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Robust Tactile Descriptors for Discriminating Objects
From Textural Properties via Artificial Robotic Skin

Mohsen Kaboli and Gordon Cheng , Fellow, IEEE

Abstract—In this paper, we propose a set of novel tactile de-
scriptors to enable robotic systems to extract robust tactile infor-
mation during tactile object explorations, regardless of the number
of the tactile sensors, sensing technologies, type of exploratory
movements, and duration of the objects’ surface exploration. The
performance and robustness of the tactile descriptors are verified
by testing on four different sensing technologies (dynamic pres-
sure sensors, accelerometers, capacitive sensors, and impedance
electrode arrays) with two robotic platforms (one anthropomor-
phic hand and one humanoid), and with a large set of objects
and materials. Using our proposed tactile descriptors, the Shadow
Hand, which has multimodal robotic skin on its fingertips, success-
fully classified 120 materials (100% accuracy) and 30 in-hand ob-
jects (98% accuracy) with regular and irregular textural structure
by executing human-like active exploratory movements on their
surface. The robustness of the proposed descriptors was assessed
further during the large object discrimination with a humanoid.
With a large sensing area on its upper body, the humanoid classi-
fied 120 large objects with multiple weights and various textures
while the objects slid between its sensitive hands, arms, and chest.
The achieved 90% recognition rate shows that the proposed tac-
tile descriptors provided robust tactile information from the large
number of tactile signals for identifying large objects via their
surface texture regardless of their weight.

Index Terms—Electronic skin, tactile feature descriptors, tactile
sensing.

I. INTRODUCTION

HUMANS rely on sense of touch for perception and con-
trol of the body, grasping, manipulating, and identifying

objects via their physical properties, such as texture, shape, and
stiffness [1]. For robotic systems that interact with dynamic envi-
ronments, recognizing object properties is a crucial but difficult
task for advanced vision techniques due to occlusion, poor light-
ing situations, and a lack of precision. Tactile sensing instead
can provide a rich and direct feedback with the robotic systems
from multiple contact points and a large tactile sensing area
[2], [3].

Developing tactile sensing for the robotic systems has been
investigated for several decades. Over the last decade, tactile
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sensing devices have evolved from being located on a fingertip
to full hand and even whole body of robots [4].

In this regard, many tactile sensors with various sensing prin-
ciples and technologies, e.g., resistive [5], [6], capacitive [7]–[9],
optical [10], [11], piezoelectric [12], [13], acoustic [14], [15],
recently organic bendable and stretchable [16], [17], etc., have
been proposed.

In contrary to the rapid progress of tactile sensor advance-
ment, considerably less attention has been given to research
in tactile perception, tactile information processing, and tactile
learning. In other words, the performance of tactile systems de-
pends not only on the technological aspects of sensory devices,
but also on the design of feature descriptors and learning meth-
ods that robustly extract and interpret the information contained
in tactile data.

The physical object characteristics can be divided into three
general classes: geometric information, inner properties (e.x.
center of mass), and material properties. The geometric proper-
ties can be recognized by object size and shape via propriocep-
tive receptors, and related works in the area of robotics can be
found in [18] and [19].

The center of mass of rigid objects is determined by lifting
object from different objects’ positions [20], [21]. The objects’
material can be characterized by stiffness, thermal conductivity,
and textural properties [22].

The perception of the textural properties of objects is one
the most challenging task. The objects’ texture can be sensed
through the cutaneous tactile receptors while moving fingertips
or even any sensitive parts of body on the surface of the ob-
jects (active touch) or when objects move on a sensitive skin
area (passive touch). Tactile object discrimination by means of
textural properties is a difficult and challenging task in robotics.

In this paper, we focus on the design of a set of novel tactile
descriptor in order to extract robust features from the generated
raw tactile signals (both stationary and nonstationary tactile
signals) during tactile object exploration regardless of the num-
ber of tactile sensors (large-scale robotic skin) and their sensing
technologies. The proposed tactile descriptors are invariant with
respect to specific exploratory movements and their correspond-
ing parameters (such as exploration time).

A. Background

Previously, customized simple tools or robotic end-effectors
with various tactile sensors have been used to discriminate
among objects via their textural properties. For instance, Dal-
laire et al. [23] managed to classify 28 different surfaces such
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as aluminum, Plexiglas, kitchen towel, etc., with 90% accu-
racy with SVM and Pitman–Yor process algorithms. To do this,
a three-axis accelerometer was placed on a stylus, which was
then mounted above a well-controlled rotating table on which
the surface was placed. Here, in order to generate tactile features,
a set of parameters including variance, skewness, kurtosis, fifth
moment, sum of the variation over time, and sum of higher half
of amplitude spectrum were computed from the recorded data.
The same parameters have been used in [24] to differentiate ten
different indoor and outdoor surfaces from each other. In this
study, an accelerometer mounted on a probe was employed to
slide over experimental surfaces, such as wooden flooring, short
hair carpet, and linoleum tile flooring. The authors reported the
classification rate of 89.9% and 94.6% with 1 s and 4 s time
windows of data, respectively.

In another work, in order to classify seven wooden surfaces,
in [25] Chathuranga et al. used a biomimetic fingertip with three
commercial accelerometers and seven force sensors, which was
then fixed to a horizontal linear stage. In this experiment, in
order to collect data, the artificial fingertip moved forward and
backward on the wooden surfaces with a half second pause be-
tween each single movement. The applied vertical force and the
velocity of movement were kept constant during the entire train-
ing and testing data collection procedure. In this paper, three
feature parameters, including wavelet energy, variance of ap-
proximate signal, and mean of approximate signal were calcu-
lated from the recorded tactile signals. Using an artificial neural
network, the authors classified seven wooden surfaces with a
65% success rate.

Jamali and Sammut [26] fabricated a bio-mimetic sensor
made of silicon, within which were two polyvinylidene di-
fluoride (PVDF) pressure sensors and two strain gauges. The
finger was mounted on a robotic gripper and scraped over eight
materials to classify the test surfaces. Fourier transform as a
feature descriptor and various learning algorithms have been
used to find the optimal technique for the texture recognition
problem. In this paper, the feature descriptor heavily depends
on the applied force and sliding duration. Moreover, it can only
identify materials with a periodic texture structure. In another
research study [27], the BioTac sensor was mounted on a linear
stage to classify 117 different textures. Features like rough-
ness, fineness, and traction were identified from the literature
on human perception, and then modeled analytically. Although
the authors reported a 95.4% classification rate, the proposed
features are highly sensitive to the small variation in sliding
time and velocity. Sinapov et al. used a humanoid with a three-
axis accelerometer mounted on an artificial fingernail to clas-
sify 20 different uniform textures. In this instance, the robot
scratched on the experimental surfaces with a controlled ap-
plied force, fixed velocities, and well-defined scratching move-
ments. Faster scratches usually ended up having higher recog-
nition accuracy. Additionally, combining the result of multi-
ple scratches was more accurate than only performing a single
scratch [28]. Here, a discretized spectrogram was used as fea-
ture descriptors for surface classification task [28]. Recently,
in [29] Xu et al. used the Shadow Hand with the BioTac sen-
sor on its index finger to execute exploratory movements over
an object’s surface; pressure to obtain flexibility information,

sliding to obtain vibro-tactile information, and contact to mea-
sure heat flow. However, in this study, the base and wrist of the
dexterous robotic hand were fixed on a table, and all joints in
the hand and wrist were deactivated (except for two joints of
the index finger). This was done to stabilize the system and to
prevent the effect of the noise coming from the hand motion and
motor vibration on the sensed tactile data. This constraint re-
sults in an unnatural and unscalable method of exploration; our
study instead removes this restriction and allows for a more nat-
ural and human-like texture exploration using the Shadow Hand
with all its fingers. Moreover, in order to differentiate objects
from each other via textural properties, the authors considered
only the data that were recorded during the middle of the sliding
movements, and the contribution of the generated vibro-tactile
signal at the start of the sliding as well as at the end of the
movements were eliminated.

Chu et al. [30] used the PR2 robot with two BioTac sensors
on its gripper to classify 60 objects via their physical prop-
erties, such as stiffness, temperature, volume, and textures. In
this case, the robot applied a series of five predefined well-
controlled exploratory motions on each of the 60 experimental
objects: tap; squeeze; static hold, slow slide, and fast slide. The
researchers, computed two set of features called static feature
and dynamic feature. To generate static features they computed
mean and maximum value of the low-frequency signal measured
by the BioTac. In addition, they converted the recorded high-
frequency signals into a nonnormalized energy spectral density
(ESD). To represent the ESD via single-valued feature, they
calculated the total energy of the ESD curve, plus the spectral
centroid, variance, skewness, and kurtosis. To obtain the dy-
namic features, they used hidden Markov models to capture the
variations in the recorded tactile data followed by three prepro-
cessing steps. The static and dynamic features had 188 and 16
elements, respectively. The proposed method showed promise
in object recognition via multiple physical properties, such as
stiffness, temperature, volume, and texture using two tactile sen-
sors. However, the author did not evaluate the performance of
their method neither with single physical property nor with a
large-scale robotic skin.

To tackle surface texture classification problems in [31], a
force sensor, an accelerometer, and a position-orientation sen-
sor were used to develop a haptic tool that was then utilized
by a robotic hand to identify surface textures. The exploratory
action was a sliding of the tool over the surface with constant
velocity and normal force. Another related work was conducted
by Watanabe et al. in which the authors tried to differentiate var-
ious kinds of papers from each other via the pushing and sliding
of a tactile sensor on the papers [32]. To do this, the authors
fabricated a tactile sensor consisting of microcantilevers with a
strain gauge film on Si. The sensor was then fixed on a X–Y
stage, and a six-axis force sensor on a jig was mounted under
the Z stage. A set of actions like pushing and sliding with con-
stant velocity and force were applied to explore the properties
of various papers.

In another work, five textiles were explored and classified dur-
ing an active sliding with constant velocity and through an array
of Micro-Electro-Mechanical Systems (MEMS) in the distal
phalanx of a robotic finger [33]. In order to classify four ob-
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jects, in [34] Tanaka et al. used the Shadow Hand with three
BioTac sensors and an active learning approach in which a la-
tent variable estimation is carried out to learn individual object
models. The exploratory motions were selected by the robot
while modifying the parameters to dynamic motion primitively.
The authors utilized stiffness, temperature, and textural proper-
ties to identify six objects. However, the proposed method has
high computational complexity. In [35], a robotic arm equipped
with accelerometers was used to classify 18 metal surfaces. In
this scenario, tactile information was recorded during the sliding
motion of the robotic arm with a constant velocity. The obtained
tactile data were entered into a neurorobotic texture classifier
with a recurrent spiking neural network. To match the spiking
activity of mechanoreceptor cells, the sensor data were encoded
and then modeled. The resulting high-dimensional features were
then continuously classified with a neurally implemented SVM.
This proposed approach suffers high computational complexity
as well.

The fast Fourier transform (FFT) was used in many studies to
classify textures. The obtained tactile signals were transformed
into the frequency domain to find the principal frequency of
each material. Afterward, the computed fundamental frequen-
cies were used to classify different textures. For instance, Hu
et al. classified five different fabrics by sliding a finger-shaped
sensor over their surfaces [36]. To classify cotton, linen, silk,
and denim fabrics, Song et al. designed a mechanism to generate
the relative motion at a certain speed between the PVDF film
and the surface of the perceived fabric [37]. Another study em-
ployed a piezoelectric microphone. The obtained sound waves
were segmented by FFT. A supervised learning vector quan-
tization technique was then used to discriminate 18 materials
[38]. An artificial finger equipped with a piezoelectric sensor
was used to detect surface textures of different dimensions [39].
Tactile signals generated during the exploratory movement of
the finger were converted to the frequency domain via FFT.
Although many roboticists have used FFT to generate tactile
features to identify different textures, the main limitations of
this method is the need for the sliding time and velocity to
be constant and known to classify materials with irregular or
nonperiodic textures. The performance of the tactile object dis-
crimination reviewed above is dependent on the tactile feature
extraction and learning methods designed for particular exper-
imental setup (such as specific tactile sensor technology, well-
controlled tools, predefined exploratory movements). All have
to be individually configured to perform efficiently.

B. Contribution

In contrast to the previous work, we propose a set of novel tac-
tile descriptor which is robust regardless of the number of tactile
sensors used in robotic systems (large-scale robotic skin), tac-
tile sensor technology, exploration time, type of exploratory
movements, and textural structure of objects and materials
(periodic and nonperiodic texture).

We evaluated the performance of our proposed tactile de-
scriptors with two different robotic platforms to discriminate
among large numbers of objects or materials via their textural
properties. Our contribution can be summarized as follows.

1) A robotic hand with multimodal robotic skin on the fin-
gertips performed a set of active human-like exploratory move-
ments, from simple sliding to complex exploratory movements
to discriminate 120 materials and 30 hand-held objects from
each other by means of their textural properties.

2) A humanoid robot equipped with a large artificial skin area
classified 120 large objects with 120 surface textures and three
different weights while the large objects were held by the hands,
arms, and chest (upper body) of the robot during sliding.

II. PROPOSED ROBUST TACTILE DESCRIPTORS

In earlier studies, researchers used different signal processing
techniques for interpreting tactile signals. The Fourier transform
in the frequency domain along with magnitude, skewness, and
kurtosis in the time domain have been mostly employed to inter-
pret vibro-tactile signals. The magnitude of the signal is highly
sensitive to noise. Thus, it is necessary to design an appropriate
filter or filter bank to remove interference from tactile signals,
which is a computationally costly procedure.

The Fourier transform presents the relative power of each
frequency and calculates frequency responses based on specific
time. The Fourier tranform is therefore not suitable for analyz-
ing nonstationary signals, particularly in the case of surface tex-
ture recognition in which the texture has nonuniform (irregular)
properties. In this case, the Discrete Wavelet Transform (DWT)
and short-time Fourier tranform may be the best techniques
for analyzing nonstationary signals. They analyze a localized
signal by windowing in the time/frequency domain. However,
these methods deal with large data vectors (large feature vectors)
causing difficulties at the classification phase. More features re-
quire more training samples, which results in an increase in
computational complexity as well as the risk of overfitting.

To overcome these issues, we propose a set of fundamen-
tal tactile descriptor inspired by the Hjorth parameters [40],
which were presented for real-time biological signal analyses
(Electroencephalography/EEG). Our proposed tactile descrip-
tors represent the statistical properties of the tactile signals in
the time domains, Activity, Mobility, and Complexity.

The Activity (1) is the total power of a signal. The Mobility
parameter (2) is the square root of the ratio of the variance of the
first derivative of the signal to that of the signal. The Complexity
(3) is the second derivative of the variance and shows how the
shape of the signal is similar to a pure sine wave. If the signal is
more similar to the sine wave, the complexity value converges
to 1 as

Act(S) =
1
N

N∑

n=1

(Sn − S̄)2 (1)

Mob(S) =

(
Act( dSn

dn )
Act(S)

)−1/2

(2)

Com(S) =
Mob( dSn

dn )
Mob(S)

. (3)

In above-presented equations, S is a tactile data vector with
N data samples (n ∈ {1, . . . , N}) and S̄ = 1

N

∑N
n=1 Sn is the

average value, or mean, of S.
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Tactile objects’ exploration first requires an initiation of a
static contact with the surface of objects by a hand or a sensitive
skin area and then sliding the hand or body part/s (with sensitive
skin) over the surface of objects (dynamic motion) [41], [42].
The transition from the static state to the dynamic state (and vice-
versa) during tactile object exploration depends very much on
the frictional properties of the surface texture of objects. Robotic
systems (for instance, a robotic hand) need to apply more force
to transit from the static state to the dynamic state in order to
explore the surface of objects with a high friction coefficient.
Such a transition affects the outer layer of the robotic skin (it
is usually made of soft materials such as silicon). This results
in deformation of the outer layer of the robotic skin, which
generates linear or/and nonlinear correlation between outputs
of tactile sensors in the soft skin.

In the previous work, tactile information recorded at the start-
ing and the ending of objects’ surface exploration were elim-
inated [26], [27], [29]. However, in our study, we exploit the
entire tactile information perceived during the exploration pro-
cedure [43]. Therefore, we propose considering the linear cor-
relation (4) and nonlinear correlation (5) between tactile sig-
nals/sensors as additional tactile features as

Lcor
S,V =

∑N
n=1 (Sn − S̄).(Vn − V̄ )

σ(S).σ(V)
(4)

N cor
S,V = 1 − 6

∑N
n=1 (Rk )2

n

N(N 2 − 1)
. (5)

These features provide information about the frictional prop-
erties of the surface of objects with the robotic systems while
exploring objects’ textural properties. In the above-presented
equations, S and V are vectors of data over time (input tactile

signals) with N samples, and Rk is the difference between the
rank of S and the rank of V. (6)–(10) are shown at the bottom
of this page.

Db1 =
[
Ab1

S ;Ab1
V ;Mb1

S ;Mb1
V ;Cb1

S ;Cbi

V ;Lb1
S,V ;Nb1

S,V

]
(11)

D1:bN

total =
[
Db1 ; Db2 ; Db3 ; . . . ; Dbi ; . . . ; DbN −1 ; DbN

]
.

(12)

In (9) and (10), Lbi

S,V and Nbi

S,V are total linear and nonlinear
correlations between the output of various tactile sensors/tactile
signals, respectively. These parameters are averaged over each
axis of the tactile sensors as well as entire skin modules (nc =
1, . . . , Nc ) in each body part bi ∈ B. The proposed final feature
descriptors for one body part of a robotic system or one limb
of a humanoid robot (bi = b1) covered with a large number of
multimodal tactile sensors nc = 1, . . . , Nc with multiple axes
ns = 1, . . . , Ns can be defined as (11).

Equation (11) is the concatenation of total Activity, Mobil-
ity, Complexity parameters together with the total linear and
nonlinear correlation coefficients as one feature vector with
24 data points. The proposed tactile descriptor for a robotic
system or a humanoid, whose N body parts (bn = 1, . . . , bi ,
. . . , bN ) contributed in the tactile exploration with a large num-
ber of multimodal tactile sensors, can be written as (11). The
tactile feature vector computed from N body parts (D1:bN

total ) in-
cludes N × 24 data samples.

A. Proposed Tactile Descriptors for a Large Skin Area

In this study, we used our proposed fundamental parame-
ters to construct a novel set of tactile descriptor to extract ro-
bust tactile information from a large number of tactile sensors

Abi

S =

[
λnc

NcNs

Nc∑

nc =1

Ns∑
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Act(Sx
nc ,ns

)bi ,
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)bi ,
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)bi

]
(6)
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or a large robotic skin area. Our proposed feature descriptor
includes the computed mean value of the Activity, Mobility,
and Complexity of the tactile sensor’s output over entire sig-
nal axes as well as tactile sensors/skin modules in one body
part of the robotic system. In addition, our proposed descriptor
includes the mean value of the linear and nonlinear correla-
tion coefficients between tactile signals. More formally, sup-
pose a body part/limb (bi ∈ B) of a robotic system/humanoid
(for instance, a forearm or an upper arm of a humanoid) is cov-
ered with Nc skin cells/modules (one skin cell or skin module
can have several tactile sensors with multiple sensing technolo-
gies). Each cell/module consists of Ns tactile sensors (Snc ,ns

)bi

with multiple axes, (Sx
nc ,ns

)bi , (Sy
nc ,ns

)bi , and (Sz
nc ,ns

)bi in
which nc = 1, . . . , Nc , ns = 1, . . . , Ns , and bi ∈ B. More gen-
eral, each skin cell/module includes multimodal tactile sensors
(Snc ,ns

)bi , (Vnc ,nr
)bi , (Unc ,np

)bi , etc., where nc = 1, . . . , Nc ,
nr = 1, . . . , Nr , and np = 1, . . . , Np .

The total Activity, Mobility, and Complexity of a large num-
ber of multimodal tactile sensors or a large skin area over each
body part (bi ∈ B) are described in (6), (7), and (8), respec-
tively. Using the proposed descriptor (12), a robotic system or
a humanoid robot can extract robust tactile information when
exploring objects or surfaces with each body part or multiple
body parts (even whole-body tactile exploration), as a human
does.

Our proposed tactile descriptors are defined in the time do-
main and they can be interpreted in the frequency domain as
well. The Activity (1) is the total power of a signal, which can
also be interpreted as the surface of the power spectrum in the
frequency domain (Parseval’s relation). The Mobility parameter
in (2) is the mean frequency estimation with a proportion of stan-
dard deviation of the power spectrum. The Complexity (3) as the
second derivative of the power parameter estimates the band-
width of the signal.

1) Built-in Tactile Sensor Selection: The contact may occur
at any arbitrary location along with the skin of a robotic sys-
tem with the surface of objects during the tactile object/surface
exploration. Only those tactile sensors or skin modules that are
in contact with the surface of the object need to be considered
in the feature space. The key result of this inclusion is the de-
crease in computational cost and energy consumption. This is
especially significant when a large number of tactile sensors
or a large skin area are used. Our proposed feature descriptor
contains a built-in tactile sensor or skin module selection λnc

in
(6)–(10). By thresholding the force signals (13) to detect con-
tact during tactile exploration, only those tactile sensors or skin
cells/modules in parts of a body (bi ∈ B) interacting with the
surface of the object will contribute in the feature vector as

λnc
=

{
1 if 1

Nr

∑Nr

nr =1 Fnc ,nr
≥ Ft Contact

0 Otherwise No-contact
. (13)

III. SYSTEM DESCRIPTION

A. Robotic Skin

1) BioTac: BioTac is a multimodal electronic skin (see
Fig. 1). When it moves over the surface of an object, the
generated vibration can be measured by an embedded dynamic

Fig. 1. Shadow Hand exploring the textural properties of materials.
(A) shows the execution of the lateral and medial exploratory movements.
(B) Shadow Hand performs a human-like circular exploratory motion. (C) Ex-
perimental material rotates underneath the fingertips of the Shadow hand with
a constant velocity. (D) and (E) Demonstrate the BioTac sensors with their 19
impedance electrodes and one pressure sensor.

TABLE I
CELLULAR SKIN CHARACTERISTICS

pressure sensor (PAC) with the sampling data rate of 2.2 KHz.
The BioTac has 19 impedance-sensing electrodes (E1 , . . . ,E19)
distributed over the surface of the rigid part [see Fig. 1(E)]. These
electrodes are capable of measuring the deformation that arises
when normal forces are applied to the surface of the skin with
the sampling rate of 50 Hz. Moreover, the BioTac can measure
low-frequency pressure (PDC).

2) Cellular Skin: In order to emulate a human sense of touch,
we have designed and manufactured multimodal tactile sensors
called Cellular skin [44] to provide robotic systems with the
ability to sense the touch. Each skin cell has one microcontroller
on the back and one set of multimodal tactile sensors on the front,
including one three-axis accelerometer, one proximity sensor,
three normal-force sensors, and one temperature sensor (see
Table I). Skin cells are directly connected with each other via
bendable and stretchable interconnectors. A unique cell ID is
assigned to each skin cell within a network of skin patches to
efficiently handle a large number of skin cells [see Fig. 2(B)
and (C)].

B. Robotic Platform

1) Shadow Hand: The Shadow Hand is an advanced robotic
hand system with five fingers equipped with the BioTac fi ∈
F = {thumb, index finger, middle finger, ring finger, little
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Fig. 2. (A) NAO is equipped with 116 multimodal artificial skin (Cellular skin) including 32 skin cells on the chest, and 14, 12, and 16 skin cells on each hand,
fore arm, and upper arm, respectively. (B) and (C) Front and back of the Cellular skin. (D) Skin cells and NAO in rviz. We integrated skin cells with NAO via ROS.

finger}. It has 20 actuated +degree of freedom (DOF) and a
further 4 underactuated movements for a total of 24 joints. Each
joint has a movement range, that is the same as or very close
to that of a human hand, including the thumb and even the
flex of the palm for the little finger. The Shadow Hand is fully
integrated with the BioTac through ROS (see Fig. 1).

2) NAO Humanoid Robot: NAO is a small humanoid with
25 DoF, a 1.6 GHz Intel Atom Central Processing Unit, and
height and weight of 58 cm and 4.3 kg, respectively. We covered
the upper body of the NAO with a thin layer of a flexible and
stretchable material. In order to provide the humanoid with the
sense of touch, we mounted 116 Cellular skin on the upper body
of NAO: including 32 skin cells on the chest, and 14, 12, and
16 skin cells on each hand, forearm, and upper arm, respectively;
see Fig. 2(A). In total, all seven body parts of NAO bi ∈ B =
{left hand, right hand, left forearm, right forearm, left upper arm,
right upper arm, chest} were equipped with 348 normal-force
sensors, 116 three-axis accelerometer sensors, 116 proximity
sensors, and 116 temperature sensors. We fully integrated all
skin cells with NAO via ROS [see Fig. 2(D)].

C. Tactile Descriptors for the Shadow Hand

While the Shadow Hand with the BioTac on the fingertips was
executing sliding movements, the exploratory action generated
two types of tactile data that were measured by the pressure sen-
sor Pfi

AC (with the sampling rate of 2.2 KHz) and the impedance
sensing electrode array Efi

nr
(with the sampling rate of 50 Hz).

In order to extract the robust tactile data, we assumed that the
tactile information measured by (Pfi

AC) corresponded to high-
frequency texture information and the tactile data sensed by
(Efi

nr
) related to the lower frequency changes in the texture,

especially regarding nonuniform or transitional periods in the
overall surface texture structure.

Our proposed feature descriptors were applied to the col-
lected training and test dataset to extract robust tactile informa-

tion. More formally, the robust tactile feature was computed
by substituting each of the (Pfi

AC) and (Efi
nr

) for S sepa-
rately in (6), (7), and (8). Each finger of the Shadow Hand
was considered as one body part bi = fi ∈ F (fi = 1, 2, . . . , 5)
and one skin module Nc = 1. Each finger with one BioTac
has one (Ns = 1) single-axis (Pfi

AC) and Nr = 19 single-axis
impedance electrodes (Efi

nr
). The linear and nonlinear cor-

relations between (Pfi

AC) and (Efi
nr

) in each finger (fi ∈ F)
were computed using (14) and (15). The total feature descrip-
tor for one finger (fi ∈ F) includes Afi

PAC
= λfi

(Act(Pfi

AC)),
Mfi

PAC
= λfi

(Mob(Pfi

AC)), and Cfi

PAC
= λfi

(Com(Pfi

AC)), which
are the computed mean value of the Activity, Mobility, and
Complexity of the output of the dynamic pressure sensor
(Pf1

AC ), respectively, and Afi

E = λf i

Nr

∑Nr

nr =1 Act(Efi
nr

), Afi

E =
λf i

Nr

∑Nr

nr =1 Mob(Efi
nr

), and Afi

E = λf i

Nr

∑Nr

nr =1 Com(Efi
nr

),
which are mean values of the Activity, Mobility, and Complex-
ity of each impedance sensing electrode (Efi

nr
). The mean value

of the linear and nonlinear correlation coefficients between each
impedance sensing electrode, and the dynamic pressure sensor
were calculated with (14) and (15), respectively, as additional
tactile features as

Lfi

PAC,E =
λfi

Nr

Nr∑

nr =1

Lcor(PAC, Efi
nr

) (14)

Nfi

PAC,E =
λfi

Nr

Nr∑

nr =1

N cor(PAC, Efi
nr

) (15)

in which

λfi
=

{
1 if Pfi

DC ≥ 0.2N Contact

0 Otherwise No-Contact
. (16)

Ft = 0.2N in (16) is the minimum stable contact force that
can be measured by the sensor and was determined during the
experiments.
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The final proposed feature descriptor for one finger i = 1
(fi ∈ F) is the concatenation of the total descriptors, which can
be written as

Df1 =
[
Af1

PAC
; Af1

E ; Mf1
PAC

; Mf1
E ; Cf1

PAC
; Cfi

E ; Lf1
PAC,E ; Nf1

PAC,E

]
.

(17)
The total tactile descriptors of five fingers contributed in the
tactile object/surface exploration can be written as

DShadow
total =

[
Df1 ; Df2 ; Df1 ; Df3 v Df4 ; Df5

]
. (18)

In the above-presented equations, Df1 and DShadow
total include 8

and 8 × 5 data samples, respectively.

D. Tactile Descriptors for NAO

NAO perceived tactile signals related to textural proper-
ties of objects through their electronic skin. The tactile in-
formation corresponding to high-frequency texture informa-
tion as well as low-frequency changes in the overall structure
of the texture were measured by each three-axis accelerom-
eter sensor (anc ,ns

) and single-axis force sensors (Fnc ,nr
)

in each skin cell. The proposed tactile feature descriptors
(6), (7), (8), (14), and (15) were used to extract the robust tactile
information from the output of each axis of the accelerome-
ter sensors (ax

nc ,ns
, ay

nc ,ns
, az

nc ,ns
) as well as force sensors

(Fnc ,nr
). The computed features were then averaged over the

entire skin cells on each body part (bi ∈ B) of NAO. More for-
mally, the Activity, Mobility, and Complexity of the accelerom-
eters were computed by (19), (20), and (21), respectively. The
robust tactile features were extracted from each of the force
sensors by (22)–(24).

In this experiment, Nc is the number of the skin cells in
one body part (bi ∈ B). Ns = 1 and Nr =3 are the number of
existing three-axis accelerometers and force sensors in one skin
cell, respectively. In (27), Ft = 0.2N is the minimum stable
contact force.

The linear and nonlinear correlations between each axis of
the accelerometer (ax

nc ,ns
, ay

nc ,ns
, az

nc ,ns
) and force sensors

(Fns ,nr
) were calculated with (25) and (26), which were then

averaged over all skin cells in a body part (bi ∈ B) as

Abi
a =

[
λnc

Nc

Nc∑

nc =1

Act(ax
nc

)bi ,
λnc

Nc

Nc∑

nc =1

Act(ay
nc

)bi ,

λnc

Nc

Nc∑

nc =1

Act(az
nc

)bi

]
(19)

Mbi
a =

[
λnc

Nc

Nc∑

nc =1

Mob(ax
nc

)bi ,
λnc

Nc

Nc∑

nc =1

Mob(ay
nc

)bi ,

λnc

Nc

Nc∑

nc =1

Mob(az
nc

)bi

]
(20)

Cbi
a =

[
λnc

Nc

Nc∑

nc =1

Com(ax
nc

)bi ,
λnc

Nc

Nc∑

nc =1

Com(ay
nc

)bi ,

λnc

Nc

Nc∑

nc =1

Com(az
nc

)bi

]
(21)

Abi

F =

[
λnc

NcNs

Nc∑

nc =1

Nr∑

nr =1

Act(Fnc ,nr
)bi

]
(22)

Mbi

F =

[
λnc

NcNr

Nc∑

nc =1

Nr∑

nr =1

Mob(Fnc ,nr
)bi

]
(23)

Cbi

F =

[
λnc

NcNr

Nc∑

nc =1

Nr∑

nr =1

Com(Fnc ,nr
)bi

]
. (24)

(25)–(27) are shown at the bottom of this page. The final pro-
posed feature descriptor for one body part of NAO (bi ∈ B) or
the end-effecter of UR10 (bi = 1) is the concatenation of the all
descriptors, which can be written as

Db1 =
[
Ab1

a ; Ab1
F ; Mb1

a ; Mb1
F ; Cb1

a ; Cb1
F ; Lb1

a,F ; Nb1
a,F

]
.

(28)
The proposed tactile descriptors of upper body of NAO bi ∈ B =
{left hand, right hand, left forearm, right forearm, left upper

Lbi

a,F =

[
λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

Lcor(ax
nc ,ns

, Fnc ,nr
)bi ,

λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

Lcor(ay
nc ,ns

, Fnc ,nr
)bi ,

λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

Lcor(az
nc ,ns

, Fnc ,nr
)bi

]
(25)

Nbi

a,F =

[
λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

N cor(ax
nc ,ns

, Fnc ,nr
)bi ,

λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

N cor(ay
nc ,ns

, Fnc ,nr
)bi ,

λnc

NcNsNr

Nc∑

nc =1

Ns∑

ns =1

Nr∑

nr =1

N cor(az
nc ,ns

, Fnc ,nr
)bi

]
(26)

λnc
=

{
1 if 1

Nr

∑Nr

nr =1 Fnc ,nr
≥ 0.2N Contact

0 O.W. No-Contact
. (27)
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Fig. 3. Selected experimental materials consist of 120 different natural and synthetic textures with uniform (regular) and nonuniform (irregular) structures
including papers and vinyl wallpapers (Tex.#1-Tex.#37), textiles (Tex.#38-Tex.#57), carpets and mats (Tex.#58-Tex.#78), foams and sponges (Tex.#79-Tex.#82),
fibers (Tex.#83,Tex.#84), PVC and rubber type surfaces (Tex.#85-Tex.#95), leathers and furs (Tex.#96-Tex.#100), wooden surfaces (Tex.#101-Tex.#109), metal
surfaces (Tex.#110-Tex.#113), fiberglass and glass surfaces (Tex.#114-Tex.#118), and carbon sheets (Tex.#119,Tex.#120). All materials were acquired from
Bauhaus.

arm, right upper arm, chest} contributed in the tactile texture
exploration can be defined as

DNAO
total =

[
Db1 ; Db2 ; Db3 ; Db4 ; Db5 ; Db6 ; Db7

]
. (29)

In the above-presented equations, the feature vectors Db1 and
DNAO

total include 18 and 7 × 18 data samples, respectively.

IV. TACTILE EXPLORATION WITH A ROBOTIC HAND

Humans can discriminate among objects by means of their
textural properties while sliding their fingertips on the surface
of the objects. The exploratory behaviors can be either a simple
lateral/medial sliding movement or a complex full hand circular
motion in which the fingertips rotate to slid on the surface of
the objects. Furthermore, we can discriminate among different
hand-held objects by sliding our fingertips on their surfaces
without consideration of their shape [45].

In this study, a set of active human-like exploratory move-
ments, from simple sliding to complex exploratory movements,
were carried out by the robotic hand to perceive the relevant
tactile information about the textural properties of materials
and objects (active exploration). Moreover, a rotational stage
was designed to move experimental materials underneath the
robotic hand to sense the corresponding tactile information of
the materials (passive exploration).

A. Material Exploration With the Shadow Hand

1) Properties of Experimental Materials: The experimental
materials consist of 120 various natural and synthetic surface
textures with uniform and nonuniform textural structures (tex-
tures with different densities and sparsities). The difference
in textural properties of experimental materials varied from
relatively similar to quite different. The experimental materi-
als include papers and vinyl wallpapers, textiles, carpets and
mats, foams and sponges, fibers, PVC and rubber type surfaces,
leathers and furs, wooden surfaces, metal surfaces, fiberglass
and glass surfaces, and carbon sheets (see Fig. 3).

Fig. 4. Kinematics diagram of the Shadow Hand.

2) Lateral Sliding Exploratory Movement: The Shadow
Hand with all five fingers open established a static contact [see
Fig. 1(A)] with each of the experimental materials by moving its
wrist toward their surfaces along the Z-axis (rotating the WR1
joint around the X-axis); see Fig. 3. Then, each finger was indi-
vidually controlled to move around the Z-axis via the FF3, MF3,
RF3, LF3, and TH4 joints (see Fig. 4) until each of them detected
the minimum contact force Pfi

DC = 0.2N (fi ∈ F). The value
of Pfi

DC = Ffi
min = 0.2N is the minimum stable contact force

that can be measured by the sensor and was determined during
the experiments, in which we consider it as a “light contact
of the Shadow Hand with a surface.” The values of maximum
force Ffi

max = 3N that was applied from each finger to the surface
of the materials and maximum sliding velocity vmax = 4 cm/s
were selected to avoid any damages to the tactile sensors as well
as the robotic hand.

a) Training data collection: In order to collect training
samples, the Shadow Hand executed a lateral sliding motion
by moving its wrist from right to left and vice-versa for 4 cm
(by rotating WR2 join around the Z-axis). The tactile signals
perceived during the exploratory movements were measured



KABOLI AND CHENG: ROBUST TACTILE DESCRIPTORS FOR DISCRIMINATING OBJECTS FROM TEXTURAL PROPERTIES 993

by dynamic pressure sensors Pfi

AC with a 2.2 KHz sampling
rate and an impedance sensing electrode array Efi

nr
in which

nr = 1, 2, . . . , 19 with a 50 Hz sampling rate (in total 100 tactile
signals from the output of five BioTac sensors).

The applied force value for each finger fi was chosen
uniformly at random from Ffi ∈ {Ffi

min, F
fi
min + Δf, F fi

min +
2Δf, . . . , F fi

max}, in which Ffi
min = 0.2N , Ffi

max = 3N , and
Δf = 0.4N . The applied force was then chosen for each
finger fi from Ffi ∈ {0.2, 0.6, 1, 1.4, 1.7 . . . , 3}. The ve-
locity of the lateral sliding movement V (the velocity
of hand or WR2 joint) was selected uniformly at ran-
dom from V∈{vmin, vmin + Δvtest, vmin + 2Δv, . . . , vmax}, in
which vmin = 0.5 cm/s, vmax = 4 cm/s, Δv = 0.5 cm/s, and
V ∈ {0.5, 1, 1.5, 2, 2.5, . . . , 4}. In order to ensure an unbiased
and fair training data collection, the exploration time was con-
sidered to be fixed to t = 2 s. The selected applied force values
for all fingers were kept constant during each exploration round
by continuously measuring Pfi

DC (fi ∈ F) and controlling each
finger via the FF3, MF3, RF3, LF3, and TH4 joints (see Fig. 4).
The orientation of the experimental materials at each round var-
ied by π/4 along the Z-axis. The exploratory action carried out
each round once with each of 120 materials. The entire data
collection procedure was repeated 20 times. At the end of each
data collection round, the BioTac sensors were calibrated by
measuring Pfi

DC, Pfi

AC, and Efi
nr

, and setting their outputs to zero
when the sensors were not in contact with the materials.

b) Test data collection: To evaluate the performance of
the proposed descriptor as well as the robot tactile learn-
ing, test data were collected separately. Contrary to the
training part, the exploration time, at each round, was se-
lected uniformly at random from Ttest ∈ {tmin, tmin + Δt, tmin +
2Δt, . . . , tmax}, in which tmin = 2 s, tmax = 10 s, Δt = 1 s, and
Ttest ∈ {2, 3, 4, . . . , 10}. At each round, test data were collected
with each of the 120 surfaces once. The orientation of the ex-
perimental materials varied by π/6 along the Z-axis. The entire
test data collection was repeated 100 times. All data were col-
lected over a time period of three weeks to take into account any
changes in environmental conditions during the experiment.

3) Medial Sliding Exploratory Movement: The Shadow
Hand with all fingers open initiated a static contact (light touch)
with the surface of the experimental materials by rotating the
WR1 joint around the X-axis (see Fig. 4). In order to perceive the
tactile properties, the Shadow Hand slid all five fingers medially
from up to down and vice-versa [see Fig. 1(A)] for 4 cm. The
medial motion looked like the Shadow Hand closed and opened
(and vice-versa) its fingers on the experimental surface.

a) Training data collection: In order to collect tactile data,
the position and velocity of WR2, FF3, MF3, RF3, LF3, and
TH3 joints (see Fig. 4) were controlled to generate the medial
sliding movement. The exploratory motion parameters such as
sliding velocity and applied force were selected from V and Ffi,
respectively. The exploration time at each round was t = 2 s.
The rest of the data collection was identical to the training data
collection procedure described for the lateral sliding movement.

b) Test data collection: The medial exploratory move-
ment was performed by the Shadow Hand to collect the test
data. The rest of the procedure was identical to the test data
collection with the lateral sliding movement.

4) Circular Sliding Exploratory Movement: One of the most
complex human hand exploratory motions is sliding of all five
fingers circularly along the surface of an object. The aim of this
part of the study was to examine the performance of our pro-
posed descriptors by executing human-like complex exploratory
motions. Since the hard coding of the Shadow Hand to generate
such a motion was time consuming, we used the CyberGlove1 (a
data glove). The CyberGlove is fully integrated to the Shadow
Hand via ROS. When a human subject wearing a CyberGlove
moves fingers, the Shadow Hand can imitate the same move-
ments. All kinematics values of the joints of the robotic hand
while imitating the human hand motions, such as the position,
orientation, and velocity of FF2, FF3, MF2, MF3, RF2, RF3,
LF2, LF3, TH2 and TH3 joints, were recorded and then saved
in a rosbag file. By playing back the rosbag files, the Shadow
Hand could reproduce the same hand movements.

In this study, the exploratory motions of 11 human subjects,
which consisted of 6 females and 5 males ranging from 20 to
40 years old, were captured. Each participant hi was asked to
wear the CyberGlove. Then, each subject established a static
contact with the surface of a material and then moved his or her
fingers circularly on the surface of the material for Tmax = 10 s.
At the same time, the Shadow Hand connected to the Cyber-
Glove generated the same movements. The entire procedure was
repeated 20 times with each subject and with a 15 min resting
pause between each round. All recorded kinematics data were
then added to a dataset H ∈ {h20

1 , h20
2 , . . . , h20

11} in which h20
i

includes 20 separate rosbag files for subject hi . It is noteworthy
to mention that there was no tactile feedback available for the
robot.

a) Training data collection: To collect training data, h20
i

was randomly selected from H ∈ {h20
1 , h20

2 , . . . , h20
11}. It is

noteworthy to mentioned that in order to collect a fair train-
ing data and to evaluate our proposed descriptors systematically
with the test data, the kinematics information (position, orien-
tation, and velocity) of FF3, MF3, RF3, LF3, and TH4 in each
rosbag were modified. However, this modification was less time
consuming than hard coding of the robot to generate the human-
like movements.

By playing back of each of the rosbag file h20
i , the Shadow

Hand regenerated human-like exploratory motion. The value of
applied force for each finger fi was selected individually from
Ffi. The selected applied force value Ffi for each finger fi was
kept constant during each exploration. The rest of the procedure
was the same as described for lateral and medial training data
collection parts.

b) Test data collection: The Shadow Hand randomly se-
lected ten exploratory motions from each of the ten remaining
human subjects Htest ∈ {h10

1 , h10
2 , . . . , h10

10}. The robot repro-
duced 100 human-like circular exploratory movements to col-
lect test data. The rest of test data collection remained identical
to the previous test data collection parts.

5) Combined Exploratory Movement:
a) Training data collection: The combined exploratory

movement was the combination of the three exploratory ac-
tions lateral + medial + circular. At each round, the Shadow

1http://www.cyberglovesystems.com/
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Fig. 5. (A) In-hand uniform shape objects. (B) In-hand complex shape objects.

Hand executed sequentially lateral, medial, and circular sliding
movements (Scomb

train = SLMC) on the surface of each material to
collect tactile training data. The exploration time, at each round
was t = 3 s. The rest of the procedure remained identical to the
previous training data collection parts.

b) Test data collection: To collect test data, at each round,
the exploratory action was uniformly selected at random from
Scomb

test ∈ {SL, SM , SC , SLMC, SLCM, SMLC, SMCL, SCLM, SCML}
and then was executed by the robot. The action set included
the combination of lateral, medial, and circular motions with
different sequences. For instance, SCML means the Shadow
Hand performed, in order, circular, medial, and lateral actions.
The velocity of sliding and applied normal force were selected
from V and Ffi , respectively. The exploration time was chosen
from Ttest in which tmin = 3 s, tmax = 10 s, Δt = 1 s, and
Ttest ∈ {3, 4, 5, . . . , 10}. The rest of the procedure was the same
as the previous test data collection parts.

6) Rotational Stage: Previously, researchers have used well-
controlled experimental devices to validate their proposed tac-
tile descriptors. Therefore, to compare the performance of our
proposed tactile feature extraction technique with the state-
of-the-art, we have designed a well-controlled rotational stage
Fig. 1(C). The system consists of a Maxon DC motor 148867
(GEARHEAD MAXON 203114, PLANETARY, 42MM, 4.3/1)
and a 3-D printed plate made of poly lactic acid material with
a radius of r = 70 mm. A Maxon motor control 145391 and
an encoder HEDS5540 are used to control the velocity of the
motor.

a) Training data collection: Each experimental material
was attached firmly to one 3-D printed plate. The velocity of the
motor was kept constant with a frequency of fM = 0.1011 Hz
during training data collection. The Shadow Hand established
a light contact with the experimental surface Pfi

DC = 0.2N . The
same applied force values for all fingers were selected from
Ffi . The attached material was rotated underneath of all five
fingertips for t = 2 s. The rest of the procedure was identical to
the previous training data collection parts.

b) Test data collection: In order to collect test data similar
to the previous studies, the velocity of the motor and the applied
force value were deliberately chosen to be the same as in the
training part.

B. In-Hand Object Exploration With the Shadow Hand

1) Properties of In-Hand Objects: In this study, 32 natu-
ral and synthetic everyday objects with uniform (regular) and
nonuniform (irregular) textural properties were selected. Four-
teen objects with an identical geometrical shape (in this case
a spherical shape) were chosen, including a tomato, apple,
pomegranate, kiwi, orange, a pine cone textured ball with an ir-
regular texture, a mirror texture ball, two plastic balls with an al-
most similar smooth surface texture, a rough textured ball, a col-
orful ball with a smooth surface, a rough spherical sponge, and a
string ball with an irregular texture [see Fig. 5(A)]. Additionally,
18 objects with different complex shapes including a banana,
zucchini, carrot, cucumber, a peeled banana, pine cone, a tooth-
brush, a floor brush, a soap, a memory sponge, a cardboard box, a
rough textured star, a coffee capsule, a spray bottle, and a plastic
baby feeder [see Fig. 5(B)]. In both sets of objects, the difference
in the surface texture properties varied from relatively similar
to quite different. Humans can discriminate among in-hand ob-
jects by perceiving their textural properties whilst sliding their
fingertips on the surfaces regardless of the object’s shape.

2) Training Data Collection: Each experimental object was
placed between the thumb (TH), little (LF), and ring (RF) fin-
gers of the robot (see Fig. 4). Then, the Shadow Hand started
closing its fingers to hold the object. The tactile feedbacks from
P LF

DC, P RF
DC, and P TH

DC was utilized to refine the current pose of
the object and stabilize the current grasp. The grasp force val-
ues of each experimental object (with different stiffness and
friction coefficients) were determined individually during the
experiment. The grasp force was kept constant during each ex-
ploration by continuously measuring the outputs of P LF

DC, P RF
DC,

P TH
DC and by controlling the position of the (LF2, LF3), (RF2,

RF3), and (TH2,TH3,TH4,TH5) joints. However, this can be
done autonomously by the robot by implementing a slip detec-
tion and deformation prevention method. We will consider this
improvement as a future work by implementing our recently
proposed slip detection and deformation prevention strategy in
to the Shadow Hand [21].

In order to perceive the textural properties of each in-hand
object, the robot used its index (FF) and middle (MF) fin-
gers to establish a light contact with the surface of each object
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P FF
DC = 0.2N and P MF

DC = 0.2N . Afterward, the Shadow Hand
slid each index and middle finger 2 cm on the surface of the in-
hand object by rotating FF2 and MF2 around the X-axis. Tactile
data were measured by the BioTac sensors using the impedance
electrodes (EFF

nr
and EMF

nr
) and the pressure sensors (P FF

AC and
P MF

AC ), in total 40 tactile signals from the output of two BioTac
sensors. The maximum applied force (Ffi

max = 2N ) as well as
the maximum sliding velocity vmax = 4 cm/s were selected to
avoid any damage to the in-hand objects. The selected sliding
velocity V and the applied normal force Ffi at each round were
kept identical in both fingers. In this case, V ∈ {vmin, vmin +
Δv, vmin + 2Δv, . . . , vmax}, Ffi ∈ {Ffi

min, F
fi
min + Δf, F fi

min +
2Δf, . . . , F fi

max}. In which vmin = 0.5 cm/s, vmax = 4 cm/s,
Δv = 0.5 cm/s, Ffi

min = 0.2N , Ffi
max = 2N , Δf = 0.4N (V ∈

{0.5, 1, 1.5, . . . , 4}, and Ffi ∈ {0.2, 0.6, 1, . . . , 2}). At each
round, the training data were collected once with each of the ex-
perimental object. The entire data collection repeated 20 times.
At each round, the experimental objects were held with π/4
perturbation in the pose around the X-axis. At the end of each
round, the BioTac sensors were calibrated.

3) Test Data Collection: The robotic hand used its lit-
tle, ring, and middle fingers to grasp each object. Afterward,
the robot with its thumb and index established light contact
with the surface of the hand-held object (P FF

DC = 0.2N and
P MF

DC = 0.2N ). Then, the robot slid its thumb and index 1 cm
on the surface of the object by rotating (TH3, TH4) and FF2
joints around the X-axis. The selected velocity of the sliding
movement and the value of the applied force for the thumb
and index finger were chosen separately from V , Ffi . At each
exploration round, the velocity and applied force values were
kept constant by measuring P TH

DC and P FF
DC and controlling

the position of the TH3 and Th4 joints for the thumb and
FF2 and FF3 for the index finger. The exploration time was
chosen from Ttest ∈ {tmin, tmin + Δt, tmin + 2Δt, . . . , tmax} in
which tmin = 2 s, tmax = 10s, and Ttest ∈ {2, 3, . . . , 10}. At each
round, test data were collected once with each of the 32 experi-
mental in-hand objects. The orientation of the hand-held objects
varied by π/4 around the X-axis. The entire test data collection
was repeated 100 times.

V. TACTILE EXPLORATION WITH A HUMANOID

Humans can sense the textural properties of objects by sliding
a sensitive body part with large skin area (such as the hand, lower
arm, upper arm, etc.) on the surface of the objects. In order to
grasp and lift an unknown large object, we utilize both our hands
and arms and even the upper part of our body, such as our chest.
In this case, a large area of our skin is in contact with the surface
of the large object. As the large object starts sliding between our
hands and arms, we can recognize the physical properties of the
large object. In this part of the study, a set of active human-like
exploratory movement was executed by NAO having large-scale
artificial skin to perceive the textural properties of 120 materials
and 120 large objects with different weights Wi . In addition, a
rotational stage was used to move the experimental materials
underneath the NAO’s hand.

A. Material Surface Exploration With NAO

1) Lateral Sliding Exploratory Movement: NAO initiated a
static contact with the surface of the material by moving either its
right hand via the RShoulderPitch joint or the left hand using the
LShoulderPitch joint until the average of the total normal force
sensors on the hand reached 1

Nr N c

∑Nc

nc =1
∑Nr

nr =1 Fnc ,nr
=

0.2N (light contact), in which Nr = 3 is the number of the
normal force sensor in each skin cell and Nc = 14 is the num-
ber of the skin cell mounted on one hand. Afterward, NAO ex-
plored the textural properties of the materials by sliding its hand
laterally “d cm” on the surface of the material by moving the
RShoulderRoll or LShoulderRoll joint (see Fig. 6). Tactile in-
formation was measured by the force sensors Fnc ,nr

with a 250
Hz sampling rate and three-axis accelerometer sensors anc ,ns

with a 1 KHz sampling rate, in which ns = 1, 2, 3 (Ns = 3) is
the number of the axis of the accelerometer (in total 84 tactile
signals from the output of 14 skin cells on the hand). The maxi-
mum force that NAO applied with its hand to the surface of the
materials was F hand

max = 1
Nr N c

∑Nc

nc =1
∑Nr

nr =1 Fnc ,nr
= 3N and

the maximum velocity of the sliding was vmax = 4 cm/s.
a) Training data collection: In order to collect training

samples, NAO slid its right hand 2 cm on the surface of each
120 materials once, which was then repeated 20 times. The
velocity of the sliding movement and the value of the applied
force were chosen from V ∈ {vmin, (vmin + Δv), (vmin +
2Δv), . . . , vmax}, F hand ∈ {F hand

min , (F hand
min + Δftest), (F hand

min +
2Δf),X, F hand

max }, respectively, in which vmin = 0.5 cm/s,
Δv = 0.5 cm/s, F hand

min = 0.2N , Δf = 0.4N . For instance
V ∈ {0.5, 1, 1.5, 2, . . . , 4} and F hand ∈ {0.2, 0.6, 1, 1.4 . . . , 3}.
The values of Δf = 0.4N and Δv = 0.5 s were determined
based on the sensitivity and stability of the skin cells and NAO’s
hardware constrain.

The exploration time at each round was t = 2 s. The orienta-
tion of the experimental materials, at each round, varied by π/4
around the Z-axis. At the end of each exploration, each skin cell
was calibrated by measuring the outputs of the sensors Fnc ,nr

,
anc ,ns

and removing their biased signals (offset) when the skin
cells were not in contact with the materials.

b) Test data collection: Humanoid robots should be able
to recognize the textural properties of the objects with both the
left and right hand, even though only one of them was used
during the training phase. Here, NAO collected test data by
sliding its left hand 1 cm on the surface of the materials. The
exploration time, at each round, was chosen from Ttest with
tmin = 2 s, tmax = 10 s, Δt = 1. At each round, the orientation
of the experimental materials varied by π/6 around the Z-axis.
The entire data collection procedure was repeated 100 times.
The rest of the procedure was the same as in the training data
collection.

2) Medial Exploratory Sliding Movement: In order to gen-
erate the medial exploratory movement, NAO moved its hand
forward and backward (along the Y-axis). NAO executed the
medial movement with its right hand to collect training data
by controlling the positions and velocities of the RShoulder-
Pitch, RElbowRoll, and RElbowYaw joints in order to slide its
hand 2 cm on the surface of the materials. The test data were
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Fig. 6. (A) NAO executes lateral, medial, or circular exploratory movements to sense the textural properties of the object (active exploration). (B) Experimental
material/texture rotates underneath of NAO’s hand with a constant velocity (passive exploration). (C) Large object was held by NAO with its upper body slides
gradually between its hands, arms, and chest (passive exploration).

collected with the left hand using the LShoulderPitch, LEl-
bowRoll, and LElbowYaw joints while sliding 1 cm on the ma-
terials’ surfaces (see Fig. 6). The rest of the training and test data
collection procedure remained the same as described above.

3) Circular Sliding Exploratory Movement: NAO explored
the textural properties of the materials and collected training data
by sliding its right hand circularly (clockwise) on the materials’
surfaces. The robot was programmed to move its hand circularly
by controlling the positions and velocities of the RShoulderRoll,
LShoulderPitch, RElbowRoll, and RElbowYaw (see Fig. 6). To
collect test data, the circular motion was generated with the
left hand (counter clockwise) via the LShoulderRoll, LShoul-
derPitch, LElbowRoll, and LElbowYaw joints. The rest of the
training and test data collection process remained the same as
explained in previous parts.

4) Combined Exploratory Movements: All three exploratory
movements were combined as one motion (lateral + medial +
circular). In this case, at each round, NAO continuously slid its
hand laterally, medially, and circularly to explore the textural
properties of each object. The data collection procedures re-
mained identical to the previous parts. However, the exploration
time in the training data collection phase at each round was
t = 6 s and, for the test data collection was, selected from Ttest,
in which tmin = 3 s, tmax = 15 s, Δt = 3 s or Ttest ∈ {3, 6, 9,
12, 15}.

a) Training data collection: The combined exploratory
movement was performed with the right hand of NAO to collect
training data. At each round, NAO sequentially performed the
lateral, medial, and circular sliding movements (Scomb

train = SLMC)
on the surface of each material for t = 3s. The rest of the proce-

dure remained identical to the previous training data collection
parts.

b) Test data collection: The test data were collected with
the NAO’s left hand. The exploratory action was uniformly
selected at random from Scomb

test ∈ {SL, SM , SC , SLMC, SLCM,
SMLC, SMCL, SCLM, SCML}. The exploration time was selected
from Ttest, in which tmin = 3 s, tmax = 10 s, Δt = 1 s, and
Ttest ∈ {3, 4, 5, . . . , 10}. The rest of the procedure was the
same as the previous test data collection parts.

5) Rotational Stage: In this part of the experiment, the same
experimental setup, as in Section IV-A6, was used to collect
tactile data by NAO’s hands [see Fig. 6(B)]. The rest of the
experiment remained identical to the training and test data col-
lection explained earlier.

B. Large Object Exploration With NAO

1) Properties of the Large Objects: Taking into account
NAO’s size and weight, we created 360 large objects with the
same dimension 32 × 22 × 14 cm3 (see Fig. 6) and three differ-
ent weight categories: 120 objects weighing 500 g, 120 objects
weighing 1000 g, and 120 objects weighing 1500 g. We then
covered the surface of each set of objects with 120 different
surface textures (see Fig. 3).

a) Training data collection: In this scenario, NAO was
standing at the front of a table. Both its arms were straight and
parallel to each other and it was able to open and close them in
the horizontal direction (X-axis) using the LShoulderRoll and
RShoulderRoll joints. The experimental object was placed be-
tween NAO’s arms. Afterward, NAO slowly closed its arms to
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grasp the object. However, the position of the object between
NAO’s arm could vary slightly along the arms or the Y-axis [see
Fig. 6(C)]. To be sure that all 14 skin cells on each hand were
in contact with the surface of the object during the grasp, NAO
used the feedback from proximity sensors (Pnc

). Proximity sen-
sors give a measurement of the closeness corresponding to each
skin cell with an experimental object’s surface (which is called
precontact or pretouch). If a skin cell is close to the surface of an
object (dnc

< 3 cm), in which dnc
is the distance of one cell nc

from the surface, the normalized output of the proximity sensor
is equal to onePnc

= 1, otherwisePnc
= 0. As soon as NAO re-

alized its hands were close enough to the surface of the object via
proximity (dnc

< 3 cm), it moved its arms n steps (n = 1, . . . , 5
and at each step 0.5 cm) forward or backward along the Y-axis
using the LShoulderRoll, LElbowRoll, and LElbowYaw joints
of the left hand and RShoulderRoll, RElbowRoll, and REl-
bowYaw joints of the right hand until it was sure that all skin cells
on each hand would be in contact with the surface of the object.
Afterward, it started closing its arms to grasp the object. As soon
as the average of the total force sensors on the hand exceeded
the grasping force value 1

Nr N c

∑Nc

nc =1
∑Nr

nr =1 Fnc ,nr
> f grasp

oi ,
it lifted the large object 10 cm from the table using the LShoul-
derPitch and RShoulderPitch joints. The value of the force to
grasp an object firmly f grasp

oi within NAO’s arm was determined
during the experiments based on the objects’ weights, as we
did not implement any slip detection and deformation preven-
tion methods on NAO (f grasp

500 = 1
Nr N c

∑Nc

nc =1
∑Nr

nr =1 Fnc ,nr
=

2N , f grasp
1000 = 2.7N , and f grasp

1500 = 3.5N ). Afterward, NAO pulled
the large object (oi) toward its chest by moving its arms back-
ward along the Y-axis until the large object was in contact with its
chest and NAO detected 1

Nr N c

∑Nc

nc =1
∑Nr

nr =1 Fnc ,nr
= 0.2N

via the skin cells of the chest (Nc = 32 skin cells). As the
experiment proceeded, NAO slowly opened its arms until the
object started to slide between its arms and chest. When the
object slid, it generated vibrations on the large skin area. The
caused vibro-tactile signals were measured by accelerometers
(anc ,ns

) and force sensors (Fnc ,nr
) on the hands, fore arms,

upper arms, and chest (in total, 696 tactile signals from 116 skin
cells). At each round, the exploration was carried out once with
each of the 120 objects weighing 1000 g, which was repeated
20 times.

It is noteworthy to mention that in this experiment, the explo-
ration time (sliding time), velocity of sliding, and value of ap-
plied normal force were dependent on the large objects’ weights.
In other words, objects with different weights slide with differ-
ent velocities. Moreover, the robot needs to apply different force
values by its hand to the surface of the object in order to grasp
and then lift them up.

b) Test data collection: The test data collection were car-
ried out as described for training data collection [see Fig. 6(C)].
However, the test exploration was repeated 100 times; 50
times for each large object weighing 500 g and 50 times
for objects weighing 1500 g and 120 different surface tex-
tures. The exploration or sliding time, velocity of sliding, and
the amount of applied force were different from the training
data collection part as they varied depending on the objects’
weights.

VI. ROBOT LEARNING METHODOLOGIES

To evaluate the performance and robustness of our proposed
tactile descriptors across different learning algorithms, a range
of commonly used learning techniques were applied, including
an online or open-ended learning algorithm, a batch supervised
learning method, as well as an unsupervised learning technique.

A. Passive Aggressive (PA) Online Learning

The robotic systems employed the cost-sensitive multiclass
PA method to discriminate among M classes of objects or mate-
rials while receiving samples continuously over time. The PA is
a margin-based online or open-ended learning technique in order
to construct and update learning models continuously [46]. Us-
ing PA, at each time step, the robot constructed texture models
to generate the corresponding prediction for the current received
samples. The received true label was then used as feedback in
order to update the texture models for the next new samples.

More formally, PA estimates the model parameters wt ∈
Rd at time t = 1, 2, . . . , T receives new data samples
{xm , ym}M

m=1 where xm ∈ X ⊂ Rn are sequential samples
with ym ∈ Y as their corresponding labels. Assume that the
PA is provided with a set of d features φ1 , . . . , φd where each
feature φi is a mapping from X × Y to the reals. We de-
note by Φ(xm , ym ) = (φ1(xm , ym ), . . . , φd(xm , ym )) the vec-
tor formed by concatenating the outputs of the features. At
t = 1, the PA starts with the model parameters having val-
ues equal to zero. It means at t = 1, w1 = (0, . . . , 0), then
the value of confidence in prediction was computed with
ŷt = arg maxy∈Y (wt · Φ(xm,t , ym,t)). Afterward, PA updates
the models when it receives new samples by solving

wt+1 = min
w∈Rd

1
2
‖w − wt‖2 + ηξ (30)

which results in

wt+1 = wt + θt(Φ(xm,t , ym,t) − Φ(xm,t , ŷm,t)) (31)

θt = min
{

η,
max{0, 1 + wt · (Φ(xm,t , ym,t) − Φ(xm,t , ŷm,t))

‖Φ(xm,t , ym,t) − Φ(xm,t , ŷm,t)‖2

}
.

(32)

In (30), η is a positive value that governs the influence of the
slack terms. This technique is known as a PA-I cost sensitive
multiclass classification with a prediction-based update (PB)
[46]. ξ is a nonnegative scaling factor of the objective cost
function. In (31), xm,t is a current received sample at time t and
ym,t is the label of the received samples.

B. Support Vector Machine (SVM)

The SMV [47] was used to construct tactile object classifica-
tion models from the extracted tactile features received during
the training phase. While providing labeled training data (super-
vised learning), the algorithm constructs a hyperplane or a set
of hyperplanes in a high-dimensional space in order to classify
new objects from their textural properties.
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C. Expectation Maximization (EM)

The EM algorithm [48] for Gaussian Mixture Models (GMM)
with a spherical covariance matrix was employed to categorize
objects via their textures. Given a GMM, the goal is to max-
imize the likelihood function with respect to the parameters
(comprising the means and covariances of the components and
the mixing coefficients). EM is an unsupervised and iterative
algorithm that generalizes k-means to a probabilistic setting in
four steps.

a) Evaluating the output of clustering: The normalized mutual
information (NMI) method [49] was used to measure the qual-
ity of the clustering results. To do this, let A = {a1 , . . . , aK }
and B = {b1 , . . . , aS } be two different partitions of the N data
points, i.e., two different clusterings. For instance, A might be
the estimated clustering (predicted labels) and B is the refer-
ence clustering derived from the class labels (true labels). Let’s
assume pAB (i, j) = |ai ∩ bj |/N is the probability that a ran-
domly selected object belongs to cluster ai in A and bi in B.
Moreover, let pA (i) = |ai |/N be the probability that a randomly
selected object belongs to cluster ai in A. Similarly, let’s us de-
fine pA (i) = |ai |/N for object bi in B. The mutual information
between cluster A and B can be written as

I(A,B) =
K∑

i=1

S∑

j=1

pAB (i, j) log
pAB (i, j)

pA (i)pB (j)
. (33)

I(A,B) lies between 0 and min{H(A),H(B)} in which H(A)
and H(B) are entropy of A and B, respectively. The NMI is
defined as

NMI(A,B) =
I(A,B)

(H(A) + H(B))/2
. (34)

NMI(A,B) ∈ [0, 1], NMI(A,B) = 0 means no mutual infor-
mation and NMI(A,B) = 1 means perfect correlation.

VII. EXPERIMENTAL RESULTS

A. Experimental Results With the Shadow Hand

1) Supervised Material Discrimination: An SVM classifier
[47] with a linear kernel was employed by the robotic hand to
discriminate among materials/objects via their textural proper-
ties. To obtain the best learning parameters and the regularizer
value C , fivefold cross validation (CV) was carried out on the
entire training dataset. In this regard, the collected training set
was randomly split into five folds; four of those for training
and one for evaluation. The procedure was repeated ten times
to obtain an average performance on the evaluation sets. The
entire process was repeated 20 times with different values for
C ∈ {10−4 , 5−4 , 3−4 , 2−4 , . . . , 24 , 34 , 54 , 104} to find the one
with the lowest CV error. Afterward, the SVM with the optimal
parameters was retrained with the entire training set to construct
the learning models, which were then used by the Shadow Hand
for the prediction of the unseen, separately collected test set.

If a robot uses its full hand to learn about the textural
properties of materials, it should be able to discriminate among
materials (during the evaluation phase) with each of its finger
or different combinations of two, three, four, or five fingers.

TABLE II
SURFACE TEXTURES CLASSIFICATION BY SHADOW HAND

The best regularizer value that was found by CV for all experiments is C = 0.001.

Fig. 7. Results of online material classification by the Shadow Hand.

In this experiment, the SVM was trained with the train-
ing data collected with all five fingers (full hand) of the
Shadow Hand to construct learning texture models. To eval-
uate the robustness of our proposed tactile descriptors, the
constructed tactile learning models were evaluated to pre-
dict with the test data S1:100

test ∈ {S1
f , S2

f , . . . , S100
f }, in which

f was uniformly selected at random from f ∈ {fFF, fMF,
. . . ,(fFF fMF), (fMF fRF), . . ., (fFF fMFfRF), . . . , (fFF fMFfRF

fLF fTH)}. For instance, S1
(fFFfMF) includes only the contribution

of the index finger and middle finger during text data collection.
Table II shows that the robotic hand successfully discriminated
among 120 materials with a 100% recognition rate when it
performed each of five exploratory motions while sliding with
different combination of its fingers.

2) Online Material Discrimination: There is a tradeoff be-
tween the complexity of learning algorithms and the power of
tactile descriptors in the tactile object and material discrimi-
nation domains. Using state-of-the-art feature extraction tech-
niques, the robotic systems needed to store a large number of
samples (as a batch of data) in its memory during training. The
growth of object classes results in a memory explosion, making
the state-of-the-art feature descriptors unfit for real-time robotic
systems. In this experiment, we investigated whether it is pos-
sible for the robots to discriminate materials and objects with
an online learning algorithm (low memory consumption) while
utilizing our proposed descriptors.

To evaluate this, the Shadow Hand employed the PA algo-
rithm to classify 120 experimental materials online. Using our
proposed descriptors, the robotic hand constructed texture mod-
els while receiving training samples sequentially and over time
(t = 1, . . . , 20). In this experiment, the learning parameter η was
fixed to 1. The recognition rates at each time t were computed
by using the currently constructed learning models to predict
test data. Fig. 7 shows the averaged classification rate at each
training step (t = 1, . . . , 20) with the lateral, medial, circular,
and rotational exploratory behaviors. Fig. 7 illustrates that the
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Shadow Hand achieved 100% recognition accuracy after train-
ing with 15 samples with each of the exploratory movements.
Fig. 7 demonstrates that the Shadow Hand with circular sliding
exploratory movements and ten training samples (t = 10) ob-
tained 100% classification accuracy. Furthermore, we evaluated
the performance of tactile material discrimination with the com-
bination of all test datasets S1:100

LMCtest
∈ {S1:100

L test
, S1:100

M test
, S1:100

C test
}.

To do this, we combined all test data collected by execut-
ing the lateral (S1:100

L test
), medial (S1:100

M test
), and circular (S1:100

C test
)

sliding actions (300 samples in total). Afterward, 100 sam-
ples were selected uniformly at random from the combined
dataset S1:100

LMCtest
∈ {S1:100

L test
, S1:100

M test
, S1:100

C test
}. The constructed tex-

ture models then were evaluated to predict test samples in
S1:100

LMCtest
. Fig. 7 shows that the Shadow Hand obtained 96% dis-

crimination accuracy with 15 trials with the lateral and medial
exploratory actions, which is slightly lower than when it was
evaluated with the test data collected either with lateral (S1:100

L test
)

or medial (S1:100
M test

) sliding movement. Moreover, Fig. 7 illus-
trates that the robotic hand successfully achieved 100% clas-
sification accuracy with seven training samples with circular
sliding motion. This is due to the fact that some of the experi-
mental materials, such as carpets and textiles, have multidirec-
tional textures. In this case, the circular sliding motion provided
rich tactile information in all directions (X-Y direction). In other
words, the circular exploratory action helped the robot to learn
about the textural properties of the materials with a few sam-
ples and more quickly than when it explores the materials with
either a medial or lateral sliding motion. However, the robotic
system receiving a few more training samples achieved the same
recognition performance as obtained with the circular sliding
motion.

In another experiment, the PA algorithm sequentially re-
ceived 20 training samples that were obtained by the robot while
performing the combined exploratory action (Scomb

train = SLMC)
on the surface of the materials. The constructed texture models
at each time t were evaluated to predict the test data collected
with different combinations of the exploratory actions Scomb

test ∈
{SL, SM , SC , SLMC, SLCM, SMLC, SMCL, SCLM, SCML}. The
combination of lateral, medial, and circular motions as one
motion (Scomb

train provided the richest tactile information with the
robotic hand). In this case, the Shadow Hand achieved 100%
classification accuracy with only six training samples. Let us
consider the circular exploratory movement as the combination
of the lateral and medial movements. Then, the combined
exploratory motion is actually the combination of two lateral
movements and two medial movements. Therefore, upon each
movement, it provides more tactile information with the robotic
hand at each exploration.

3) Supervised In-Hand Object Discrimination: This experi-
ment scrutinized whether tactile in-hand object recognition per-
formance depends only on how well and robustly the robotic
hand could interpret the perceived tactile surface texture in-
formation of the held objects regardless of their shapes. The
Shadow Hand should be able to discriminate in-hand objects
via their textural properties without considering the geometri-
cal properties of the in-hand objects (proprioceptive informa-
tion) while moving its fingers slightly on the surface of in-hand

TABLE III
IN-HAND OBJECTS CLASSIFICATION WITH SVM BY THE SHADOW HAND

The best regularizer value that was found by CV for all experiments is C = 0.003.

Fig. 8. Results of online in-hand objects classification by the Shadow Hand.

objects. To evaluate this capability, the Shadow Hand used the
SVM with the linear kernel method. To construct the tactile
learning models, the SVM with the optimal learning parame-
ters was trained by tactile features generated from the collected
training set with uniform shape objects [see Fig. 5(A)]. The
constructed tactile models were then evaluated to predict the
corresponding test set. The learning procedure was repeated
with training and test sets of the complex shape objects [see
Fig. 5(B)]. Table III also shows that the Shadow Hand classi-
fied in-hand objects with uniform shapes from each other via
their texture properties with 98.5% recognition accuracy. More-
over, it discriminated in-hand complex shape objects with 98.7%
recognition accuracy.

Furthermore, an additional experiment was carried out. The
Shadow Hand was trained with the combined training sets of
uniform and complex shape objects. Using constructed tactile
object models, the robot successfully distinguished 30 multiple
shaped in-hand objects from each other with 98.3% recognition
accuracy. Table III also shows that the Shadow Hand success-
fully classified in-hand objects with multiple shapes via their
textural properties (cutaneous information) regardless of their
shapes (proprioceptive information) similar to humans.

4) Online In-Hand Objects Discrimination: In this experi-
ment, the Shadow Hand used the online PA algorithm.

The same learning procedures, as described before, was
performed with each of the trial samples of identical shape,
complex shape, and multiple shape in-hand objects separately.
The constructed texture models at each time step (t = 1, . . . , 20)
were evaluated using entire corresponding test stets. Fig. 8
shows the classification accuracy rate corresponding to Identi-
cal Shape Objects, Complex Shape Objects, and Multiple Shape
Objects. The experimental outcomes (see Fig. 8) show that the
Shadow Hand successfully recognized identical, complex, and
multiple shape objects via their surface textures with a high
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TABLE IV
RESULTS OF MATERIAL AND IN-HAND OBJECT CATEGORIZATION

BY THE SHADOW HAND

TABLE V
SURFACE TEXTURES CLASSIFICATION BY NAO

The best regularizer value that was found by CV for all experiments is C = 0.005.

average recognition rate that is substantially better than chance.
The robotic hand achieved an average recognition rate of 96%
with only 20 training samples online. Fig. 8 illustrates that
the Shadow Hand, when receiving a few samples in sequence
(t = 21, . . . , 25), could have achieved 100% recognition rate.

5) Unsupervised Materials and In-Hand Objects Catego-
rization: In this experiment, the robotic systems employed the
EM algorithm as an unsupervised learning approach to cat-
egorize materials/objects via their textural properties. In this
way, the EM was trained with the entire unsupervised dataset
in all scenarios. The EM algorithm was initialized by the k-
means clustering. The number of cluster k was set to be equal to
the number of classes of the experimental materials or objects.
The k-means algorithm was repeated 20 times each time and the
EM algorithm iterated 100 times. The NMI was used to evaluate
the clustering results. Table IV illustrates that the Shadow Hand
successfully categorized among the experimental materials and
clustered the in-hand objects via their textural properties in all
schemes. The discrimination performance of an in-hand objects
in all scenarios is a bit lower than the performance of materials
classification. The reduction in accuracy for in-hand object dis-
crimination is due to the variations in the contact positions that
occurred during exploration, as there was no active slip detection
and prevention method implemented in the robotic hand.

B. Experimental Results With NAO

1) Supervised Material Discrimination: NAO used the
SVM to classify 120 materials via their textural properties. In
order to construct learning models, the SVM with the optimal
learning parameters was trained with the training data (collected
with the right hand). The constructed learning models then were
evaluated to predict the test data (collected with the left hand).
Table V illustrates that NAO classified 120 materials with higher
than 97% accuracy in all schemes.

2) Supervised Large Object Discrimination: The main goal
of this experiment was to evaluate the performance of the
proposed tactile descriptor while extracting tactile features from

TABLE VI
LARGE OBJECTS DISCRIMINATION WITH SVM BY NAO

The best regularizer value that was found by CV for all experiments is C = 0.003.

a large number of tactile sensors (a large skin area). The other
goal was to investigate whether the discrimination of objects
along surface texture properties is independent of an object’s
weight during passive exploration. The velocity of an object
sliding between NAO’s arms and chest relates directly to the
object’s weight; any variation in the object’s weight should not
affect the texture perception. In other words, NAO should rec-
ognize large objects sliding between its arms and chest (passive
exploration) via their textural properties and regardless of their
weights.

In this regard, SVM was trained with a training set collected
with objects with the same 1000 g weight and 120 various sur-
face textures. The constructed texture models were examined
using test sets including objects with 500 and 1500 g weights.
Table VI illustrates that NAO successfully classified large ob-
jects with 90.6% recognition accuracy.

In order to assess the efficiency of the proposed tactile de-
scriptors across various objects’ weights, the experiment was
repeated with different training and test sets. In this regard,
NAO was trained with a training set of the large objects with
500 g and then examined using test sets including objects with
1000 and 1500 g and 120 different textures. The same proce-
dure was performed with training sets of objects of 1500 g and
test sets of objects of 500 and 1000 g. The final experiment in
this context was conducted with a training set of objects of 500,
1000, and 1500 g, and the robot learning system was evaluated
using an unseen test set separately collected with objects of 500,
1000, and 1500 g.

Table VI demonstrates the classification performance in
which NAO discriminated 120 large objects through their sur-
face properties regardless of any variation in objects’ weights
during the experiment. Objects with various weights but the
same surface texture properties tend to be recognized as the
same class of object. The reduction in discrimination perfor-
mance is due to some variation with the position of the large
object during sliding between the robot’s arms and chest.

3) Online Material Discrimination: NAO used the PA al-
gorithm in order to learn about the textural properties of 120
materials online. The same learning procedure, as described
before, was performed with the training and test data. Fig. 9 dis-
plays that NAO obtained higher than 93% recognition with each
of the exploratory movements with only 20 training samples.
Moreover, NAO with circular exploratory movement and ten
training samples (t = 10) obtained 90% classification accuracy.

Furthermore, the performance of the material exploration
with each of the lateral, medial, and circular sliding move-
ments was separately evaluated with the combination of all
test data (S1:100

LMCtest
). Fig. 9 illustrates that NAO achieved 93%
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Fig. 9. Results of online material texture classification by NAO.

Fig. 10. Results of online large objects classification by NAO.

classification accuracy with 24 training samples using either
lateral or medial exploratory action. In this scenario, the hu-
manoid obtained a 90% recognition rate with only nine train-
ing samples. Fig. 9 also displays that NAO obtained a 95%
recognition rate when it received ten trials with the com-
bined exploratory movement (Scomb

train = SLMC). In this case,
at each time t the constructed texture models were evalu-
ated to predict the test data collected with different combina-
tions of the exploratory actions Scomb

test ∈ {SL, SM , SC , SLMC,
SLCM, SMLC, SMCL, SCLM, SCML}.

4) Online Large Object Discrimination: Fig. 10 shows that
NAO successfully discriminated large objects using its large-
scale skin with very high recognition rates online. The obtained
classification performance is comparable with the performance
NAO achieved with the SVM (batch learning). However, using
the online learning method, the robot consumed much less mem-
ory to store data. This is due to the power of our proposed tactile
descriptors that provided the robot with rich tactile information.

C. Materials and Large Objects Categorization

The EM algorithm as an unsupervised learning approach was
used to categorize materials and large objects via their textu-
ral properties. The same procedure, as described before, was
performed with the entire unsupervised data collected by NAO.
Table VII illustrates that the NAO successfully clustered all
120 experimental materials and also 120 large objects via their
textural properties in all schemes.

TABLE VII
RESULTS OF MATERIALS CATEGORIZATION BY NAO

VIII. DISCUSSION

In order to evaluate the performance of our proposed tactile
descriptors, we conducted an extensive experiment with mul-
tiple robotic systems, various tactile sensing technologies, and
large number of natural and synthetic objects and materials.
In this regard, the Shadow Hand and NAO with artificial skin
successfully classified 120 various materials with regular and ir-
regular structures while executing active human-like exploratory
movements. The experiment was extended to the scenario of in-
hand object discrimination, in which the robotic hand discrimi-
nated 30 uniform- and complex-shaped objects with regular and
irregular textural properties. Moreover, the robustness and com-
putational efficiency of the proposed descriptors were assessed
with a humanoid with a large sensing area. The achieved high
recognition rate by NAO shows that our tactile descriptors pro-
vided robust tactile information from the large number of tactile
signals for discriminating among large objects via their surface
texture regardless of their weight.

The experimental results show that the Shadow Hand obtained
higher tactile discrimination accuracy than NAO in all scenarios.
This is due to the fact that the BioTac has high spatial resolution,
and the existing ridges on its outer layer help to better sense the
textural properties of the objects/materials.

We further evaluated the robustness of our tactile descriptors
using our proposed probabilistic active tactile learning method
[50] and the active target object search algorithm [51]. Follow-
ing our proposed methods, an industrial robotic arm (UR10)
with the multimodal tactile sensors on the end-effector and also
an industrial three-finger gripper (Robotiq) with the sense of
touch on fingertips (OptoForce sensors) autonomously and effi-
ciently discriminated natural objects via their textural properties.
Furthermore, taking advantage of our proposed tactile descrip-
tors, we developed the active tactile transfer learning methods
to enable the robotics systems to reuse their constructed prior
textural models while learning about new set of objects with a
few training samples or even one [52]–[54].

IX. CONCLUSION

In this study, we proposed a set of robust tactile descriptors
for a robotic system with artificial skin to discriminate among
objects and materials by means of their textural properties. The
performance of the proposed feature descriptors was evaluated
with a large number of materials and in-hand objects, as well
as large objects with periodic and nonperiodic surface texture.
Moreover, we assessed the robustness of our tactile descrip-
tors with multiple robotic systems that had a large multimodal
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artificial skin area and various tactile sensing technologies, such
as dynamic pressure sensors, accelerometers, capacitive sensors,
and impedance electrode arrays. Using the proposed tactile de-
scriptors while executing human-like exploratory movements,
the Shadow Hand classified 120 materials (100% accuracy) and
30 in-hand objects (98% accuracy) via their textural properties.
NAO with its upper body covered with multimodal tactile sen-
sors identified 120 large objects with 90% accuracy, regardless
of their weight.
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