correction was for the features
achieved—if the input seems highly inefficient, this is indicative
that the features modeled by the robot may not accurately capture
the human’s preference.

It is useful to approximate the integral over the constrained
set UΦ ⊂ U by an integral over the entire set of possible inputs
U , introducing a penalty term in the exponent that results in a
soft indicator function for ū ∈ UΦ

P (ut
H | x0,uR; ΦD, β) ≈ e−βλ‖ut

H‖2
∫
U e
−β(λ‖ū‖2+κ‖Φ(x̄D)−ΦD‖2)dū

.

(19)
Note that for an arbitrarily large κ, there is an arbitrarily small
probability assigned to U \ UΦ in the integral. It is now possible
to apply the Laplace approximation to the unconstrained integral
(see Appendix B for details) yielding

P (ut
H | x0,uR; ΦD, β)

≈ e−βλ‖ut
H‖2

e−β(λ‖u∗H‖2+κ‖Φ(x∗D)−ΦD‖2)

√
βk|Hu∗H |

2πk
(20)

where k is the action space dimensionality and Hu∗H is the
Hessian of the exponent in the denominator of (19) around u∗H .

We obtain the optimal action u∗H by solving the constrained
optimization problem (see Appendix A-B)

minimize
ũH

‖ũH‖2

subject to Φ(x+ μA−1ũH)− ΦD = 0. (21)

In other words, the resulting u∗H is the minimal norm ũH the
human could have taken, constrained to lie in UΦ. As such, the
second norm in the denominator’s exponent is 0, and the final
conditional probability becomes

P (ut
H | x0,uR; ΦD, β) = e−βλ(‖ut

H‖2−‖u∗H‖2)

√
βk|Hu∗H |

2πk
.

(22)
We derive in the following the MLE, noting that a maximum a
posteriori (MAP) estimator is often appropriate given a certain
prior on β:

β̂ = argmax
β
{log(P (ut

H | x0,uR; ΦD, β)}

= argmax
β

⎧
⎨

⎩
−βλ(‖ut

H‖2 − ‖u∗H‖2) + log

⎛

⎝

√
βk|Hu∗H |

2πk

⎞

⎠

⎫
⎬

⎭
.

(23)

Applying the first-order condition and setting the derivative to
zero yields the maximizer

β̂ =
k

2λ(‖ut
H‖2 − ‖u∗H‖2)

. (24)

The above estimator5 yields a high value when the differ-
ence between ut

H and u∗H is small, i.e., the person’s correction
achieves the induced features Φ(xD) efficiently. For instance,
if xD brings the robot closer to the table, and ut

H pushes
the robot straight toward the table, ut

H is an efficient way to
induce those new feature values. However, when there is a much
more efficient alternative (e.g., when the person pushes mostly
sideways rather than straight toward the table), β̂ will be small.
Efficient ways to induce the feature values will suggest well-
explained inputs, inefficient ones will suggest poorly explained
corrections.

5Note that β̂ is nonnegative, since u∗H is the minimal-norm ũH that satisfies
the constraint, so the difference in the denominator of (24) is positive.
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Fig. 5. Empirical estimates for P (β̂ | E) and their corresponding chi-squared (χ2) fits.

2) Estimating θ: To tractably estimate θ building on the β
estimate, we introduce an auxiliary binary variable E ∈ {0, 1}
indicating whether the human’s intervention can be well ex-
plained by the robot’s modeled cost features. We will perform
offline training with ground-truth access to this variable in order
to learn its relation to the robot’s estimate β̂.

WhenE = 1, the human‘s desired modification of the robot’s
behavior can be well explained by some vector θ ∈ Θ, which will
lead the intervention to appear less noisy to the robot (i.e., β is
large). As a result, the correction ut

H is likely to be efficient
for the cost encoded by this θ. Conversely, when E = 0, the
intervention appears noisy (i.e., β is small), and the human’s
correction cannot be well explained by any of the cost features
modeled by the robot.

The graphical model depicted in Fig. 4(c) relates the induced
feature values ΦD to θ as a function of the E. When E = 1,
the induced features will tend to have low cost with respect to
θ; when E = 0, the induced features do not depend on θ, and
we model them as Gaussian noise centered around the feature
values of the robot’s currently planned trajectory xR

P (ΦD | θ,E) =

⎧
⎪⎨

⎪⎩

e−θ
�ΦD

∫
e−θ�Φ(x̃D)dx̃D

, E = 1

(
ν
π

) k
2 e−ν||ΦD−Φ(xR)||2 , E = 0

(25)

with the constant in the E = 0 case corresponding to the nor-
malization term of the normal distribution.

In addition, this graphical model relates β̂ resulting from the
model in Fig. 4(b) toE byP (β̂ | E). We fit this distribution from
controlled user interaction samples where we have ground-truth
knowledge of E.6 For each sample interaction, we compute β̂
(for example, using (24) if using MLE) and label it with the
corresponding binary E value. We fit a chi-squared distribution
to these samples to obtain the probability distributions for P (β̂ |
E = 0) andP (β̂ | E = 1). The resulting distributions are shown
in Fig. 5.7

6Since we tell users what to optimize for, we know whether the human‘s input
is well explained with respect to the robot’s hypothesis space or not.

7Because users tend to accidentally correct more than one feature, we perform
β inference separately for each feature. This requires more overall computation
(although still linear in the number of features, and can be parallelized) and a
separate P (β̂ | E) estimate for each feature.

Using the model in Fig. 4(c) with the learned distribution
P (β̂ | E), we can infer a θ estimate in real time whenever a
physical correction from the human is measured. We do this
tractably by interpreting the estimate β̂ obtained from (24) as
an indirect observation of the unknown variable E. We combine
the empirically characterized likelihood modelP (β̂ | E)with an
initial uniform prior P (E) to maintain a Bayesian posterior on
E based on the evidence β̂ constructed from human observations
at deployment time, i.e., P (E | β̂) ∝ P (β̂ | E)P (E).

Furthermore, since we wish to obtain a posterior estimate of
the human’s objective θ, we use the model from Fig. 4(c) to
obtain the posterior probability measure

P (θ | ΦD, β̂) ∝
∑

E∈{0,1}
P (ΦD | θ,E)P (E | β̂)P (θ). (26)

Following [13], we note that we can approximate the partition
function in the human’s policy (25) by employing the Laplace
approximation. Taking a second-order Taylor series expansion
of the exponent’s objective about xR, the robot’s current best
guess at the optimal trajectory, we obtain a Gaussian integral
that can be evaluated in a closed form

P (ΦD | θ,E = 1) ≈ e−θ
�(ΦD−Φ(xR)). (27)

We also consider a Gaussian prior distribution of θ around the
robot’s current estimate θ̂

P (θ) =
1

(2πα)
k
2

e−
1
2α ||θ−θ̂||2 (28)

where α ≥ 0 determines the variance of the Gaussian.
To obtain an update rule for the θ parameter, we can simply

plug (25), (27), and (28) into (26). For legibility, let us de-
note Γ(ΦD, E = i) = P (E = i | β̂)P (ΦD | θ,E = i), for i ∈
{0, 1}. Then, the MAP estimate of the human’s objective θ is
the solution maximizer of

P (θ) [Γ(ΦD, E = 1) + Γ(ΦD, E = 0)]

=
1

(2πα)
k
2

e−
1
2α ||θ−θ̂||2

×
[
P (E = 1 | β̂)e−θ�(ΦD−Φ(xR))

+ P (E = 0 | β̂)
(ν
π

) k
2

e−ν||ΦD−Φ(xR)||2
]
. (29)
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Algorithm 2: Learning From Corrections (Online).

Input: P (β̂ | E = i), ∀i ∈ {0, 1} from training data.
Initialize xR ← TrajOpt(θ̂) for initial θ̂.
while goal not reached do

if uH �= 0
xD = xR + μA−1ũH .
u∗H ← OptimalHumanAction(ΦD), as per (21).
β̂ = k

2λ(‖uH‖2−‖u∗H‖2) .

θ̂ ← θ̂ − α Γ(ΦD,E=1)
Γ(ΦD,E=1)+Γ(ΦD,E=0) (ΦD − Φ(xR)).

xR ← TrajOpt(θ̂).
end if

end for

Differentiating (29) with respect to θ and equating to 0 gives
the MAP update rule

θ̂′ = θ̂ − α
Γ(ΦD, E = 1)

Γ(ΦD, E = 1) + Γ(ΦD, E = 0)
(ΦD − Φ(xR)) .

(30)

We note that due to the coupling in θ̂′, the solution to (30) is non-
analytic and can instead be obtained via numerical approaches,
such as Newton–Raphson or quasi-Newton methods.

In previous objective-learning approaches including [13]
and [37], it is implicitly assumed that all human actions are
fully explainable by the robot’s representation of the objective
function space (E = 1), leading to the simplified update

θ̂′ = θ̂ − α (ΦD − Φ(xR)) (31)

which can be easily seen to be a special case of (30) when
P (E = 0 | β̂) ≡ 0. Our proposed update rule therefore gener-
alizes commonly used objective-learning formulations to cases
where the human‘s underlying objective function is not fully
captured by the robot’s model. We expect that this extended
formulation will enable learning that is more robust to misspeci-
fied or incomplete human objective parameterizations.8 Once we
obtain the θ̂′ update, we replan the robot trajectory in its 7-DoF
configuration space with an off-the-shelf trajectory optimizer
TrajOpt [41].

The update rule changes the weights in the objective in the
direction of the feature difference as well, but how much it
does so depends on the probability assigned to the correction
being well explained. Looking back at Section III, this update is
approximating (7). At one extreme, if we know with full certainty
that the correction is well explained, then we do the full update
as in the traditional objective learning. But crucially, at the other
extreme, if we know that the correction is poorly explained, we
do not update at all and keep our prior belief.

Overall, the full algorithm is given in Algorithm 2. The robot
begins tracking a trajectory xR given by an initial θ̂. Once a

8Note that to enforce the constraint on ||θ|| = 1, we can indeed project the
resulting θ̂′ onto the unit ball. In practice, because our learning from corrections
algorithm separates the β inference from the θ inference, this projection is no
longer required, but we found it helpful to still constrain the space of Θ to
encourage smoothness in the change of the cost function.

human torque uH is sensed, the robot deforms its trajectory
to compute the induced features ΦD, computes the optimal
human action u∗H using (21), and uses it to estimate β̂ for
that input. It then updates θ̂ using the learned distributions
P (β̂ | E = i) ∀i ∈ {0, 1}, and updates its tracked trajectoryxR.
For more practical details on how replanning works, and how to
set various hyperparameters, consult Appendix A-B.

C. Examples

As in Section IV, we now illustrate some examples to help lay
out some of the setup we will present in our actual experiments in
Sections VI and VII. We provide intuition for how the estimators
of β and θ work when we have a perfectly specified objective
space and a misspecified objective space. In all of the examples,
the robot reasons about the previously described distance from
the table feature. What changes is the feature for which the
human decides to provide corrections.

We look at two situations: the human may correct the relevant
feature and push the robot closer to the table, or she might
provide an poorly explained input to keep the coffee mug upright.
Fig. 6 illustrates the two scenarios and contrasts our estimated β
approach to the state-of-the-art fixed β approach that uses (31).

On the top, we present the fixed β method and its performance
with both the well-explained and the poorly explained inputs.
When the input is well explained, the left-hand side image shows
that the robot learns from the interactions and converges close
to the true θ = 1. However, when the input is poorly explained
on the right, the robot incorrectly learns fictitious θ values and
produces oscillatory behavior.

In the bottom row of Fig. 6, we present our described estimated
β method. In the case of well-explained inputs, the value for β̂
increases, allowing θ to grow up to the real value θ = 1. The
method has the same behavior as the state of the art. However,
more importantly, in the case of poorly explained input, our
method immediately estimates low β̂ values, which allows it
to significantly reduce unintended learning as compared to the
state of the art.

This figure illustrates how situational confidence estimation
can aid the robot when the human input is poorly explained.
We stress that although our method does not allow the robot
to magically learn the correct behavior that the user desires, it
greatly reduces unintended learning and undesired behaviors.

VI. CASE STUDIES

Equipped with our algorithmic approaches to situational con-
fidence estimation, we now consider two case studies in learning
from demonstrations and corrections using a real human input
on a 7-DoF robot manipulator.

A. Demonstrations

We collected human demonstrations of household motion
planning tasks and performed our situational confidence infer-
ence offline. We recruited 12 people to physically interact with a
JACO 7-DoF robotic arm and analyzed four common cases that
can arise in the context of personal robotics learning.



846 IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 3, JUNE 2020

Fig. 6. Examples of physical corrections (interaction points shown in blue) and the resulting behavior for the fixed β method (top) and estimated β method
(bottom). When the corrections are well explained, both methods learn the correct weight θ̂ = 1.0. In the case of poorly explained corrections, our method infers
low β̂ and manages to reduce unintended learning, whereas the fixed β method produces incorrect oscillatory behavior. (a) (Left) Human applies well-explained
corrections to keep the cup close to the table. Learning with fixed β leads to a correct trajectory that satisfies the human’s preference. (Right) As the person corrects
the robot by pushing down on it, the learning algorithm gradually updates its weight on the feature modeling distance to table. (b) (Left) Human applies poorly
explained corrections to keep the cup upright. Learning with fixed β leads to a oscillatory and noisy trajectory. (Right) Here, the learning algorithm incorrectly
updates the weight on the distance to table feature, leading to unintended learning. (c) (Left) Human applies well-explained corrections to keep the cup close to
the table. Learning with estimated β leads to a correct trajectory that satisfies the human’s preference. (Right) As the person corrects the robot by pushing down
on it, the learning algorithm infers high β̂ and gradually updates its weight on the feature modeling distance to table. (d) (Left) Human applies poorly explained
corrections to keep the cup upright. Learning with estimated β leads to a smooth trajectory where the robot is robust to poorly explained inputs. (Right) Here, the
learning algorithm infers low β̂ and correctly avoids unintended learning for the distance to table feature.

For all the experiments in this section, we asked the partic-
ipants to provide demonstrations with respect to a feature of
interest, which the robot might (well explained) or might not
(poorly explained) have in its hypothesis space. Some of the
features that the humans had to prioritize include: distance of
the end effector from the table, distance from the person, or
distance from the end effector to a laptop placed on the table.

Before giving any demonstrations, each person was allowed a
period of training with the robot in gravity compensation mode
to get accustomed to interacting with the robot. When collecting
human demonstrations, participants were asked to move the
robot arm holding a cup of coffee from the upper shelf of a
cupboard to right above the table, across a laptop.

After collecting all demonstrations, we designed the robot’s
hypothesis space for inference purposes. In all four scenarios that
we will illustrate, the robot reasons over the same three features
as in (14): E, T, and L. Although the robot always knows about
these features, the demonstrations may have been given relative
to different (and potentially unmodeled) features.

Throughout our scenarios, we tested the following two
hypotheses.

H1. If the human input is well explained, our inference pro-
cedure places high probability on the correct θ hypothesis, with
a high situational confidence β.

H2. If the human input is poorly explained, our inference pro-
cedure does not place high probability on any θ hypothesis and
is uniform over all hypotheses with low situational confidence
β.

To test these hypotheses, we looked at the resulting inferred
belief. Given the demonstrations and a parameterization of the
cost function, we first updated the belief over the weight and
situational confidence parameters for each single demonstration,
bsingle(θ, β). This gives insights into how a single demonstration
can affect the robot’s inference procedure.

Next, we used all 12 human demonstrations to obtain a prob-
ability distribution over the weight and confidence measures,
ball(θ, β) for each scenario. By using multiple demonstrations
as evidence about the cost and the situational confidence param-
eters, we see how in some scenarios multiple demonstrations
can help improve confidence in the θ estimation.

We now present experimental results in two scenarios that
support our abovementioned hypotheses.
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Fig. 7. (Left) Human demonstrations avoiding the laptop. (Right) Upper
distribution is the posterior belief for the highlighted blue demonstration. Since
the robot has the laptop feature in its hypothesis space, this demonstration
induces a high β on the correct θ = [0, 0, 1]. Below, when considering all the
demonstrations, the inference procedure converges to a slightly lower β value
due to the suboptimality of some of the demonstrations in the dataset.

1) Well-Specified Objective Space: Here, we consider a sce-
nario where the robot and the human share the same hypothesis
space, i.e., the robot’s model is well specified. The participants
were instructed to avoid spilling the coffee over the laptop by
providing a demonstration where the robot’s end effector is away
from the electronic device. Here, the feature of interest was
the distance from the laptop that was in the robot’s hypothesis
space: the demonstration would be well explained as long as the
demonstration maintained a distance of at least L meters away
from the center of the laptop.

On the left-hand side of Fig. 7, we visualize all 12 recorded
demonstrations and the experimental setup. Note that most
participants had an easy time providing demonstrations that
avoided the laptop. Indeed, we noticed that 10 out of the 12
demonstrations resulted in high situational confidence and a
probability distribution similar to the one at the top right of
Fig. 7. Here, the θ vector that has the largest weight on the
third feature (distance from the laptop) is correctly inferred to
have high β value. This inference signals that the robot is highly
confident that the person provided a demonstration that avoids
the laptop, and supports our hypothesis H1.

Another interesting observation is that the situational confi-
dence over all 12 demonstrations together is lower than in the
case of the single optimal demonstration highlighted in blue
(peak at around 1.0 instead of 100.0),9 This is due to the two
noisy demonstrations that came too close to the laptop. When
working with nonexpert users, it is inevitable that such imperfect
demonstrations will arise. However, despite the challenge of
noisy and/or erroneous demonstrations, the algorithm recovers
the correct θ hypothesis with a relatively high β, supporting H1
once again.

9In the lower right belief in Fig. 7, note from the colorbar values that the
probability mass is more peaked than in the case of a single demonstration. This
confirms our intuition that the robot’s certainty in the hypothesis is enhanced
the more demonstrations supporting that hypothesis it receives.

Fig. 8. (Left) Human demonstrations avoiding the user’s body. (Right) Upper
distribution is the posterior belief b(β, θ) for the highlighted demonstration.
Since the robot‘s model does not include distance to the user’s body, none
of the robot’s hypotheses can explain the demonstration, as reflected in the
higher probabilities on low β s for all θ s. After performing inference on all
the demonstrations, the distribution in the lower right plot shows even more
probability mass on the lowest situational confidence values.

2) Misspecified Hypothesis Space: We look at the opposite
scenario: the robot and the human do not share the same hypoth-
esis space and the robot’s model is clearly misspecified.

Participants were instructed to move the robot from start to
end while also keeping the robot’s hand away from their body
to avoid spilling coffee on their clothes. Since the robot‘s cost
function does not include any notion of distance to humans, the
demonstrations should appear poorly explained relative to the
robot’s model of how humans choose demonstrations.

Fig. 8 visualizes all 12 demonstrations as well as the posterior
probability distributions for a single highlighted trajectory and
for all 12. For both a single demonstration and all of them, in
the case of misspecification none of the hypotheses are correct.
Thus, the robot infers equally low probability for all θ s, with
low situational confidence, supporting our hypothesis H2. This
signals that the robot is unsure what the person’s demonstration
referred to, as we expected.

These two examples illustrate cases where our method sup-
ports the abovementioned two hypotheses. However, there are
important limitations that we discuss in the following two
scenarios.

3) Feature Correlation: The past two examples demonstrate
clear instances when the robot’s objective space is either well
specified or misspecified. However, often times situations will be
more ambiguous. For example, although the human input may
refer to a feature that is nonexistent in the robot’s hypothesis
space, the robot may know about a feature that is correlated to
the one the human is trying to affect. In this next scenario, we in-
vestigate how such feature correlation influences the situational
confidence estimates.

We asked the participants to move the robot from the same
start and end as before while keeping the cup in the robot’s
end effector away from their body to avoid spilling coffee
on their clothes. The setup is similar to the poorly explained
demonstration in the previous scenario, only that now the human
starts in a different initial position.
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Fig. 9. (Left) Human demonstrations avoiding the user’s body. The blue cluster
is correlated with the feature describing distance from the laptop. The orange
cluster is uncorrelated. (Right) The top distribution is the posterior belief b(β, θ)
for the highlighted blue correlated demonstration. Notice that the hypothesis that
puts all weight on avoiding the laptop θ = [0, 0, 1] dominates the distribution.
Meanwhile, the posterior belief for the highlighted orange demonstration in-
dicates low situational confidence in all hypotheses. The bottom distribution
shows that when combining all demonstrations, the robot continues to have low
situational confidence although the laptop hypothesis has slightly higher β.

Visualizations of the 12 demonstrations in Fig. 9 showcase
that although all demonstrations move the cup away from the
person, some of them (depicted in blue) also maintain a good
distance away from the laptop. Hence, even though the human
was trying to teach the robot to stay away from their body, the
robot interprets the human’s demonstrations as a signal to stay
away from the laptop. Thus, we say that the distance from human
and distance from laptop features are correlated.

When looking at the top-right posterior probability in Fig. 9,
the distribution over θ, β shows that our algorithm infers a high
situational confidence for the θ that fully considers the distance
from the laptop. Thus, even if the human input does not pertain
to a feature in the robot‘s hypothesis space, in some cases, the
demonstration can still be explained via correlated features in
the robot’s hypothesis space. This observation does not support
H2 and is clearly a limitation of our method.

However, the orange cluster of demonstrations in Fig. 9, show-
case the fine line between demonstrations that induce a feature
correlation and those that do not. The orange demonstrations
clearly ignore the laptop and simply take the shortest path to the
end goal while avoiding the human’s body. As we can see in
the orange probability distribution, our method infers a uniform
distribution over all θ hypotheses, with a focus on the lowest
situational confidence values, backing H2.

These two clusters highlight that our method infers reasonable
θ, β values even in the case of feature correlation. The robot ei-
ther infers a good θ to perform its original task through the means

Fig. 10. (Left) Human demonstrations keeping the cup in the end effector
close to the table. (Right) Because it is difficult for the person to give a good
demonstration, the top posterior does not have a clearly defined peak for one
particular hypothesis, although several θ s are favored. In the bottom distribution,
we notice that when presented with all 12 demonstrations, the robot can more
clearly infer the correct hypothesis for the distance to the table, θ = [0, 1, 0].

of another feature, or it has low confidence in understanding the
input.

When we look at the posterior distribution that results from
all 12 demonstrations, the bottom-right part of the figure shows
that, due to the correlation in the blue cluster, there is increased
probability on θ that considers fully the distance from the laptop.
However, due to the ambiguity of the orange cluster, the situa-
tional confidence is not as high as it would be in a well-explained
case (see Fig. 7).

4) Feature Engineering: Many of the cost function features
we considered so far have been intuitive to provide demonstra-
tions for. However, some cost functions may be particularly
challenging or unintuitive for human users. Two extreme ex-
amples of this could be features learned using complex function
approximators or unintuitive features, such as minimizing the
total energy of a system.

In our scenario, the feature users have a difficult time provid-
ing good demonstrations for is the distance between the robot’s
hand and the table along the trajectory. Since the feature was
designed as the sum of distances to table for all waypoints in
the trajectory, the optimal demonstration immediately moves the
end effector to the table and then keeps it right above the tabletop
for the rest of the path, as seen in Fig. 3(a). This limitation does
not support H1.

However, this mathematical optimum does not necessarily
align with how human users interpret the best behavior for this
task. In our experiments, most users gradually bring the robot’s
hand closer to the table, rather than pushing it down immediately,
for a more smooth and natural motion [see Fig. 10 (left)]. These
demonstrations thus appear noisy and suboptimal with respect
to the robot’s model and make it difficult to infer the true θ from
a single demonstration.

This phenomenon is reflected more clearly when we look at
the top-right belief distribution in Fig. 10. Although the distri-
bution for the highlighted blue demonstration has some peaks
around hypotheses that strongly favor the feature responsible
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for distance to the table, it is not nearly as clearly defined as it
should be for a well-explained demonstration (see Fig. 7).

However, when the robot gathers evidence from multiple
demonstrations, the algorithm does manage to figure out that this
is the feature that people were optimizing for. The bottom-right
plot in Fig. 10 illustrates that, once again, having more input
samples eventually leads our algorithm to converge to a strong
probability for the right θ with a reasonably high β. Although
our method cannot back H1 when inferring the objective from a
single demonstration, more data lead our algorithm to correctly
support H1.

Summary: The four situations presented above illustrate that
our two original hypotheses H1 and H2 are supported most of the
time (see Sections VI-A1 and VI-A2), with some exceptions (see
Sections VI-A3 and VI-A4). We saw that when the person has a
difficult time giving a good demonstration (see Section VI-A4),
our method cannot support H1 unless provided with multiple
demonstrations, to disambiguate the inherent noise in the user’s
suboptimal input. Additionally, when the person provides what
should be a poorly explained demonstration (see Section VI-A3),
feature correlation might lead the inference to falsely detect θ
s corresponding to that input, contradicting H2. However, we
observed that when given more demonstrations, our algorithm
can attribute low situational confidence β if the uncorrelated
input is sufficient. More work is needed in this area.

B. Corrections

We now turn our attention to case where the human input is
sparse and in the form of intermediate corrections during the
robot’s task execution. Here, we present an offline case study
where we analyze how our estimates of β̂ enable us to distinguish
if the input is well explained or not to the robot’s model of
the human. For a full exploration of the real-time updates from
human corrections, we conduct an online user study, which we
will later describe in Section VII.

We recruited 12 additional individuals to physically interact
with the same robotic manipulator. Each participant was asked
to intentionally correct a feature (that the robot may or may not
have in its hypothesis space): adjusting the distance of the end
effector from the table, adjusting the distance from the person,
or adjusting the cup’s orientation.

During this case study, the robot did not attempt to update the
feature weights θ and simply tracked a predefined trajectory with
an impedance controller [43]. The participants were instructed
to intervene only once during the robot’s task execution, in order
to record a single physical correction. The resulting trajectories
and physical interaction uH were saved for the offline analysis.
This setup enabled us to easily analyze the situational confidence
of the robot as we changed the robot’s hypothesis space.

Next, we ran our approximate inference algorithm using
the recorded human interaction torques and robot joint angle
information. We measured what β̂ would have been for each
interaction if the robot knew about a given subset of the features.
By changing the subset of features for the robot, we changed
whether any given human interaction was well explained to the
robot’s hypothesis space.

Fig. 11. β values are significantly larger for well-explained actions than for
poorly explained ones. Feature updates are nonnegligible even during poorly
explained actions, which leads to significant unintended learning for fixed β
methods. (a) Average β for well-explained and poorly explained interactions.
(b) Average ΔΦ for well-explained and poorly explained interactions.

We tested the following two hypotheses.
H1. Well-explained interactions result in high β̂, whereas

interactions that change a feature the robotdoes not know about
result in low β̂ for all features the robot does know about.

H2. Not reasoning about well-explained interactions and,
instead, indiscriminately learning from every update lead to
significant unintended learning.

We ran a repeated measures ANOVA to test the effect of
whether an input is well explained on our β̂. We found a signifi-
cant effect (F (1, 521) = 9.9093, p = 0.0017): when the person
was providing a well-explained correction, β̂ was significantly
higher. This supports our hypothesis H1.

Fig. 11(a) plots β̂ under the well-explained (orange) and
poorly explained (blue) conditions. Whereas the poorly ex-
plained interactions end up with β̂ s close to 0, well-explained
corrections have higher mean and take on a wider range of
values, reflecting varying degrees of human performance in
correcting something the robot knows about. We fit per-feature
chi-squared distributions forP (β̂ | E) for each value ofE which
we will use to infer E and, thus, θ online. In addition, Fig. 11(b)
illustrates that even for poorly explained human actions
uH , the resulting feature difference ΔΦ = Φ(xD)− Φ(x) is
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TABLE I
RESULTS OF ANOVA ON SUBJECTIVE METRICS COLLECTED FROM A SEVEN-POINT LIKERT SCALE SURVEY

Bold symbolizes statistical significance.

nonnegligible. This supports our second hypothesis, i.e., H2, that
not reasoning about how well explained an action is detrimental
to learning performance when the robot receives misspecified
updates.

VII. USER STUDY ON LEARNING FROM CORRECTIONS

Our case study on corrections suggested that β̂ can be used as a
measure of whether physical interactions are well explained and
should be learned from. Next, we conducted an IRB-approved
user study to investigate the implications of using these estimates
during learning. During each experimental task, the robot began
with a number of incorrect weights and participants were asked
to physically correct the robot. Locations of the objects and
human were kept consistent in our experiments across tasks and
users to control for confounds.10 The planning and inference
were done for robot trajectories in 7-D configuration space,
accounting for all relevant constraints including joint limits and
self-collisions, as well as collisions between obstacles in the
workspace and any part of the robots body.11

A. Experiment Design

1) Independent Variables: We used a 2× 2 factorial design.
We manipulated the corrections learning strategy with two levels
(fixed β and estimated β learning), and also whether the human
corrected for features inside (well explained) or outside (poorly
explained) the robot’s hypothesis space. In the fixed learning
strategy, the robot updated its feature weights from a given
interaction via (31) with a fixed β value. In the estimated
β learning strategy, the robot updates its feature weights via
(30). The abovementioned offline experiments provided us an
estimate for P (E | β̂) that we used in the gradient update.

2) Dependent Measures—Objective: To analyze the objec-
tive performance of the two learning strategies, we focused
on comparing two main measurements: the length of the θ̂
path through weight space as a measurement of the learn-
ing process and the regret in feature space measured by

10We assume full observability of where the objects and the human are, as
the focus of this article is not sensing.

11[Online]. Available: https://youtu.be/stnFye8HdcU

|Φ(xθ∗)− Φ(xactual)|. Longer θ̂ paths should indicate a learning
process that oscillates, whereas shorter paths suggest smoother
learning curves. On the other hand, high regret implies that the
learning method did not converge to a good objective θ, whereas
low regret indicates better learning.

3) Dependent Measures—Subjective: For each condition,
we administered a seven-point Likert scale survey about the
participant’s interaction experience (see Table I). We separate
the survey into three scales: task completion, task understanding,
and unintended learning.

4) Hypotheses: We tested the following four hypotheses.
H1. On tasks where humans try to correct inside the robot’s

hypothesis space (well-explained corrections), inferring situ-
ational confidence is not inferior to always assuming high
situational confidence.

H2. On tasks where humans try to correct outside the robot’s
hypothesis space (poorly explained corrections), inferring situ-
ational confidence reduces unintended learning.

H3. On tasks where they tried to correct inside the robot’s hy-
pothesis space, participants felt like the two methods performed
the same.

H4. On tasks where they tried to correct outside the robot’s
hypothesis space, participants felt like our estimated β method
reduced unintended learning.

5) Tasks: We designed four experimental household motion
planning tasks for the robot to perform in a shared workspace.
Similarly to the case studies, for each experimental task, the
robot carried a cup from a start to end pose with an initially
incorrect objective. Participants were instructed to physically
intervene to correct the robot’s behavior during the task.

In Tasks 1 and 2, the robot’s default trajectory took a cup from
the participant and put it down on the table, but carried the cup too
high above the table. In Tasks 3 and 4, the robot also took a cup
from the human and placed it on the table, but this time it initially
grasped the cup at the wrong angle, requiring human assistance
to correct end-effector orientation to an upright position. For
Tasks 1 and 3, the robot knew about the feature the human
was asked to correct for (E = 1) and participants were told
that the robot should be compliant. For Tasks 2 and 4, the
correction was poorly explained (E = 0) and participants were

https://youtu.be/stnFye8HdcU
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instructed to correct any additional unwanted changes in the
trajectory.

6) Participants: We used a within-subject design and ran-
domized the order of the learning methods during experiments.
We recruited 12 participants (six females and six males, aged
18–30) from the campus community, ten of which had technical
background. None of the participants had experience interacting
with the robot used in our experiments.

7) Procedure: Every participant was assigned a random or-
dering of the two methods and performed each task without
knowing how the underlying methods work. One challenge in
performing and evaluating our experiment was that different
participants may have different internal preferences for how a
task should be performed. In order to have a consistent notion of
ground-truth preferences, we fixed the true objective (e.g., how
far the cup should be from the table) for each task. At the begin-
ning of each task, the participant was first shown the incorrect
default trajectory that they must correct, followed by the ground-
truth desired trajectory they should teach the robot. This allows
us to focus only on how well each algorithm infers objectives
from the human input versus trying to additionally estimate the
unique ground-truth human objective of each participant. Then,
the participant performed a familiarization round, followed by
two recorded experimental rounds. After answering the survey,
the participant repeated the procedure for the other method.

B. Analysis

1) Objective: We ran a repeated-measure factorial ANOVA
with learning strategy and input quality (well or poorly ex-
plained) as factors for the regret. We found a significant main
effect for the method (F (1, 187) = 7.8, p = 0.0058) and a sig-
nificant interaction effect (F (1, 187) = 6.77, p = 0.0101). We
ran a post-hoc analysis with Tukey HSD corrections for multiple
comparisons to analyze this effect, and found that it supported
our hypotheses. On tasks where corrections were poorly ex-
plained, the estimated β method had significantly lower regret
(p = 0.001); on tasks where corrections were well explained,
there was no significant difference (p = 0.9991). Fig. 12(a) plots
the regret per task, and indeed the estimatedβ method was not in-
ferior on Tasks 1 and 3, and significantly better on Tasks 2 and 4.

For the length of the θ̂ path through weight space met-
ric, the factorial ANOVA analysis found a significant main
effect for the method (F (1, 187) = 76.43, p < 0.0001) and a
significant interaction effect (F (1, 187) = 33.3, p < 0.0001).
A similar post-hoc analysis with Tukey HSD correction for
multiple comparisons also supports our hypotheses. On tasks
where corrections were poorly explained, our method had sig-
nificantly lower average weight paths over time (p = 0.0025);
on tasks where correction were well explained, however, there
was no significant difference (p = 0.1584). The same results
are supported by Fig. 12(b), which plots the average length of θ̂
through weight space per task, and indeed our method was not
significantly inferior for Tasks 1 and 3, and significantly better
on Tasks 2 and 4.

2) Subjective: We ran a repeated measures ANOVA on the
results of our participant survey. We find that our method is

Fig. 12. Comparison of regret and length of θ̂ learning path through
weight space over time (lower is better). (a) Regret averaged across subjects.
(b) θ̂ learning path length averaged across subjects.

not significantly different from the baseline in terms of task
completion (F (1, 7) = 0.88, p = 0.348) and task understand-
ing (F (1, 7) = 0.55, p = 0.46), which supports H3. Participants
also significantly preferred the estimated β method in terms
of reducing unintended learning (F (1, 7) = 9.15, p = 0.0046),
which supports H4.

VIII. CONCLUSION

Human guidance is becoming increasingly important as au-
tonomous systems enter the real world. One common way for
robots to interpret a human input is treating it as evidence about
hypotheses in the robot’s objective space. Since accounting for
all possible hypotheses and situations ahead of time is challeng-
ing if not infeasible, in this article, we claim that robots should
explicitly reason about how well their given hypothesis space
can explain the human inputs.

We introduced the notion of situational confidence β as a
natural way to measure how much the robot should trust its
inputs and learn from them. We presented a general framework
for estimating β in conjunction with any task objectives for
scenarios where the human and the robot are operating the same
dynamical system. We instantiated it for learning from human
demonstrations, as well as for learning from corrections, by
deriving a close to real-time approximate algorithm. In both
settings, we exemplified—via human experiments with a 7-DoF
robotic manipulator and a user study—that reasoning about
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situational confidence does, in fact, assist the robot in better
understanding when it cannot explain the human input.

There are several important limitations in our work. Perhaps
the biggest limitation of all, which we alluded to in Section I,
is that the hypothesis space can be misspecified but the robot
can nonetheless explain the input relatively well, thus confusing
misspecification for slight noise. This is especially true in more
expressive hypothesis spaces, where there might always be some
hypothesis that explains the input. This is unfortunately a fun-
damental problem with detecting misspecification in expressive
hypothesis spaces: a single demonstration or a single data point
will not be enough. Much like learning cost functions when using
such spaces requires much more and diverse data than when
using a less expressive space, with detecting misspecification
too it will be the case that the robot will require a rich and
diverse set of data points. The more data the robot has access
to, and the more diversely it is distributed, the less of a chance
there is that one wrong hypothesis can explain all the data.

Furthermore, our approach cannot disambiguate between mis-
specification of the hypothesis space and misspecification of the
human observation model, i.e., the Boltzmann model.

Algorithmically, while for corrections, we derived a way to
handle continuous hypothesis spaces that scales linearly with the
dimensionality of the space, and for demonstrations, we relied on
simply discretizing the space. This was sufficient for showcasing
the benefit of estimating situational confidence, since for demon-
strations, this is done offline. However, to scale the method to
complex spaces, we need to combine it with state-of-the-art
(Bayesian) IRL approaches that rely on Metropolis Hastings
sampling, or simply estimate the MLE.

Finally, our experiments for both demonstrations and correc-
tions are limited to a simple motion planning task with a cost
function that depends on only a few features. We do not show
how the method would degrade, both under ideal as well as under
approximate inference.

In the subsequent work, we hope to address some of these
limitations. We are also interested in an extension to sequential
time-dependent inputs, where the person could change their
mind about what objective is important to them. Additionally,
we want to explore ways of handling misspecification other
than reducing learning, such as switching to a more expressive
hypothesis space (but demanding more data and computation)
whenever the situational confidence is very low for all θ s.
Finally, we are excited to showcase our work on other coupled
dynamical systems, such as autonomous vehicles.

APPENDIX A
PRACTICAL CONSIDERATIONS

A. Demonstrations

1) DiscretizingΘ andB in (13): For theΘ discretization, we
chose vectors in the unit sphere, as discussed in Section III-B.
For practical purposes, we restricted the θ components to be
positive due to our task features and the capabilities of our
trajectory optimizer; in general, learning from demonstrations
should be restricted to norm 1, not necessarily to the positive
quadrant. In both our examples in Section IV and experiments
in Sections VI, each θi component was allowed to take values

0, 0.5, or 1. Since we used three features, θ’s dimensionality
was 3, leading to a possible set Θ equivalent to the threefold
Cartesian product of the values above. After normalizing to norm
1, we were left with 19 unique θ vectors in Θ, weighing the 3
features in different proportions, as shown in Figs. 3 and 7–10.
Our discretization scheme ensured an approximately uniform
sampling on the positive quadrant of the unit sphere.

To discretize situational confidence, we found it sufficient to
cover β ∈ {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0}, the
log-scale space, similarly to [30] and [31]. For different tasks,
a similar discretization should suffice because what matters is
β’s relative magnitude for identifying misspecification, not its
absolute one. We suggest calibrating the threshold ε in (6) using
a few simulated trajectories like the ones in Fig. 3.

B. Corrections

1) Planning and Replanning: We use TrajOpt [41] to plan
and replan robot trajectories. We set up the trajectory optimiza-
tion problem to plan a path that minimizes a cost function of the
form of (15). Given different features Φ and weights θ on these
features, different optimal paths may be found. Additionally, we
constrain the optimization to plan a path between a prespecified
start and goal locations while avoiding collisions with the objects
in the environment (table, laptop, or human). The total time of
the trajectory is fixed, but the actual length can differ. That means
that the robot moves faster for longer trajectories and slower for
shorter ones.

When the experiment starts, the robot plans an initial path
from start to goal, using the initial weights θ. When a human push
happens, the robot measures the instantaneous deviation, which
deforms the trajectory via the impedance controller. Without
learning, the robot would resume tracking its original trajectory.
However, we use the human input to update θ according to (30),
which the robot’s planner uses to compute a new trajectory that
the robot can follow instead. In a perfect world, this entire pro-
cess would happen at 60 Hz. In practice, however, the trajectory
optimizer’s computation lasts longer. As such, once a push is
registered, the robot starts listening for following torque signals
only after the update is complete.

Imagine this process in the context of a typical user ex-
perience. Once the person begins pushing, the robot instantly
starts updating θ and optimizing the new induced path. While
the person is applying their correction, the planner eventually
finishes its computation and passes the updated trajectory to the
robot controller. The user can immediately feel that the robot
changed course and stops intervening.

2) Solving (21): We used SLSQP, an off-the-shelf sequential
quadratic programming package [44], to solve (21). In practice,
the method can fail to return a good result if the initialization
is bad. We found that if we initialize the minimization with a
guess that does not satisfy the constraint (e.g., 0), it returns a
reasonable estimate of the true u∗H .

3) Sensitivity Analysis: Both (24) and (30) rely heavily on
hyperparameters λ and ν. Here, we discuss how to set them.

Setting λ affects the magnitude of the resulting estimated situ-
ational confidence β̂ in (24). This magnitude plays an important
role when later estimating θ via (30) because it affectsP (E | β̂).
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However, note that to compute this probability, we useP (β̂ | E),
which is an entirely data-driven empirical distribution, where the
observed β̂ is also computed via (24). As such, we are not relying
on absolute magnitudes of the estimated situational confidence
but on relative ones. Therefore, the choice of the hyperparameter
λ does not affect our method’s estimates as long as they are
computed with the same hyperparameter that is used for learning
P (β̂ | E).

In the case of precision ν in (25), how spread out the Gaussian
noise centered around Φ(xR) is affects the denominator in
(30). When ν → 0, the Γ(ΦD, E = 0) term in the denominator
goes to 0, which means that (30) reduces to (31): our method
always learns and never identifies misspecification. On the other
hand, when ν →∞, we can use the L’Hospital rule to see that
Γ(ΦD, E = 0)→ 0 as well, as long as ||ΦD − Φ(xR)||2 �= 0,
which is true unless there is no correction to deformxR, in which
case we do not need to update θ at all. Therefore, it is important
that ν is set not too high and not too low in order for our method
to work properly.

The best practice for setting ν also involves using the offline
data calibration from Section VI-B. To calibrate properly, after
computing the empiricalP (β̂ | E) distribution, whenE = 0 the
updated θ should not change much, whereas when E = 1 the θ
parameter should change appropriately.

Without the offline data calibration in Section VI-B, both λ

andν affect the θ andβ estimation, and can have profound effects
on the efficacy of our method. Unfortunately, we cannot do this
calibration automatically yet, which is a limitation of our work,
and we leave it for the future research.

4) Trajectory Deformation Parameter Choice: When de-
forming the robot’s trajectory given a human interaction, there
are many choices of the deformation matrix A and the defor-
mation magnitude parameter μ. A can be an explicit design
choice (for example, constructing A from a finite differencing
matrix [13]), can be solved for via an optimization problem,
which penalizes the undeformed trajectory’s energy, the work
done by the trajectory deformation to the human, and variations
total jerk as in [45], or can even be learned from human data [46].
The magnitude of the deformation μ can also be tuned for best
performance, for example, to be robust to the rate at which
deformations occur (see [27] for more details).

APPENDIX B
LAPLACE APPROXIMATION IN (19)

Let the cost function in the model in (19) be denoted by

CΦD
(ū) = λ‖ū‖2 + κ‖Φ(x̄D)− ΦD‖2 (32)

for an observed ΦD.
First, our cost function can be approximated to quadratic

order by computing a second-order Taylor series approximation
about the optimal human actionu∗H (obtained via the constrained
optimization in 21)

CΦD
(ū) ≈ CΦD

(u∗H) +∇CΦD
(u∗H)�(ū− u∗H)

+
1

2
(ū− u∗H)�∇2CΦD

(u∗H)(ū− u∗H). (33)

Since ∇CΦD
(ū) has a global minimum at u∗H , then

∇CΦD
(u∗H) = 0 and the denominator of (19) can be rewritten

as
∫

U
e−βCΦD

(ū)dū

≈ e−βCΦD
(u∗H)

∫

U
e−

1
2 (ū−u∗H)β∇2CΦD

(u∗H)(ū−u∗H)dū. (34)

Since β∇2CΦD
(u∗H) > 0 for u∗H �= 0, the integral is in

Gaussian form, which admits a closed-form solution
∫

U
e−βCΦD

(ūH)dūH ≈ e−βCΦD
(u∗H)

√
2πk

βk|Hu∗H |
where Hu∗H = ∇2CΦD

(u∗H) denotes the Hessian of CΦD
at u∗H .

Replacing CΦD
(ūH) with the expanded cost function, we arrive

at the final approximation of the observation model as follows:

P (ut
H | x0,uR; ΦD, β)

≈ e−βλ(‖ut
H‖2)

e−β(λ‖u∗H‖2+κ‖Φ(x∗D)−ΦD‖2)

√
βk|Hu∗H |

2πk
. (35)
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