
IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019 939

Beyond Basins of Attraction: Quantifying Robustness
of Natural Dynamics

Steve Heim and Alexander Spröwitz

Abstract—Properly designing a system to exhibit favorable natu-
ral dynamics can greatly simplify designing or learning the control
policy. However, it is still unclear what constitutes favorable natu-
ral dynamics and how to quantify its effect. Most studies of simple
walking and running models have focused on the basins of attrac-
tion of passive limit cycles and the notion of self-stability. We instead
emphasize the importance of stepping beyond basins of attraction.
In this paper, we show an approach based on viability theory to
quantify robust sets in state-action space. These sets are valid for
the family of all robust control policies, which allows us to quantify
the robustness inherent to the natural dynamics before designing
the control policy or specifying a control objective. We illustrate
our formulation using spring-mass models, simple low-dimensional
models of running systems. We then show an example application
by optimizing robustness of a simulated planar monoped, using
a gradient-free optimization scheme. Both case studies result in a
nonlinear effective stiffness providing more robustness.

Index Terms—Legged locomotion, nonlinear dynamical systems,
viability, robust control, robot learning, robot control, physical
design.

I. INTRODUCTION

ANIMALS are not only agile and efficient, but also remark-
ably adaptable and robust [1], [2], with arguably simple

control and morphology [3]–[5]. Reproducing this performance
in legged robots has been difficult. Most robots use sophisticated
algorithms [6]–[9], which rely on accurate models and state es-
timation at a substantial computational cost. This reliance tends
to make model-based approaches brittle.

Recently, there have been attempts to combine these ap-
proaches with machine learning to improve robustness and
adaptability [10]–[12]; however, it is notoriously difficult to ap-
ply learning directly in hardware. We are motivated by the ques-
tion “how should a legged robot be designed, such that it is easier
to apply model-free learning directly in hardware?” A key part
of the answer is the inherent robustness of the natural dynamics
of the system.

Indeed, designing a system with favorable natural dynamics
can simplify the control problem [13]–[17] and enable quick

Manuscript received December 15, 2018; accepted March 31, 2019. Date of
publication May 9, 2019; date of current version August 1, 2019. This work
was made possible thanks to a Max Planck Group Leader grant awarded to A.
Sprwitz by the Max Planck Society. This paper was recommended for publication
by Associate Editor R. D. Gregg and Editor T. Murphey upon evaluation of the
reviewers’ comments. (Corresponding author: Steve Heim.)

The authors are with the Dynamic Locomotion Group, Max Planck Insti-
tute for Intelligent Systems, 70569 Stuttgart, Germany (e-mail: heim.steve@
gmail.com; sprowitz@is.mpg.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2019.2910739

learning directly in hardware [18], [19]. It is, however, still un-
clear how to quantify and evaluate the effects of design choices
on the control problem, especially in terms of robustness and
ease of designing or learning the control policy. After a robot is
deployed successfully, it is difficult to distinguish what is due
to the mechanical design, controller design, implementation,
or other factors. Designers must instead rely on experience and
intuition.

Many studies of natural dynamics focus on the concept of
self-stability and the basins of attraction of passively stable
limit cycles [20]–[23] or open-loop stable limit cycles [24]. In
this study, we advocate the importance of stepping away from
thinking in terms of limit cycles and their basins of attraction.
We present a formulation grounded in viability theory, which
allows us to quantify the inherent robustness of the natural dy-
namics, prior to specifying the control policy parameterization
or control objective.

A. Natural Dynamics and Spring Mass Models

Perhaps the clearest example of natural dynamics is Tad
McGeer’s passive dynamic walker [25]: this purely mechani-
cal system with no sensors or actuators, and hence no control,
exhibits passively stable limit cycles for downhill walking. This
idea has been extended in several robots, adding a little actua-
tion and control to allow walking on level ground [26], [27] and
to increase the basin of attraction of the passively stable limit
cycle. A key concept is to exploit the natural dynamics. The in-
tuition behind this concept is that the control can be “lazy”: if
a perturbation pushes the system out of the basin of attraction,
the control should guide it back in. Once the state is inside the
basin of attraction, the control can allow the system to naturally
evolve to the attracting limit cycle.

Simulation studies of idealized walking models such as the
rimless wheel [28] and compass walker [29] have provided more
understanding of McGeer’s empirical results. These models also
have passively stable limit cycles albeit with rather small basins
of attraction.

For running, we turn to a different idealized model: the spring-
mass model. This simple model was initially developed by
the biomechanics community to study running [30], where the
spring abstracts the natural compliance of the muscle-tendon
system in the leg. While the effective leg stiffness depends on
many factors including muscle activation, it is modeled as a con-
stant parameter, and thus the model has no control inputs. Thus,
at the level of abstraction of the model, the natural dynamics

1552-3098 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4916-7464
https://orcid.org/0000-0002-3864-7307
mailto:heim.steve@gmail.com
mailto:sprowitz@is.mpg.de

940 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

seem passive even though the system may have active control
embedded in it.

This simple model, also called a template, accurately predicts
the overall behavior of many seemingly very different systems,
called anchors [31]. Indeed, by proper parameter tuning, the
spring-mass model can be used to accurately model diverse run-
ning systems, from humans [32] to cockroaches [33], bipedal
[14] to hexapedal [34] robots.

B. Templates, Anchors, and Hierarchical Control

Spring-mass model templates are often used for understand-
ing hierarchical control [31] since the template and anchor divi-
sion offers a natural split in hierarchy. A high-level control policy
can be designed based on a template in a low-dimensional space,
while a low-level control policy based on the anchor is designed
in the high-dimensional space. Thus, as long as the low-level
controller enforces a template-like behavior on the system, the
high-level controller design can be greatly simplified [35]–[37].

In this hierarchical context, the term natural dynamics is al-
ways relative to the level of abstraction being considered. Indeed,
to a high-level control policy, there is no distinction between
which part of the system behavior is truly “passive” and which
has been influenced by the low-level controller.1

The template and anchor approach to hierarchical control
has been used to develop various discrete-time high-level con-
trollers: for example, the spring stiffness or landing angle of
attack might be chosen once per step, but the continuous-time
dynamics in between are left “passive” [38]–[41]. One result
with this approach is that choosing an open-loop trajectory
of landing angles of attack during flight can achieve deadbeat
control without active control during stance [24], [42].

While these results are impressive, they generally suffer from
the curse of dimensionality: they are only tractable on the low-
dimensional template models. Therefore, the high-level control
relies on the overall system behaving as a simpler, lower dimen-
sional system. This is usually achieved through a combination
of appropriate mechanical design, and a low-level controller
that exposes a simpler dynamical behavior to the high-level
controller.

There are two common approaches to low-level controller
design. On the one hand, a low-level control policy can enforce
the dynamical behavior of a specific template model [43]–[46].
While this approach offers more rigorous guarantees on the be-
havior of the high-level system, it is also generally more difficult
to implement in practice.

On the other hand, the low-level control policy can be de-
signed to produce a lower dimensional behavior without enforc-
ing the specific template dynamics [47]–[50]. This approach
requires further tuning of the high-level control policy, since it
explicitly allows for a mismatch between the high-level model
and the actual system behavior.

Robustness is a key indicator of how accurate a model needs
to be, regardless of the approach taken: a policy that is robust
will suffer less from model inaccuracies. Our main contribution

1This is equivalent to the split between agent and environment in
reinforcement learning.

is a means to quantify the robustness of the natural dynamics,
prior to designing the high-level control policy, or even specify-
ing its objective. We first illustrate the quantification on template
models in a rigorous manner. We then show an example applica-
tion using gradient-free optimization to find robust parameters
of a low-level controller, without enforcing a specific template
model. We are thus able to quantify robustness without relying
on low-dimensional template models.

C. Computation of Viability

Our quantification relies on the concept of viability: a state is
said to be viable if there exists a set of control actions that keeps
it inside the viability kernel for all time [51]. In other words,
a state that starts outside the viability kernel will fail within a
finite time, regardless of the control actions applied.

There has been much interest recently in computing viable
sets and its dual, back-reachable sets [52], for safe control ver-
ification and design [53]–[56], and more recently safe learning
of control [57], [58]. Our contribution complements prior work
by using a viability formulation to quantify robustness of the
system design prior to control policy design.

Viability-based approaches share a common challenge: com-
puting viability kernels relies on gridding the search space,
making the general case intractable [53], [59].

For particular classes of systems, more efficient algorithms
have been developed to find either inner or outer approxima-
tions of viable sets, which can generally be scaled to 6–10 di-
mensions [59]. Thus, it is often beneficial to use approximations
that fit these classes and dimension restrictions. Computation of
viable sets is then performed on the low-dimensional approxima-
tion, which can be tracked using a hierarchical control strategy
[60], [61].

This matches well with the existing template and anchor
paradigm commonly used in legged robotics. We will show an
example application, in which we optimize the parameters of
the low-level control policy to exhibit robust natural dynamics
to a high-level control policy.

D. Notes on Terminology

We use terminology common to the reinforcement learning
community, such as actions instead of control inputs and control
policies instead of controllers. We will speak of control policies
sampling an action, or the system sampling a state-action pair,
to indicate the policy can be stochastic.

Much of the mathematics in the paper revolves around sets
in different spaces. Capital letters such as S denote spaces (in
this case the state space). Capital letters with a subscript such
as SF denote a set in the corresponding space, the meaning of
the subscript being explained in the text (in this case the set of
failure states).

E. Structure

In Section II, we cover the details of the two spring-mass
models we examine, their dynamics, and a typical bifurcation
diagram for the spring-loaded inverted pendulum (SLIP) model.

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 941

Fig. 1. We focus on two spring-mass models: (a) the SLIP model with a
linear prismatic spring, and (b) the NSLIP model, with a segmented leg and a
linear torsional spring. (c) A qualitative trajectory over one cycle, starting and
terminating with a flight apex event.

In Section III, we compute the viability kernel as well as
the transition map in state-action space. We illustrate how
this encompasses the bifurcation diagram, and why bifurcation
diagrams are limiting once we introduce control.

In Section IV, we introduce our definitions of robustness,
and how to use this to evaluate two different designs of leg
compliance prior to designing a control policy.

In Section V, we show an example application, in which
the quantification developed is used as the fitness function
to perform gradient-free optimization of a simulated planar
monopedal robot.

In Section VI, we summarize our key contributions, open
questions, and outlook.

II. SPRING-MASS MODELS

We use two well-studied spring-mass models to illustrate our
concepts: the SLIP model and a nonlinear spring mass (NSLIP)
model as first studied by Rummel and Seyfarth [23] (see Fig. 1).
Both models have hybrid dynamics with the governing equations
of motion switching between flight and stance phases.

During the flight phase, the body follows a ballistic trajec-
tory, whereas during the stance phase it follows a spring-mass
motion, which depends on the modeled spring. The details of
the equations of motion have been derived in [23] and [30], and
can be found in the appendix. For convenient comparison, we
use the same parameters as in [23], which are similar to human
averages.

A. Discrete Analysis via Poincaré Sections

The continuous motion of the point-mass body is fully de-
scribed in planar Cartesian coordinates by the state vector

Fig. 2. Bifurcation diagram of the passive SLIP model. This diagram high-
lights the small range of parameters for which stable limit-cycles exist. The
basins of attraction are bounded by infeasibility and unstable limit cycles. Be-
yond these basins of attraction, however, is a lot of structure that can be exploited
through control.

[x, y, ẋ, ẏ]ᵀ. We simplify analysis by only evaluating the state on
a Poincaré section at flight apex, a common approach for cyclic
motion. At flight apex, potential and kinetic energy are conve-
niently contained in the vertical position and forward velocity,
respectively. Thus, the continuous state vector of [x, y, ẋ, ẏ]ᵀ can
be reduced to [y, ẋ]ᵀ. Taking advantage of the constant energy
constraint, we can further reduce the system to a single state, the
normalized apex height s, which defines our state space

s =
Epot

Epot + Ekin
=

g y
ẋ2

2 + g y

State Space: s ∈ S = [0, 1]

where Epot and Ekin are potential and kinetic energy, respec-
tively, and g is the gravitational acceleration.

Starting from any state at apex s, we can numerically integrate
the continuous time dynamics until the system either transitions
to a second apex height or to a failure state. We thus obtain
the Poincaré map, also called a transition map, for our discrete
dynamics

sk+1 = P (sk, α)

where the landing angle of attack α is a model parameter of
interest. We will use this as our control action in Section III.

We will consider as failures all states in which the body hits
the ground with y = 0, as well as when the system reverses
direction with ẋ < 0. More formally

Failure Set SF := {s : y = 0 or ẋ < 0} .

B. Bifurcation Diagram of the SLIP Model

A bifurcation diagram allows the study of the existence and
stability of fixed points and limit cycles, as a dependence of
model parameters.

The bifurcation diagram of the SLIP model with respect to the
angle of attackα is shown in Fig. 2. Similar bifurcation diagrams
for spring-mass models can be found in [62], and bifurcation
diagrams for spring stiffness can be found in [23] and [38].

We only evaluate period-1 limit cycles, that is when
sk+1 = sk, and do not consider orbits which require multiple

942 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

Fig. 3. Lookup table of the SLIP model’s transition map. This map shows combinations of state (height at apex) and action (landing angle of attack), and their
transition to either a second apex or a failure. State-action pairs in the gray region result in failure. State actions in the warm and cool colored regions result in
hopping higher and lower, respectively, with the color indicating the change in state (vertical axis) at the next apex. Also marked are passively stable (solid red)
and unstable (dashed red) limit cycles.

iterations to return to periodicity. Stable limit cycles are marked
with a solid red line and unstable limit cycles with a dashed
red line. The basins of attraction of the stable limit cycles are
highlighted by the shaded area.

These basins of attraction are bounded from below by an
infeasibility constraint: below this line, the foot would begin
underground. The unstable limit cycles bound the basins of at-
traction from above: being perturbed onto an unstable limit cycle
will keep the system at that new state; beyond this threshold, it
will diverge until the system fails.

Since either infeasibility or unstable limit cycles bound the
basins of attraction, many previous studies have been limited to
identifying these bounds. The relevant range of parameters and
states for studying basins of attraction tends to be narrow, as
illustrated in Fig. 2. We will show in the following section that
there is a lot of structure outside the basins of attraction of these
passively stable limit cycles. Once we allow parameters such as
the angle of attack α to be actively chosen as a control decision,
the relevant bounds are no longer the bounds of the basins of
attraction, but those of failure and viability.

III. NATURAL DYNAMICS AND VIABLE CONTROL

We begin the section by introducing control, then evaluate the
effect the natural dynamics have on the set of possible control
policies. A key concept is the link between the viability kernel, a
set within the state space, and the set of viable state-action pairs.

A. Control Policies and State-Action Space

We now allow the landing angle of attack α to be
freely chosen at each apex. This defines our action

space A

a = α

Action Space: a ∈ A = [−180◦, 180◦]
where a is any action in A. In the figures, we only show the
relevant range, excluding the range which contains only failures
or infeasible state-action pairs.

A control policy π is any function that maps a state to an
action a = π(s). As such, a policy lives in the combined state
and action spaces, which we term Q-space.2

B. Transition Map

We compute high-resolution 800 × 800 grids of state-action
pairs, as is commonly done for these types of problems [9], [24],
[41], [56], [63]. We, thus, obtain a lookup table of the transition
map P (sk, ak), visualized in the state-action space Q in Fig. 3
for the SLIP model and in Fig. 4 for the NSLIP model.

To highlight the limit cycles, we use a color-map centered
around sk − sk+1 = 0. The warm and cool colored regions cor-
respond to state-action pairs that result in a higher or lower state,
respectively. The gray regions are state-action pairs, which result
in a failure state P (sk, ak) ∈ SF . The black region is composed
of infeasible points in which the foot would start underground,
and as such is not part of the Q-space.

We call the gray region the set of failing state-action pairs
QF . Its complement, the colored region, is the set of non-failing
state-action pairs. More formally

QN := {(sk, ak) : P (sk, ak) /∈ SF } . (1)

2This term is chosen in reference to Q-learning in reinforcement learning.

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 943

Fig. 4. Although the viability kernel SV remains the same for both models, the size of QV of the NSLIP is 36% larger. This allows for more flexibility and
robustness in designing a control policy for the NSLIP model. For reference, the QV of the SLIP model is overlaid in gray lines in horizontal and vertical for the
cold and warm colored regions, respectively.

We denote the projection of QN onto the state space S as
the set SN = projS(QN). Throughout the paper, we always use
orthogonal projections, that is

projS (s, a) = s (2)

SN is the set of controllable states, from which actions that avoid
immediate failure can be selected. More formally

SN := {sk : ∃ ak such that P (sk, ak) /∈ SF } .
The upper bound between QN and QF are state-action pairs
that convert all kinetic energy into potential energy in one step,
resulting in a state of s = 1. In other words, these are the equiva-
lent of 1-step capture points [60]. The lower bound is a boundary
to falling, meaning that the point-mass hits the ground without
reaching a second flight apex.

C. Viable Sets

A viability kernel is the set of all states for which there is
at least one time evolution of the system which remains in the
set for all time [51]. Since all state-action pairs (s, a) ∈ QN

result in at least a second step, all s ∈ SN have at least a one
failure-preventing action available. However, it is possible for
a nonfailing state-action pair to reach a state from which all
solutions eventually reach a failed state, as was examined in
[64]. In other words, there can be states from which immediate
failure can be avoided, but from which the system will fail within
some finite time. Thus, the viability kernel, which we will call
SV , is a subset of SN and the set of viable state-action pairs QV

is a subset of QN .
We can compute the discretized set of viable state-action

pairs QV and its projection SV iteratively, as in Algorithm 1.
In this process, we begin with an estimated QV = QN and
SV = projS(QV). Then, we alternate trimming both estimates

Algorithm 1: Compute Viable Sets.
procedure VIABLE SETS(P,QN)

QV ← QN

SV ← {}
while SV �= projS(QV) do
SV ← projS(QV)
for all sk+1 = P (sk, ak), (sk, ak) ∈ QV do

if sk+1 /∈ SV then
Remove (sk, ak) from QV

return QV , SV

of QV and SV : first, we check if any state-action pairs (s, a)
in the estimated QV maps to a state outside of SV and exclude
these from QV . Then, we update the estimate of SV as the pro-
jection of the new QV estimate and repeat. If the projection does
not change, each state in SV has an action available that maps
back into the set and the algorithm terminates.

For the models we examine, QV is equal or almost equal to
QN except in unusual corner cases.

We can now compare the resulting QV and SV for the SLIP
and the NSLIP models (see Fig. 5). Although the set of viable
statesSV is the same in both models, the set of viable state-action
pairs QV is much larger for the NSLIP model. This suggests
unexplored benefits of nonlinear leg compliance.

D. Family of Viable Control Policies

A control policy π(s) must sample from QN with nonzero
probability; otherwise, it will always fail in a single step. All
meaningful policies must sample from QV with nonzero proba-
bility, or it will always fail in finite time. In order to avoid failure
from every viable state for all time, a policy must sample exclu-
sively from QV , which we call the viable policy design space.

944 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

Fig. 5. Robust sets for different amounts of noise are computed for the SLIP (top) and NSLIP (bottom). The NSLIP benefits from much larger robust sets QR

for any amount of noise, which makes it easier to design or learn a robust control policy. Also, the set of robust states SR are not only larger for the NSLIP, but
remain relatively large even for rather imprecise control.

We call the set of all such policies the family of viable control
policies. More formally, if the set QV is nonempty, we also have
a nonempty set of viable policies ΠV , where

∀sk ∈ SV ∃ π(sk) ∈ ΠV , ak = π(sk) :

(sk, ak) ∈ QV , and P (sk, ak) ∈ SV ∀k.

The shape ofQV in the dimensions ofS andA poses different
constraints on the control policiesπ(s) ∈ ΠV that we can design.
The projection of QV onto the dimensions of state space S is
the viability kernel SV itself.

The volume ofQV in the dimensions of action spaceA, on the
other hand, allows more flexibility in designing a viable control
policy since more viable actions are available to choose from.

Imagine, for example, a setQV defined by a single line3 cover-
ing all ofS, a surjective function f(s). While the viability kernel
SV = S is maximal, there is exactly one deterministic control
policy π(s) = f(s), which remains viable. This can make the
control policy not only difficult to design or learn, but also very
sensitive to uncertainty, as we will discuss in the following
section.

IV. ROBUST NATURAL DYNAMICS

We define robustness as the ability of a system to avoid fail-
ure in the face of uncertainty. A key objective of this paper is
to evaluate the robustness inherent to the natural dynamics: we

3A hypersurface for arbitrary dimensional state-action space.

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 945

care about the robustness resulting from the system design, be-
fore specifying the policy parameterization or even the control
objective (such as converging to a specific limit cycle).

To this end, we focus on uncertainty in action space, in other
words, the effect of noise on the control policy output. We will
use this as a basis to also examine robustness to perturbations
in state space for the family of all robust controllers. We briefly
discuss the link of action noise to state-estimation noise. We do
not consider model uncertainty, and leave this to future work.

A. Computing Robust Sets

Noise in the action space causes the system to sample a
state-action pair with a different action than chosen by the policy

a = π(sk) + ηa (3)

sk+1 = P (sk, π(sk) + ηa) (4)

where ηa is some form of noise. A robust control policy needs
to ensure that the chosen output never causes the system to fail
despite this noise, for all time. More formally

If π(sk) ∈ ΠR and ηa ∈ Ha

Then sk+1 = P (sk, π(sk) + ηa) /∈ SF ∀ k (5)

whereΠR is the family of all robust control policies. For simplic-
ity, we will consider noise sampled from a symmetrical bounded
set ηa ∈ Ha = [−η, η], where η is some finite scalar.

When considering unbounded noise (such as Gaussian noise),
similar arguments hold in a probabilistic sense: instead of being
able to guarantee that state-action pairs allow the system to never
fail, we can only guarantee that it will not fail within a finite-time
horizon with a certain probability.

The effect of action noise reduces the space available for con-
troller design in two ways. First, the output of the control pol-
icy π(sk) must be sufficiently distant from failing state-action
pairs, such that the added noise never causes an immediate fail-
ure. The second requirement is similar to that for viability: the
system must always land in a state from which it can continue
to sample robustly, for all time. More formally, we want that

sk ∈ SR, π(sk) ∈ ΠR, ηa ∈ Ha :

P (sk, π(sk) + ηa) ∈ SR ∀ k. (6)

We call QR the robust control policy design set. Similar to the
relation between ΠV and QV , policies in the set ΠR must sam-
ple exclusively from QR in order to avoid failure for any state
sk ∈ SR where SR = projS(QR). Such sets are shown in Fig. 5
for various amounts of noise η. Each of these sets is computed
with the iterative process in Algorithm 2. This is essentially
the same as the algorithm for computing the viable set, while
also considering additional possible transitions caused by noise.
Note that, if the system dynamics have certain properties, only
the worst-case noise needs to be considered [59]. Even without
these properties, a worst-case only assumption is often suffi-
ciently accurate in practice. Importantly, the computation of QR

depends only on the set QV and, thus, the set of failure states
SF , the transition map P and the noise set H . It does not depend
on the exact choice of policy π(sk), but is valid for the family

Algorithm 2: Compute Robust Sets.
procedure ROBUST SETS(P,QV , H)

QR ← QV

SR ← {}
while SR �= projS(QR) do

SR ← projS(QR)
for all (sk, ak) ∈ QR do

for all ηa ∈ Ha do
if (sk, ak + ηa) /∈ QR then

Remove (sk, ak) from QR

Break
if sk+1 = P (sk, ak + ηa) /∈ SR then

Remove (sk, ak) from QR

Break
return QR, SR

of all robust control policies ΠR. In other words, we can eval-
uate the robustness inherent to the natural dynamics, before we
design the control policy or define a control objective other than
“avoid failure”.

B. Evaluating Robustness of Different Legs

We compare the robustness of the SLIP and NSLIP models
for varying amounts of noise, as shown in Fig. 5.

With the SLIP model, QR and SR become empty sets for
noise greater than ±10.75◦, whereas in the NSLIP model the
upper threshold is almost twice as large, at ±20.00◦.

For any given amount of noise, the size of the set QR is also
much greater for the NSLIP than for the regular SLIP model.
The larger size of QR means there is more flexibility to fulfill
robustness requirements while also designing a control policy
around other criteria.

Furthermore, action noise is one of the most common methods
of introducing exploration in learning, for example with Gaus-
sian policies [65]. The amount of noise needs to be carefully bal-
anced: more noise allows for more aggressive exploration, but it
can also keep the agent from converging to the true optimum, as
well as lead to unstable behaviors ending in failed states. This
can be particularly troublesome for learning in hardware, re-
quiring more samples as well as potentially damaging the robot.
Robustness to action uncertainty allows for more aggressive and
effective exploration during learning.

C. Robustness to State Perturbations

The projection of the robust policy design set onto state space,
SR = projS(QR), is the set of robust states, from which any ro-
bust policyπ ∈ ΠR can always recover. Interestingly, with small
amounts of noise up to η < 5◦, SR remains the same for both
the SLIP and NSLIP models (see Fig. 6). For greater amounts
of noise, it shrinks much more rapidly for the SLIP model.

The set SR is particularly useful for choosing the specific
control objective. For example, if we expect perturbations in
state space to have a symmetrical distribution, we would want
to stabilize a limit cycle near the center of SR. On the other

946 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

Fig. 6. The size of the sets of robust states SR remains equal for the SLIP and
NSLIP models for noise bounded to less than 5◦. For greater amounts of noise,
the sets shrink much more rapidly for the SLIP model.

Fig. 7. SR for different amounts of total energy for the NSLIP model, with
noise fixed at η = 7.5◦. For a change in ground height, the system state travels
along the forward velocity isolines (dashed black). For reference, the author runs
recreationally at roughly 3.2 [m/s], Eliud Kipchoge ran the Breaking2 marathon
event at roughly 5.8 [m/s] and Usain Bolt holds the 100 meter dash world record
at roughly 10.8 [m/s]. The simulations shown in other graphs are all for the fixed
energy level of 1860 J.

hand, if we expect a specific type of perturbation to occur more
frequently, we can choose a limit cycle with a larger margin in
that specific direction.

As a specific example, a well-studied state perturbation is a
change of ground height between steps [1], [13], [24]. This type
of perturbation involves a change in total energy: the forward
velocity at apex remains the same, though the effective height
(and, thus, potential energy) changes. We can computeSR at dif-
ferent energy levels to then pick out operating points that remain
robustly controllable across different energy levels, as shown in
Fig. 7. Assuming symmetric distribution of perturbations, the
control objectives should be chosen to maximize the distance
from the edge of the viability kernel in each direction. For a
given desired forward velocity, we can choose a total energy
that centers the normalized height to perturbation along the ver-
tical axis (constant energy perturbation) and along the forward
velocity isolines (ground height change).

D. Robustness to State Estimation Uncertainty

Sensory noise causes the control policy to sample an action
based on a noisy estimate of the state

a = π(s+ ηs) (7)

where ηs is the noise in state space. There is an equivalence
between ηs and ηa: the action used deviates from what a control
policy would determine under perfect conditions, whether this is
due to noise in action space or state estimation. This equivalence
can be directly calculated using 4 and 7

π(s) + ηa = π(s+ ηs)

ηa = π(s+ ηs)− π(s).

If the control policy π is affine, the equivalence is trivially
ηa = π(ηs) and for bounded estimation noise ηs the equivalent
action noise ηa is also bounded. Otherwise, we cannot guaran-
tee bounds are available. Since this equivalence is dependent on
the specific control policy, we do not investigate it further here.
Suffice it to say, increasing robustness to action uncertainty can
only improve robustness to state-estimation uncertainty as well.

E. Model Comparison

Previous studies of spring-mass models by Rummel and Sey-
farth and others [23], [66], [67] have suggested that nonlinear
effective leg compliance can improve stability. These studies
focus on finding basins of attraction with a fixed parameter set.
As such, they focus specifically on limit-cycle motion and only
provide insight to robustness to state perturbations.

With their numerical studies, Rummel et al. show that, com-
pared to a linear leg compliance, a nonlinear leg compliance has
a broader range of parameters which exhibit passively stable
limit cycles. These limit cycles also tend to have larger basins
of attraction. However, at higher velocities, the model with non-
linear spring stiffness no longer exhibits passively stable limit
cycles, whereas with a linear spring this property is retained.
These results suggested that nonlinear compliance is only
beneficial at lower running speeds [23].

Using our formulation, we can evaluate robustness to state
perturbations not only for an open-loop system but for any robust
control policy. Our results confirm that, even with a maximally
robust control policy, the set of robust statesSR shrinks at higher
speeds (see Fig. 7), though not as drastically as the basins of
attraction studied by Rummel et al.

V. OPTIMIZING NATURAL DYNAMICS FOR ROBUSTNESS

As an example application, we use our quantification to op-
timize the robustness of a simulated planar monoped with a
2-segment leg with a hierarchical control structure, shown in
Fig. 8. The kinematic tree of the simulated system matches a
robot testbed we currently use in our lab, though we have ad-
justed the parameters to be consistent with the models in the
previous section. The system consists of three links: a floating-
base free to move in the plane, but without rotation, and a two-
link leg. Both hip and knee joints are actuated, resulting in an

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 947

Fig. 8. Simulated system is based on a hardware testbed, which is rigidly
attached to a boom. Thus, the floating base is limited to two degrees of freedom.
Two additional degrees of freedom, the hip and knee joints, are both actuated.
Thus, the system has four position coordinates q = [x, y, θH , θK]ᵀ, 8-D state
space [q, q̇]ᵀ and 2-D action space [τH , τK]ᵀ, where τH and τK are the hip
and knee torques, respectively. The robot shown is designed by our colleague
Felix Grimminger.

eight-dimensional (8-D) state space and a two-dimensional (2-
D) action space. Rigid impacts and ground-reaction forces are
solved as described in [43] and [68].

We use the volume of the robust set QV as the fitness function
for a particle swarm optimization (PSO), a standard gradient-free
optimization scheme. Thus, instead of requiring the low-level
controller to enforce a specific template model, we improve its
robustness in a general sense. The resulting natural dynamics
allow for a high-level control policy to be implemented more
reliably.

A. High-Level State-Action Space

The choice of the high-level state-action space is based on
the spring-mass models and classic Raibert control [69], which
share many similarities. The structure is shown in Fig. 9.

The state is defined on the Poincaré section at flight apex, as
introduced in Section II. Since the system is not energy con-
servative, both the height and forward velocity of the floating
base at apex must be considered, resulting in the state vector
[y, ẋ]ᵀapex.

The action space is defined as a desired landing angle of attack
α, constrained within 0 and 45◦, and a thrust factor λ applied
during stance, constrained within 1 and 2. This results in a 4-D
state-action space in the high level, which is amenable to direct
computation of a sufficiently dense grid.

Although our choice of the state-action space is largely mo-
tivated by Raibert control, we make no restrictions on the high-
level control policy and do not decouple the states and actions.

B. Low-Level Controller

The low-level controller is a state-machine that switches
between flight and stance.

During flight, a standard PD position controller tracks the
desired landing angle of attack α dictated by the high-level con-
trol policy. The resting length of the virtual leg l0, is set as a

Fig. 9. High-level state-action space is composed of the height and forward
velocity of the floating base at apex [y, ẋ]ᵀapex, the desired landing angle of attack
α and the thrust factor λ. The natural dynamics considered are those relative to
the high level. These include both the rigid-body dynamics of the simulated
robot as well as the embedded low-level controller.

constant parameter less than the maximum leg length to avoid
reaching singularities. Thus, α uniquely determines the desired
foot position during flight. Since there are two possible joint
configurations for each desired foot position, this orientation is
also set as a constant parameter in the computation of the inverse
kinematics. Thus, α also uniquely determines the desired joint
angles. During the first flight phase, from apex till touchdown, α
is freely chosen as the action. For the second flight phase, from
liftoff till the next apex, α is reset to the default position 0. Thus,
the initial leg configuration at each apex is expected to be the
same.

During stance, we do not enforce the dynamics of a spring
mass template model. Instead, compliant behavior is achieved
via virtual model control [47], [49]. Torques are computed to
mimic a relatively arbitrary leg compliance

[τH , τK]ᵀ =

{
BJᵀ

c kvΔl + KjΔθ if ẏ < 0

λ (BJᵀ
c kv Δl + KjΔθ) otherwise

(8)

where [τH , τK]ᵀ are the hip and knee torques, B is the actuator
selection matrix, Jc is the contact Jacobian, kv is the stiffness
coefficient of a virtual linear spring between hip and foot, Δl is
the deflection of the virtual leg from rest,K is a symmetric linear
matrix, and Δθ is the joint deflection of the leg from rest. The
diagonal coefficients of K can be interpreted as virtual springs
on the corresponding joints, while the off-diagonal coefficient
serves as a mixing term. As long as K is positive definite, K
results in a nonlinear compliance with respect to the virtual leg
deflection Δl. In similar fashion to classic Raibert control [69],
additional thrust is triggered once the body reverses direction by
amplifying joint torques by the thrust factor λ, as dictated by the
high-level control policy.

948 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

Fig. 10. Viability kernels in the high-level space for the initial monoped (left) and after optimizing virtual compliance (right), along with the action space for the
operating point [y, ẋ]ᵀ = [1, 1]ᵀ, shown in the image insets. A red triangle marks the state-action pair which leads to limit-cycle motion on the operating point,
in both the state and action spaces. In the action space, the orange and blue circles mark actions randomly sampled around the operating point and with bounded
noise η = [5◦, 0.1]ᵀ, and between η and 2η, respectively. The states reached by these state-action pairs are marked with their respective colors in the state space,
which shows the much lower sensitivity experienced by the optimized monoped. The intensity of the color-map indicates for each point in state space, the portion
of the action space which is viable. In the action space (image insets), the color-map indicates the intensity of the state that would be reached if that state-action
pair were sampled.

We assume accurate tracking of α during flight phase, which
is achieved through proper tuning of the PD gains. This is impor-
tant to ensure well-behaved high-level dynamics for two reasons.
First, to ensure that each high-level state-action pair results in a
unique state at touchdown. Second, to ensure that the robot leg
returns to the same resting configuration at each apex. In this
manner, the leg masses can be lumped with the floating base to
determine potential and kinetic energy, meaning that the high-
level state [y, ẋ]ᵀapex fully describes the system energy. Thus, the
transition map P provides a unique map for each high-level
state-action pair, and the viable sets SV and QV can be directly
computed in the high-level state-action space.

C. Optimization Setup

We use a standard PSO implementation based on [70]. The
parameters optimized are the stiffness coefficients of the virtual
leg in the low-level stance controller, [kv, k11, k22, kij], where
k11 and k22 form the diagonal of the symmetric matrix K, and
kij is the off-diagonal term.

As fitness function, we choose to maximize the hypervol-
ume enclosed by the viable set QV in the high-level state-action
space. For our systems, we have found that maximizing the hy-
pervolume of QV and QR generally leads to the same results
for reasonable amounts of noise. Each dimension of the state
is normalized by heuristically determined bounds on maximum
height and forward velocity, and the dimensions of the action
space are bounded by their corresponding constraints. The hy-
pervolume is calculated by summing and then normalizing the

points inside the set. Thus, a fitness of 1 means that for any state,
all actions are viable. A fitness of 0 means that for any state, all
actions are outside the viable set.

For the results shown, 25 particles were initialized at ran-
dom. Convergence tolerance on the fitness variance was set to
10−5, which was reached after 12 iterations, taking roughly 3.5 h
on a 28-core desktop. During the optimization, we used a low-
resolution grid with 160 000 points to speed up computation.
Note that a lower resolution will result in a more conservative
estimate of the sets, but not in mislabeled points in the set. The
simulation parameters used are:

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 949

D. Optimization Results

We compare the robustness with a virtual leg compli-
ance roughly matching that of the SLIP model, with stiff-
ness coefficient [kv, k11, k22, kij] = [8, 0, 0, 0] 103, versus one
with the stiffness coefficients resulting from the optimization,
[kv, k11, k22, kij] = [8.1, 5.0, 0.9,−0.5] 103. The viability ker-
nels SV are visualized in Fig. 10. The intensity of the color-map
indicates the portion of the action space which is viable for
each point in state space. The red triangle marks an arbitrary
operating point, [y, ẋ]ᵀ = [1, 1]ᵀ, and the action space for this
state is shown in the image inset. In the action space, the ac-
tion pair leading to limit-cycle motion is also marked by a red
triangle. To illustrate improved robustness, 50 actions are uni-
formly sampled around the operating point assuming bounded
noise η = [5◦, 0.1]ᵀ (orange circles) and an additional 50 with
bounded noise between η and 2η (blue circles).

As in the comparison between the SLIP and NSLIP models
in the previous section, the viability kernel SV in state space
remains nearly identical for both systems. The volume of the
set of viable state-action pairs, however, increases from 0.08 to
0.23, over 2.8 times. The noisy sampling of actions around the
operating point shows the decreased sensitivity to action noise
with the optimized nonlinear compliance. In Fig. 10, we chose
an arbitrary operating point for the sake of simplicity and fair
comparison. In practice, an operating point can be chosen based
on the robustness of that point in state space. Conversely, instead
of optimizing the overall robustness of the system, the fitness
function can be weighted to bias robustness near a predetermined
operating point.

VI. CONCLUSION

In this paper, we have presented a formulation for comput-
ing viable and robust sets in state-action space which allows the
inherent robustness of a system to be quantified, prior to speci-
fying the control policy parameterization or objective. Different
system designs can thus be compared quantitatively.

We have illustrated this formulation on the spring-mass
model, a low-dimensional system commonly used to synthe-
size control strategies for running robots. Furthermore, we have
shown an example application using our quantification to per-
form gradient-free optimization. The system optimized is a sim-
ulated planar monoped with a two-segment leg and a hierarchical
control structure. The low-level controller parameters are opti-
mized to improve robustness of the natural dynamics, as relative
to the high-level state-action space.

An important advantage of this formulation is that the robust-
ness of the natural dynamics can be optimized without enforc-
ing the dynamics of a specific template model, which is often
challenging and requires extensive tuning, developing accurate
models as well as state estimation [44], [71], [72]. Instead, the
inherent robustness will allow control policies designed on sim-
ple model abstractions to be leveraged despite inaccuracies.

To the best of our knowledge, prior work in viability theory
focused on evaluating robustness of a specific control policy, or
on synthesizing control policies directly, and computation was
limited to viability kernels in state space.

The notable exception is the work of Zaytsev et al. [56], which
also computes viable sets in state-action space. Aside from the
minor difference in studying walking instead of running models,
Zaytsev et al. focus on the connection between controllability
and viability. This is used to qualify how robust a given con-
trol policy is, how appropriate different templates may be for
a given control task and given robot, and to motivate the state-
ment that planning two steps ahead is sufficient. While we use
the same state-action space formulation, we take a different ap-
proach to quantification by evaluating bounded noise in action
space, which is more suitable for our motivating question: how
to design natural dynamics that are easy to exploit? Indeed, we
show why this is the only type of uncertainty that can be consid-
ered for the family of all robust control policies, without setting
any assumptions on the control policy structure or objective.
As such, we find our methods to be highly complementary, and
applicable at different stages of robot design.

One of the main challenges with viability-based approaches
is tractability [53], [59]. While we show how, in principle, a hi-
erarchical control scheme reduces dimensionality, this approach
alone is rarely sufficient in dealing with the curse of dimension-
ality on real systems. There is much recent progress on different
scalable approaches to computing viable and back-reachable sets
(see Section I-C), and the specific choice will depend greatly on
the properties of the system in question.

For running motion, characterized by nonlinear, nonsmooth
hybrid dynamics, we believe that, in addition to dimensionality
reduction through hierarchical control, the use of heuristics such
as computing ahead only two steps [56] are among the most
promising tools to scaling this to real hardware.

We are also interested in using sampling-based approaches to
make probabilistic estimates. There has been keen interest re-
cently in applying machine learning techniques to tune control
parameters directly in hardware [10], [73]–[75]. In these situ-
ations, safe exploration of the state-action space is particularly
important. Active sampling to add samples close to the edge
of the viable set would significantly increase sample efficiency
for estimating the sets, while at the same time allowing safe
exploration, making this a logical next step.

There is also potential for improvement in the definition of
failures, the starting point of any viability approach. In this paper,
we have used a very general and intuitive definition for failure
(falling and direction reversal), however other definitions may
be equivalent while offering earlier detection when computing
viability kernels. Conservative definitions which lead to inner
approximations may also be useful if they substantially speed
up computation. It may also be possible to decouple the system
dynamics, a common approach to simplifying control [15], [69],
[76], and identify different failure conditions for each decoupled
subsystem. This divide and conquer approach would also allow
substantially higher dimensional systems to be tackled.

APPENDIX

SLIP AND NSLIP MODELS

The SLIP and NSLIP models are shown in Fig. 11. Integration
between two apex events is split into three phases: a flight phase
that terminates with a touchdown event, a stance phase which

950 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

Fig. 11. (a) Parameters of the SLIP and NSLIP models. (b) States. The ref-
erence frame is reset to the foot position at each touchdown. (c) Qualitative
trajectory over a full cycle, with the relevant phases and events.

terminates with a liftoff event, and another flight phase which
terminates with an apex event.

The flight phase equations of motion are[
ẍ

ÿ

]
=

[
0

−g

]

where x and y are the body position and g is the gravitational
acceleration. The stance phase equations of motion are[

ẍ

ÿ

]
=

Fleg

m

[
sin (θ)

cos(θ)

]
−
[
0

g

]

θ = arctan 2
(y
x

)
− π

2

where θ is the incident angle between the body and the foot (the
rotation by π

2 serves to keep it consistent with the landing angle
of attack) and Fleg is the force acting on the body due to the
spring. In the SLIP model

SLIP: Fleg = k (l0 − l)

l =
√

(x2 + y2)

where k is the spring coefficient, l0 is the spring resting length,
and l is the leg length. In the NSLIP model

NSLIP: Fleg =
4lc (β0 − β)

l20 sin (β)

β = arccos

(
1− 2l2

l20

)

where c is the torsional spring coefficient, β0 is the spring resting
angle, and β is the knee angle. The three events are

touchdown: l = l0

liftoff: θ = arctan 2
(y
x

)
− π

2

apex: ẏ = 0.

At each touchdown, the reference frame is reset to the foot po-
sition, which allows the equations of motion to be written more
compactly. In the simulation, we also keep track of the foot po-
sition in an auxiliary variable.

For convenient comparison, we use the same parameters as in
[23], which are similar to human averages:

For the SLIP and NSLIP simulations shown, except in Fig. 7,
the system energy simulated is 1860 J.

ACKNOWLEDGMENT

The authors would like to thank everyone who gave feedback
during the writing of this manuscript. In particular, we appreci-
ate the frequent and insightful discussions with M. Millard, B.
Gillespie, and A. del Prete, as well as F. Solowjow’s advice on
mathematical notation, and also appreciate the editors and re-
viewers for their constructive suggestions and quick turnaround
time.

REFERENCES

[1] M. A. Daley and A. A. Biewener, “Running over rough terrain reveals
limb control for intrinsic stability,” Proc. Nat. Acad. Sci., vol. 103, no. 42,
pp. 15681–15686, 2006.

[2] M. A. Daley and J. R. Usherwood, “Two explanations for the compli-
ant running paradox: Reduced work of bouncing viscera and increased
stability in uneven terrain,” Biol. Lett., vol. 6, no. 3, pp. 418–421, 2010.

[3] A. J. Ijspeert, “A connectionist central pattern generator for the aquatic
and terrestrial gaits of a simulated salamander,” Biol. Cybern., vol. 84,
no. 5, pp. 331–348, 2001.

[4] J. Proctor and P. Holmes, “Reflexes and preflexes: On the role of sen-
sory feedback on rhythmic patterns in insect locomotion,” Biol. Cybern.,
vol. 102, no. 6, pp. 513–531, 2010.

[5] D. Owaki, T. Kano, K. Nagasawa, A. Tero, and A. Ishiguro, “Simple robot
suggests physical interlimb communication is essential for quadruped
walking,” J. Roy. Soc. Interface, vol. 10, no. 78, p. 20120669, 2013.

[6] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. New York, NY,
USA: Taylor & Francis, 2007.

[7] T. Koolen et al., “Design of a momentum-based control framework and
application to the humanoid robot atlas,” Int. J. Humanoid Robot., vol. 13,
no. 1, p. 1650007, 2016.

[8] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of
humanoid momentum dynamics for multi-contact motion generation,” in
Proc. IEEE 16th Int. Conf. Humanoid Robots, 2016, pp. 842–849.

HEIM AND SPRÖWITZ: BEYOND BASINS OF ATTRACTION: QUANTIFYING ROBUSTNESS OF NATURAL DYNAMICS 951

[9] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning and
control of non-periodic bipedal locomotion with a centroidal momentum
model,” Int. J. Robot. Res., vol. 36, no. 11, pp. 1211–1242, 2017.

[10] E. Heijmink, A. Radulescu, B. Ponton, V. Barasuol, D. G. Caldwell, and
C. Semini, “Learning optimal gait parameters and impedance profiles for
legged locomotion,” in Proc. IEEE 17th Int. Conf. Humanoid Robots, 2017,
pp. 339–346.

[11] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. Atkeson,
“Bayesian optimization using domain knowledge on the atrias biped,” in
Proc. IEEE Int. Conf. Robot. Autom., 2018, pp. 1771–1778.

[12] R. Grandia, D. Pardo, and J. Buchli, “Contact invariant model learning
for legged robot locomotion,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 2291–2298, Jul. 2018.

[13] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and A.
J. Ijspeert, “Towards dynamic trot gait locomotion: Design, control, and
experiments with cheetah-cub, a compliant quadruped robot,” Int. J. Robot.
Res., vol. 32, no. 8, pp. 932–950, 2013.

[14] S. Rezazadeh et al., “Spring-mass walking with atrias in 3d: Robust gait
control spanning zero to 4.3 kph on a heavily underactuated bipedal robot,”
in Proc. ASME Dyn. Syst. Control Conf., p. 23, 2015.

[15] S. W. Heim, M. Ajallooeian, P. Eckert, M. Vespignani, and A. J. Ijspeert,
“On designing an active tail for legged robots: Simplifying control via
decoupling of control objectives,” Ind. Robot, Int. J., vol. 43, no. 3,
pp. 338–346, 2016.

[16] J. Ramos, B. Katz, M. Y. M. Chuah, and S. Kim, “Facilitating model-
based control through software-hardware co-design,” in Proc. IEEE Int.
Conf. Robot. Autom., 2018, pp. 566–572.

[17] D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic
vertical jumping agility via series-elastic power modulation,” Sci. Robot.,
vol. 1, no. 1, 2016.

[18] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to walk in 20 min-
utes,” in Proc. 14th Yale Workshop Adaptive Learn. Syst., Yale University
New Haven, 2005, vol. 95585, pp. 1939–1412.

[19] S. Heim, F. Ruppert, A. A. Sarvestani, and A. Spröwitz, “Shaping in prac-
tice: Training wheels to learn fast hopping directly in hardware,” in Proc.
IEEE Int. Conf. Robot. Autom., 2018, pp. 1–6.

[20] R. Ringrose, “Self-stabilizing running,” in Proc. IEEE Int. Conf. Robot.
Autom., 1997, vol. 1, pp. 487–493.

[21] A. Schwab and M. Wisse, “Basin of attraction of the simplest walking
model,” in Proc. ASME Des. Eng. Tech. Conf., 2001, vol. 6, pp. 531–539.

[22] H. Geyer, R. Blickhan, and A. Seyfarth, “Natural dynamics of spring-
like running: Emergence of selfstability,” in Proc. 5th Int. Conf. Climbing
Walking Robots, 2002, pp. 87–92.

[23] J. Rummel and A. Seyfarth, “Stable running with segmented legs,” Int. J.
Robot. Res., vol. 27, no. 8, pp. 919–934, 2008.

[24] A. Wu and H. Geyer, “The 3-d spring–mass model reveals a time-
based deadbeat control for highly robust running and steering in uncer-
tain environments,” IEEE Trans. Robot., vol. 29, no. 5, pp. 1114–1124,
Oct. 2013.

[25] T. McGeer, “Passive dynamic walking,” Int. J. Robot. Res., vol. 9,
pp. 62–82, 1990.

[26] M. Wisse and J. Van Frankenhuyzen, “Design and construction of mike;
a 2-D autonomous biped based on passive dynamic walking,” in Adap-
tive Motion of Animals and Machines, Berlin, Germany: Springer, 2006,
pp. 143–154.

[27] P. A. Bhounsule, J. Cortell, and A. Ruina, “Design and control of ranger: An
energy-efficient, dynamic walking robot,” in Adaptive Mobile Robotics.
Singapore: World Scientific, 2012, pp. 441–448.

[28] F. Asano, “Stability principle underlying passive dynamic walking
of rimless wheel,” in Proc. IEEE Int. Conf. Control Appl., 2012,
pp. 1039–1044.

[29] A. D. Kuo, “Energetics of actively powered locomotion using the simplest
walking model,” J. Biomechanical Eng., vol. 124, no. 1, pp. 113–120,
2002.

[30] R. Blickhan, “The spring-mass model for running and hopping,” J. Biome-
chanics, vol. 22, pp. 1217–1227, 1989.

[31] R. J. Full and D. E. Koditschek, “Templates and anchors: Neuromechan-
ical hypotheses of legged locomotion on land,” J. Exp. Biol., vol. 202,
pp. 3325–3332, 1999.

[32] H.-M. Maus, S. Revzen, J. Guckenheimer, C. Ludwig, J. Reger, and A.
Seyfarth, “Constructing predictive models of human running,” J. Roy. Soc.
Interface, vol. 12, 2015, Art. no. 20140899.

[33] D. L. Jindrich and R. J. Full, “Dynamic stabilization of rapid hexapedal
locomotion,” J. Exp. Biol., vol. 205, pp. 2803–2823, 2002.

[34] R. Altendorfer et al., “RHex: A biologically inspired hexapod runner,”
Auton. Robots, vol. 11, no. 3, pp. 207–213, 2001.

[35] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynam-
ics of legged locomotion: Models, analyses, and challenges,” SIAM Rev.,
vol. 48, no. 2, pp. 207–304, 2006.

[36] B. Stephens and C. Atkeson, “Modeling and control of periodic humanoid
balance using the linear biped model,” in Proc. IEEE 9th Int. Conf. Hu-
manoid Robots, Dec. 2009, pp. 379–384.

[37] E. W. Hawkes and M. R. Cutkosky, “Design of materials and mechanisms
for responsive robots,” Annu. Rev. Control, Robot., Auton. Syst., vol. 1,
pp. 359–384, 2018.

[38] R. M. Ghigliazza, R. Altendorfer, P. Holmes, and D. Koditschek, “A sim-
ply stabilized running model,” SIAM Rev., vol. 47, no. 3, pp. 519–549,
2005.

[39] Ö. Arslan and U. Saranli, “Reactive planning and control of planar spring-
mass running on rough terrain,” IEEE Trans. Robot., vol. 28, no. 3,
pp. 567–579, Jun. 2012.

[40] G. Piovan and K. Byl, “Two-element control for the active slip model,” in
Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 5656–5662.

[41] T. Cnops, Z. Gan, and C. D. Remy, “The basin of attraction for running
robots: Fractals, multistep trajectories, and the choice of control,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2015, pp. 1586–1591.

[42] L. R. Palmer III and C. E. Eaton, “Periodic spring–mass running over
uneven terrain through feedforward control of landing conditions,” Bioin-
spiration Biomimetics, vol. 9, no. 3, 2014, Art. no. 036018.

[43] M. Hutter, C. D. Remy, M. A. Höpflinger, and R. Siegwart, “Slip running
with an articulated robotic leg,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2010, pp. 4934–4939.

[44] L. Sentis, “Synthesis and control of whole-body behaviors in humanoid
systems,” Ph.D. dissertation, Dept. Electr. Eng., Stanford University, Stan-
ford, CA, USA, 2007.

[45] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in Proc. IEEE Int. Conf. Intell. Robots Syst.,
2013, pp. 5134–5140.

[46] I. Poulakakis and J. W. Grizzle, “The spring loaded inverted pendulum as
the hybrid zero dynamics of an asymmetric hopper,” IEEE Trans. Autom.
Control, vol. 54, no. 8, pp. 1779–1793, Aug. 2009.

[47] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, “Virtual model
control: An intuitive approach for bipedal locomotion,” Int. J. Robot. Res.,
vol. 20, no. 2, pp. 129–143, 2001.

[48] R. Altendorfer, D. E. Koditschek, and P. Holmes, “Stability analysis of a
clock-driven rigid-body slip model for RHex,” Int. J. Robot. Res., vol. 23,
no. 10/11, pp. 1001–1012, 2004.

[49] D. Renjewski, A. Spröwitz, A. Peekema, M. Jones, and J. Hurst, “Exciting
engineered passive dynamics in a bipedal robot,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1244–1251, Oct. 2015.

[50] W. C. Martin, A. Wu, and H. Geyer, “Experimental evaluation of deadbeat
running on the atrias biped,” IEEE Robot. Autom. Lett., vol. 2, no. 2,
pp. 1085–1092, Apr. 2017.

[51] J.-P. Aubin, Viability Theory. Berlin, Germany: Springer Science & Busi-
ness Media, 2009.

[52] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. Oishi, and G. A.
Dumont, “Lagrangian methods for approximating the viability kernel in
high-dimensional systems,” Automatica, vol. 49, no. 7, pp. 2017–2029,
2013.

[53] A. Liniger and J. Lygeros, “Real-time control for autonomous racing based
on viability theory,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp.
464–478, Mar. 2019.

[54] D. Panagou, K. Margellos, S. Summers, J. Lygeros, and K. J. Kyriakopou-
los, “A viability approach for the stabilization of an underactuated under-
water vehicle in the presence of current disturbances,” in Proc. 48th IEEE
Conf. Decis. Control, 2009, pp. 8612–8617.

[55] P.-B. Wieber, “Viability and predictive control for safe locomotion,” in
Proc. IEEE Int. Conf. Intell. Robots Syst., 2008, pp. 1103–1108.

[56] P. Zaytsev, W. Wolfslag, and A. Ruina, “The boundaries of walking stabil-
ity: Viability and controllability of simple models,” IEEE Trans. Robot.,
vol. 34, no. 2, pp. 336–352, Apr. 2018.

[57] D. Lakatos, W. Friedl, and A. Albu-Schäffer, “Eigenmodes of nonlinear
dynamics: Definition, existence, and embodiment into legged robots with
elastic elements,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 1062–1069,
Apr. 2017.

[58] N. Smit-Anseeuw, C. D. Remy, and R. Vasudevan, “Walking with confi-
dence: Safety regulation for full order biped models,” 2019, arXiv preprint
arXiv:1903.08327.

952 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 4, AUGUST 2019

[59] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton–Jacobi reach-
ability: A brief overview and recent advances,” in Proc. IEEE 56th Annu.
Conf. Decis. Control, 2017, pp. 2242–2253.

[60] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-
based analysis and control of legged locomotion, part 1: Theory and ap-
plication to three simple gait models,” Int. J. Robot. Res., vol. 31, no. 9,
pp. 1094–1113, 2012.

[61] D. Fridovich-Keil, S. L. Herbert, J. F. Fisac, S. Deglurkar, and C. J.
Tomlin, “Planning, fast and slow: A framework for adaptive real-time
safe trajectory planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2018,
pp. 387–394.

[62] A. Merker, D. Kaiser, A. Seyfarth, and M. Hermann, “Stable running
with asymmetric legs: A bifurcation approach,” Int. J. Bifurcation Chaos,
vol. 25, no. 11, 2015, Art. no. 1550152.

[63] G. Piovan and K. Byl, “Reachability-based control for the active slip
model,” Int. J. Robot. Res., vol. 34, no. 3, pp. 270–287, 2015.

[64] S. Heim and A. Spröwitz, “Learning from outside the viability kernel:
Why we should build robots that can fall with grace,” in Proc. IEEE Int.
Conf. Simul., Model., Program. Auton. Robots, 2018, pp. 55–61.

[65] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, 2013.

[66] D. Owaki and A. Ishiguro, “Enhancing stability of a passive dynamic
running biped by exploiting a nonlinear spring,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2006, pp. 4923–4928.

[67] J. D. Karssen and M. Wisse, “Running with improved disturbance rejec-
tion by using non-linear leg springs,” Int. J. Robot. Res., vol. 30, no. 13,
pp. 531–539, 2011.

[68] C. D. Remy, K. Buffinton, and R. Siegwart, “A matlab framework for
efficient gait creation,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2011,
pp. 190–196.

[69] M. H. Raibert, Legged Robots That Balance. Cambridge, MA, USA: MIT
Press, 1986.

[70] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[71] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and L.
Righetti, “Momentum control with hierarchical inverse dynamics on a
torque-controlled humanoid,” Auton. Robots, vol. 40, no. 3, pp. 473–491,
2016.

[72] T. Flayols, A. Del Prete, P. Wensing, A. Mifsud, M. Benallegue,
and O. Stasse, “Experimental evaluation of simple estimators for hu-
manoid robots,” in Proc. IEEE 17th Int. Conf. Humanoid Robots, 2017,
pp. 889–895.

[73] R. Antonova, A. Rai, and C. G. Atkeson, “Sample efficient optimization
for learning controllers for bipedal locomotion,” in Proc. IEEE 16th Int.
Conf. Humanoid Robots, 2016, pp. 22–28.

[74] V. C. Kumar, S. Ha, and K. Yamane, “Improving model-based balance
controllers using reinforcement learning and adaptive sampling,” in Proc.
IEEE Int. Conf. Robot. Autom., 2018, pp. 7541–7547.

[75] A. von Rohr, S. Trimpe, A. Marco, P. Fischer, and S. Palagi, “Gait learning
for soft microrobots controlled by light fields,” in Proc. IEEE Int. Conf.
Intell. Robots Syst., 2018, pp. 6199–6206.

[76] E. C. Whitman and C. G. Atkeson, “Control of a walking biped using a
combination of simple policies,” in Proc. IEEE 9th Int. Conf. Humanoid
Robots, 2009, pp. 520–527.

Steve Heim received the B.Sc. degree in mechanical
engineering and the M.Sc. degree in robotics, systems
and control from ETH Zürich, Switzerland, in 2012
and 2015, respectively. He is currently working to-
ward a Ph.D. degree with the Dynamic Locomotion
Group, at the Max Planck Institute for Intelligent Sys-
tems, Stuttgart, Germany.

He spent two years with the Ishiguro Lab, Tohoku
University, Sendai, Japan. His research interests
include nonlinear dynamics, control and learning,
particularly in relation to legged locomotion.

Alexander Spröwitz received the Diploma in mecha-
tronics from Ilmenau Technical University, Ilmenau,
Germany, in 2005, and the Ph.D. degree in manu-
facturing systems and robotics from the Biorobotics
Laboratory, the Swiss Federal Institute of Technol-
ogy, Lausanne, Switzerland, in 2010.

Since 2016, he is the Max Planck Research
Group Leader of the Dynamic Locomotion Group,
and IMPRS-IS Faculty, at the Max Planck Institute
for Intelligent Systems, Stuttgart, Germany. His cur-
rent research focuses on the mechanisms underlying

legged locomotion.
Dr. Sprowitz and his team design and experiment with legged robots and

models to infer biomechanics and neurocontrol principles of motion in animals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

