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Optimizing the Execution of Dynamic Robot
Movements With Learning Control

Okan Koç , Guilherme Maeda, and Jan Peters

Abstract—High-speed robotics typically involves fast dynamic
trajectories with large accelerations. Kinematic optimization
using compact representations can lead to an efficient online
computation of these dynamic movements, however successful
execution requires accurate models or aggressive tracking with
high-gain feedback. Learning to track such references in a safe
and reliable way, whenever accurate models are not available,
is an open problem. Stability issues surrounding the learning
performance, in the iteration domain, can prevent the successful
implementation of model-based learning approaches. To this end,
in this paper we propose a new adaptive and cautious iterative
learning control (ILC) algorithm where the stability of the control
updates is analyzed probabilistically: the covariance estimates of
the adapted local linear models are used to increase the probability
of update monotonicity, exercising caution during learning. The
resulting learning controller can be implemented efficiently using
a recursive approach. We evaluate it extensively in simulations
as well as in our robot table tennis setup for tracking dynamic
hitting movements. Testing with two seven degree of freedom
anthropomorphic robot arms, we show improved and more stable
tracking performance over high-gain proportional and derivative
(PD) control, model-free ILC (simple PD feedback type) and
model-based ILC without cautious adaptation.

Index Terms—Adaptive control, iterative learning control,
recursive estimation, robot learning, robust control.

I. INTRODUCTION

MOST dynamic tasks in robotics include a tracking
component, where the system is controlled to follow a
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Fig. 1. Our robot table tennis platform where a seven degree of freedom Barrett
WAM arm is shown facing a ball-launcher. The ball is tracked using four cameras
on the ceiling. Whenever a ball is approaching the robot, reference trajectories
are computed online in order to return the ball to a desired location on the
opponent’s court. Such trajectories can be optimized on the kinematics level [2],
however it is hard to execute them accurately without having access to accurate
dynamics models. Iterative learning control, using inaccurate models, can still
lead to an efficient approach for learning to track these trajectories.

desired reference trajectory. Robot table tennis [1], [2], in par-
ticular involves the generation of fast dynamic trajectories with
high accelerations. These trajectories can be optimized well on
the kinematics level, but reaching the target state and returning
the ball requires accurate tracking of these hitting movements.
Computing the appropriate control inputs for tracking can be a
challenging task, especially when using cable-driven arms, such
as the Barrett WAM shown in Fig. 1, due to mechanical compli-
ance and low bandwidth.

Iterative learning control (ILC) is a control theoretic learning
framework restricted to tracking (time varying) reference tra-
jectories [3]. In ILC, the goal is to improve the tracking perfor-
mance, reducing the future deviations along the fixed trajectory,
and ultimately driving them to the minimum possible. After ob-
serving the deviations from the reference trajectory at each iter-
ation, the errors are fed back to the (feedforward) control inputs
for the next iteration. Any available dynamics models can be
incorporated easily during these updates, see e.g., [4] and [5].
ILC has been used successfully in several robotics tasks to im-
prove trajectory tracking performance under unknown repeating
disturbances and model mismatch [3].

While there have been many impressive applications of rein-
forcement learning (RL) [6] to learn robotic tasks [7], RL re-
mains to be computationally and information-theoretically hard
in general. Much of control, on the other hand, can be reduced
to supervised learning with the appropriate reference trajecto-
ries. By making good use of existing, albeit imperfect, models
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Fig. 2. Learning performance of ILC, using inaccurate models without incorporating a notion of uncertainty, may not be monotonic in practice. One can observe
ripples that move through the trajectory, which can cause instability or damage the robot. In simulations, we can create this effect easily by increasing the spectral
norm of the difference between the nominal and the actual (lifted) dynamics matrices. The desired trajectory for the first state x1 is shown in dashed red on the
LHS for a 2-D linear time invariant system. The second plot shows the ILC feedforward commands for this particular trajectory and state. The third plot shows
the Frobenius norm of the trajectory deviations, Jk , plotted over the iterations k. The nonmonotonicity of the learning performance is aggravated, as the mismatch
scale α controlling the spectral norm of the difference is increased. Increasing α further can prevent even asymptotic stability. The curves were generated by direct
inversion of the (lifted) model. Our proposed Bayesian approach, on the other hand, minimizing the expected cost throughout the iterations, uses the posterior over
the dynamics model parameters to make more cautious decisions.

and smooth reference trajectories with ILC, learning efficiency
in robotics tasks can be improved significantly. However, it is
rather difficult to ensure a stable learning performance in prac-
tice, see Fig. 2 for an illustration.

In this paper, we introduce a new model-based learning
approach for tracking a variety of fast, dynamic movements sta-
bly, while maintaining learning and computational efficiency.
Stability of the updates, or the probability of update monotonic-
ity, is increased by making use of dynamics model covariance
estimates. We refer to this as caution throughout the text, and
the resulting algorithm is cautious precisely in this sense. A cau-
tious learning control algorithm can hence be defined as one that
incorporates a probabilistic notion of stability (in the iteration
domain) during decision making, for the control input updates.
This property proves to be critical, as we show the learning per-
formance for fast robot table tennis striking movements. The
proposed Bayesian approach, using the posterior over the dy-
namics model parameters, maintains both adaptation and caution
in model-based ILC, while being efficient in terms of learning
performance and computational complexity.

Our contributions can be stated succinctly as follows: We pro-
pose a new adaptive and cautious model-based ILC algorithm,
that is implemented efficiently using a recursive formulation.
More specifically, the existing model-based recursive ILC ap-
proach of Amann et al. [5], introduced briefly in Section II, is
extended to include adaptation (by using Linear Bayes Regres-
sion on the errors) and caution (or in other terms, robustness
to modeling errors, which shows itself as learning stability in
the iteration domain). The proposed approach minimizes an ex-
pected quadratic cost term over the trajectory deviations, which
still yields a closed-form solution, resulting in a cautious yet
efficient learning performance. In the closed-form solution, the
covariances of the learned local linear models are employed as
adaptive regularizers.

The expected cost minimization distinguishes the framework
from more conservative min–max approaches, such as the ro-
bustly convergent ILC proposed in the literature (using H∞
and μ-synthesis techniques [8]). Related work in the theory and
practice of ILC, as well as some more general applications of
learning in robotics tasks, are briefly mentioned in Section I-A.

Before introducing the expected cost minimization framework in
Section IV, we discuss model adaptation in Section III with
linear time-varying (LTV) models and show that Broyden’s
method [9] can be derived from linear Bayesian regression
(LBR) as the forgetting factor goes to zero. Thus, the proposed
approach belongs to the family of quasi-Newton ILC meth-
ods [10].

The resulting adaptive and cautious ILC algorithm, called
bayesILC, is described in Section V, and extensions are dis-
cussed for additional robustness to nonrepetitive disturbances.
Derivations for the recursive and cautious learning control up-
date are given in Appendix A. We evaluate bayesILC first in
extensive simulations in Section VI, showing that the proposed
method is stable, efficient and can outperform other state-of-
the-art learning approaches. We then present online learning
results on our robot table tennis platform for tracking dynamic
hitting movements. Appendix B briefly introduces the parame-
terization of these hitting movements. We discuss the real robot
learning results in Section VII and conclude with brief mentions
of promising future research directions.

A. Related Work

Since the 80s, there have been many different ILC update
laws proposed, with the D-type update law of Arimoto et al. [11]
being one of the first. See [3] and [4] for reviews and catego-
rization of the different update laws. Theoretically, most ILC
updates are linear repetitive processes that can be analyzed us-
ing two-dimensional (2-D) systems analysis [12], i.e., assuming
the desired trajectory is fixed and the initial conditions can be
reset perfectly, the error over the iterations has a (discrete) dy-
namics of its own. Stability of the ILC updates and monotonic
convergence in particular can then be studied using dynamical
systems theory. These notions also play an important role in the
design of practical ILC algorithms. See [3] and [13] for a discus-
sion and [14] for insight into convergence and stability issues
appearing in an implementation.

Stability issues and the induced oscillations (see Fig. 2 for
a simple simulation example) can easily damage the system
to be controlled. For instance, joint limits can be exceeded in
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a robotics application or other task-imposed state constraints
can be violated. Such issues complicate the application of ILC
in high-dimensional robotics problems. In practice, additional
complications can occur, such as varying initial conditions,
violating the assumptions made in most of the ILC literature.
Robustness to varying initial conditions were considered, e.g.,
in [15]–[17]. For additional robustness to nonrepeating distur-
bances or noise, a robust feedback controller should be used
alongside ILC, see e.g., [14] and [18].

Methods that learn to track (periodic or episodic) trajectories
need to compensate for modeling uncertainties and other repeti-
tive disturbances acting on the system to be controlled. However,
methods that can efficiently learn the dynamics are model-based
(e.g., most of optimization-based ILC [3], [5]) and at least re-
quire knowing the correct signs for the linearized dynamics of
the system [19], [20].

When executing model-based learning algorithms on
dynamical systems, it is essential for stability and safety to in-
corporate a notion of model uncertainty. Otherwise the learning
algorithms can be overconfident and quickly go unstable [14].
One way to achieve a more stable performance in ILC is to filter
the high-frequency updates. These robust methods are mostly
known as Q-filtering [3] and typically incur a tradeoff between
stability and performance: the system will often fail to converge
to the minimal steady-state error. In this paper, we use a dif-
ferent (probabilistic) approach to increase the stability margins
of model-based ILC that does not incur such a tradeoff. To that
end, we expand on the previous work of Amann et al. [5], one of
the first model-based ILC approaches introducing an optimal-
control-based ILC design. The recursive implementation first in-
troduced in this paper closely relates to numerically-stable plant-
inversion approaches [21]. We extend the recursive formulation
to include adaptation and caution: adaptation of the model pa-
rameter means and variances are performed at each iteration us-
ing LBR. The resulting Bayesian approach, minimizing the ex-
pected cost throughout the iterations, uses the posterior over the
dynamics model parameters to make more cautious decisions.

Model adaptation in ILC can be studied in the context of solv-
ing nonlinear equations. Tracking a fixed reference perfectly cor-
responds to solving for the control inputs that drive the deviations
to zero. Hence, quasi-Newton methods such as the Broyden’s
method [9] and generalized secant method [22] were proposed
as adaptation methods in the ILC literature to update the plant
dynamics. Broyden’s method, without having access to the gra-
dients of a black-box function f(x)=0, maintains a Jacobian
matrix approximation F. The matrix F is updated at each itera-
tion k in order to satisfy the secant equation

fk − fk−1 = Fk(xk − xk−1) (1)

which can then be inverted to yield1

xk+1 = xk − F†kfk. (2)

Convergence under restrictive assumptions have been shown
for Broyden’s method. For solving systems of nonlinear equa-
tions, arguably efficiency rather than stability or monotonic con-
vergence is of importance, and a simple trust-region approach

1Broyden’s method can also directly update the inverse.

(based on a merit function) suffices to improve stability. We will
show how Broyden’s method can be seen as a limiting case of
LBR in Section III. The proposed method thus belongs to the
family of quasi-Newton optimization methods [9], where the
black-box nature of the quasi-Newton approaches is augmented
to include caution during the ILC updates: monotonic conver-
gence, or update stability in the iteration domain, is of paramount
importance in robotics tasks.

An application of model-based ILC to reject repeating dis-
turbances was shown in quadrocopter flight [23], where a con-
strained convex optimization with imposed control input limits
was solved, rather than a direct inversion of the nominal model
dynamics. An impressive application of ILC to a robotic surgi-
cal task was presented in [24] utilizing an EM-based ILC update
law. ILC was also combined with robust observers to control a
heavy-duty hydraulic arm in an excavation task [25].

Besides ILC, another learning framework that learns inac-
curate models for control is model-based RL. Including vari-
ance fully in the decision-making process can result in efficient
and stable learning [26]. However such involved procedures ex-
hibit computational runtime difficulties and have not been im-
plemented in high-dimensional real-time robotics tasks.

II. PROBLEM STATEMENT AND BACKGROUND

Most tasks in robotics can be learned more efficiently when-
ever feasible trajectories are available. Learning-based control
approaches can then focus on tracking these trajectories with-
out relying on accurate models. The goal in trajectory tracking
is to track a given reference r(t), 0 ≤ t ≤ T , by applying the
control inputs u(t). In dynamic robotic tasks, the references are
often in the combined state space of joint positions and velocities
(qT, q̇T)T ∈ Q ⊂ R2n, and the control inputsu ∈ U ⊂ Rm are
applied for each joint of the robot, i.e., m = n. The reference
trajectories in table tennis, for instance, enable the execution
of hitting and striking motions, e.g., forehand and backhand
strikes. Such trajectories can be generated online with nonlinear
constrained optimization [2]. Finding the right control inputs to
track them accurately is the focus of ILC.

1) Linearizing an Inaccurate Model: Consider a nonlinear
robot dynamics model

q̈ = f(q, q̇,u) (3)

e.g., for rigid body dynamics of the form

q̈ = M−1(q){u−C(q, q̇)q̇−G(q)} (4)

where on the right-hand side (RHS) are the inverse of the inertia
matrix M(q), the Coriolis and centrifugal forces C(q, q̇)q̇, and
the vector of gravitational forcesG(q). This nonlinear dynamics
model can be linearized around a given joint space trajectory
r(t), 0 ≤ t ≤ T , with nominal inputs uIDM(t) calculated using
the inverse dynamics model [27]. We then obtain the following
LTV representation:

ė(t) = A(t)e(t) +B(t)δu(t) + d(t,u) (5)

where the state vector is the joint angles and velocities x =
[qᵀ, q̇ᵀ]T, the state error is denoted as e(t) = x(t)− r(t), the
deviations from the nominal inputs areδu(t) = u(t)− uIDM(t)
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and the continuous time-varying matrices are

A(t) =
∂f

∂x

∣
∣
∣
∣
(r(t),uIDM(t))

,B(t) =
∂f

∂u

∣
∣
∣
∣
(r(t),uIDM(t))

. (6)

In the error dynamics (5), the additional (unknown) termd(t,u)
accounts for the disturbances and the effects of the linearization
(i.e., higher order terms). We can discretize (5)–(6) with step size
δ, N = T/δ and step index j = 1, . . . , N to get the following
discrete-time linear system:

ej+1 = Ajej +Bjδuj + dj+1 (7)

where the matrices Aj ,Bj are the discretizations of (6). Con-
ventional (discrete) ILC algorithms learn to compensate for the
errors incurred along the trajectory by updating the control in-
puts δuj iteratively.

Whenever we refer to the outcome of a particular iteration
k, we will use the first subindex for iterations and the second
subindex will be used to denote the (discrete) time step, i.e.,
the vectors ek,j ∈ R2n, δuk,j ∈ Rm denote the deviations and
control input compensations at the time step j during iteration
k, respectively. The control commands to be applied at iteration
k + 1 as

uk+1,j = uk,j + δuk,j (8)

are computed using the deviations ek,j at iteration k.
2) Recursive Norm-Optimal ILC: Norm-optimal ILC uses

the discrete LTV model in (7) to minimize the next iteration
errors, where the computed control inputs are optimal with re-
spect to some vector norm. These approaches based on opti-
mality criteria can learn efficiently by taking advantage of the
inaccurate models. Batch methods that compute the next itera-
tion compensations stack the model matrices together to com-
pute (a possibly weighted and dampened) pseudoinverse of this
block lower-diagonal matrix. As an alternative, some methods
use convex programming to compute these optimal compensa-
tions under additional constraints.

The condition of this lifted model matrix typically grows ex-
ponentially with the horizon sizeN and computing the pseudoin-
verse stably becomes very difficult. Downsampling trajectories
restores the condition number and a stable inversion becomes
much more manageable, at the cost of reduced tracking perfor-
mance. As a better alternative, optimization-based approaches,
depending on the particular optimizer, may avoid computing the
pseudoinverse. However, such approaches can still be computa-
tionally intensive, and may not be suitable for online learning.

As an alternative, Amann et al. [5] have shown that the di-
rect batch inversion of the lifted model matrix can be avoided
by recursively computing the ILC compensations (in one pass)
using the linear quadratic regulator (LQR) for disturbance rejec-
tion [28]. After estimating the disturbancesdj+1 at the k′th trial,
the optimal control problem for tracking a desired trajectory can
be written as

min
δu

N∑

j=1

eTk+1,jQjek+1,j + δuT
k,jRjδuk,j

s.t. ek+1,j+1 = Ajek+1,j +Bjuk+1,j + dj+1. (9)

Reduction of the ILC problem to the known LQR solution has not
attracted much attention however from the control and learning
communities, since it was not clear how to study stability and
convergence in this formulation.

III. MODEL ADAPTATION

Whenever there is model-mismatch, the (linearized) models
cannot be assumed to hold accurately around the reference tra-
jectory. There is hence a risk that the learning process described
in Section II will not be stable. As a remedy, in this section we
propose a natural Bayesian adaptation of model matrices with
LBR and discuss different alternatives in the context of robotics.

A. Recursive Estimation of Model Matrices

The observed deviations from the trajectory at iteration k,
ek,j , can be used to update the discrete-time LTV model ma-
trices Ak,j ,Bk,j that describe the nonlinear dynamics around
the trajectory, to first order. Instead of estimating all the pa-
rameters together in a costly estimation procedure, the model
matrices Ak,j ,Bk,j can rather be updated separately for each
j = 1, . . . , N , given the smoothened errors êk,j

êk,j+1 = Ak,j êk,j +Bk,juk,j + dj+1 (10)

which can be rewritten using the Kronecker product and the
vectorization operator as follows:

êk,j+1 − êk−1,j+1 ≈ Xk,j vec [Ak,j ,Bk,j ]

Xk,j = vec [êk,j − êk−1,j , δuk,j ]
T ⊗ I. (11)

If we incorporate the belief (including the uncertainty) about the
linear dynamics models as Gaussian priors in LBR

θk,j = vec [Ak,j ,Bk,j ]

yk,j = êk,j+1 − êk−1,j+1

ρ(θk,j |yk,j) ∝ ρ(yk,j |θk,j)ρ(θk,j)

ρ(θk,j) = N (θk,j |μk,j ,Σk,j) (12)

with a Gaussian likelihood function

ρ(yk,j |θk,j) = N (yk,j |Xk,jθk,j , σ
2I) (13)

the models parameter means μk,j and variances Σk,j can be
updated as

Σk,j = ( 1
σ2X

T
k,jXk,j +Σ−1k−1,j)

−1

μk,j = Σk,j

(

Σ−1k−1,jμk−1,j +
1
σ2X

T
k,jyk,j

)

. (14)

Smoothened position and velocity error estimates can be
obtained, for example, using a zero-phase Butterworth filter.

1) Relation to Broyden’s Method: Broyden’s method [9] can
be seen as a limiting case of LBR. The mean estimates in (14)
are also the solutions of the following linear ridge regression
problem:

min
θ

1
σ2 ‖yk,j −Xk,jθ‖22 + (θ − θk,j)Σ

−1
k,j(θ − θk,j) (15)
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Fig. 3. Broyden’s method [9], which can be considered as an adaptation frame-
work within ILC, is a limiting case of LBR. As the forgetting factor λ of an
exponentially weighted LBR model goes to zero, LBR transitions to Broyden’s
method. Broyden’s method is very sensitive to noise and adapts very aggres-
sively. Throughout the paper, we discuss and evaluate several adaptation laws,
which are less sensitive to noise but are still flexible. The figure shows the evolu-
tion of the identification error norm for an unknown LTV system. The Frobenius
norm of the difference between the adapted model matrices (Ak,j and Bk,j )
and the actual (fixed) matrices (denoted as identification error norm) are plotted
for each iteration k = 1, . . . , 50.

and as σ2 → 0 we get the (weighted) Broyden’s update for one
iteration, which, written in vectorized form, is solving indepen-
dently for every time step

min
θ

(θ − θk,j)Σ
−1
k,j(θ − θk,j) (16)

s.t. yk,j = Xk,jθ. (17)

Broyden’s method is too sensitive to the sensor noise in robotics
tasks as it satisfies the secant rule (17) exactly. On the other
hand, LBR in (14) for fixed noise parameter σ2, is using all of
the past iteration data equally. The norm of the covariance de-
creases monotonically in each update. For unknown dynamic
systems that are highly nonlinear but smooth, to prevent pre-
mature shrinking of the covariance matrix, a better alternative
is to set an exponential weighting in the adaptation. For a fixed
forgetting factor λ ∈ [0, 1], the update in (14) becomes

Σk,j = ( 1
σ2X

T
k,jXk,j + λΣ−1k−1,j)

−1,

μk,j = λΣk,jΣ
−1
k−1,jμk−1,j +

1
σ2Σk,jX

T
k,jyk,j . (18)

The forgetting factor λ is used to perform exponential weighting
of the previous iteration data. As λ→ 0, we get the (unweighted)
Broyden’s method,2 and as λ→ 1, (18) reduces to (14). Hence,
our proposed adaptation law (18) can be embedded within a
one-parameter family of quasi-Newton ILC methods, where the
forgetting factor parameter trades off adaptation flexibility and
robustness to noise. At the one end of the spectrum, Broyden’s
method adapts flexibly and aggressively to the latest data at the
cost of being very sensitive to noise. This can be alleviated with
a judicious choice of the forgetting factor. See Fig. 3 for an
illustration.

2Unlike the case whereσ2 → 0, this equivalence is valid for all the subsequent
iterations as well. It can be seen more easily from the filter form of (18).

B. Imposing Structure

The structure in the forward dynamics model (4) is not con-
sidered in the update rule (18): any change in the control inputs
in this model directly affects the instantaneous joint accelera-
tions, and only indirectly the joint velocities in the future time
steps. By differentiating the smoothened joint velocities, one can
instead impose the following regression model:

q̈k,j − q̈k−1,j ≈ Ak(δj)ek,j +Bk(δj)δuk,j (19)

where we dropped the hat for notational simplicity. The contin-
uous model matrices Ak(δj),Bk(δj) are members of a reduced
parameter space, i.e., Ak(δj) ∈ Rn×2n,Bk(δj) ∈ Rn×m, j =
1, . . . , N . After regressing on the continuous model matrices as
in (14), they can be discretized (as discussed before) to form the
discrete-time model parameter means Ak,j ∈ R2n×2n,Bk,j ∈
R2n×m, and covariances Σk,j .

As an alternative, note that the rigid body dynamics (3) is pa-
rameterized by the link masses, three link center of mass values,
and six inertia parameters. A total of ten parameters are used for
each link to fully parameterize the inverse dynamics model

u = M(q;θ)q̈+C(q, q̇;θ)q̇+G(q;θ) (20)

which can be stacked for each j = 1, . . . , N to form the regres-
sion model

Uk ≈ Y(Q
(0)
k ,Q

(1)
k ,Q

(2)
k )θk

Uk =
(

uT
k,1,u

T
k,2, . . . ,u

T
k,N

)T

Q
(l)
k =

(

q
(l)T
k,1 ,q

(l)T
k,2 , . . . ,q

(l)T
k,N

)T

, l = 0, 1, 2 (21)

where θk ∈ R10n appears linearly. The index l denotes the
degree of the derivatives of the smoothened joint angles, i.e.,
l = 0, 1, 2 are used to denote the joint position, velocity, and
acceleration estimates in (21), respectively. Based on these joint
estimates, only the link parameters are updated with LBR as in
(14). The forward dynamics model3 (3) can then be used to sam-
ple the means and variances of the continuous LTV matrices,
e.g., using Monte Carlo sampling. Discretization as discussed
earlier converts the continuous-time model parameter means
and variances into their discrete-time form. An advantage of
this approach is to compress learning to a lower dimensional
space, reducing the variance of the updates at the cost of an in-
troduced bias. Moreover, since the link parameters are invariant
throughout the iterations, such an update avoids the flexible yet
independent adaptation of the model matrices for each j, and
the necessity of introducing a forgetting factor.

IV. CAUTIOUS LEARNING CONTROL

The posterior model covariances Σk,j can be used to make
more cautious decisions within a stochastic control framework.
The uncertainty of the model parameters can be seen as a mul-
tiplicative noise model and the ILC optimality criterion (9) can

3The forward dynamics model (3), unlike the inverse dynamics (21), depends
nonlinearly on the link parameters.
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be extended to include expectations over them. The multiplica-
tive noise model, unlike the additive noise case, does not lead to
certainty-equivalence: the covariance estimates are incorporated
in the decision rule. To see how the expected cost minimization
leads to caution, note that

P
(

eTk+1,jQjek+1,j ≥ êTk,jQj êk,j
) ≤ E[eTk+1,jQjek+1,j ]

êTk,jQj êk,j
(22)

which follows from Markov’s inequality. Minimizing the upper
bound forces the probability of nonmonotonicity to be low as
well.

1) Expected Cost Minimization: For the expected cost case,
where the expectation is taken over the random variables Ak,j

and Bk,j , for each j, the optimality criterion

min
δu

N∑

j=1

EAk,j ,Bk,j

[

eTk+1,jQjek+1,j+δuT
k,jRjδuk,j

]

s.t. ek+1,j+1 = Ak,jek+1,j +Bk,juk+1,j + dj+1

(23)

can be solved recursively using dynamic programming [29]

δuk,j = Kk,jek+1,j −Φ−1k,j�k,j

Kk,j = −Φ−1k,jΨk,j

Φk,j = EBk,j

[

BT
k,jPk,j+1Bk,j

]

+Rj

Ψk,j = EAk,j ,Bk,j

[

BT
k,jPk,j+1Ak,j

]

�k,j = EBk,j

[

BT
k,jPk,j+1(Bk,juk,j+dj+1)+BT

k,jbk,j+1

]

(24)
where bk,j and the Ricatti matrices Pk,j evolve backwards
according to

Pk,j = Qj +Mk,j −ΨT
k,jΦ

−1
k,jΨk,j

Mk,j = EAk,j

[

AT
k,jPk,j+1Ak,j

]

bk,j =EAk,j ,Bk,j

[

Ā
T
k,j(bk,j+1+Pk,j+1(Bk,juk,j+dj+1))

]

(25)
starting from Pk,N = QN and bk,N = 0. The random closed
loop system dynamics is given by the matrices

Āk,j = Ak,j +Bk,jKk,j . (26)

By a direct comparison to the LQR solution to (9), it can
be seen that the control input compensations δuk,j in (24) are
computed similarly, with the appropriate expectations added.
The ILC update is decomposed into two components: a current-
iteration feedback term ufb = Kk,jek+1,j calculated using the
iteration dependent Riccati equations and a feedforward, purely
predictive term uff = −Φ−1k,j�k,j , solved backwards for each
j = 1, . . . , N . The feedforward terms are responsible for com-
pensating for the estimated random disturbances dj , calculated
using (10).

Cautious update (24) can be implemented without explicitly
calculating the disturbances. If the disturbances are taken as
random variables defined via the filtered errors êk,j of the last

iteration

dj+1 = êk,j+1 −Ak,j êk,j −Bk,juk,j (27)

the recursion can be simplified by introducing

νk,j = bk,j +Pk,jek,j . (28)

The feedforward and feedback compensations δuk,j can then
directly be computed as

δuk,j = Kk,j(ek+1,j − ek,j)−Φk,jEBk,j

[

BT
k,jνk,j+1

]

νk,j = EAk,j ,Bk,j

[

Ā
T
k,jνk,j+1

]

+Qjek,j . (29)

See Appendix A for a detailed derivation. Equation (29) is easier
to implement, since the disturbances do not need to be estimated
explicitly. The compensations δuk,j are added to the total con-
trol inputs applied at iteration k. In an adaptive implementation,
the feedback components of the update, Kk,j(ek+1,j − ek,j),
does not completely subtract the previous feedback controls
Kk−1,jek,j from the total control inputs, as the feedback matri-
ces are also adapted over the iterations.

Typically ILC is used to feed the past errors along the trajec-
tory (filtered and multiplied with a learning matrix) back to the
system for the next trial as feedforward compensations. A well-
designed feedback controller, whenever available, is only used
to reject nonrepeating disturbances and to stabilize the system
in the time domain. The recursive implementation (29), on the
other hand, readily provides and updates a feedback controller
based on past performance. From here on, we will refer to the
feedforward part of (29) as δuk,j , keeping the feedback control
separate.

2) Computing the Expectations: The expectations appearing
in (24) can be calculated given the covariances Σk,j of the
parameters

Φk,j = Φ̃k,j +Rj

Φ̃
a,b

k,j =

n∑

c=1

n∑

d=1

Pc,d
k,j+1

(

E
[

Bc,a
k,j

]

E
[

Bd,b
k,j

]

+ σ
(

Bc,a
k,j ,B

d,b
k,j

))

Ψa,b
k,j =

n∑

c=1

n∑

d=1

Pc,d
k,j+1

(

E
[

Bc,a
k,j

]

E
[

Ad,b
k,j

]

+ σ
(

Bc,a
k,j ,A

d,b
k,j

))

Ma,b
k,j =

n∑

c=1

n∑

d=1

Pc,d
k,j+1

(

E
[

Ac,a
k,j

]

E
[

Ad,b
k,j

]

+ σ
(

Ac,a
k,j ,A

d,b
k,j

))

(30)

where the upper indices a, b denote the corresponding entry of
the matrix appearing on the left-hand side (LHS). The covariance
matrices Σk,j contain the scalar covariance terms σ(·) on the
relevant entries, i.e.,

σ
(

Ac,a
k,j ,A

d,b
k,j

)

= (Σk,j)
(a−1)n+c,(b−1)n+d

σ
(

Bc,a
k,j ,A

d,b
k,j

)

= (Σk,j)
n2+(a−1)n+c,(b−1)n+d

σ
(

Bc,a
k,j ,B

d,b
k,j

)

= (Σk,j)
n2+(a−1)n+c,n2+(b−1)n+d . (31)

The indexes of Bk,j covariances start from n2 since the model
matrix parameters in (12) are vectorized starting from Ak,j .
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Algorithm 1: Recursive, Adaptive, and Cautious bayesILC.
Require: fnom, rj , λ, ε > 0, Qj 
 0, Rj � 0, Σ0,j � 0

1: Move to initial posture q0 = r0, q̇0 = 0.
2: Initialize k = 1, δu0,j = 0, j = 1, . . . , N
3: Compute mean dyn. parameters μ0,j by linearizing fnom
4: Compute feedback K0,j = LQR(Qj ,Rj ,μ0,j ,Σ0,j)
5: Execute with inv. dyn. uIDM and feedback K0,j

6: Filter errors with a zero-phase filter (output: ê0,j)
7: repeat \\ ILC operation
8: Compute error norm Jk=

(∑N
j=1ê

T
k,jQj êk,j

)1/2

9: Compute δuk,j ,Kk,j recursively using (24)–(29)
10: Update feedforward controls uk+1,j= uk,j + δuk,j

11: Execute with uIDM,j + uk+1,j and feedback Kk,j

12: Observe errors ek,j = xk,j − rj
13: Filter errors with a zero-phase filter (output: êk,j)
14: Update model μk,j ,Σk,j using (18)
15: k ← k + 1
16: until Jk < ε

V. ONLINE IMPLEMENTATION

In this section, we algorithmically describe the recursive,
adaptive, and cautious bayesILC proposed in Sections III and
IV in detail, with the extensions for an online robot learning
application. We will consider tracking table tennis trajectories
as our application of choice. The online learning algorithm
is readily applicable to similar dynamic tasks with real-time
constraints, such as throwing, catching skills in sports or fast,
demanding manufacturing tasks.

The proposed ILC framework is summarized in Algorithm 1.
Before entering the main loop (lines 7−16), the trajectory is ex-
ecuted with inverse dynamics and time-varying LQR feedback
(line 5). The errors along the trajectory are filtered with a zero-
phase filter (line 6). During the cautious ILC update the feed-
back control law as well as the feedforward control inputs are
updated recursively (line 9). From the first iteration onwards,
the means and the covariances of the model matrices are up-
dated (line 14) before computing the feedforward input com-
pensations δuk,j and the feedback matrices Kk,j . If the variant
adaptation laws discussed in Section III are employed, it will be
enough to store the means and covariances of the relevant model
parameters. These parameters can then be transformed, as dis-
cussed before, to form the discrete-time model matrix means
and covariances, which are used in the cautious ILC update
(line 9).

Based on the forgetting factor λ, the model adaptation strikes
a balance between the prior model parameter distribution and
the data observed in iteration k. For the discrete LTV model
and the link parameter adaptation, the data used is yk,j =
êk,j+1 − êk−1,j+1. If continuous model matrix adaptation is
performed, the data will instead be the smoothened joint ac-
celeration differences, see (19). We discuss the effects of the
forgetting factor and the different model adaptation strategies in
more detail in Section VI.

The practitioner, wary of the model inaccuracies, can increase
robustness and ensure stability by setting large diagonal terms

for the initial covariance of model uncertainty, Σ0,j = γI, γ �
1, j=1, . . . , N . Moreover, setting large covariances initially
helps to observe the inaccuracies of the model and the noise
statistics. The covariance will be suitably decreased over the it-
erations, as adaptation (18) updates the linear models. Observing
the noise statistics over the iterations can further help in the de-
sign of a good zero-phase filter to reject noise. Without accurate
smoothing, adaptive ILC approaches run the risk of picking up
noise in the adapted model matrices, which are then used in the
control input update [in our case, in (29)]. This can hinder the
control performance, hence we advise caution in the design of a
smoothening filter.

The proposed update law takes advantage of the learning effi-
ciency and computational advantages of model-based recursive
ILC while being cautious with respect to model mismatch. The
computational complexity of the recursive update isO(Nn3) as
opposed to batch norm-optimal ILC, where the batch pseudoin-
verse operation typically incursO(N3n3) complexity. The batch
model-based implementation using the lifted-vector form [3]
inverts the input-to-output matrix F

Uk+1 = Uk − F†Ek

Ek =
(

eTk,1, e
T
k,2, . . . , e

T
k,N

)T
(32)

where the submatrices of the input-to-output matrix F are

F(i,j) =

⎧

⎨

⎩

Ai−1 · · ·AjBj−1, j < i

Bj−1, j = i
0, j > i

. (33)

The condition of the lifted model matrix (33) grows exponen-
tially with N and inverting it quickly becomes numerically
unstable.

1) Implementation for Tracking Table Tennis Trajectories:
The online learning framework for robot table tennis is described
in Algorithm 2. Whenever a ball is initialized from a fixed ball-
gun with constant settings, located at b0, the trajectory gener-
ation framework will compute a particular striking trajectory
(lines 2−3) to intercept and hit the ball in real time. See Ap-
pendix B for an overview of the trajectory generation pipeline.
ILC can then be initialized (line 4) by linearizing the dynam-
ics model fnom around the computed trajectory points rj , j =
1, . . . , N . ILC needs to be initialized only once, as long as the
computed trajectory is capable of returning the ball to the oppo-
nent’s court. The approximately 8 cm radius of the racket can
cover for the inconstancy of the ballgun up to a certain degree.

Whenever the striking trajectory is executed (line 6), a return-
ing trajectory will bring the arm back (line 7) from the current
state to the fixed initial posture, q0. The returning trajectory can
be as simple as a linear trajectory in the joint space. The con-
sistency provided by the fixed ballgun in our setup, shown in
Fig. 1, allows us to use ILC to track invariant trajectories over
the iterations.

For a good performance in table tennis, the striking parts
of these hitting movements need to be tracked accurately. The
strikes are initially tracked with computed-torque inverse dy-
namics feedforward control commands and the additional LQR
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Algorithm 2: ILC Improving Execution of Robot Table
Tennis Hitting Movements Online.

Require: q0, fball, bayesILC(. . .) (see Algorithm1)
1: Move to initial posture q0, q̇0 = 0.
2: Predict ball trajectory bj using fball
3: Compute trajectory rj given q0 and bj , j = 1, . . . , N
4: Setup bayesILC (lines 2−4)
5: repeat \\ fixed ballgun throws balls at a constant rate
6: Execute strike with uILC and LQR feedback K
7: Return to q0 with high-gain PD control and linear

traj.
8: Update uILC and K with bayesILC (lines 9−14)
9: until ballgun is moved

feedback. The feedback law is computed for this purpose by lin-
earizing the nominal dynamics model around the striking part
of the reference trajectory. After a strike is completed, feed-
back will switch to proportional and derivative (PD) gains for
the returning trajectory and the arm will come back close to q0.
Learning with ILC can then take place (line 8) while waiting for
another incoming table tennis ball.

The striking trajectory in table tennis is only an intermedi-
ary and does not need to be precisely tracked for a successful
performance. In general, for hitting and catching tasks, the task
performance depends critically on reaching the desired joint po-
sitions and velocities at the final time. A good performance along
the trajectories is a means to this desired end: if feedback keeps
the system stable around the trajectories, and the (linearized)
models are reasonably valid around the trajectories, convergence
to desirable performance levels can be rapid.

2) Coping With Varying Initial Conditions: Execution errors
in tracking the reference trajectory (including the returning seg-
ment) prevents the robot from initializing in each iteration at the
same state. Putting very high feedback gains on the returning
trajectory or waiting long enough may suffice to initialize the
system close to desired initial conditions, but in some occasions,
none of these options may be desirable or available. For exam-
ple, a robot practicing table tennis with a fixed ballgun running
at a fixed rate, may not have time to initialize its desired posture
accurately.

Starting from varying initial conditions xk,0 = [qᵀ
k,0, q̇

ᵀ
k,0]

T

one can consider updating the hitting movement rj to take the
robot to the same hitting state. For such online updating of tra-
jectories, the invariant trajectory parameters p can be used to
generate the trajectory from the current joint values. The ref-
erence control inputs uIDM can then be recomputed based on
the nominal inverse dynamics model. With this correction the
total feedforward control commands uILC at iteration k + 1 are
recomputed as

uILC,j = uk+1,j + uIDM,j(r̃j)− uIDM,j(rj) (34)

where r̃j is the updated trajectory starting from the per-
turbed initial state x0 + δxk,0. Using this simple adjustment
(34), the stability of the learning performance can be greatly
improved.

Fig. 4. ILC in recursive form is evaluated on random LTV systems. The Frobe-
nius norm of the trajectory deviations,Jk , is plotted over the iterationsk. Results
are averaged over ten experiments, where for each experiment, trajectories, nom-
inal models, and actual models are drawn randomly from GPs. The performance
of the batch pseudoinverse ILC (32) is shown in the red line. Numerical stability
issues prevent it from stabilizing at steady state error, whereas recursive ILC
(blue line) converges stably. If the model mismatch is increased, at some point,
recursive ILC also diverges. Applying caution without adaptation is not enough
to converge to steady state error. Cautious and adaptive bayesILC, on the other
hand, applying the updates (14) and (29) iteratively, is very effective and shows
a stably convergent behaviour.

VI. EVALUATIONS AND EXPERIMENTS

In this section, we demonstrate the effectiveness of the ILC
algorithm bayesILC presented in Algorithm 1 and described in
detail in Section V in the context of tracking table tennis tra-
jectories. We validate the proposed learning control law first
in extensive simulations with linear and nonlinear models. In
Section VI-B, we show real robot experiments with two seven
degree of freedom (DoF) Barrett WAM arms for tracking table
tennis striking movements.

A. Verification on Toy Problems

Stability is an important issue in the implementation of dif-
ferent learning controllers in real robot tasks. As a result, we
setup extensive simulation experiments to validate the stability
and robustness of our learning approach. We also discuss in de-
tail the advantages of the recursive formulation over the batch
pseudoinverse ILC (32).

1) Random Linear Models: We generate here random linear
models and random trajectories drawn from Gaussian Processes
(GPs) with squared exponential kernels. More specifically,
the elements of the LTV model matrices Aj ,Bj are drawn
from (n+m)n uncorrelated GPs. The hyperparameters (scale,
noise, and smoothness parameters) of these GPs are drawn
independently from normal distributions with fixed means and
variances. Moreover, random perturbations of these models
(drawn the same way from (n+m)n uncorrelated GP’s) are
generated to construct nominal models. Using the proposed
random disturbance generation scheme, we can average the
results and construct error bars for different ILC algorithms.

The performance of the recursive implementation [i.e., (29)
with zero covariances and no adaptation] is shown in Fig. 4
on the LHS, where the results are averaged over ten differ-
ent trajectories and models. The dimensions of the models are
n = 2,m = 2, and the horizon size is set to N = 120. For
the LQR and ILC calculations, R = 10−6I and the weight-
ing matrix Q was set to the identity. In this case, the batch
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model-based implementation using the pseudoinverse (32) is
not stable at all without feedback. Applying LQR feedback and
adding current iteration ILC in Fig. 4 improves the performance
(red line in Fig. 4), but numerical issues (i.e., large condition
number) in inverting the large model matrixF in lifted form (33)
prevents it from stabilizing at steady state error. Tracking per-
formance throughout the experiments is measured with respect
to the Frobenius norm of the deviations ek,j , denoted as Jk.

For the simulation results in Fig. 4, the spectral norm of the
difference between the nominal and the actual models are each
set to ασmin(F) where α = 100. Increasing α further increases
the probability that the model-based ILC is not monotonically
convergent for some trial. For example, one can observe asymp-
totically but not monotonically convergent ILC behaviour when
setting α = 990 for a particular model and trajectory shown in
Fig. 2. Increasingα further can prevent even asymptotic stability.

Especially in these cases of high model mismatch, the pro-
posed adaptive and cautious bayesILC offers a stable and con-
vergent ILC behaviour. In Fig. 4 on the RHS, we consider the
case where α = 1000. Recursive ILC that is also cautious does
not show a stable convergent behaviour, whereas recursive ILC
that is not cautious (i.e., covariance of the LTV matrices are
zero) is not stable at all. Cautious and adaptive bayesILC, on
the other hand, using LBR (λ = 1.0) to update the discrete-time
LTV matrices Ak,j ,Bk,j , shows a monotonic learning perfor-
mance. The results are again averaged over ten different models
and ten trajectories. For LBR, the initial covariances in (14) are
set to Σ0,j = γI for all j = 1, . . . , N , where γ = 104 and the
noise covariance is σ2 = 1. Changing the exponent of the initial
covariance, or reducing the forgetting factor λ in this case, can
lead to a reduced or unstable learning performance.

2) GP Dynamics: The performance of the proposed algo-
rithm bayesILC is evaluated next over random nonlinear mod-
els. In these set of experiments, we sample the states from n
uncorrelated GPs with squared exponential kernels and random
linear mean functions. The hyperparameters of these GPs are
randomized as before. By sampling from such random nonlin-
ear models, we can test the proposed algorithm under nonlinear
uncertainties and noisy outputs. The actual model is simulated
as follows:

1) random reference control inputs vj ∈ Rm, j = 1, . . . , N
are drawn K times from m control GPs;

2) n oracle GPs are used to sample f(xj ,vj) and the gen-
erated dynamics is integrated (starting from zero initial
conditions) using forward Euler, dt = 1/N , to form K
trajectories. The GPs are conditioned during this process
on the generated states xj and inputs vj .

These n oracle GPs constitute the actual but unknown nonlin-
ear dynamics model. Nominal models can be easily generated
by using the predictions of the oracle GPs at a subset of the state
space. The construction of a nominal model is described in detail
as follows.

1) Another set of control inputs uj , j = 1, . . . , N are drawn
from the control GPs, as before.

2) The mean predictions f(xj ,uj) of the oracle GPs at uj

are used to evolve these control inputs (as in step 2 of the
actual model).

Fig. 5. Proposed ILC algorithm is evaluated on random nonlinear systems.
The Frobenius norm of the trajectory deviations, Jk , is plotted over the itera-
tions k. Results are averaged over ten experiments, where for each experiment,
trajectories and dynamics along these trajectories are drawn from GPs. Recur-
sive ILC that is not cautious shows an unstable behaviour, and adding adaptation
without caution is also not stable (both not shown in the figure). Purely cautious
ILC (red line) is divergent for some of the trajectories. Cautious and adaptive
bayesILC, on the other hand (blue line), shows a stable convergent learning
performance.

3) The n separate model GPs (with same hyperparameters
as the oracle) are conditioned on the resulting trajectory,
i.e., the input pairs (xj ,uj) and the outputs f j = (xj+1 −
xj)/dt for each time step j = 1, . . . , N .

4) The mean derivative of the model GPs are calculated
analytically (using the kernel derivatives). Discretized
time-varying matrices Aj ,Bj and their variances Σ0,j

are constructed for each j = 1, . . . , N , based on the mean
and variance of the GP derivatives.

By sampling K = 20 trajectories for the conditioning of or-
acle GPs, we can cover a significant part of the state space in
n = 2 dimensions. For each ILC iteration thereafter, the mean
predictions are used as in step 2 to evolve the trajectory, but with-
out further conditioning of the model GPs. Instead, adaptation
is performed as before with LBR, replacing the steps 3 and 4.
We can thus avoid the expensive online GP training.

Fig. 5 shows the learning performance for a horizon size
of N = 20. The dimensions of the system is same as before,
n = 2,m = 2 andR = 10−6I, Q = I. The results are averaged
again over ten experiments. In this nonlinear setting, the recur-
sive ILC that is not cautious shows an unstable behaviour (not
shown in Fig. 5). Adaptive but not cautious ILC is also unstable
(also not shown). Cautious but not adaptive ILC is not stable
for some trajectories and can diverge (red line). Cautious and
adaptive bayesILC, on the other hand (blue line), using LBR
to update the discrete-time LTV matrices, shows again a sta-
ble convergent learning performance, improving over the purely
cautious ILC. For LBR, the initial covariances in (14) are again
set to γ = 104 times the identity and the noise covariance is
σ2 = 1. The best performance is reached when the forgetting
factor is set to λ = 0.9. As before, changing the exponent of the
initial covariance, or the forgetting factor, can lead to a reduced
or unstable learning performance.

3) Barrett WAM Model: We next test ILC on striking move-
ments (60) for a seven DoF Barrett WAM simulation model. In
the simulations, the robot is started from a fixed initial state q0.
The initial posture is chosen from one of the center, RHS or LHS
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Fig. 6. Performance of the adaptive and cautious ILC algorithm bayesILC on
the simulated Barrett WAM model is shown on the LHS. The Frobenius norm of
the trajectory deviations,Jk , is plotted over the iterations k. The results are aver-
aged over ten different strikes and three different initial postures. Three different
adaptation laws are considered, adaptation of discrete-time and continuous-time
LTV models are shown in blue and red, respectively, while the adaptation of link
parameters is shown in black. Forgetting factor was set to λ = 0.8 for all of the
adaptation laws. One of the desired trajectories, shown in dashed red on the
RHS, is tracked very closely in the final iteration. The blue markers correspond
to the time profile of the motion, which are drawn uniformly spaced, one for
each 80 ms. The final hitting positions reached are shown as filled circles.

resting postures of the robot. The striking parameters (61) are
then optimized, based on an incoming table tennis ball with a
randomly chosen incoming position and velocity. The link pa-
rameters of the Barrett WAM forward dynamics model used to
simulate actual trajectories are perturbed randomly to construct
nominal models for ILC. The linearization procedure described
in Section II produces LTV nominal models that can be used by
ILC to reduce the deviations from the desired (fixed) striking
movement over the iterations.

The randomization during the optimization guarantees that a
variety of hitting movements are tracked throughout the experi-
ments. The performance of the proposed ILC approach bayesILC
with three different adaptation laws is then evaluated over the
striking segment of the optimized (striking and returning) trajec-
tories. The convergence results are averaged over ten such strik-
ing movements, as shown in Fig. 6. The adaptation of discrete-
time and continuous-time LTV models are shown in blue and red,
respectively, while the adaptation of link parameters is shown in
black. Forgetting factor was set to λ = 0.8 for all of the adap-
tation laws. Initial covariances are set to Σ0,j = 104I for con-
tinuous and discrete-time LTV model adaptation laws, while for
link parameters, the initial covariances are Σ0,j = 1010I. The
weights of the cautious ILC update (29) is set to R = 10−2I,
Q = I.

After updating the link parameter means and variances, we
use an auto-differentiation tool (ADOL-C library in C ++) to-
gether with sampling to approximate the distribution of forward
dynamics (3) derivatives Ak,j ,Bk,j . More specifically, the for-
ward dynamics is differentiated (with respect to joint positions,
velocities and control inputs) at 100 link parameter samples
drawn from the posterior distribution [i.e., normal distribution
with means and variances given by (14)] online. This sampling
procedure generates a reasonable approximation of posterior
derivative means and variances.

In table tennis, if the robot arm follows the assigned reference
trajectory precisely it will hit the ball with a desired velocity
at the desired time. We can see on the RHS of Fig. 6 that an

Fig. 7. Joint trajectories for a hitting movement on the Barrett WAM model.
The reference trajectories, shown in dashed red, are tracked very closely with
ILC in the final iteration, shown in blue.

initial attempt (blue curve) falls short of the reference trajecto-
ries (dashed curve). The percentage of the balls that are returned
to the opponent’s court are close to zero. ILC then modifies the
control inputs to compensate for the modeling errors. In the last
attempt, the reference trajectory is executed almost perfectly.
The accuracy of the table tennis task increases to 95% on av-
erage. Fig. 7 shows the adjusted control inputs for one striking
movement.

The recursive ILC (without adaptation or caution) is conver-
gent for some of the hitting movements in Fig. 6. However,
similar to the previous simulation examples, the recursive form
of the ILC update, depending on the accuracy of the model along
the trajectories, can fail to converge for some trajectories (not
shown in the figure). The proposed recursive, adaptive, and cau-
tious algorithm bayesILC, with the three adaptation laws shown
in Fig. 6, shows a better and faster convergence for a variety of
trajectories.

The ILC experiments shown in Figs. 6 and 7 reset the initial
posture always to the same desired posture q0. Next, we con-
sider nonrepetitive disturbances around the desired initial pos-
ture. This would mean, physically, that the robot is not initialized
accurately around the resting posture.

Comparisons to the baseline (black line) in Fig. 8 illustrate the
additional robustness whenever the trajectory adaptation (34) is
employed. We adapt the metric for this comparison according
to the task: the costs indicated are the final costs (for hitting the
incoming ball at the desired joint positions with desired joint ve-
locities), not the full costs incurred along the reference trajectory.
Note especially the faster convergence and increased accuracy
of the proposed method with the reference trajectory and input
adaptation (blue line). More robust performance is obtained by
adapting the trajectories rj and uIDM,j , which, in addition to
performing better, shows much lower variance compared to the
baseline.
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Fig. 8. Simulation results illustrating the additional robustness to varying
initial conditions whenever the trajectories (states and control references) are
adapted according to (34) (blue line). Note the unstable performance of ILC
without such adaptation (black line), which keeps the references rj and the
inverse dynamics inputs uIDM,j fixed.

In practice, trusting the model too much at the beginning of the
trajectory leads to the amplification of initial errors. Nonrepet-
itive starting postures violate the initial condition assumption
typical of standard ILC updates. In this case, the feedback ma-
trices Kk,j , as opposed to the feedforward input updates δuk,j ,
play a bigger role in the learning stability at the beginning of the
trajectories, j � N .

B. Real Robot Table Tennis

Finally, we perform experiments on our robotic table tennis
platform, see Fig. 10, where two seven DoF cable-driven, torque-
controlled Barrett WAM arms (Ping and Pong) are hanging from
the ceiling. The custom made Barrett WAM arms are capable
of high speeds and accelerations (approx. up to 10 m/s2 in task
space). Standard size rackets (16 cm diameter) are mounted on
the end-effector of the arms as can be seen in Fig. 10. A vi-
sion system consisting of four cameras hanging from the ceiling
around each corner of the table is used for tracking the ball [30].
A ball launcher (see Fig. 1) is available to throw balls accu-
rately to a fixed position inside the workspace of the robots. The
incoming ball arrives with low-variability in desired positions
and higher-variability in ball velocities. The whole area to be
covered amounts to about 1 m2 circular region surrounding a
centered posture of the robots.

The realistic simulation environment SL [31] acts as both a
simulator and as a real-time interface to the Barrett WAMs in
our experiments. The initial positioning is given by a PD con-
troller with high gains on the shoulder joints, which is then tog-
gled off during the experiments with the striking movements, as
summarized in Algorithm 2. The high-gain PD controller used
to initialize the robots was also tested for tracking the strik-
ing movements, see Fig. 9. When ILC is applied on top of the
PD controller, the learning quickly stagnates, leading to oscil-
lations in some of the joints. Instead, a low-gain LQR feedback
law is computed for the striking part of the movement with a
linearized nominal dynamics model (7). The weighting matri-
ces for this purpose are set to identity, Q = I, and the constant
penalty matrix is chosen as R = 0.05I. Decreasing the scaling
of the penalty matrix to 0.03 causes oscillations in the elbow

Fig. 9. Example of a striking movement for real robot table tennis is shown
in red. The blue markers correspond to the time profile of the motion, which
are drawn uniformly, one for each 80 ms. Executing this movement well with
the Barrett WAM will lead to a good hit. Control errors in tracking lead to a
poor hitting performance, shown in blue. The filled circles are the final reached
hitting positions. High-gain PD feedback was used to track the reference in
this real robot example. The tracking errors can be decreased efficiently and
stably by applying the proposed recursive, cautious, and adaptive ILC algorithm
bayesILC.

joint, indicating that the nominal model is not very accurate. At
the cost of larger initial error, we suggest increasing the input
penalties R to improve the stability of ILC in other high DoF
robotics applications.

After the visual system outputs a ball estimate, a ball model
can be used along with an extended Kalman filter to predict a
ball trajectory. The ball model accounts for some of the bounc-
ing behavior of the ball and air drag effects. If the predicted
ball trajectory coincides with the workspace of the robot, the
motion planning system has to then come up with a trajectory
that specifies how, where, and when to intercept the incoming
ball. Desired Cartesian position, velocity, and orientations of the
racket at the hitting time T impose constraints on the seven joint
angles and seven joint velocities of the robot arm at T . Along
with the desired hitting timeT (or the time until impact), these 15
parameters are used to generate third-order joint space polyno-
mials. These movements can be optimized online in 20−30 ms
[2], or loaded from a lookup table. In the ILC experiments, the
parameters in the lookup table are used without interpolation, to
make sure that the same trajectory can be used for balls deviating
slightly from their stored values. We make sure that the lookup
table is dense enough and that the ballgun is fixed.

Some examples of the generated trajectories are shown in
Fig. 10. After a strike, a linear joint trajectory is computed that
will take the robots from the current state to the resting posture
in Trest = 1.0 s. PD feedback control is turned ON again for this
returning part of the trajectory. When the returning trajectory is
executed, SL main thread running the inverse dynamics compu-
tations will continue to keep the arms stable around the resting
posture, while another thread is detached to run the ILC update.4

The ILC loop terminates successfully whenever the computed
feedforward updates are within the respective torque limits.
After a successful termination, if the actual posture is within

4Code is available in the public repository. [Online]. Available: https://
gitlab.tuebingen.mpg.de/okoc/learning-control along with the test scripts used
to generate the plots in the previous subsections.
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Fig. 10. Two Barrett WAMs (a.k.a. Ping and Pong) are initialized in our experiments in three different starting postures. We make controlled experiments with
a simulated ballgun and generate many different hitting movements; three of them are shown in the above images. The proposed algorithm bayesILC leads to
an efficient and stable learning approach for tracking these hitting movements. The RHS starting posture for the robot Ping can be seen on the upper left image.
Initially, before learning with ILC starts, Ping performs poorly, and the hitting posture of the robot is shown in the upper central image. After five iterations, the
hitting posture is corrected significantly as shown in the upper right image. Similarly, the central images show the operation of the ILC for another trajectory, where
the starting posture for Ping is fixed on the LHS of the robot. On the bottom images, an ILC performance is shown for the robot Pong. The three plots on the RHS
show the Cartesian trajectories corresponding to the ILC iterations. The reference trajectories are shown in dashed red, and the final hitting positions reached are
shown as filled circles.

0.1 rad distance of the resting posture, the LQR feedback will
be turned ON again and the robots will start moving to track the
same striking motion.

We use a simulated ball to make more controlled experiments,
focusing on the control aspect in more detail. If the striking robot
movements are executed accurately, then the ball in simulation
will be returned close to a desired position on the opponent’s
court. At different points in time we have identified three dif-
ferent sets of link parameters for rigid body dynamics. We can
use these parameterizations of rigid body dynamics as poten-
tial nominal models to kick-start the learning process. We tested
these nominal models first in slowed down hitting movements,
where a slowdown rate of two means that the number of trajec-
tory points double while the hitting time is held fixed. Cutting
down the trajectories to an initial subset of the movement to
restrict potential instabilities, or initial masking of some of the
joints during ILC updates, are other techniques that we have
employed to evaluate these nominal models in a careful manner.
Of the three models, only one of them was suitable for the local
learning that ILC provides. This model is further adapted with
the proposed bayesILC algorithm in order to improve the track-
ing of the striking movements. Adaptation of the trajectories rj
and the nominal inputs uIDM,j was additionally performed on
top of ILC, to stabilize the learning process, since an accurate

initialization of the joints (especially on the wrist and the elbow)
was not possible with the Barrett WAMs.

We have compared bayesILC to two other ILC methods: batch
ILC (32) and ILC with PD feedback (with constant p, d values).
PD type ILC with constant p or d values is often too simplistic,
and did not yield any improvement in our setup, even after tuning
the p, d values. Batch ILC was tested with ten times downsam-
pled trajectories, with adjustable learning rates. We have found
batch ILC to be inferior to the recursive ILC when tested over
multiple trajectories (slowed down and cut versions included).5

Recursive ILC without any adaptation is monotonically conver-
gent on average for about five iterations, bringing the root mean
squared tracking error from about 0.80 to 0.40 on average. Re-
peating the trajectories for five more iterations, we note that the
tracking error starts increasing slightly due to introduced oscilla-
tions in some of the joints. Introducing adaptation with recursive
and cautious ILC (i.e., the proposed approach bayesILC) we can

5For batch pseduoinverse-based ILC, inversion of the model matrices (7)
around the unstable hitting trajectory causes instability, which is alleviated by
providing an additional current iteration ILC (CI) [3]. CI adds the current itera-
tion k’s feedback errors to the feedforward compensations for the next iteration
k + 1. As in our preliminary experiments with the Barrett WAM [32], we have
applied CI in addition to stabilize a downsampled version of batch model-based
ILC.
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Fig. 11. Robot experiment results for cautious and adaptive bayesILC, shown
for a particular reference trajectory. The ten iteration results are concatenated
for convenience. The desired joint trajectories correspond to a hitting movement
on the Barrett WAM. The reference trajectories, shown in red, are tracked very
closely with ILC in the final iteration, shown in blue. Final cost goes down to
0.20 in the last iteration.

decrease the tracking error further, to about 0.20 monotonically
in five more iterations. This enables a return accuracy of 40% of
the simulated balls to the opponent’s court. See Fig. 11 for the
performance of bayesILC on a particular reference trajectory,
evaluated over ten iterations.

The proposed update law bayesILC evaluated earlier adapts
the discrete-time LTV models with a forgetting factor of λ = 0.8.
This value was chosen experimentally, and could be optimized,
e.g., using a dataset of previous ILC performances. The same
parameter values are chosen for the initial covariances as in the
simulation experiments with the Barrett WAM. Adapting the
continuous LTV models, when the trajectories are smoothened
suitably with a zero-phase filter, leads to faster updates with
similar improvements in tracking performance. Using the on-
line adaptation of the link parameters on the other hand, leads to
poorer convergence in tracking for some of the joints (most no-
tably, the elbow). This fact leads us to suspect that the rigid
body dynamics model underfits, i.e., the mismatch for our
Barrett WAMs is not purely parametric in nature. We see that the
final cost (as 2-norm of deviations from desired joint hitting posi-
tions and velocities) drops down from 1.70 to 0.20 for bayesILC
when the LTV model matrices are adapted directly. After per-
forming ten more iterations, the percentage of balls successfully
returned to the opponent’s court increases from 40% to about
60% on average.6

6A video showing some example ILC performances for the two robots is
[Online]. Available: https://youtu.be/27vHoLBwLoM.

VII. CONCLUSION

In this paper, we presented a novel ILC algorithm that is recur-
sive, cautious, and adaptive at the same time. The closed-form
update law (24) that was presented derives from the adaptive
dual control literature and is sometimes referred to as passive
learning [29]. The algorithm was then recast in a more efficient
form (derived in Appendix A), which does not require the esti-
mation of disturbances and can be implemented as a recursive
ILC update. The update law makes it easy to introduce caution
with respect to modeling uncertainties and online adaptation of
the linearized model matrices. Unlike typical ILC updates, feed-
back matrices for the tracking of striking trajectories are adapted
as well, which are useful for rejecting noise and varying initial
conditions. We believe that the introduced ILC update yields a
principled approach to adapt the models, as well as their regu-
larizer, based on data.

The proposed algorithm bayesILC was evaluated in different
simulations of increasing complexity. Finally in Section VI-B,
we have presented real robot experiments on our robotic table
tennis setup with two Barrett WAMs, see Fig. 10. It was shown
that the proposed approach leads to an efficient way to learn to
track hitting movements online. Hitting movements throughout
the experiments are generated in the joint space of the robots
and enable them to execute optimal striking motions. Control
inputs, as well as a time-varying feedback law, are updated after
each trial by using the model-based update rule that considers
the deviations from the striking trajectory. After the trajecto-
ries are executed, the deviations can be used to adapt the model
parameter means and variances using LBR. A forgetting factor
was considered in addition to make adaptation more flexible.
An adaptation of the reference trajectories as well as the nom-
inal inputs was considered on top of bayesILC to render the
method more effective and stable for initial posture stabilization
errors.

Although we showed a stable and efficient way to learn to
track references with ILC, we have not analyzed its general-
ization to arbitrary trajectories. In our table tennis setup, we
are making progress to having the two robots play against each
other. Generalization capacity would play an important role in
extending the average game duration between the robots, as the
trajectories during the table tennis matches would be generated
online [2] according to the state of the game. We believe that
in the case where the trajectories are changing, generalizing the
learned control commands can be achieved by compressing them
to a lower-dimensional input space (i.e., parameters). Learned
feedforward commands could be projected to a parameterized
feedback matrix, the parameters of which could represent the
invariants between the trajectories. An efficient and stable im-
plementation of such parameterizations will be the focus of our
future work.

APPENDIX A
CAUTIOUS ILC DERIVATIONS

We provide in this section self-contained derivations of the
cautious ILC update rule, given in (24) and simplified in (29).
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Consider the following optimal control problem:

min
δu

N∑

j=1

EAj ,Bj

[

eTk+1,jQjek+1,j+δuT
k+1,jRjδuk+1,j

]

(35)

s.t. ek+1,j+1 = Ajek+1,j +Bjuk+1,j + dj+1 (36)

where the LTV system matrices Aj ,Bj are random variables
with known means and variances. Sinceuk+1,j = uk,j + δuk,j ,
we can rewrite (36) as

ek+1,j+1 = Ajek+1,j +Bjδuk,j + d̄j+1 (37)

d̄j+1 = Bjuk,j + dj+1. (38)

The iteration index k will be removed in the last section due to
space constraints. Notice that the value function for the optimal
control problem (36) is a quadratic function of the errors along
the trajectory

V (e, j) = eTPje+ 2eTbj + cj (39)

for time-varying matrices Pj ∈ R2n×2n, vectors bj ∈ R2n and
cj ∈ R. We can then apply dynamic programming to compute
the optimal solution recursively

V (ej , j) = min
δuj

(

eTj Qjej + δuT
j Rjδuj + V (ej+1, j + 1)

)

V (ej+1, j + 1) = EAj ,Bj

[

2bT
j+1(Ajej +Bjδuj + d̄j+1)

+ cj+1 + (Ajej +Bjδuj + d̄j+1)
T

× Pj+1(Ajej +Bjδuj + d̄j+1)
]

.
(40)

The recursion starts from PN = QN . Taking derivative w.r.t.
δuj of the RHS, we get

Rjδuj +
(

EAj ,Bj

[

BT
j Pj+1Aj

]

ej + EBj

[

BT
j Pj+1Bj

]

δuj

+ EBj

[

BT
j

(

Pj+1d̄j+1 + bj+1

)])

= 0. (41)

Solving (41) for the optimal control input compensations, and
arranging using the notation in (24) we get

δuj = Kjej −Φ−1j �j

Kj = −Φ−1j Ψj

Φj = Rj + EBj

[

BT
j Pj+1Bj

]

Ψj = EAj ,Bj

[

BT
j Pj+1Aj

]

�j = EBj

[

BT
j (Pj+1d̄j+1 + bj+1)

]

.

(42)

In order to derive a Riccati-like equation, we plug (42) into (40),
and using (39) get

eTPje+2eTbj+cj = eTj Qjej+eTj
(

ΨT
j Φ

−1
j RjΦ

−1
j Ψj

)

ej

+ 2�Tj Φ
−1
j RjΦ

−1
j Ψjej + �Tj Φ

−1
j RjΦ

−1
j �j

+ EAj ,Bj

[(

Ājej +mj

)T
Pj+1

(

Ājej +mj

)]

+ 2EAj ,Bj

[(

Ājej +mj

)T
bj+1

]

+ cj+1 (43)

where we have introduced the terms

Āj = Aj +BjKj

mj = d̄j+1 −BjΦ
−1
j �j . (44)

Checking for the equality of the quadratic terms we get, after
some cancelations

Pj = Qj +Mj −ΨT
j Φ

−1
j Ψj

Mj = EAj

[

AT
j Pj+1Aj

]

bj = ΨT
j Φ

−1
j RjΦ

−1
j �j + EAj ,Bj

[

Ā
T
j

(

Pj+1mj + bj+1

)]

.

(45)

1) Rewriting the Feedforward Recursion: The control input
compensations calculated in (42) can be simplified significantly
by noting that the last three terms in the feedforward recursion
of (45)

bj = E
[

Ā
T
j

(

bj+1+Pj+1d̄j+1

)]−E
[

AT
j Pj+1Bj

]

Φ−1j �j

−KT
j E

[

BT
j Pj+1Bj

]

Φ−1j �j −KT
j RjΦ

−1
j �j , (46)

cancel out, leaving

bj = EAj ,Bj

[

Ā
T
j

(

bj+1 +Pj+1d̄j+1

)]

. (47)

The cancelations can be seen easily by rewriting the first term
in terms of the feedback matrix and grouping the last two terms
together

−KT
j ΦjΦ

−1
j �j +KT

j �j = 0. (48)

2) Simplifying the Feedforward Recursion: The feedforward
recursion in (47) still requires the explicit estimation of distur-
bances. This equation can be simplified further by rewriting the
disturbances in terms of the previous trial errors

d̄j+1 = ek,j+1 −Ajek,j

�j = E
[

BT
j (Pj+1ek,j+1 + bj+1)

]−Ψjek,j .
(49)

Introducing νj+1 = Pj+1ek,j+1 + bj+1, we can rewrite the
optimal control input compensations as

δuj = Kj(ek+1,j − ek,j)−Φ−1j E
[

BT
j νj+1

]

. (50)

Rewriting (47) in terms of νj , we get

νj=E
[

Ā
T
j νj+1

]

+
(

Pj−E
[

(Aj+BjKj)
T Pj+1Aj

])

ek,j

(51)
since Pj = Qj +Mj −ΨT

j Φ
−1
j Ψj , the last term becomes

(

Pj −Mj −KT
j Ψj

)

ek,j = Qjek,j (52)

hence, the feedforward recursion defining (50) can be computed
independently of disturbance estimates

νj = E
[

Ā
T
j νj+1

]

+Qjek,j , j = 1, . . . , N − 1 (53)

starting from νN = 0.
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APPENDIX B
MOVEMENT GENERATION FOR TABLE TENNIS

In a highly dynamic and complex task such as robot table
tennis, one often needs to consider an extension of the standard
trajectory tracking task. Based on the varying initial positions
and velocities of the robot arm and the trajectory of the incom-
ing ball, in each table tennis stroke the robot arm needs to track
different trajectories that start from different initial conditions
and end with different desired goal states of the arm. Moreover
these trajectories need to be optimized in time to intercept the
ball. The striking trajectories r(t) = [qdes(t), q̇des(t)]

T are gen-
erated online and tracked using the proposed ILC approach.

Striking movement primitives suited to table tennis have been
proposed in [1] and [33] as an extension of discrete dynamic
movement primitives (DMP). Unlike the original formula-
tion [34], these extensions allow for an arbitrary velocity profile
to be attached to the primitives around hitting time. However,
these approaches are heavily structured for the problem at hand,
introducing and tuning additional domain parameters. In [32],
we instead proposed to use rhythmic movement primitives that
allow for a limit cycle attractor, which is desirable if we want
to maintain the striking motion through goal state. After the
striking is completed the DMP can be used to return back to
initial state or it can be terminated by setting the forcing terms
to zero. An example is shown in Fig. 9.

One of the problems with such (kinesthetic) teach-in based
approaches is that it is difficult to train heavy robots well
for successful performance. For example, the shoulder of the
Barrett WAM arm shown in Fig. 1 weighs 10 kg alone. It is
rather difficult for humans to move the links with heavy inertia.
The slower movements of the heavier links are typically com-
pensated with faster movements of the lighter links (such as the
wrist). However, tracking these trajectories can also be harder
for more demanding wrist movements. An additional difficulty
with cable-driven robots such as the Barrett WAM is that the
wrists are harder to control.

Based on these considerations, we have worked on a free-
final time optimal control based approach to generate minimum
acceleration hitting movements for table tennis [2]. In the ex-
periments section, we focus on learning to track these hitting
movements. These trajectories are third order polynomials for
each DoF of the robot.

We will briefly introduce here the trajectory generation frame-
work introduced in [2]. Consider the following free-time optimal
control problem [35]:

min
q̈,T

∫ T

0

q̈(t)TRq̈(t) dt (54)

s.t. Ψhit

(

q(T ), T
) ∈ H (55)

Ψnet

(

q(T ), q̇(T ), T
) ∈ N (56)

Ψland

(

q(T ), q̇(T ), T
) ∈ L (57)

q(0) = q0 (58)

q̇(0) = q̇0 (59)

where the final hitting time T is an additional variable to be
optimized along with the joint accelerations q̈(t) : [0, T ]→ Rn.
The weighting matrixR for the accelerations is positive definite.
Initial conditions for the robot are the joint positions q0 and
joint velocities q̇0. The inequality constraints (55)–(57) ensure
that the task requirements for table tennis are satisfied, namely,
hitting the ball, passing the net, and landing on the opponent’s
court.

Solutions of (54)–(59) can be found using Pontryagin’s min-
imum principle [36]. The optimal q(t) in both cases is a third
degree polynomial for each DoF. The striking time T , the joint
position and velocity values at striking time qf and q̇f fully
parameterize this problem. The time it takes to return to the
starting posture, Trest can be chosen suitably, e.g., based on the
speed of the ballgun. The polynomial coefficients for the striking
trajectory

qstrike(t) = a3t
3 + a2t

2 + q̇0t+ q0 (60)

can then be fully determined in joint-space

a3 =
2

T 3
(q0 − qf ) +

1

T 2
(q̇0 + q̇f )

a2 =
3

T 2
(qf − q0)−

1

T
(q̇f + 2q̇0) (61)

for each DoF of the robot.
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