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Robust Ballistic Catching: A Hybrid System
Stabilization Problem

Markus M. Schill

Abstract—This paper addresses a remaining gap between to-
day’s academic catching robots and their future in industrial ap-
plications: reliable task execution. A novel parameterization is de-
rived to reduce the three-dimensional (3-D) catching problem to
1-D on the ballistic flight path. Vice versa, an efficient dynamical
system formulation allows reconstruction of solutions from 1-D to
3-D. Hence, the body of the work in hybrid dynamical systems
theory, in particular on the 1-D bouncing ball problem, becomes
available for robotic catching. Uniform Zeno asymptotic stabil-
ity from bouncing ball literature is adapted, as an example, and
extended to fit the catching problem. A quantitative stability mea-
sure and the importance of the initial relative state between the
object and end-effector are discussed. As a result, constrained dy-
namic optimization maximizes convergence speed while satisfying
all kinematic and dynamic limits. Thus, for the first time, a quan-
titative success-oriented comparison of catching motions becomes
available. The feasible and optimal solution is then validated on
two symmetric robots autonomously playing throw and catch.

Index Terms—Catching, contact modeling, dexterous manipula-
tion, manipulation planning, nonprehensile manipulation.

I. INTRODUCTION

OBOTS catching an object is a challenging and frequently
R considered testbed to demonstrate the performance of ob-
ject tracking combined with motion planning in highly dynamic
environments. A successful catch relies on good solutions in
both tracking and planning. Vice versa, a failed attempt is typ-
ically explained with shortcomings of the proposed solutions,
e.g., neglected dynamic feasibility or inaccurate estimation of
the object state. The complexity of many proposed systems hin-
ders an analytic derivation of the mixture of errors that lead to
the observed failures. This paper presents a novel and provably
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Fig. 1. Dynamical system parameterization enables ballistic nonprehensile
catching with dynamically feasible offline motions using hybrid bouncing ball
formalisms.

robust method for robotic catching. The approach is validated
in a prototypical experimental setup.

Many previous works consider static catching with a grip-
per [1]-[4], where the goal is to track and predict the object
flight trajectory with high precision as quickly as possible. The
remaining time is then used to move the catching robot to a
reachable kinematic goal posture such that the gripper inter-
cepts the flight path and catches the object at the right moment.
This approach generates impact forces and a rebound that can
cause the object to bounce off the gripper in case of uncertain-
ties. Thus, static approaches are limited to soft, relatively light
objects, or compliant end-effectors.

Dynamic catching, in which the robot adapts to the motion
of the object [5]-[9], allows handling of a wider range of ob-
jects and is less sensitive to timing accuracy [10]. Without a
gripper, the goal is formulated as a generic nonprehensile [11],
[12] catching task based on the fundamental dynamics [13] that
model continuous contact between a free flying object and the
robot end-effector.

This paper isolates fundamental hybrid dynamics of the catch-
ing problem, cf., Fig. 1, applying to most robots that could catch
objects robustly. Our novel approach is characterized by three
main contributions.

1) Dimensionality reduction closes the gap between ballistic
catching and related hybrid control theory: allows transfer
of (future) progress in hybrid control theory to robotic
catching.

2) Uncertainty of object states and restitution behavior in-
cluded as collisions are inevitable, even for dynamic
catching—dynamic catching is realized robustly.

3) A single catching motion applies for a range of objects
and initial object states (no replanning): guaranteed dy-
namically feasible robot motions can be found offline.

Hence, for the first time, experimental success in ballistic
robotic catching becomes predictable and robust. The experi-
mental success at the end of this paper generalizes to various
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robots. This generality and robustness of the proposed approach
is promising for many future (industrial) applications.

A. Robotic Catching

The fundamental problem of catching is to bring a fast flying
object to rest by interaction with a robot end-effector.

Interestingly, one of the first catching systems accomplishes
the task dynamically (velocity and acceleration matching) [5],
[6] and not statically. In this early work, a 4-DOF robot with a
gripper closes perpendicular to the flight direction in order to
avoid impact of the object with the end-effector. The dynamic
approach is necessary because vision systems are still too im-
precise to determine accurate arrival times. The closing of the
grasping end-effector also took a considerably long time. About
the same time a “mirror law” was proposed in [7] to generate the
motion for a dynamic catch in combination with a well-tuned
PD-controller after the initial impact. The related problem of
kinematic and dynamic feasibility is not treated formally.

More recent work addresses some of the feasibility problems
in dynamic catching. In [8], the goal definition is extended to
match the acceleration of a thrown basketball. In the case of
kinematically or dynamically infeasible desired robot motions,
an indirect catch is introduced, which is a single controlled re-
bound before the actual catch. In [14], the idea of direct and
indirect catching is generalized to polygonal objects. Kinemat-
ically feasible offline trajectories are generated in [10] as the
basis for a linear parameter varying (LPV) approach. With the
LPV system definition asymptotic convergence to the object’s
trajectory is shown. Dynamic feasibility is neglected, which is
later made responsible for some of the failed catching attempts
in the experimental evaluation.

So far, no ballistic catching approach has formally included
the inevitable appearance of impacts that are due to uncertain
knowledge of the object state. In our preliminary analysis [9],
we showed in simulation and experiments that uncertain object
states may lead to undesirable relative motions if pure veloc-
ity matching is pursued. A reachability analysis showed that
a proper treatment of relative acceleration has the potential to
perform a graspless catch on a ballistic trajectory. These re-
sults are in line with the findings of Schaal and Atkeson [13],
and more recently Ronsse ef al. [15] and Reist and D’ Andrea
[16], which suggest that negative acceleration has a focusing
effect on manipulation with rebounds. In this paper, we formal-
ize, for the first time, the treatment of relative acceleration in
robotic catching by means of Lyapunov-based stability analysis
of the fundamental hybrid system dynamics, which expresses
the problem of converging to a fixed point.

B. Hybrid Bouncing Ball

Highly related to catching with rebounds is the problem of
a ball bouncing on a table under a constant gravitational field.
Being a generic example for a process that is partially of continu-
ous (flow) and partially of discrete (jump) nature, the bouncing
ball is not only an illustrative example, but has motivated a
body of work. A commonly revisited problem is to stabilize the
ball on a periodic orbit at the example of robotic juggling [7],
[15]-[25]. One approach is the use of measure differential
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equations [21] to model and analyze this problem. Most of
the juggling approaches, however, have chosen a Poincaré map
approach [7], [15], [16], [20]-[22] to tackle the problem of pe-
riodic stability. All of these Poincaré map approaches model
the continuous phase with the parabolic solution in the world
coordinates and then analyze the implications of intermittent
contacts with a (mostly periodically) moving table. Thereby,
the work in [15] and [16] confirms Schaal’s early observation in
[19] of the significant influence of the table acceleration on the
orbital stability behavior.

Today, the progress in hybrid dynamical system theory en-
ables a unified treatment of partially continuous and partially
discrete problems. An extensive overview of the hybrid dynam-
ical system framework we use and related stability for time-
invariant hybrid systems can be found in [26]. Applications of
this framework on the juggling problem can be found in [23]
and [24].

For the graspless robotic catching in this paper, the fundamen-
tal underlying problem of making the ball converge to a fixed
point on the table or end-effector [27] differs from juggling. The
main difference here is the occurrence of Zeno behavior, which
is the unique ability of hybrid systems to exhibit an infinite num-
ber of discrete events in finite time. Literature on Zeno behavior
often focuses on conditions for its existence [28]-[30] for gen-
eral, even nonlinear, hybrid systems and how the existence cor-
relates to asymptotic stability [31]-[33]. The generality of these
approaches, however, hinders explicit calculations of Zeno limit
points or the finite Zeno time for particular initial conditions.
Works [34] and [35] are a great improvement toward an explicit
consideration of Zeno behavior in real-world robotics. Follow-
ing the work of Goebel and Teel [32], they showed general
Zeno stability for a nonautonomous bouncing ball system with
set-valued relative acceleration. Concentrating on the relative
dynamics between constraint and ball, they derived a necessary
and sufficient condition for uniform Zeno asymptotic stability
(UZAS) in [35] by means of a ratio between the acceleration
and the kinematic coefficient of restitution. The success guaran-
tees and extensions presented in our paper build upon this ratio
and the sophisticated Lyapunov function introduced for their
proof.

C. System Overview and Outline

We consider a blind robot-robot throwing and catching sce-
nario, in which each robot is capable of performing both tasks,
without change of hardware or tools. On the one hand, not re-
quiring visual feedback comes with the advantage of arbitrary
scalability. Even very short distances or widely covered flight
trajectories are possible. On the other hand, visual feedback can
always be added to further increase flexibility and robustness.

In order to enable a focused discussion, this paper distin-
guishes between four general robot motion phases per throwing
and catching sequence, visualized in Fig. 2.

P1) A first robot throws an object. In this paper, optimal
control based motion planning maintains dynamic feasi-
bility and ensures dynamic fixation of the object during
acceleration. At nonprehensile release, a limited and re-
peatable uncertainty in the object state remains.
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Fig.2. Block diagram outlining the four phases for joint robot-robot throwing
and catching.

P2) A second robot accelerates from rest to the goal state,
which is the initial state of P3. Again, optimal control-
based motion planning is used.

The second robot performs a decelerating motion on the
ballistic flight path. Dynamic requirements that enable
reliable ballistic catching and feasible motion planning
are the major subject of this paper. Along the discussion,
special attention is paid to the relative state between
the object and end-effector at the start of the following
motion.

The second robot has to leave the ballistic flight path at
some point while still in motion. Again, optimal control-
based motion planning is used, but here with an inequal-
ity constraint that ensures negative relative acceleration
in normal end-effector direction. Due to kinematic and
dynamic limitations of typical robots, a continuous con-
tact at the end of P3 is mostly not possible or not desirable
from an efficiency (throughput) perspective.

Focusing on P3 and the transition to P4, the remainder of the
paper is structured as follows. Section II starts with a general-
ized formulation of the catching problem. It is followed by a
novel parameterization, which relates 3-D ballistic catching to
the hybrid bouncing ball in 1-D. Based on boundedness of the
relative acceleration, an asymptotic stability notion of the rela-
tive hybrid dynamical system is introduced in Section III and a
bound on the maximal rebound height is derived. In Section IV,
we discuss the predictability of catching success for spherical
and arbitrarily shaped objects. In Section V, the feasibility prob-
lem is resolved with optimization-based motion planning and
solutions to the individual phases are described in more detail.
In order to give a better understanding of the theoretic deriva-
tions, realistic numerical examples with discussion can be found
throughout the paper. Section VI presents an experimental eval-
uation based on the previous examples. Section VII concludes
the paper.

P3)

P4)
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So

So

Fig. 3. Distance measure h between the object surface Sp and end-effector
surface Sp. Rotations of the object lead to a bounded uncertainty in A for
identical distances between the object center of mass and Sg .

II. CATCHING AS 1-D PROBLEM

Here, we formulate the general problem of catching rigid, ar-
bitrarily shaped, and fast flying objects in 3-D space. Particular
attention is paid to the various uncertainties that can occur. Due
to these uncertainties, at some point in the catching process,
the object collides inevitably with the robot end-effector mul-
tiple times. So far, the purpose of grippers in dynamic robotic
catching has been to compensate for the hardly predictable mul-
ticollision outcome. But, one could never be certain whether
some of the experimental failures are still due to collisions.
Therefore, we here establish a relation between the well-known
bouncing ball in hybrid control theory and the robotic catching
problem.

Finally, a novel parameterization is derived, which formu-
lates the acceleration of the end-effector as input to the robotic
catching system. The parameterization builds on the assumption
that the object center of mass follows a ballistic trajectory. This
applies for rigid objects with a sufficiently large mass-surface ra-
tio such that the influence of aerodynamic drag is small. Hence,
given a translational object state at one point in time and despite
the uncertainties described in this section, the path on which the
object center of mass travels is predictable and independent of
shapes. A large range of parts in industrial production processes
fulfills this property.

As the first main result of this paper, solutions for the 1-
D hybrid bouncing ball are easily transferred back into 3-D
catching. Hence, recent progress in hybrid control theory (see
Section IIT) becomes available for robotic catching.

A. Catching Problem Formulation With Bounded Uncertainty

Consider a generalized object with surface Sp and a robot
catching end-effector with desired catching surface Sp as de-
picted in Fig. 3. The catching surface Sg can be of various types,
e.g., a simple plate, the palm of a gripper, or the bottom of a box
as discussed later in this paper. The distance between Sp and
Sk is then defined as

h:=

min

B 1
po €S0 ,PE €Sk ||p0 pEH ( )

where p, and py are points on the object and end-effector sur-
face, respectively. Initially, surfaces Sp and Sy are disjoint such
that the object is above the end-effector. The time derivatives of
h are the relative velocity v := (%h and the relative acceleration
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v = —%h. Hence, the goal of catching an arbitrarily shaped,
fast flying rigid object corresponds to

h(t - 00) =0 and v(t— 00)=0 (2)

where v > 0 must hold.! In a catching scenario, various uncer-
tainties occur and are difficult to measure or predict. Nonethe-
less, boundedness can be assumed for them. The following three
types will be distinguished to account for these uncertainties.

Ul) Uncertainty in the initial state h(0) and v(0): e.g., due to

imprecise object state estimation including orientation
and rotation gained from real-time vision or based on
the repeatable, open-loop robot throws as in this paper.
Time-varying uncertainties in y(¢): e.g., due to object
rotation, neglected aerodynamic drag, imprecise robot
motions, and object motions deviating from the ballistic
path. Errors in the estimation of h and v for¢ > 0 as a
consequence of Ul lead to a translational object motion
in parallel to Sg (perpendicular to h), which in turn
affects the relative acceleration.
Collisions in catching are inevitable due to Ul and U2.
The outcome of such collisions is unpredictable and,
thus, kinematic restitution perpendicular to Si must be
considered uncertain, too.

From the aforementioned problem and uncertainty formu-
lation follows that catching an arbitrarily shaped, fast flying,
rigid object is similar to stabilizing a 1-D bouncing ball with
considerable uncertainties. The remainder of this paper, thus,
concentrates on maximizing robustness against U1-U3 gener-
ally, instead of calculating scenario specific bounds for all the
uncertainties.

U2)

U3)

B. One-dimensional Hybrid Bouncing Ball

In order to analyze the transition into continuous contact,
we define relative system states @ := [h v]" with continuous
dynamics

&= f(t,x)=[es —(1)] . (3)

These continuous dynamics, however, fail to describe the entire
system behavior because collisions with the end-effector surface
will occur, i.e., when h = 0 in Fig. 3. For the collisions between
the ball and end-effector in this paper, we choose the com-
mon Newtonian restitution model,2 which is an instantaneous
damped inversion of the arrival speed described by a coefficient
of restitution p € [0, 1). Such restitution constitutes the discrete
dynamics

zt =g(x) = [0 —pr]T. 4)

In order to allow a combined stability analysis of the contin-
uous and discrete dynamics, we formulate the hybrid bouncing

'In practice, one may replace the asymptotic formulation in (2) with a finite
time goal depending on the individual setup. Section IV discusses this issue by
means of Zeno behavior resulting in (29).

2The inaccuracy of this model is largely compensated by the robustness
against U3. This robustness is gained by the UZAS notion in Section III.
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Fig. 4.  Flow set (5) and jump set (6) of the hybrid bouncing ball H with
states x1 as the height of the ball and 9 as its velocity. The cones illustrate the
influence of the ~-sign on the vector field (7) in phase space. The dashed line
indicates the jump map (8).

ball dynamics H = (C, D, f, g) in the form of [26] as

C={x:z >0} 5)
D={x:21=0,22 <0} (6)
&= f(t,x) forall xzeC, tel0,00) @)
" =g(x) forall zeD 3)

where (C, f) describe the continuous domain and dynamics
(flow) and (D, g) describe the discrete domain and dynamics
(jump). Note that this is a nonautonomous system because (t)
is a time-varying function.

Fig. 4 visualizes the flow- and jump-sets given in (5) and
(6). The cones depict the vector field that results from (7) in
phase space depending on the sign of ~. Directions for v < 0,
illustrated by the dotted quadrants of the cones, are prevented in
the remainder of this paper. For v > 0 the system is guaranteed
to hit the end-effector at some point in time, but a time-varying
~ may still lead to increasing velocities x4 (t.) between impacts
and, thus, unstable behavior. Section III tackles stability for
~ > 0 and its relation to the coefficient of restitution p.

As will be shown, success in open-loop nonprehensile catch-
ing corresponds to finding accelerations «(t) for ¢ > 0, which
provide asymptotic stability with respect to the compact set
A:={x: 2y =0,29 =0}, cf. (2), for a large set of initial
relative states. A desirable, asymptotically stabilizing, 1-D so-
lution v*(¢) may directly be applied to a ballistic catch using
the dynamical system parameterization derived next. Conditions
for v*(t) to become asymptotically stabilizing are discussed in
Section III.

C. Parameterization of the Ballistic Motion

Consider a reference frame denoted by orthogonal unit vec-
tors 4, v, and w, depicted in the right part of Fig. 5. The first
two unit vectors u and v are parallel to the floor. The third unit
vector w is normal to the floor and, thus, aligned parallel with
the direction of gravity g. Hence, during free flight, a rotation
around w exists such that the velocity in 0-direction becomes
zero. From here on we, thus, assume v = 0 at all times allowing
planar treatment in the 4-w-plane of flight.
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Fig. 5. Left: Hybrid bouncing ball with accelerated end-effector acting as

unilateral constraint. Right: 2-D ballistic trajectory after rotation around @ such
that ¢ is normal to the flight plane. The release point is given at time ¢ = ¢, < 0.

Remark 1: With an appropriate rotation around w, assuming
© = 0 is generally mild because no acceleration due to gravity
occurs in v-direction. In the presence of collisions, assuming
© = 0 is only mild for spherical objects. Due to the poor pre-
dictability of polygonal collisions, instantaneous changes of v
may occur. Motion in this direction, however, may be easily
countered with a box-like end-effector design and consideration
of U3.

In the following, a parameterization is derived for the flight
path angle «, which describes the vertical direction in the u-
w-plane of flight. Based on the parabolic equations of ballistic
flight, it is shown that the flight path angle o can be expressed
as a function of the horizontal position u to describe the 1-D
motion on the ballistic path. The dotted line in Fig. 5 represents
such a ballistic path. This path is uniquely defined for free object
flight if the object position and velocity vector is known at one
point in time. Therefore, in order to define the path, the release
at t, < 0 with object position (u,,w, ), object speed v, and
object flight path angle «, are taken as given. Uncertainties at
t, map to Ul and are therefore included.

The object position for ¢ > ¢, is

u(t) = up + vr(t —t,) cos )

1
w(t) = w, + v, (t —t,)sina, — ig(tftr)? (10)
For the parameterization along the ballistic trajectory, substitute
the time of flight by the u-coordinate, which identifies the object
state uniquely. Solving (9) for ¢ gives
tu) = — 44,
Uy COS (i

an

which is only a function of constants and the position . Hence,
velocities for a particular object trajectory can be expressed in
terms of constants and u by

U — Uy

12)

w(u) = v, sina, — g————
Uy COS Oy
(13)

U = U, COS () .

The flight path angle after release may be denoted by «(t) for
t > t, or, using (11)—(13), in the parametrized form

a(u) = atan (“’S”)

which results in a negative « for the catching situation in Fig. 5.

(14)
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Using the aforementioned parameterization in terms of u, the
object acceleration in flight direction is given by

~vo (u) = —gsin (a(u)) . (15)

The parametrized velocity of the free flying object in flight
direction using (12) is given by

vo (u) = /42 + (i(u))*.

See also Fig. 5 for direction and sign conventions.

The focus in this paper, however, is on the motion an end-
effector has to perform on the ballistic path in order to stabilize
the nonprehensile catch. Therefore, we define a second pair
of variables for end-effector acceleration vr and velocity vg.
These two variables are defined on the ballistic path and are
thoroughly discussed in the remainder of this paper. As (%I/E =
ve, the acceleration g is the input to the robotic catching
system and vp (ty) is an initial speed on the path that needs
further discussion.

16)

D. End-Effector Motion on the Ballistic Path

Here, we present the first main contribution of this paper:
A dynamical system motion generator for P3 to reconstruct an
end-effector trajectory & := [vp ug wg | from solutions v* ()
of H.

A stabilizing relative acceleration v*(¢) on the ballistic path
of an object in the u-w-plane is tracked with an end-effector
motion described by the nonlinear dynamical system

Ve (t,€2)
&1 cos (a (&)
&isin (o (&2))

with acceleration vg (¢, &) = v0(&) — 7*(¢) and « from (14)
evaluated at £ = ug. Hereby, the first state £, = vg is the 1-D
end-effector velocity on the ballistic path, whereas the other two
states determine the position of the end-effector in the plane of
flight, cf., Fig. 5.

The initial end-effector state is defined

Vo (0) + o (0)
u(0) + (21(0) + ) cos (a(0))
w(0) + (21 (0) + 7) sin (a(0))

using (9), (10), (14), and (16). The scalar r denotes the radius of
the object circumcircle and therefore ensures that the object and
end-effector are initially disjoint.? Note also that (18) is based on
the assumption of sufficiently small (2 (0) + ), which allows
to assume o (ug ) & vo (u) in the remainder of this paper. For
a given initial end-effector state &, the desired end-effector
trajectory &(t), thus, results from a numeric integration of (17)
with input v*(¢).

Section Il analyzes and discusses the influence of v on bounc-
ing ball dynamics and, thus, on robotic catching. The choice of

§ = (18)

31f a range of differently sized objects should be caught with the same setup,
one may simply choose r from the largest possible object at the cost of increasing
Ul.
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the relative initial state x(0) is crucial for the success of an
open-loop catch and will be discussed in Section IV. As a re-
sult, Section V proposes an optimization-based motion planner
for robotic catching that finds v*(¢) while taking dynamic limi-
tations of the robot into account.

III. STABILIZING RELATIVE MOTIONS

In this section, we regard stability of the 1-D bouncing ball
(5)—(8) in the presence of U1-U3. First, the theorem of Or et al.
[35] on uniform Zeno asymptotic stability (UZAS)* is reviewed.
Then, we derive a corollary on the maximum possible rebound
height for the UZAS system. At the end of the Section, an
academic example illustrates robustness of the presented theory
to U1-U3.

A. Review of Uniform Zeno Asymptotic Stability

Consider the hybrid dynamical system H from (5)—(8) with
set-valued acceleration

’Y(t) S h/mina'ymax] ) where 0 < Ymin S Ymax - (19)

Or et al. then proved the following theorem in [35].
Theorem 1 (Or et al. [35, Th. 1]): The origin of a bouncing

ball ‘H with set-valued acceleration (19), possesses uniform

Zeno stability if and only if

Ymin

’Ymax

P < (20)
holds.

For the detailed proof refer to [35]. Here, we sketch and
discuss the major steps of the proof, which allow a novel view
on the robustness problem formulated in U1-U3.

The proof relies on a sophisticated Lyapunov function V :
U — Rxg withU = {& € R? : W(x) > 0} defined by

1
V(x) = kxe + /W (x), where W(x)= x5+
2p(w2)
maxs ifl. S 0
with p(ay) = 4 "
Ymin s lf i) > 0
1 p ) 1
and Kk = — . 21)
(\/Q’Ymax \/2'Vmin 1 + 1%

Interestingly this piecewise defined Lyapunov function is con-
tinuous and continuously differentiable on dom V' even though
kinetic energy is deducted instantaneously from the hybrid
bouncing ball system at every collision

V(g(x)) = V() (22)
for all x € D. Furthermore, by verifying that
<VV<SU)7 .f> S —KYmin (23)

holds for all & € C\{0}, one concludes that V () is a strictly
decreasing Lyapunov function. Therefore the origin is UZAS.

4Zeno behavior describes the occurrence of infinitely many impacts in a finite
amount of time. Formal definition, e.g., in [35, Def. 1].
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Fig. 6. Flow and jump sets of the hybrid bouncing ball H over a single period
starting at (0). The acceleration ~ satisfies (19) and (20). Any fast or slowly
varying acceleration within the bounded set leads to a lower rebound height
than a single switch from the lower to the upper bound at the maximum height
(v = —p(x2)), which is the “most unstable solution” [35].

For the bouncing ball follows from (19) robustness with re-
spect to uncertain relative acceleration (U2) as visualized with
single flow periods in Fig. 6. From (20) follows robustness
with respect to uncertain restitution behavior (see U3). Further-
more, it becomes possible to establish continuous contact with
a single open-loop acceleration «(t) for a range of initial states
z(0) € C'U D, which relates to U1. Hereby, () might even be
chosen constant. As a result, given a sufficiently small Ul pro-
vided by the repeatable robot throw, the approach in this paper
does not require replanning of the catching motion, nor does it
require real-time measurements of the object state.

B. Bounded Rebound Height

Besides the stability of system H, we are also interested in a
bound on the rebound height after an arbitrary point in time ¢’
subject to (19) and (20). The following corollary offers an easily
applicable answer. Thereby, the abbreviations for the relative
height z; (+') =: h' and relative velocity x5 (¢') =: v/ are used.

Corollary 1: If the acceleration 7y(¢) of the hybrid bouncing
ball system H satisfies (19) and (20) for all ¢ > ¢/, then the
maximum possible rebound height for all ¢ > ¢’ is limited by

1\2
h + 2(V7) for v/ >0
Ymin
zy (h/v V,) = 2 2
+ 2 Inaxh,
max h/,p ((1/)2 7 ) for v/ <0
Ymin
(24)
based on the relative state z(t') =: [h' V'] ".

Proof: Due to (19), the ball reaches the highest point at zero
relative velocity (zo = 0) in every rebounding cycle. Further-
more, due to the UZAS property, in every consecutive cycle
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the highest point x1 (5 = 0) is smaller than in the previous
one. Hence, in order to compute Z1, it is sufficient to calculate
the first 21 (xz9 = 0) after ¢’ in the presence of the worst case
acceleration scenario given by p(x2) in (21).

The first case in (24) represents the rising phase, i.e., v/ >
0. Here, we simply take the current height /4’ in addition to
the height that could be gained by transforming the current
kinetic energy into potential energy under the smallest possible
acceleration.

In the falling case v/ < 0, a collision occurs before the next
peak height is reached. Denoting the first postimpact velocity
after t' as v, we already know from the previous step with

' =0 that 7; = &2 With the restitution law v = —pv~

. 2%m jn
the relation to the preimpact state becomes
—\2
—prV
7= ) (25)
27111in

Finally, the maximum possible velocity of v~ is what we get
from the kinetic energy of v/ in addition to the velocity gained
by transforming /' into kinetic energy under the largest possible
acceleration

Vo= =y (V/)Q + 2’7maxh/~

Inserting (26) in (25) results in the second line of (24), con-
sidering that Z; must never be smaller than the current height
n. |

For acceleration ratios (20) close to one, the presented the-
orem and corollary are not restrictive because nearly the full
range of the coefficient of restitution p is allowed. Vice versa,
the restrictions on p become tight if a large range of accelerations
~ must be covered.

In nonprehensile robotic catching, we will later see that con-
vergence speed improves as ~yy,i, increases, which can also be
concluded from (23). Large acceleration, however, may only be
provided in P3 (following) because P4 (deceleration) is typi-
cally governed by comparably little acceleration. Under typical
conditions the Zeno time may lie in P4, illustrated with Example
1 at the end of this section. Therefore we have to deal with a
restrictively large range of accelerations.

(26)

C. Illustrative Example and Discussion

During P3 the robot tracks the ballistic flight path and is ca-
pable to produce a large relative acceleration. The tracking du-
ration of P3 is limited by the kinematic and dynamic constraints
of the robot. If tracking is not possible anymore, P4 starts and
provides only low relative acceleration. Here, we present a re-
alistic example to discuss UZAS from Theorem 1 and the novel
Corollary 1 focusing on uncertainty U2 in P3 and P4.

Example 1: Consider arelative initial state 2(0) = [0 0.9] !
at start of P3, which means the hybrid bouncing ball H is initially
in contact and has positive velocity. The restitution is chosen
p = 0.35. In P3, the robot moves according to (17) with the goal
to apply v* = 25 ms 2. In P4, the goal is to maintain previously
established contact with v > 4 ms™2. Two acceleration patterns
are simulated to represent U2 in the presence of these goals.
Both are depicted in the lower plot of Fig. 7. The solid line
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Fig.7. Height of a bouncing ball over time with initial state 2(0) = [0 0.9]T
and restitution p = 0.35. The dashed lines in the upper plot indicate the respec-
tive upper bound z; from (24), which is decreasing. The Lyapunov function
(middle) based on (21) is continuous and decreasing to zero in finite (Zeno)
time. Dynamics after the Zeno time are not considered. The upper acceleration
bound v ax drops at ty = 0.1 s, which accounts for limited robot tracking
capabilities.

shows a simulation of noisy acceleration by means of a high-
frequent sine function between 20 ms~2 and 30 ms~2 in P3 and
between 4 ms 2 and 20 ms 2 in P4. The dotted line depicts
a simulation of the “most unstable acceleration” [35] that is
~v = —p(x2) using the previously mentioned bounds.

The first two plots of Fig. 7 show the simulation result for
height and Lyapunov function value (21) over time for a se-
quence of impacts. The fast variations of ~, which intend to
simulate noise, are not visible in the two upper plots, which
is due to the low pass property of the double integrating flow.
Moreover, the Lyapunov function value decreases faster during
t < 0.1 s, which is in line with (23) and, thus, we conclude that
large i, 18 desirable.

In addition, the first plot also displays the evaluation of Corol-
lary 1 with dashed lines. For this evaluation, uncertainty U2 and
the drop in relative acceleration at t = 0.1 s is taken into ac-
count by 42 =30ms™2 and 4?3 = 4 ms~2, which reduces

max min
toyP*  =20ms ?and P4 =4 ms % fort > 0.1s. At the ex-
ample of a maximum rebound height h,,,x = 5 mm, indicated
by the horizontal line in the first plot of Fig. 7, one can see that
(24) already holds from ¢ = 0.1 s. The simulated Zeno time here
is at t = 0.34 s in the most unstable case. Limiting the analysis
to only those solutions that have Zeno times that lie in P3 might,
thus, be overly restrictive. Hence, Section IV will introduce a
box-like end-effector and analyze the maximal Zeno time in a
formal way.

IV. TOWARD PREDICTABLE SUCCESS

So far, solving the general catching problem (2) in the pres-
ence of UI-U3 robustly has become possible using (17) and
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(20). Nonetheless, Example 1 illustrates that the lack of relative
acceleration in P4 leads to a large range () € [Ymin, Ymax) if
(20) has to consider potential acceleration changes in both P3
and P4. Furthermore, the end-effector has been considered pla-
nar. In practice, relative motions perpendicular to the distance
measure h inevitably occur. Therefore, we here discuss a re-
striction of (2) to increase practical applicability and we discuss
to what extend a box shaped end-effector allows negligence of
motions perpendicular to h.

A. Success Prediction Based on the Maximal Zeno Time

The UZAS condition (20) formulates if the general catching
goal (2) can be achieved as ¢ — oo and, thus, if a finite Zeno
time Z exists. Consequently, the notion of a maximal Zeno time
[35] becomes also applicable.

Theorem 2 (Or et al. [35, Th. 2]): 1If condition (20) is satis-
fied, all solutions are Zeno and their maximal Zeno time is given
by

/
v+ O'UOA,min

for v/ > v,
“Ymin
Zmax(h,a V,) = ’ (27)
max (1 0
Y+ Umax( +ﬂ)forz/<1/c
Ymax
where
UO.max =V ( ) +2’Ymax
UO,min =V ( ) +271111n
271(11 in n 7111 ax
Ve ==\ —Q5 7
02 - 1 "len
1+
B=2p—"L_ o= \1+28+0F.  (28)
1—p%0
Proof: See proof in [35, Th. 2]. |

In practice, the general formulation with ¢ — oo evaluated at
t = 0 s requires to consider acceleration changes in both phases
P3 and P4. Large values Z,,,¢ and small valid ranges for p
are the result. Therefore, we here propose the limitation of the
time horizon to the tracking phase P3 with controllable relative
acceleration. The general catching goal (2), thus, reformulates to

h(t —t;) =0 and v(t—ts)=0. (29)

Hence, successful catching becomes predictable for initial rela-
tive states that fulfill Z,,.« (2(0)) < ty, also subject to U1-U3.
Example 1 (revisited): Consider the acceleration range of P3
as described in Example 1 and restitution p = 0.35. Fig. 8§ then
visualizes the maximal possible Zeno time (27) at the start of
P3 (ty = 0) depending on the initial relative state #(0). The
solid contour indicates Z,,,, = 0.1 s, which allows to conclude
that all initial relative states enclosed by this contour and the
horizontal axis fulfill (29), and, thus, lead to continuous con-
tact already in P3. The dash-dotted contour indicates the effect
of U3, which illustrates that (27) is monotonically decreasing
(admissible U1 fulfilling Z,,,.x < t; increases) as p decreases.
Hence, the proposed approach applies for all potential resti-
tutions below p and, thus, provides robustness for a range of ma-
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Fig. 8. Contours indicating the maximal Zeno time (27) for Example 1 ac-
celeration bounds in P3 (w(t) € [20, 30 ms’Q) subject to the initial relative

state © = x(0) and p = 0.35. All initial states below the solid contour ful-
fill Zimax <ty =0.1s. The dash-dotted contour indicates the trend of the
Zmax < ty contour as p decreases.

terials (U3) without need for replanning. Even more important
is the resulting potential to overcome the problem of the diffi-
cult and imprecise estimation of an object dependent restitution
behavior.

From the revisited example, it becomes clear that in the pres-
ence of U1-U3 a robust initial relative state "°" (0) must lie in
the center of the area enclosed by the solid contour in Fig. 8.
The best choice for a nominal initial state, however, depends
on the expected magnitude in each dimension of Ul. Nonethe-
less, the following corollary gives an orientation for potentially
good nominal initial relative velocities. In view of Fig. 8, the fol-
lowing corollary returns the velocity 5 (0) for which the solid
parabolic contour reaches the maximal x; (0)-value.

Corollary 2: Assume condition (20) is satisfied, then the
nominal initial relative velocity

Ymin Zmax
208+ 632

maximizes the range of x;(0) for which (29) holds, where
Zmax =ty — o is the duration of P3 and 3 is calculated based
on the maximum expected restitution in h-direction.

Proof: First, rearrange the first case in (27) to become a
function of Z,,,« and v given by

2" (0) = — (30)

(1 — 02)1/2 — 2Ymin ZmaxV + ('}’mianax)2

h = 31
20_27111111 ( )
Then, take the derivative
dh 1- 2 - minZIn X
an ( o)y — vy a (32)
dV 02 '7min
where setting (32) equal to zero results in
mianax mianax
_2 =2 . (33)
1—o02 23 + (m?

Considering that o > 1, a second derlvatlve b will always
be negative and thus (33) is a maximum. Repeatlng steps (31)—
(33) for the second case in (27) returns the same result. [ |

SNote here that (33) is directly related to v, in (28), e.g., by inserting the first
case of (27) into (33) and resolving for v.
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Simulation results of Example 2 to evaluate the influence on the relative acceleration in h-direction of motions perpendicular to & (a) and (b) and of

object rotation (c) and (d). In (a) and (b), the motion perpendicular to % has a magnitude of 1.4 ms~! for which it stays within the previously assumed acceleration
bounds. In (c), the rotation of 20 rad s~ about one object axis does not violate the acceleration bounds, except for the moment when the nearest edge of the object
switches. In (d), the rotation of 40 rad s~ about one object axis leads to permanent violation of the acceleration bounds.

As a result, we recommend to first target a relative veloc-
ity according to Corollary 2 for the motion planning of future
catching robots as the knowledge of object states is inevitably
imprecise (U1). For example due to object state estimation errors
of vision systems or blind throwing robots, neglected aerody-
namic drag or unknown object shape. Hence, a negative offset
for 2 (0), besides providing the necessary negative relative ac-
celeration (v > 0), is suggested as primary measure to increase
success in robotic catching. If reliable success is achieved, one
may then further reduce impact velocities with velocity match-
ing x2(0) — 0, as considered in most previous dynamic catch-
ing approaches of lower success rate.

B. Previously Neglected Motions in View of Arbitrary Shapes

In this paper, the velocity components of the object perpendic-
ular to the distance measure h are neglected during parameteri-
zation and stability analysis. But, such parallel motions slowly
start to occur for ¢ > 0 and become nonnegligible in magnitude
when the end-effector has to move away from the ballistic path
with start of P4. In case of nonspherical objects, already the first
collision in P3 may induce significant motions perpendicular to
h. We, here consider the following three major issues related to
motions perpendicular to h.

1) Unpredictable Velocity Transformation: Rotation or ve-
locities perpendicular to & may be transformed into velocity
in h-direction at collisions, whereas the outcome of such col-
lisions with objects of arbitrary shape is hardly predictable.
Even coefficients of restitution p > 1 in h-direction are likely
to occur. On the other hand, frictional losses tend to be higher
for polygonal objects compared to spherical ones. Therefore,
calculations from the previous section cannot predict success
or failure for arbitrarily shaped objects in a quantitative way.
Nonetheless, Theorem 2 and Corollary 2 allow to analyze the
qualitative effect of many variables. In order to regain explicit-
ness lost through impacts, the object state after collisions, or at

least h and v, must be measurable. Taking such measurements
is a challenge itself, especially for small rebounds and, thus, lie
beyond the scope of this paper.

2) Effect on Acceleration Uncertainty (U2): Rotation or ve-
locities perpendicular to h are the major source of U2, including
errors and unmodeled changing tilt angles of the end effec-
tor. The presented theorems and corollaries all rely only on
the boundedness of the relative acceleration +(t), which al-
ready includes robustness against U2. They do explicitly not
require knowledge of a particular acceleration pattern. There-
fore, the goal here is to exemplary study the influence of pre-
viously neglected effects on the range of occurring relative
accelerations.

Example 2: Consider a cube-object starting above the end-
effector as depicted in Fig. 9. Four scenarios are simulated
whereas the end-effector motion is always planned for con-
stant *(t) = 25 ms~2. Motions described in this second issue,
thus, cause all the deviation of relative acceleration in the upper
plots of Fig. 9. The initial absolute part velocity in h-direction
is chosen vp = 3.5 ms™! and the initial relative velocity is cho-
sen v/(0) = —0.3 ms~!. In the first two scenarios, the relative
velocity perpendicular to i has, thus, a comparably large magni-
tude being chosen 1.4 ms~—!. As can be seen in the acceleration
plots, the deviation from ~* in this simulation is at most 5 ms 2.
Hence, the conservative choice of acceleration bounds used in
Example 1 covers a notably large range of unmodeled veloci-
ties perpendicular to h. The other two scenarios (c-d) in Fig. 9
illustrate the effect of rotation on the relative acceleration ~y(t).
In view of (1) and its derivatives, the closest vertex can switch,
resulting in a velocity jump and, thus, very large relative ac-
celeration instants. Therefore, nonspherical parts temporarily
violate (20) here. Very fast rotations as shown in scenario (d) as
well as very fast velocities perpendicular to h can even lead to
permanent violations.

As Example 2 illustrates, the notion of set-valued accelera-
tion introduced with (19) compensates a considerable range of
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Fig. 10.  Left: Kinematic model for n actuated rotational degrees of freedom.
The t-w-frame coincides with the robot base. Right: Unactuated, box-like end-
effector with height hy, .« and prismatic joint as “virtually” actuated DOF

qn+1-

rotational and translational velocities neglected in Sections II
and III.

3) Limited End-Effector Domain: The object may leave the
limited domain of a planar end-effector.

So far, the end-effector has been assumed planar like a plate.
However, even if (29) holds and no form or force closure is used,
the object may start to roll or slide on the end-effector after
entering P4. Therefore, we propose the box-like end-effector
design in Fig. 10 to prevent objects from falling off. Moreover,
such motions parallel to Sp have an additive or subtractive
effect (depending on the direction) on the relative acceleration
between the object and end-effector, similar to what has been
analyzed with Example 2. Contact with the box walls may even
induce additional velocity. In order to prevent the object from
losing contact with S, motion planning in P4 must pursue
sufficiently large negative relative acceleration.

In case of spherical objects and in view of Corollary 1, a
box-like end-effector may even enable successful catching if

T (W V) < hpax  at ' =1y (34)

holds, whereas h., . denotes the box height reduced by the ob-
jectradius, cf., Fig. 10. Again, we revisit Example 1 to quantify
the effect of the box height with the help of Corollary 1.

Example 1 (revisited): Consider the acceleration range of P3
as described in Example 1, restitution p = 0.35 and the same
range of potential initial relative states as in Fig. 8. A simulation
now calculates how the relative object state & evolves until
ty = 100 ms based on the “most unstable” acceleration pattern
illustrated in Fig. 7. At time ¢ = ¢y, Corollary 1 is evaluated
for all z(t;) = [hy v;]" using /P4, =20ms™ and AF4 =
4 ms~2. Fig. 11 illustrates the results.

Similar to the discussion in Section IV-A, negative relative
velocities turn out advantageous as rebounds remain comparably
small with respect to distance uncertainties.

V. FEASIBLE MOTIONS

In this section, we present an optimization-based motion plan-
ning approach to realize the stability concept from Section III
in the ballistic catching scenario. In order to maintain stability
claims, kinematic and dynamic feasibility of end-effector mo-
tions is always guaranteed. Therefore, the section begins with a
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Fig. 11. Contours indicating the maximal possible rebound height (24) for
Example 1 acceleration bounds (7(7,‘) € [20, 30] ms‘2) at the end of P3 (¢ =

ty) and subject to p = 0.35. All initial states below the solid contour fulfill
Z1(hy,vp) =0 mm (Zeno solutions). The dash-dotted contour depicts the
z1(hy,vp) <5 mm contour.

standard formulation of the dynamic model. It follows an aug-
mentation of the related standard kinematic (SK) description
with an additional, “virtual” degree of freedom, enabled by the
nonprehensile approach.

A. Kinematic and Dynamic Model

Here, we formulate the n-DOF dynamics of a serial manip-
ulator and an augmentation to (n 4 1)-DOF kinematics. The
augmentation results from the nonprehensile approach because
the end-effector provides a range of possible contact points.

1) Standard Kinematics (SK) and Dynamics: Consider a
robot with n actuated rotational degrees of freedom g € R"
as shown in Fig. 10 on the left. The dynamic equations for this
serial robotic structure have the well known form

M(q)q+C(g.9)q+G@) =T
with the mass matrix M € R"*", the Coriolis matrix C €
R"™*" the gravitational vector G € R", and the input torque
7 € R". This paper will demonstrate that n = 2 is sufficient for
the dynamically challenging task of robotic catching using the
following augmentation.

2) Augmented Kinematics (AK): The augmentation is moti-
vated by preliminary investigations for the 2-DOF SK in our
experimental setup. With 2-DOF no redundancy, except for
the choice between over- and underarm configuration, exists
given the ballistic path and a desired end-effector acceleration
on this path. The motion of a ball thrown from an exemplary
distance of 1.77 m cannot be tracked. In order to find a joint
trajectory g(t) that is nonetheless kinematically and dynami-
cally feasible, we exploit the nonprehensile DOF. surface of the
end-effector. So, the contact point is an extra degree of freedom,
though not actuated. For an extensive evaluation of kinematic
augmentation in nonprehensile scenarios, the reader may refer
to [36].

In the planar catching scenario, it is sufficient if any point of
the end-effector surface tracks the desired trajectory. In other
words, the ball can land anywhere on the surface of the end-
effector. So, the contact point is an extra degree of freedom,
though not actuated. We account for this by augmenting the
kinematic model with an additional, virtually actuated prismatic

(35)

DOF q = [q" gu41] ', as visualized in Fig. 10.
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The newly introduced redundancy is resolved using a nor-
malized cubic Hermite spline

1
Gni1(tts,p) = = (201 — 2p2 +typs +tppa) t

3
ty
1 2
—;@m—%rMWm+Wmﬂ4mﬂ+m (36)
!

on the interval ¢ € [0,¢;] with O and ¢; being the start and
end of P3 (see Fig. 2), respectively. The vector p € R? collects
the polynomial coefficients. With the Hermite spline (36), the
last joint is later constrained intuitively as the coefficients p :=
[G01(0) @1 (tr) Gur1(0) Gusr (t)] " are the displacement
and the velocity of ¢,, .1 at start and end of P3.

Given a particular parameterization p, a standard inverse kine-
matic problem for the first n joints of ¢ € R" ! with

q(t) = C(tv up (t)a wg (t)vpa tf)

remains. In case of n = 2 the overarm configuration is chosen.
The first time derivatives of ur and wg are known from the
solution of (17). The second time derivative is calculated by
means of a numeric forward differentiation. Hence, the first
and second order differential inverse kinematics are uniquely
defined by

(37

q(t) = J71 [’U,E u';E]T
G(t)=J! ([u’E i)’ — J'q)

with the Jacobian J and its elementwise analytic time deriva-
tive J (g,q9) = %J (q). Note that we do not need to consider
singularities here, because such solutions are rejected by the
optimization performed next.

(38)

(39)

B. Kinematic and Dynamic Constraints

In order to maintain kinematic and dynamic feasibility with
the optimization-based motion planning approach, torque,®
power, and angular velocity limits are defined in

|7 (t)] — Tmax
7(t)q(t) — Prax
|q(t)| - émax

0>h(q,q,T1)= e R3". (40)

The constraints in h apply in all motion planning phases. Using
=" qi(t), the vector

qsum

Gsum — Gmax
—qsum + Gmin
—Qn+1(t)
qn+1 (t) — Gn+1,max

a(tf) - quin

0>h%(q,q,7)= e R (41)

®Due to the use of gears, bushed dc motors and a power consideration on
mechanical level, deceleration at high velocities is supported by large frictional
effects. The negative torque limit is therefore more restrictive in all relevant
situations than a negative power limit.
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TABLE I
PARAMETER AND CONSTRAINT VALUES FOR 2-DOF

Symbol  Value Quantity

ly 0.315m Length of 1st link

[ 0.320m Length of 2nd link

p 0.35 Coefficient of restitution
T 0.015m Ball radius

g 9.81ms~ 2 Gravitational constant
A~y 10ms—? Acceleration range

ar 37° Release angle

tr —0.534s Release time

Uy —1.770 m Hor. release position

Wy 0.525m Vert. release position

Uy 4.50ms™2 Release velocity

21(0) 0.02m Initial relative height
z2(0) —0.68ms~! Initial relative velocity
T1,max 54 Nm Peak torque limit joint 1
T2, max 38 Nm Peak torque limit joint 2
Gmin 0.4rads™? Min. rot. speed at transition
Gmax 6.5rads* Max. rot. speed

P 120 W Max. motor power

Gmin 0° Box open in flight dir.
Gmax 90° Box open in flight dir.
g3, max 0.015m Tangential box size
Pmax 0.005m Normal box size (height)
N 50 Constraint evaluations

collects kinematic constraints particularly for the most impor-
tant P3, indicated by the superscript (*). The first pair in (41)
constrains the sum of joint angles to ensure that the end-effector
box is opened in the direction of the approaching ball, e.g.,
compare the SK in Fig. 10 and the right-hand robot in Fig. 18.
In case of more than two actuated DOF, the first pair in (41)
may be replaced by an equality constraint that restricts the an-
gle between the end-effector’s normal vector (cf., [9]) and w to
a(ug). As a result, relative velocities perpendicular to h, and
therefore Ul and U2, would reduce. The second pair of con-
straints is the length of the virtual prismatic joint ¢, ;. Note
that its derivatives ¢, 1 and ¢, are not constrained in h<3>,
which can then be exploited by an optimization program. The
constraint parameters of the robots used in this paper are pre-
sented in Table I. The dynamic limits therein are chosen below
the hardware specification to leave an action margin for the
low-level joint controller after the optimization.

C. Motion Planning for P3

Most critical for nonprehensile catching is P3 (cf., Fig. 2),
in which the robot end-effector follows the ballistic flight path
of the ball. So far, the theorems in Section III defined, which
range of the relative acceleration y(t) stabilizes a bouncing ball
on this ballistic path. The dynamical system motion generator
(17) with initial state (18) allows to reconstruct the 3-D end-
effector motion. A beneficial choice of x(0) was discussed in
Section IV.

Still undefined at this point are the redundancy parameters p,
the final time (duration) of P3 ¢, and the shape of (t). These
remaining design parameters must now be chosen while being
implicitly constrained by (40) and (41).

Our motion planning approach is the formulation of a con-
strained dynamic optimization problem

H;}gll}[l(ltl)e KYmin t f

s.t.  (35) using (17)—(18) and (36)—(39)

h(g,4,7) <0, h¥)(q,¢,7) <0  (42)
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Fig. 12.  Block diagram visualizing the generation of the workspace motion
by (17) based on «y and &;,. Using the augmented differential inverse kinematics
together with p, the motion translates into joint space and the constraints for
the dynamic optimization problem (42) are obtained.

visualized in Fig. 12. The chosen cost function partially orig-
inates in (23), which quantifies the convergence speed of the
Zeno behavior that inevitably occurs during any nonideal con-
tact transition. We then propose to multiply the quantified con-
vergence speed with ¢; to maximize robustness. The most im-
portant property of this cost function is its independence from
the initial relative state «(0), which accounts for the use in an
uncertain environment. Nonetheless, it should be noted that a
desired x(0) needs to be chosen for initializing the integration
of (17) with (18) during constraint handling.

In order to solve the problem as a static optimization problem
with one of the many available solvers’ the acceleration ~(t)
needs to be parametrized and constraints evaluated at discrete
time steps. Here, we simply choose v constant and consider an
acceleration uncertainty vp,in, = v — A7y and Y. = 7 + A7.
The dynamic constraints are evaluated at N equally distributed
discrete points in time ¢, = {f—fl k=0,1,... N — 1. The vec-
tor of constraints, thus, enlarges to h € R +ON+n,

Many other choices for v(t) and the other optimization vari-
ables are possible and depend on the requirements of the appli-
cation. For example, the release state at time ¢, on the throwing
side could be added in order to adapt the ballistic trajectory to
the dynamic capabilities of the catching robot or the dynamics
could be parametrized to optimize the catching robot for this
particular task at the design stage.

Example 3: Consider the release point, angle and ve-
locity given as in our experiment (n =2) with wu, =
u(t,) = =1.77m, w, = w(t,) =0.52 m, o, = 37°, and v, =
450 ms~'. The optimization variables are constrained by
the values in Table II. The inequality constraints h from
(40) are discretized over time with N = 50. Solving (42)

7We use Sequential Quadratic Programming (SQP) in MATLAB.
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TABLE II
BOUNDS ON THE OPTIMIZATION VARIABLES

Symbol p1 P2 P3 P4 te vy
Unit m m ms ™! ms™?! s ms~?
Upper 0.015  0.015 2 2 0.25 45
Lower 0 0 —2 —2 0.05 15
N T T
60 -~ \\4 violation T2 max —
g 40 - . =
Z eIl
g 200 PPt = —
& of L7
e --- TI,8K - -~ T2,SK
—20 (-~ — T1,AK —— T2, AK ||
| | . .
0 0.02 0.04 0.06 0.08 0.1
tin s

Fig. 13. Required torque of the two actuated joints to perform the P3 motion
in Example 3. While the motion governed by the AK stays within the limits of
Tl max = 94 N-mand 7 max = 38 N-m, afollowing motion with the standard
2-DOF kinematics would be dynamically infeasible.

0.015
g 001 i
g
& 0.005 8
0 I 44/
0 0.02 0.04 0.06 0.08 0.1
tins

Fig. 14.  Exploitation of nonprehensile augmented DOF g3 in Example 3. The
frames visualize how the end-effector is used to track the ball’s flight path in
P3.

then results in Kyminty = 0.12, a constant relative accel-
eration v*(t) =39.5 ms™? and P3 duration ¢; =0.101s.
For the augmented DOF the optimization returns p =
[0.013 m 0.003m —0.57 ms™" 0.055 ms ™" |

The torques required to perform the P3 motion on the time
interval ¢ € [0, ] are depicted in Fig. 13. While the motion
based on the AK stays within the limits, a following motion
with the SK would be dynamically infeasible. The most signif-
icant difference is observed at the beginning of the following
motion because here the desired velocity is the highest. In the
second half, the dynamic requirements become smaller and stay
within the constraints. This is owed to the fact that the desired
relative acceleration results in a decreasing desired velocity. The
dynamic requirements at the start of P3 are generally only met
at very few points by the SK in our robot’s workspace. The plot
and frames in Fig. 14 illustrate how the AK exploit the virtual
DOF to achieve dynamic feasibility. Further examples regarding
virtual joint exploitation may be found in [36]. Fig. 15 shows
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g 0.04 0.2 -

% 0.02 0.1 N
0 0

4 2 0
75(0) in ms™!

Fig. 15. Contours indicating the maximal Zeno time (27) for Example 3
acceleration bounds in P3 ('y(t) € [29.5,49.5] ms‘2> with the same scale as

in Fig. 8, but doubled A~ for increased robustness. The solid contour marks
Zmax = 0.101 s in view of (29). A further result of the optimization compared
to Fig. 8 is the reduction of the maximum occurring Zeno time from 0.28 s to
0.22 s in the depicted subspace.

the maximal Zeno time as described in Section IV-A, but here
with the optimized solutions for v and ¢; from Example 3. In
comparison to Fig. 8, the Zeno times with respect to the initial
relative state have generally decreased.

D. Acceleration Planning for Throwing and Catching

In P1 and P2, cf., Fig. 2, the throwing and the catching robot
accelerate from a resting position to a dynamic goal state. In P4,
the catching robot decelerates from a dynamic state to a resting
position. These three phases demand the solution of two-point
boundary value problems of the same dynamical system (robot)
with different nonlinear constraints. Our method of choice is the
formulation of a constrained optimal control problem

1
minimize — / T rdt
T 2
st (35), h(q,q,7) <0, W' (t,q,4,7) <0
h()((L (jvt()vtf) =0 (43)

that penalizes large absolute torques quadratically. This ap-
proach allows to account for the appearance of large rotational
velocities that require operation close to the motor velocity lim-
its or to the peak torque limits of the gears. Indicated by the
different superscripts of h, P1 and P4 require task-dependent
nonlinear constraints, which are described in the following dis-
cussion.

For throwing acceleration (P1), the goal state of the robot
is determined by the desired release state of the ball. As the
throw is carried out without grasping, the relative acceleration
in normal end-effector direction must always be negative in this
phase. A way of calculating this relative normal acceleration is
explained in [9] and contained in R4 n order to fix the ball in
tangential direction, we have advanced the end-effector design
of the Shannon-juggler by Schaal and Atkeson [13] from the
V-shape to the one depicted in Fig. 16. This design exploits cen-
tripetal forces during the rotational acceleration to fix a spherical
object in a known position relative to the end-effector. Stopping
at the release instant ¢, is realized by resetting the desired joint
velocities to zero. The desired joint angles are kept constant for
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5

Fig. 16. End-effector design that reduces contact surface with the ball and
thus avoids jamming. Spherical objects are automatically driven to the depicted
throwing position, cuboids must be placed manually.

Fig. 17.  Visualization of the throwing (left) and catching (right) motion.

t > t,, respectively. The resulting throwing motion is visualized
on the left in Fig. 17.

For catching acceleration (P2), the goal state of the robot is
determined by the desired robot state at the beginning of the
subsequent following motion (P3) based on the choice of the
initial state in (17) using inverse kinematics from (37). Unlike
for throwing, no normal acceleration constraint with respect to
the end-effector applies for this phase.

For catching deceleration (P4), the initial state is the last state
of the following motion, which does not change due to the offline
computation of P3. The final state of this phase is the resting po-
sition from which the throwing motion starts accelerating in the
next step. During this phase the relative acceleration in normal
end-effector direction must be kept negative (h(**)) to maintain
stable bouncing and then continuous contact with the ball.

VI. EXPERIMENTS

Here, we introduce the experimental setup shown in Fig. 18.
Then, several sets of experiments with a large amount of tri-
als evaluate the effectiveness of the optimization based motion
planner and to what extend the proposed methods allow pre-
diction of success and failure. Moreover, repeatability beyond
spherical objects is demonstrated using a cuboid. A video in
the multimedia attachment provides slow motion scenes of the
experiment.

A. Setup

Two 2-DOF robots that are symmetrically mounted in a ver-
tical plane serve as the basis for the experiments. Fig. 18 visual-
izes the setup and Table I summarizes the robot’s kinematic and
dynamic parameters that are also used for the optimizations in
the previous section. A simple high-gain PD-controller jointly
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Fig. 18. Experimental setup with two symmetric robots acting in a common
vertical plane. Each robot has two actuated rotational degrees of freedom and is
capable of performing both the throwing and the catching task, without change
of hardware.

operates both robots at 1 kHz. If we let the joint displacement
error and joint velocity error be e and €, respectively, the con-
trollawisT = Kpe + Kpéwith Kp = 12000 and Kp = 100.
The joints consist of RE40 Maxon DC motors, MR Maxon (type
L) 1024-bit encoders, and HFUC Harmonic Drive 1:100 gears.
Hence, the joint displacement on the load side is measured with
an accuracy of 1.5 - 107° rad.

At the end of the kinematic chain, very simple, nonactuated,
box-like end-effectors are mounted, which is the major differ-
ence in comparison to grasping-based catching. As a result of
our simplistic setup, the timely interception of an object’s flight
trajectory (with appropriate gripper orientation) is not anymore
sufficient for successful catching. Hence, a P3 catching motion
will lead to (partial) failure, if the occurring uncertainties Ul—
U3 are not sufficiently compensated. For example, any static
catching approach would result in a success rate of 0%.

Choosing the described robot-robot scenario also allows to
exclude human throwers and complex vision systems as po-
tential sources for failed catching attempts. Moreover, robotic
throws are repeatable except for uncertainties, which can be as-
sumed bounded. Given that no significant in-flight perturbations
occur, we can then link experimental catching success with crit-
ical parameters discussed in theory and simulation beforehand,
e.g., relative acceleration or initial relative states. With the robust
choice of the critical parameters proposed in this paper, offline
motion planning and open-loop operation become sufficient for
successful catching.

Due to the robustness considerations derived in this paper,
no visual feedback is needed during operation. Nonetheless, we
must perform a nonrecurring calibration of the release angle o,
and velocity v,. The first reason is that in the nonprehensile
throwing approach the ball does not leave the box immediately,
but slides along the edge of the box for a short time. During
sliding, the revolute joints perform a small angular overshoot,
which depends on various parameters. However, even for a sim-
ple PD-controlled robot the error in the release angle «,., here
approximately 3°, does not differ notably in-between trials. Sec-
ond, the experimental setup is not perfectly symmetric, which re-
quires a difference in the release velocity v, of 2% depending on
the direction. The velocity is modified using standard dynamic
trajectory scaling [37]. The remaining uncertainties and inaccu-
racies must be compensated by the robust catch.
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TABLE III
EXPERIMENTAL SETS
Symbol h(0) v(0) Object Rmax Success
Unit m ms~ - m -
Z..(0) 0.020 —0.46  Ball 0 75780
2(0) 0.035 —0.46  Ball 0 38/80
2. (0) 0.020 0 Ball 0 43780
x4(0) 0.035 —0.46 Ball 0.005 75/80
@ (0) 0.020 —0.68  Ball 0 80/80
¢ (0) 0.020 —0.68 Cuboid 0 78/80
o 100% |- n
=
<
—
%
8 Nl H H |
5]
=
n
0%
za(0) @(0) xc(0) @a(0) x(0) a¢(0)

Fig. 19.  Successful trials out of 80 for each test set wﬁ - wg from Figs. 8, 11,
and 15. See Table III for details.

B. Evaluation and Discussion

The experiment intends to validate the presented formalism
in terms of catching success and dynamic feasibility. Moreover,
we take advantage of the repeatability the robot-robot experi-
ment provides in order to evaluate the robustness quantification
from Section IV-A. Therefore, the six test sets a,_ 7 (0) listed in
Table III are carried out based on the three realistic simulation
examples used throughout the paper. As a reference, each test
set is additionally marked in Figs. 8, 11, and 15, respectively.
Calibration and throwing motion are the same for all trials and
sets. The statistical results are depicted in Fig. 19, each based
on 80 sequential trials per set, 40 in each direction. Slow motion
examples of typical catches (success and failure) are provided
with the media attachment.

The first three sets @, _.(0) have not undergone the cost op-
timization (42) and are based on Example 1 using a low edge®
box. Nonetheless, we used the implementation of (42) to find
a dynamically feasible joint trajectory. Fig. 20 exemplarily il-
lustrates the small errors. The initial relative velocity for the
sets &, (0) is chosen according to Corollary 2, whereas . (0)
represents velocity matching, a common choice in literature.
Comparing the good results of x,(0) with the inferior results
of x.(0), the increased robustness through the use of Corollary
2 becomes apparent. Moreover, the robustness quantification
(27)—(29) correctly predicts significantly worse performance for
x;(0) compared to x, (0) as the maximal Zeno time of x; (0) is
longer than the P3 duration. Hence, the experiment underlines
the suitability of (27)—(29) to determine the range of potentially
successful initial relative states for particular catching motions.
Nonetheless, even in the presented controlled environment,
various uncertainty factors exist, which prevent exact predic-
tions of success and failure.

Test set x4(0) in comparison to set x;(0) serves to vali-
date Corollary 1 and therefore evaluate the influence of the box

8 As low edge boxes we regard edge heights of less or equal than the distance
between an object’s center of mass and its farthermost point on S .
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Fig. 20. Very small mean joint errors during P3 of ten @, (0)-trials verify
dynamic feasibility. The shaded areas indicate tree times the standard deviation.
From these errors results a worst case Euclidean error in the workspace of less
than 3 mm.

0.00s 0.02s

0.25s

Fig. 21.  Frames illustrating the successful catch of a cuboid.

height on the catching robustness. Noting that the initial relative
state 4 (0) fulfills (34) and not (29), the correctly predicted im-
provement supports the use of Corollary 1 to explore the effect
of box height on catching success. Furthermore, the experiments
validate a beneficial effect using the cost function (42), which
originated in the proof of Theorem 1.

Test set . (0) evaluates the optimized P3 motion as described
in Example 3. In view of Corollary 2, the reduced initial rel-
ative velocity v(0) = —0.68 ms~! accounts for the changes in
v, Ay, and t;. As can be seen from the results in Table III,
the optimized solution improved the already good results from
2, (0) to a sequence of 80 successful catches without failure.
The improvements are mainly due to the increased relative ac-
celeration. Hence, we may here infer that the presented approach
sufficiently compensates for the occurring uncertainties U1-U3
in case of the ball object.

The cuboid depicted in Fig. 16 is used in set ; (0) to evalu-
ate the potential generalizability for arbitrary object shapes. We,
here use the same robot motions as in the previous set . (0),
which provides more robustness against the unpredictable col-
lision effects than the data in Example 2. In contrast to the
ball experiments, note that an operator relocates the cuboid af-
ter every catch to the throwing position shown in Fig. 16 as
the end-effector design automates relocation only for spherical
objects. The result are 78 successful catches, cf., Fig. 21, in a
sequence of 80 using a low edge box. Due to these promising
results, we believe that the Zeno-based approach constitutes a
suitable basis for a more rigorous generalization in terms of
arbitrary object shapes.

VII. CONCLUSION

In this paper, we presented a novel and provably robust frame-
work for robotic catching of spherical objects. The achieved ro-
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bustness allows for uncertainties at all planning stages, including
but not limited to imprecise impact models and imprecise esti-
mation of the object state. A particular emphasis is placed on
the latter, which equals an uncertain initial state in our model.
As a result, it could be shown in simulation and experiment
that goal definitions in robotic catching with a particular nega-
tive initial relative velocity between the object and end-effector
significantly increase the success rate.

Analyzing the robustness is made possible through param-
eterization of 3-D catching as a 1-D problem on the ballistic
path. Therefore, we close the gap between robotic catching and
the 1-D bouncing ball problem often considered in hybrid con-
trol theory. With the 1-D model, progress in hybrid control
theory becomes accessible. A particular approach focusing on
the Zeno behavior of bouncing balls, that is the occurrence
of infinitely many impacts in a finite amount of time, is ap-
plied and extended. The 1-D solutions are then transformed
back into 3-D while respecting all relevant kinematic and dy-
namic limitations. Considering these constraints prevents dy-
namically infeasible motions, which were declared a major rea-
son for erroneous experiments in the past. The limitations could
even be satisfied with 2-DOF robots because the nonprehen-
sile task execution was exploited in form of a virtual prismatic
joint.

The robustness with respect to the impact model has shown to
be particularly beneficial for catching polygonal objects, which
are known to suffer from the poor predictability of collision
outcomes. Collisions of polygonal objects, however, transform
normal relative velocity partially into tangential relative veloc-
ity, which was neglected in the process of parameterization. The
neglected tangential relative motion influences the normal rel-
ative acceleration [9], which we analyze in simulation. Hence,
the success claims are less precise for such objects or a larger
range of relative acceleration must be considered at planning
stage. Nonetheless, an experiment could show reliable catching
for a cuboid.

Depending on the application, one may not only search for
maximum success but also for minimum impact forces, min-
imum impact velocity, or a robot linkage optimized for the
catching task. The 1-D model with the relative acceleration as
input constitutes an easy and powerful tool to formulate such
alternative goals. The presented methods may then be used to
identify what hardware is necessary to achieve the goal, e.g.,
dynamical capabilities of the robot or object state accuracy. In
order to achieve more accuracy or inter—trial flexibility, existing
object tracking frameworks could be added and combined with
a more flexible version of virtual joint motion planning [36].
As most promising, we expect the effect of accurate proximity
sensing of h with high-temporal resolution because it would
allow for closed-loop robotic catching.
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