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Exploiting Elastic Energy Storage for “Blind” Cyclic
Manipulation: Modeling, Stability Analysis, Control,

and Experiments for Dribbling
Sami Haddadin , Member, IEEE, Kai Krieger , Alin Albu-Schäffer , Fellow, IEEE, and Torsten Lilge

Abstract—For creating robots that are capable of human-like
performance in terms of speed, energetic properties, and robust-
ness, intrinsic compliance is a promising design element. In this
paper, we investigate the principle effects of elastic energy stor-
age and release for basketball dribbling in terms of open-loop
cycle stability. We base the analysis, which is performed for the
1-degree-of-freedom (DoF) case, on error propagation, peak power
performance during hand contact, and robustness with respect to
varying hand stiffness. As the ball can only be controlled during
contact, an intrinsically elastic hand extends the contact time and
improves the energetic characteristics of the process. To back up
our basic insights, we extend the 1-DoF controller to 6-DoFs and
show how passive compliance can be exploited for a 6-DoF cyclic
ball dribbling task with a 7-DoF articulated Cartesian impedance
controlled robot. As a human is able to dribble blindly, we decided
to focus on the case of contact force sensing only, i.e., no visual
information is necessary in our approach. We show via simulation
and experiment that it is possible to achieve a stable dynamic cycle
based on the 1-DoF analysis for the primary vertical axis together
with control strategies for the secondary translations and rotations
of the task. The scheme allows also the continuous tracking of a
desired dribbling height and horizontal position. The approach is
also used to hypothesize about human dribbling and is validated
with captured data.

Index Terms—Cycle stability analysis, disturbance observer,
elastic energy storage, flexible joint manipulators, limit cycles, vari-
able stiffness actuation.
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I. INTRODUCTION

ACTIVELY compliant robots have found their way to
market with the launch of the DLR lightweight robot

III (LWR-III) [1] that was commercialized as the KUKA
lightweight robot. More recent examples are the Sawyer robot
from Rethink Robotics [2], and Panda from FRANKA EMIKA
[3]. These robots make it possible to dexterously manipulate
objects and to interact with dynamic and (partially) unknown
environments. Along this line of research the design of systems
with intrinsic, i.e., passive compliance has drawn significant
attention. The approach has been motivated by the possibility
to provide compliant behavior for the entire mechanical band-
width. This is of course much larger than the one of an active
compliance loop, which is limited by the sensor, actuator, and
controller bandwidths. Furthermore, good shock resistance and
the ability to dynamically store and release energy are main
motivations for the design choice. The latter was recently ex-
ploited for explosive motions as, e.g., in throwing [4]. Based on
an optimal control formulation the use of joint elasticity enables
the robot to reach link speeds that are significantly larger than
the maximum motor speed. In this paper, we exploit intrinsic
elasticity for cyclic object manipulation based on ball dribbling
with an intrinsically and actively compliant robot, see Fig. 1.

Related object manipulation problems, which are in general
hybrid,1 have been investigated for quite some time. Robot drib-
bling, e.g., was first introduced in [5]. The authors used a hor-
izontal, half-cylindrical tube as end-effector for mapping the
system to a rigid two-dimensional (2-D) problem. The control
is reactive and pushes the ball downwards if a contact is de-
tected while, depending on the contact position, a spin is also
applied.2 In [6], a high-speed multifingered hand for dribbling
a ping-pong ball with high-speed vision is utilized. This exper-
iment was used to evaluate high-speed vision for ball tracking.
The work [7] introduced a dribbling industrial robot, utilizing a
solid plate as hand. The control mainly relies on the ball tracking
vision system and achieves stability of the cycle. A comparison
between visual and force/torque feedback is provided in [8],
where the vision-based control led to better results. However,
as shown in the present work, this is mainly caused by missing

1We refer to discrete switching between contact and noncontact situations,
where hybrid systems theory can be applied.

2As the referenced publication is only a video, it is not exactly clear which
degrees of freedom (DoF) are purposely controlled.
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Fig. 1. Dribbling blindly with a robot arm equipped with an elastic hand.

elasticities leading to very short contact intervals with according
force/torque measurements and consequently only little infor-
mation. In [9], some theoretical analysis was given for using an
elastic contact element based on an optimal control trajectory.
However, only the vertical movement and a fixed stiffness of the
elastic element is considered. This also holds for [10], where
the resonance of a long elastic beam is used in its second mode
for dribbling or juggling.

The classical juggling task, which is closely related to drib-
bling, was first treated in [11]. The found solution is a mirrored
and scaled version of the ball trajectory, which means that the
ball has to be tracked over the entire cycle. In [12] the first
blindly juggling robot was presented. The approach presented
in [13] used only a linear motor for juggling without the need
of active ball tracking or other feedback, as the lateral motion
is stabilized by the shape of the juggling paddle. The authors
compared an H2 optimal controller with the previous open-
loop solution, which turned out to have similar performance
characteristics.

In this paper, which extends prior work in [14] and [15], we
provide insights into the problem of blind, i.e., without visual in-
formation, and elastic dribbling. This is an interesting problem
in order to further understand how intrinsic elasticity can be used
to achieve high performance and energy efficiency during dy-
namic and/or repetitive tasks such as throwing [4], walking [16],
and batting [17]. In this context, several questions arise when in-
trinsic elasticity is taken into account. A particularly important
one is how to select the spring stiffness for optimally achieving a
given task. Our aim is to analyze this for the dribbling problem,
as this poses high demands on the robot in terms of speed, dex-
terity, and robustness. A rather intuitive benefit why compliance
is desired for this task, which however has not been shown up
to now, is that the robot should be able to sustain longer ball
contact over an extended time period compared to stiff robots.
In turn, this would yield a better opportunity to robustly control
the ball, which was already utilized in [9]. However, a further
consideration that is still to be validated is that the energy trans-
fer between robot and ball should be a much slower process
and, thus, require less peak power when the hand stiffness gets
smaller. Before treating these essential questions, we first pro-
vide a framework for evaluating the open-loop stability of the
resulting dribbling cycles in the 1-DoF case. Subsequently, we

develop an observer based method for tracking and predicting
the ball trajectory based on proprioceptive force sensing only
and provide a stability analysis.

At full scale, we consider the problem of a rather stiff Carte-
sian impedance controlled lightweight arm that is equipped with
an intrinsically compliant hand in order to provide the desired
elasticity at full bandwidth. Based on the basic 1-DoF analysis,
we extend the controller to a full 6-DoF elastic dribbling con-
troller, i.e., all degrees of freedom of the robot’s end-effector
are utilized for control. The extension to the full dimensional
problem enables also the stable tracking of dribbling at a desired
position and height.3 Finally, we perform simulations and ex-
periments for the validation of the presented methods, including
the systematic analysis and explanation of human dribbling by
applying the framework derived in this paper.

Compared to [14] and [15], we provide additional significant
contributions. For the disturbance observer, that is used for esti-
mating the end-effector acceleration, a convergence analysis and
a stability proof are given and new insights into the used com-
pensation of dynamic load and external torques are provided.
Moreover, we present a validation of our approach with exper-
imental data captured from human dribbling. The parameters
of the presumed hand trajectory were found such that the mean
squared error between resulting ball motion and the measured
data is minimized and the stability margin of the resulting cycle
is analyzed. For this, we extend the excitation trajectory of the
hand by a variable relation p of positive and negative sine half-
wave. The achieved explanation of human dribbling constitutes
a promising result and might lead to a general framework for
analyzing and optimizing human dribbling motions.

This paper is organized as follows. Section II introduces the
considered 1-DoF hybrid system and its extension to the full
6-DoF case. Section III provides the solution trajectory for a
periodic cycle and analyzes the cycle stability together with
energetic considerations. Then, in Section IV, we give a solution
for estimating the ball state by a hybrid observer. Furthermore,
the extension of the 1-DoF observer to all three translations
with an associated reference control scheme for the lateral ball
motion is introduced, where an acceleration observer allows the
estimation of contact forces. For validation of our methods, they
are used to analyze and explain the stability of human dribbling
in Section V. In addition, dribbling simulations and dribbling
experiments with a 7-DoF DLR lightweight robot III (LWR-III)
are presented. Finally, this paper concludes with Section VI.
The experimental evaluation of our work can be found in the
accompanying video attachment.

II. MODELING

This section provides the analytical models of the ball and
the robot required for describing and analyzing the dribbling
motion. We outline a suitable 1-DoF model for analyzing the
essentials of the periodic dribbling task. Furthermore, we show
its extension to a full 6-DoF model, which includes the ball and
hand model as well as the floor and hand contact of the ball.

3In fact, our scheme allows also to adjust the dribbling frequency and ampli-
tude. However, this is omitted for brevity in this paper.
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Fig. 2. Model of the considered 1-DoF dribbling task.

A. 1-DoF Dribbling Model

Fig. 2 depicts a schematic illustration of the considered sys-
tem. The ball is modeled as a point mass mB with radius rB

and gravity g that can perform vertical movements denoted by
the ball height zB . The hand position is z(t). In this paper, we
consider the hand to be elastic and having zero mass. The as-
sociated stiffness KH is attached to the hand. Since the ball
stiffness is much larger than the hand stiffness, we may assume
the ball to be a rigid object during hand contact. Please note that
we consider physical springs and not actively controlled elastic
behavior, as no available robot is able to provide the necessary
control bandwidth for such high-speed motions. As the spring is
considered to be much more compliant than the robot, we may
assume the robot to be a position actuator. We use this simplified
robot model as we want to study the essential elements of the
vertical elastic dribbling cycles.

The ball motion is modeled as a hybrid system. One state
node represents the ball being in free flight. Defining the state
vector zB := [z1B z2B ]T = [zB żB ]T , we obtain the state-space
equation of motion for free flight as

żB = f 1(zB ) =
[

z2B

−g

]
. (1)

The equation of motion within the state node during hand
contact is characterized by the linear spring with an anchor
point moving with the desired position z(t). Hence, during hand
contact zB is described by

żB = f 2(zB , t) =
[

z2B

−KH

mB
(z1B + rB − z(t))− g

]
. (2)

Based on the instantaneous ball position, the hybrid system
switches between these two state nodes. Finally, if the condition
z1B + rB ≥ z(t) is fulfilled the ball is in contact with the hand.

The floor is modeled by an instantaneous transition into the
same state (free flight) in the hybrid system, as the position
before and after ground contact remains practically the same,

Fig. 3. Directed graph of the hybrid dribbling model.

whereas the velocity changes its sign and looses magnitude. The
ground contact is typically in the range of 0.015 s (for a drop
height of 1 m), i.e., negligible compared to the overall dribbling
cycle [18]. Hence, we introduce a coefficient of restitution
(COR) that is defined as

COR := −z+
2B

z−2B

(3)

with z−2B being the velocity before and z+
2B the velocity after

contact, see [19]. This instant takes place if the ball reaches the
height z1B = rB with z2B < 0. The parameter COR is chosen
to be 0.85 according to the official rules of basketball [20],
where the inflation of the ball is defined based on the rebounded
height.

Overall, the described model can be represented by the di-
rected graph depicted in Fig. 3. For convenience, the ball is
initialized in free-flight state.

Next, we outline the ball and hand model suitable for the
6-DoF dribbling task.

B. 6-DoF Dribbling Model

A schematic view of the 6-DoF model is depicted in Fig. 4. In
reality, we use three fingers that are mounted along one common
plane, cf., Fig. 5. The fingers are made of spring steel, while for
impact damping issues a thin foam layer is glued to them. Please
note, that the outer fingers are slightly tilted in order to improve
the lateral stability of the ball motion between the dribbling
cycles.

In the modeling part, we assume the fingers to be massless and
use only their respective spring characteristics, cf., Fig. 4. Both
bodies are described by their respective position and orientation.
The relevant frames are the end-effector frame {EE}, the world
frame {W} (located on the floor), and the robot’s base frame
{0} (above the world frame). The spring mounting is translated
into the {EE} frame by the offsets δz and δx .

In the following, we derive a suitable ball model and show
how to obtain the relevant forces acting on the ball. All vectors
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Fig. 4. Definitions and conventions for the overall 6-DoF hand-ball model.

Fig. 5. Elastic dribbling hand used for the experiments with the DLR
Lightweight-Robot III.

are expressed in {W} unless specified otherwise. Hence, we
drop the index for this frame subsequently.

The ball is modeled as a free body with gravity vector g and
contact force F B acting on its perimeter. It is described by three
translational coordinates xB = [xB yB zB ]T , the respective
velocity ẋB , the quaternion ξB = [q0 q1 q2 q3 ]T , and three-
rotational velocities ωB = [αB βB γB ]T about the axes of {W}.
Its equation of motion is

⎡
⎣ ẍB

ξ̇B

ω̇B

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1
mB

F B + g

1
2
Q(ξB )ωB

I−1
B (rB × F B )

⎤
⎥⎥⎥⎥⎥⎦

(4)

with rB being the vector4 from the ball center to the force ap-
plication point, mB the ball mass, and IB the ball inertia tensor,
which is diagonal due to the ball’s rotational symmetry. Q(ξB )
is a matrix that maps Cartesian velocities ωB to quaternion

4Position vectors are in general denoted by r throughout this paper.

velocities [21]. The ball’s attitude described by the quaternion
ξB is included in our simulation, e.g., for the tangential force
during hand- or floor contact described by the LuGre model (8).
However, the control design is not based on the attitude. The
calculation of the force F B for the different phases is shown in
the following paragraphs.

For the control presented later it is useful to have the transla-
tional coordinates also in cylindrical form xBC

= [ϕB dB zB ]T ,
see Fig. 4. These are obtained via

xBC
=

⎡
⎢⎣

ϕB

dB

zB

⎤
⎥⎦ =

⎡
⎢⎣

arctan2(−xB , yB )√
x2

B + y2
B

zB

⎤
⎥⎦ . (5)

Next, the floor contact model is elaborated.
1) Floor Contact: The ball is in floor contact if

zB ≤ rB . (6)

The contact force consists of two components. F F Cn
is the

normal force and F F Ct
the force tangential to the floor plane.

a) Normal force: The normal force is obtained from a
Hunt–Crossley model [22] that is chosen to be

F F Cn
= [−KF (zB − rB )−DF (zB − rB )żB ] ez (7)

with KF = 35000 N
m being the stiffness constant and DF =

1600 Ns
m the damping constant.

b) Tangential force: The physical effect caused by the
tangential force is that the relative velocity between ball and
floor fades away over the contact. This is taken into account by
a lumped LuGre model [23], being defined as

ṡ = |vF Cr
| − σ0 |vF Cr

|
g(vF Cr

)
s (8)

Ft = (σ0s + σ1 ṡ + σ2 |vF Cr
|) |F F Cn

| (9)

with

g(vF Cr
) = μC + (μs − μc)e−|vF C r /vs |α . (10)

s is the slip between ball and floor, σ0 the rubber longitudinal
lumped stiffness, σ1 the rubber longitudinal lumped damping,
σ2 the viscous relative damping, μc the normalized Coulomb
friction, μs the normalized static friction, vs the Stribeck relative
velocity, Fn the normal force, and vF Cr

the relative velocity.
The steady-state friction/slip characteristic is captured by α. In
our simulations, we use following numerical values

[σ0 σ1 σ2 μc μs vs α]

= [1000 1/m 100 s/m 0.1 s/m 0.8 0.9 20 m/s 1]. (11)

The parameters are chosen such that the friction reaches its
steady state during the short floor contact time. The Coulomb
friction parameters can be found in [24]. The relative velocity
sought after is calculated by

vF Cr
= [ex ey 0] ẋB + [0 0 − rB ]T × ωB . (12)

Furthermore, (12) provides also the direction of the tangential
force, as it acts in opposite direction to the relative velocity.
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Fig. 6. Rotation order for commanding the orientation of the robot hand,
which is sketched as a plate.

Fig. 7. Calculation of spring stiffness K seen at the contact point.

2) Hand Model: The robot end-effector will later be com-
manded via a desired frame fed to a Cartesian impedance con-
troller (see Section V). The rotation matrix is described by a
well-chosen combination of relative and global angles in the
sense of the task, whose rotation order is depicted in Fig. 6.

The first coordinate system {C} is collinear to the base frame.
The first rotation acts around the y-axis and is later used for
controlling the ball along the dB coordinate. Thereafter, the
coordinate system is rotated around the new z-axis, which will
be used for controlling the ball along the ϕB coordinate. The
last rotation is around the z-axis of the base frame and is used
for tracking the ball position.

3) Hand Contact: The hand contact is calculated similarly
to the floor contact. Therefore, it is advantageous to use the
position vector of the ball expressed in {EE}. The condition
for hand contact is

EE xB ≥ δx + rB . (13)

We assume the absence of damping in the hand as the fingers
are made of spring steel. Hence, we get

EE F H Cn
= K(xB ,E, Iy )(−EE xB + δx + rB )EE ex (14)

for the normal direction of the contact.
The stiffness K(xB ,E, Iy ) is calculated from the linear the-

ory on Bernoulli beams, see Fig. 7. The force F denotes the force
that is applied by the ball. This causes two reactions MR = FzF

and N , as well as the bending line w(z), which is calculated

by [25]

EIy
d2w(z)

dz2 = −My (z). (15)

E is the modulus of elasticity, Iy is the geometrical moment
of inertia around the y-axis, and My is the bending moment
around y, which is obtained by

My (z) = FzF︸︷︷︸
=MR

− F︸︷︷︸
=N

z +
{

0, for z ≤ zF

F (z − zF ), for z > zF
. (16)

Evaluating (15) at zF results in relation (17) between the force
and bending at zF

F =
EIy

3z3
F︸︷︷︸

K

w(zF ). (17)

Therewith, the stiffness K seen at the contact point is known.
The tangential direction of the force is calculated analog to
Section II-B1 by utilizing a LuGre model. The full contact force
wrench generated by the hand contact is finally denoted by
EE F ext = [EE F T

ext
EE MT

ext ]
T and is explained in more detail

in Section IV-D.
In this paper, we show basic simulations, which consider the

robot to be a position/velocity source. However in case of the full
7-DoF analysis the according simulations and experiments take
the full flexible joint dynamic model and control of a Cartesian
impedance controlled robot into consideration. Therefore, we
briefly introduce the underlying set of equations describing the
robot dynamics next. The active impedance controller is outlined
in Section IV-F.

4) Elastic Joint Robot Model: Due to the lightweight de-
sign of the LWR-III it is not sufficient to model the robot by
a second-order rigid body model. The nonnegligible joint elas-
ticity between motor and link inertia caused by the Harmonic
Drive gears and the joint torque sensor has to be taken into ac-
count in the model equation. For such a robot, the flexible joint
model in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ J + τ ext (18)

Bθ̈ + τ J = τm (19)

τ J = KJ (θ − q) (20)

can be assumed [26] with q being the link-side position, θ
the motor position, τ J the elastic joint torque, M(q) the
mass matrix including the load of the end-effector, C(q, q̇)q̇
the centripetal and Coriolis vector, g(q) the gravity vector,
KJ = diag{KJ,i} the diagonal positive definite joint stiffness
matrix, and B = diag{Bi} the diagonal positive definite mo-
tor inertia matrix.5 The external joint torque is generated by
the ball contact wrench ideally measured in the wrist sensor via
τ ext = JT EE (q)EE F ext , with J(q) being the {EE} Jacobian
of the manipulator. As the sensor measurement also includes a
wrench resulting from gravity and the accelerated load, their

5Please note that for sake of clarity, we omit the joint damping and motor
side friction. They are, however, taken into consideration in the simulation.



96 IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 1, FEBRUARY 2018

compensation based on an extended acceleration observer is
required (see Section IV).

Now that all underlying models have been introduced, the
chosen reference trajectory and an overall stability and energy
analysis of the dribbling process is carried out next.

III. BASIC FEEDFORWARD CONTROL AND STABILITY ANALYSIS

For being able to analyze the stability of dribbling cycles, we
introduce the chosen hand reference trajectory in this section
and then deduce an analytic solution for the equation of motion
for the ball in the 1-DoF case.

A. Hand Reference Trajectory for 1 DoF Model

[11] used a mirrored trajectory of the ball for robot juggling,
which is essentially a parabola. Furthermore, negative acceler-
ation seems desirable, as it was shown to lead to stable juggling
cycles [13]. However, instead of a parabola we select a sinu-
soidal excitation motion of the hand, since during contact the
considered system is modeled by a second-order mass-spring
dynamic. In addition, a positive sine half-wave has also nega-
tive acceleration but changes sign at the end so that the reversal
can be carried out faster. This imposes smaller velocity and ac-
celeration requirements on the robot. Finally, a sine half-wave
is a good approximation for a parabola and the hand motion of
a semiprofessional human player as shown in Fig. 26 is similar
to sine half-waves.

The hand trajectory in this paper is described by the three
parameters amplitude A, offset z0 , and period time T . It is
composed by a positive slow half-wave for t∗ ∈ [0, pT ], 0.5 ≤
p < 1, and a negative fast sine half-wave for t∗ ∈]pT, T [, where

t∗ = t− t0 (21)

allows to define a time shift t0 of the sine waves. A trajectory,
which is continuous and continuously differentiable at t = pT
is given by

z(t∗) =

{
A sin (ω1t

∗) + z0 , for t∗ ∈ [0; pT ]

−qA sin (ω2(t∗ − pT )) + z0 , for t∗ ∈ ]pT ;T [
(22)

where ω1 = π
pT , ω2 = π

(1−p)T , and q = ω1
ω2

.

In subsequent simulations and experiments, p = 4
5 and t0 =

0 were chosen leading to ω2(t− pT ) = 5π
T (t− 4T

5 ) = 5π
T t−

4π. Thus, (22) becomes

z(t) =

⎧⎪⎪⎨
⎪⎪⎩

A sin
(

5π

4T
t

)
+ z0 , for t ∈

[
0;

4
5
T

]

−1
4
A sin

(
5π

T
t

)
+ z0 , for t ∈

]
4
5
T ;T

[ (23)

which is the hand trajectory considered from now on.
In Section III-B, we derive an analytic, approximated solution

for the stable cycle of the ball.

B. Analytic Solution for 1-DoF Model

Fig. 8 depicts the time instants at which the hybrid system’s
transitions occur. State vectors at these time instants are denoted

Fig. 8. State and notation conventions for the ball and hand over time are as
follows. t1 , zB I are the starting time and state. t−2 , z−B I I the time and state for

starting floor contact, t+2 , z+
B I I for the end of floor contact. t3 , zB I I I are the

time and state at hand contact start and t4 = T, zB I V at its end.

with a Roman number and are depicted at the top of the figure.
The timely evolution of these states between the characteristic
time instants are indicated in red.

At t1 = 0 s the hand contact vanishes and the initial value
is zBI := zB (0) = [z1BI z2BI ]T . The velocity is defined to be
negative so that the first phase of the ball is a free-flight motion.

For the free-flight phase, we get

zF F 1(t) =
[− 1

2 gt2 + z2BI t + z1BI

−gt + z2BI

]
. (24)

The time instant t−2 at which the ground contact occurs can
be obtained by intersection of z1F F 1(t) with the straight line
z = rB . We label this as the state z−BII := zF F 1(t−2 ). The floor
contact is then characterized by

z+
BII =

[
z−1BII

−CORz−2BII

]
(25)

and the solution for the second free-flight phase is

zF F 2(t) =

[
− 1

2 g
(
t− t+2

)2 + z+
2BII

(
t− t+2

)
+ z+

1BII

−g
(
t− t+2

)
+ z+

2BII

]
.

(26)
The next time instant that has to be calculated is the start of the

hand contact. This contact is assumed to occur within the slow
positive half-wave of the hand trajectory. This is justified by the
human motion depicted in Fig. 26, where the hand contact starts
shortly before the highest hand position. As this corresponds to
the intersection of a sine with a parabola no analytic solution
can be provided. Therefore, we approximate the sine of the hand
motion by a parabola

zappr(t) = a + b
(
t− π

2ω

)2
≈ z(t) (27)
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with ω = ω1 = π
pT [ref. to (22)] and the parameters a, b being

selected such that they minimize the error criterion

J =
∫ π

ω

0
(zappr − z(t)) dt. (28)

In addition, the cycle begins and consequently ends with
the separation of the hand contact. Hence, the hand trajectory
needs to be shifted along the time axis by toff such that z(T ) =
z1BI + rB , which can be found as

t← t + (1− p)T − t0 +
arcsin

(
rB −z0 +z1 I

A

)
ω︸ ︷︷ ︸

toff

(29)

with a possible time shift t0 of the hand trajectory introduced
in (21).

With (27) both, the time t3 and the state zBIII := zF F 2(t3)
are calculated. Therewith, it is possible to obtain the analytic
solution for the differential (4) of the ball motion during hand
contact together with the driving input, i.e., the approximated
hand trajectory zappr(t) in (27). Within this phase, the dynamics
of the ball dynamics can be written as

z̈B = −g − KH

mB
(zB + rB − zH (t)) (30)

where zH (t) is the hand trajectory and KH (zB + rB − zH (t))
the accelerating force acting on the ball, resulting from the hand
stiffness KH . The solution can be derived by splitting the input
zH (t) into a constant and a time variable part and using the
convolution theorem of the Laplace transform for the latter.
This approach leads to

zH C (t) = Φ

⎡
⎢⎢⎢⎢⎢⎣

sin
(√

KH

mB
(t− t3)

)

cos
(√

KH

mB
(t− t3)

)
sin (ω(t− t3))

cos (ω(t− t3))

⎤
⎥⎥⎥⎥⎥⎦

(31)

with

Φ11 = zBII I ,2

√
mB

KH
−
√

KH Aω cos(ω t3)
√

mB

(
KH

mB
− ω2

)

Φ12 = zBII I ,1 +
mB g

KH
+ rB − z0 − KH A sin(ω t3)

mB

(
KH

mB
− ω2

)

Φ13 =
KH A

mB

(
KH

mB
− ω2

) , Φ14 = 0

Φ21 = −Φ12

√
KH

mB
, Φ22 = Φ11

√
KH

mB

Φ23 = 0, Φ24 = Φ13gω.

With the relation zH C (T ) != zBI (where
!= denotes “having to

be equal to”) we may inspect whether the chosen parameters
result in a valid cycle. Therewith, together with the following
stability analysis we are able to build regions for the set of
stabilizing trajectory parameters, see Section III-E.

Fig. 9. Error mapping over one dribbling cycle.

Next, let us analyze the stability of the open-loop system.

C. Limit Cycle Stability Analysis

Obviously, the system is stable for a ball lying on the floor.
As we are only interested in the stability properties of dribbling
limit cycles we exclude this case. The analysis of regions of
attraction or stability in hybrid limit cycles is, e.g., presented in
[27] and [28]. However, the approach does not lead to a stability
criterion, which could be computed online and could therefore
be suitable for online adaptation. Moreover, the approach is
based on hybrid systems, where only the states switch at certain
switching surfaces, but the system dynamics remain unchanged.
In the present case, the ball dynamics are represented by ordi-
nary differential equations varying in the three phases. These so
called hybrid systems with logical modes are considered in [29],
where a framework for showing preasymptotic stability of an
equilibrium point is applied to this class of systems. Since this
approach also requires a high computational effort and is not
suitable for online evaluation, we develop a simpler method,
which is somehow similar to [13]. First, we suppose that we
have found parameters for a closed cycle according to Section
II. By perturbing the initial conditions of the cycle, we elabo-
rate a mapping of the error from the cycle start to its end. For
this, we use an iterative method, which idea is summarized in
Fig. 9. The desired overall mapping IV MI is constructed from
the concatenation of the partial mappings iMj .

1) Free Flight: For free flight, we define a new perturbed
initial condition

zp
BI = zBI + eI (32)

where eI = [e1I e2I ]T is the initial perturbation. Using the new
initial condition (32) for the free flight, we obtain a perturbed
state zp−

BII at the nominal floor contact time t−2 , which has the
form

zp−
BII =

[− 1
2 g(t−2 )2 + (z2BI + e2I )t−2 + z1BI + e1I

−gt−2 + z2BI + e2I

]
.

(33)

The influence of the perturbation eI on zp−
BII is linear and can

already be described by a mapping matrix I I−MI . However,
assuming small errors, our general approach implies taking a
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Fig. 10. Visualization of the linearized floor contact.

linearization around the nominal unperturbed solution

zp−
BII = zp−

BII

∣∣∣
eI =0︸ ︷︷ ︸

z−B I I

+
∂zp−

BII

∂eI

∣∣∣∣∣
eI =0︸ ︷︷ ︸

=:I I −MI

eI

︸ ︷︷ ︸
e−I I

= z−BII + e−I I . (34)

The matrix I I−MI thereby maps the error eI at t1 to the error
e−I I at t−2 and is found to be

I I−MI =
[

1 t−2
0 1

]
. (35)

2) Floor Contact: Since the nominal contact time is not the
real one anymore, we have to calculate the perturbed contact
time. As we assume small errors, the first-order approximation
of the perturbed analytic solution

zp lin

F F 1(t) =

[
zp−

2BII t + zp−
1BII

zp−
2BII

]
(36)

may be taken at the nominal contact time t−2 . The time offset
Δtp1 is then calculated by intersection with the floor

zp lin

1F F 1(Δtp1)
!= rB . (37)

The error after this small time offset Δtp1 is calculated by
the difference of the first-order approximation of the nominal
solution after floor contact zlin

F F 2(t) and the first-order approxi-

mation of the perturbed solution zp lin

F F 1(t). This yields the error
of the perturbed trajectory after the floor contact (see Fig. 10)

e+
I I = zlin

F F 2(Δtp1)− zp lin

F F 1(Δtp1)

=
[

z+
2BII Δtp1 + z+

1BII

z+
2BII

]
−

[
zp−

2BII Δtp1 + zp−
1BII

−CORzp−
2BII

]
.

(38)

We obtain for this error the linearization around e−I I = 0

e+ lin

I I = e+
I I

∣∣
e−I I =0︸ ︷︷ ︸

=0

+
∂e+

I I

∂e−I I

∣∣∣∣
e−I I =0︸ ︷︷ ︸

= I I + MI I −

e−I I
(39)

with the error mapping matrix

I I +
MII− =

[−1 0
0 COR

]
. (40)

3) Free Flight: The second free-flight phase is calculated
from the time instant of the perturbed floor contact t−2 + Δtp1 .
Therefore, we take a new initial condition for the free flight as

zp+
BII = zF F 2(t−2 + Δtp1) + e+ lin

I I . (41)

In the second free-flight phase, we get the same mapping as
for the first free-flight phase, see Section III-C1. This yields

zp
BII I = zp

BII I |e+
B I I =0︸ ︷︷ ︸

zB I I I

+
∂zp

BII I

∂e+
BII

∣∣∣∣
e+

B I I =0︸ ︷︷ ︸
=:I I I MI I +

e+ lin

I I

=: zBIII + eI I I . (42)

The transition matrix is therefore

I I I MII + =
[

1 t3 − t−2
0 1

]
. (43)

With the argument from Section III-C2, a new intersection
point of the hand trajectory with the ball trajectory needs to be
calculated. However, this case is already included in (43), as
only a negligible time increment would be added in element
{1, 2} of the matrix I I I MII + in (43).

4) Hand Contact: The approximation of the error propaga-
tion during hand contact follows the scheme already presented
for the previous phases. By inserting the perturbed initial condi-
tions zp

BII I = zBIII + eI I I from (42) at t3 into Φ11 and Φ12
in (31) we obtain the perturbed solution for the hand contact.
Then, the linearization around eI I I = 0 at t4 yields

I V MIII =

⎡
⎣ cos (cΔt)

1
c

sin (cΔt)

−c sin (cΔt) cos (cΔt)

⎤
⎦ (44)

with Δt = t4 − t3 = T − t3 and c =
√

KH /mB .
5) Total Error Propagation: Combining (35), (40), (43), and

(44), we construct the mapping of the error eIn
of cycle n to the

initial error eIn + 1 of the next cycle n + 1 by multiplication of the
error mapping matrices. This yields to the difference equation

eIn + 1 = IV MIII
I I I MII +

I I +
MII−

I I−MI︸ ︷︷ ︸
I V MI

eIn
. (45)

By analyzing whether the absolute value of the eigenvalues of
the matrix IV MI remains below 1, we can conclude the stability
of the cycle. The eigenvalues also provide an approximation of
the convergence rate of the system.
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Fig. 11. Ball trajectory (a) and energy (b) for different hand stiffnesses at constant excitation motion. (a) Dribbling cycle for the same hand trajectory with
different hand stiffnesses. (b) Energy for one cycle and different hand stiffnesses.

D. Energy-Based Analysis

Apart from achieving a stable dribbling motion the question
that hand stiffness should be used ideally in order to minimize
peak power or increase robustness of the cycle is worth to be
investigated. The last aspect is especially important for real
robots, which are generally deviating from the desired motion (in
particular for such highly dynamic motions). This is particularly
true for impedance controlled robots [15].

In order to analyze the effect of different hand stiffnesses, we
take a closer look at the system with the trajectory used later
in simulations (see Section IV-C) and varying hand stiffnesses.
In Fig. 11(a), we find the ball position for varying stiffnesses
over one cycle beginning and ending at the floor contact (after
the system has already reached a stable cycle over time). The
used hand trajectory is defined by A = 0.17 m, z0 = 0.6 m,
and T = 0.52 s.6 Obviously, increasing hand stiffness leads
to a decreasing apex height and therewith, also to a decrease
in energy level, see Fig. 11(b). As expected, the contact time
increases with decreasing stiffness. This is a significant benefit
one obtains from the elastic properties: more time to control the
robot during hand contact.7 The experimental performance of
this approach can be found in [15].

Interesting to notice is the energetic system behavior in terms
of energy flow. We therefore consider a system, which border
corresponds to the spring bearing. Hence, we obtain two energy
tanks in the system. One energy portion EB is stored in the ball,
consisting of its potential and kinetic energy. The second one
is stored in the spring as potential energy ES , see Fig. 12 (the
energy flow is also depicted). Generally, there are two energy
flows: 1) ĖBS between the two storage devices ball and spring,
and 2) WS , which is the work originating from outside the
system (i.e., the robot) and acts on the spring.

6Please note that in Fig. 11 the hand trajectory is displaced by −rB =
−0.121 m, i.e., start and end times of the hand-ball contacts are given by the
intersections of hand and ball trajectories.

7Please note that, due to the resulting large deformations, the simulated
trajectories with very small stiffnesses might not be carried out on the real
robot.

Fig. 12. Energy flow of a system consisting of a ball and a spring.

Hence, we can write the overall system energy balance as

EB (t) + ES (t)− E0 =
∫ t

t0

ẆS (t)dt = WS (t) (46)

EB (t) = mB gzB (t) +
1
2

mB żB (t)2 (47)

ES (t) =

⎧⎨
⎩

1
2

KH (z(t)− zB (t)− rB )2 , z(t) < zB (t) + rB

0, z(t) > zB (t) + rB

(48)

for calculating the work to be put into the system. E0 denotes
the initial energy already stored in the system at t = t0 .

The work WS is shown in Fig. 13(a). An interesting aspect is
that for small stiffnesses the energy flows first out of the system
before rising. This is due to the initial upwards hand motion
at the start of the hand contact [see Fig 11(a)], which extracts
potential energy from the system. Knowing the work of the
system, we may obtain the power

Ps = Ẇs (49)

that flows into the system. The power flow for the different stiff-
nesses is depicted in Fig. 13(b). It is obvious by looking at the
apexes of the curves that a stiffness with minimal power con-
sumption exists. This property is depicted in Fig. 14. Looking
at the relation between power apex and hand spring stiffness, it
is clear that an optimal hand stiffness can be selected that leads
to a minimum power consumption for a given trajectory.

E. Stability Considerations for Varying Hand Stiffness

Apart from the preceding energy and power analysis, we
investigate which hand trajectories lead to a stable periodic cycle
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Fig. 13. Work WS (a) and power PS (b) for the dribbling cycle with varying hand stiffnesses. (a) Work for one cycle and different stiffnesses. (b) Power for one
cycle and different stiffnesses.

Fig. 14. Power as a function of hand stiffness KH

Fig. 15. Areas with stable cycles for different stiffnesses.

and their relation to hand stiffness. Fig. 15 depicts the simulation
analysis results for varying A, T , and KH at constant height z0 .
The stability check for obtaining the plotted regions was done
by applying the equations for the periodic cycle of Section III-B
and the according stability analysis from Section III-C. For
higher hand stiffnesses, we generally need smaller amplitudes
and period times.

As the areas from Fig. 15 are not uniquely comparable w.r.t.
their size and position, we inscribe a circle in each region,
see Fig. 16. These circles can be interpreted as a robustness

Fig. 16. Inscribed circles of the areas with stable cycles for different stiff-
nesses.

area when considering real robotic systems, which can suffer
nonnegligible tracking and sensor errors.

Table I summarizes the aforementioned results for the given
example. It lists the position (AC and TC ) and radius rc of
the circle, the maximal robot velocity żCm a x and acceleration
z̈Cm a x (resulting from the center of the circle), and the maximal
power Pmax and force Fmax for the cycles from Fig. 11(a) in
case of different stiffnesses. Clearly, the second large benefit
of intrinsically elastic robots becomes clear: The significant
reduction of contact forces, which leads to a load reduction for
the physical robot.

Until now, the trajectory height z0 remained the same. We
examined mainly the case of dribbling at a given height. Another
interesting aspect is the dribbling at a desired ball energy level
that is related to the ball height and velocity. Fig. 17(a) shows two
ball trajectories for a cycle that starts on the same energy level
but with different stiffnesses. Clearly, we need a significantly
faster hand trajectory for the high stiffness case compared to an
elastic (compliant) robot.

In the following section, a nonlinear hybrid observer is de-
signed that enables the robot to provide stable tracking and
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TABLE I
COMPARISON

KH [N/m] AC [m] TC [s] fC [Hz] rC żC m a x [m/s] z̈C m a x [m/s2 ] Pm ax [W] Fm ax [N]

50 0.2027 0.5200 2.4040 0.0538 1.5305 11.5590 13.6918 12.7022
100 0.1715 0.4606 2.7137 0.0756 1.4617 12.4620 10.4531 11.4802
200 0.1348 0.4045 3.0905 0.0767 1.3086 12.70533 10.5489 12.8450
500 0.1474 0.4102 3.0470 0.0805 1.4113 13.5093 12.9995 17.0401
1000 0.1045 0.3574 3.4972 0.0650 1.1485 12.6185 16.5415 22.2808
5000 0.0583 0.3200 3.9066 0.0296 0.7153 8.7794 32.9895 44.7021

Fig. 17. Dribbling at the same energy level with two different hand stiffnesses. (a) Shows the position of hand and ball. (b) Depicts the energy trajectory for both
systems.

prediction of the ball trajectory with contact force information
only and does not require additional visual information. Fur-
thermore, we outline how to control the ball with this additional
information for achieving a robust dribbling cycle.

IV. BALL OBSERVER AND REFERENCE CONTROL

As outlined in the previous section, intrinsically stable drib-
bling cycles are achievable. However, in reality possibly signifi-
cant process uncertainties may lead to their deterioration easily.
Thus, reliable estimation of the ball state by suitable observers
also during the free-flight phase is required allowing a practical
predictive control law that compensates for these uncertainties
actively.

A. Ball Observer for the 1-DoF Model

In order to solve the aforementioned problem of tracking
the ball trajectory with proprioceptive sensing only, we use a
nonlinear observer. For this observer scheme, we then provide
a stability proof over the full cycle, for which we assume that
the ball is initially in contact with the elasticity (otherwise the
system is not maintaining a stable cycle and no measurement
would be available).

Since we are only measuring the forces acting during the
contact phase, we lack a continuous measurement. Hence, we
require an observer that converges in finite time during the
contact phase. A sliding mode observer is proposed in [30]
that satisfies our requirement. Given a general autonomous

nonlinear system of the form

ẋ = f(x), x ∈ Rn

y = h(x), y ∈ R. (50)

In (50), u (the input) is dropped for simplicity. The observer for
such a system is defined as

˙̂x =
(

∂H(x̂)
∂x

)−1

M(x̂)sgn(V (t)−H(x̂)) (51)

with

H(x) = [h(x) Lfh(x) . . . Ln−1
f h(x)]T

M(x̂) = diag(m1(x̂) . . . mn (x̂))

V (t) = [v1(t) . . . vn (t)]T . (52)

The coefficients vi result from the available measurement and
are defined as

v1 = y(t)

vi+1 = mi(x̂)sgn(vi(t)− hi(x̂)), i = 1(1)n− 1. (53)

Drakunov [30] provides a proof that the observer converges
for bounded errors in finite time depending on the gain matrix
M(x̂). With the force acting on the robot hand, its position and
the known spring stiffness of the hand we calculate the ball
position and obtain the quantity yB that acts as the observer
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Fig. 18. Directed graph of the ball observer.

input

yB (t) =
F

KH
− rB + z(t) (54)

with F being the measured force. Therewith, the observer equa-
tion during hand contact is

˙̂zB = f 2(ẑB , t) +
(

∂H(ẑB )
∂ẑB

)−1

M(ẑB )sgn(V (t)−H(ẑB ))

(55)
where f i(ẑB , t), (i = 2) is the system function of the ball dy-
namics during the respective phase (here hand contact). For the
ball being in the free-flight phase, we use a prediction step based
on the model equations shown in Fig. 3. The overall hybrid ob-
server structure, represented as a directed graph is depicted in
Fig. 18.

In Section IV-B, we give a stability analysis of the hybrid
observer for the entire dribbling cycle based on the Lyapunov
stability definition (up to now only the convergence during con-
tact phase is available).

B. Stability Proof for the 1-DoF Observer

As the sliding mode observer provides convergence for
bounded errors in finite time depending on the chosen gain
matrix, there is no general need for a stability proof. However,
as the observer converges with a constant slope, it needs to be
proven that during the unobserved part the observer remains
within a bounded region.

For this we consider the typical ε, δ definition of Lyapunov
stability that can be found in every standard nonlinear control
textbook (e.g., [31]).

Definition 1 (Lyapunov stability cf., [31]). The equilibrium
point x = 0 of (50) is

1) stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε ∀ t ≥ 0. (56)

In the following, we analyze only the time before hand
contact, as the sliding mode observer itself is stable. The
idea is to show the boundedness of the error mapping during

noncontact phase. For this we construct the ε, δ bounds that
directly represent definition 1.

As we treat a linear system only, we may refer to the analy-
sis from Section III-C1 to Section III-C3 for the evaluation of
observer error dynamics. First, we obtain a mapping from the
initial error (ball leaves hand contact) to the error at the start of
the next hand contact by calculating

eI I I = I I I MII +
I I +

MII−
I I−MI︸ ︷︷ ︸

I I I MI

eI . (57)

This results in

I I I MI =
[−1 −COR t3

0 −COR

]
. (58)

Our interest in (58) is the mapping of balls at t3 (beginning
of next hand contact) defined as

BIII = {eI I I ∈ R2 | ||eI I I ||2 < ε} (59)

back to t1 (ball leaves previous hand contact). Let us analyze
the mapping of the border of BIII to t1 by building the scalar
product of eI I I with itself, defining that BIII is the border of
eI I I . This yields to

eT
I I I eI I I = eT

I
I I I MT

I
I I I MI eI = ε2

⇔ eT
I

[
1 COR t3

COR t3 COR2(1 + t23)

]
eI = ε2 . (60)

Equation (60) corresponds to a quadric that can be trans-
formed by a main axis transformation to an ellipse EI of the
form

eT
I

⎡
⎢⎢⎣

1
ε2a2

1(COR, t3)
0

0
1

ε2a2
2(COR, t3)

⎤
⎥⎥⎦ eI = 1 (61)

where εa1 and εa2 are the lengths of the semiaxes of the ellipse.
Without loss of generality let εa1 denote the smaller semiaxis.
Therewith, we can define a ball at t1 with

BI = {eI ∈ R2 | ||eI ||2 < εa1} (62)

which is a region at t1 . By mapping this circle back to t3 via
I MIII , we construct an ellipse that lies inside BIII . This curve
has two contact points at the major semiaxis. By taking the open
set from BIII as ε and the open set from BI as δ we get the
function

δ(ε) = εa1 . (63)

This approach is valid, as the region of the open set for BI is
a subset of the obtained ellipse from the first mapping of BIII .
Furthermore, the open set resulting from the mapping from BI

forward is also a subset of BIII . Therefore, the system is stable.
Fig. 19 illustrates this approach. The left image shows the

region of the circle BIII . For the given example, we choose
ε = 1. By mapping this region forward via I I I MI , we obtain
the black ellipse EI (middle plot). The blue and red circle BI is
the inscribed circle of the ellipse and represents δ. By mapping
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Fig. 19. ε and δ regions for the proposed observer.

Fig. 20. Position and velocity for a sample dribbling simulation.

this via I MIII , we obtain the red and blue ellipse (right plot).
Finally, the downwards hatched, blue region lies completely in
the black circle, which represents ε.

C. Simulation Results for 1-DoF Case

A sample simulation is shown in Fig. 20. The black line
depicts the hand trajectory z, which is shifted by an offset−rB .
For t ≤ 0.5 s, we simply use a fifth-order polynomial to reach
the stimulating trajectory (23). The blue curve depicts the ball
motion zB . It starts for t > 0.5 s. From the apex heights it
becomes clear that the ball stabilizes its height after some cycles.
The dashed red plot denotes the ball observer position ẑB . Its
initial position is set to the ball position, while its velocity has
a significantly larger value than the true ball velocity. Despite
this large initial discrepancy, it can be seen that the observer
converges during the first contact phase and subsequently tracks
the ball accurately. Next, the ball observer is extended to track
a ball in full task dimensionality.

D. Ball Observer for the 6-DoF Model

As shown already, a sliding mode observer can be used for
the estimation of the vertical ball motion. The other translations
xB and yB can be observed with the help of a similar scheme.
As for the 1-DoF problem the sliding mode observer [30] is
responsible during hand contact and a model-based prediction
covers the remaining noncontact phase. The observer input is
the ball position obtained from measured wrenches in the wrist
frame only (end-effector frame). Since we assume negligible

contact moments, we can use the principle of solidification for
calculating the ball position, i.e., there has to be a straight line on
which only forces but no moments are acting [32]. This straight
line is the set of all points EE rS (λ), with λ being the curve
parameter, where EE F ext may act in order to lead to EE M ext
at the sensor. Consequently, all position vectors EE rS (λ) are
valid lever arms that can be found by solving

EE M ext =EE rS (λ)×EE F ext (64)

for EE rS (λ), with λ being the curve parameter of the straight
line. Therewith, the contact point EE rC between ball and hand
is obtained from the intersection of EE rS (λ) with the finger
plane EE x = −δx . With EE rC and (17) we obtain the stiffness
at the point of contact. Hence, with the direction of the straight
line, which is given by EE F ext itself, we get the ball position
as

EE rB =EE rC +
EE F ext

|EE F ext |
(
−rB +

|EE F ext |
K(EE rC ,E, Iy )

)
.

(65)
Equation (65) takes the ball radius rB and the spring bending

into account. As the sliding mode observer tends to scattering,
we filter the observed ball position with a third-order delay
element prior to using it in the feedback loop (see Section IV-E).
Therewith, we get a reference that is three-times continuously
differentiable, i.e., only jerk scatters.

The required contact force EE F ext is measured by a force
sensor. However, the sensor signal contains not only contact
forces, but also high-frequency noise, disturbances due to the
oscillations of the intrinsically compliant fingers and most no-
tably gravity and inertial effects of the load that are seen by
the sensor while performing the dribbling motion. Therefore,
we need to compensate the most significant effects for reliably
estimating the contact point of the ball. In order to eliminate
the high-frequency noise, we simply filter the raw signal with
a second-order delay element. Finger oscillations have small
amplitude and the associated frequency is very close to the fre-
quency spectrum of the contact force. Thus, we neglect this
effect. Because the desired dribbling motion demands very high
acceleration, inertial forces due to the load mass are the most
significant disturbance. Since acceleration cannot be obtained
from currently available position sensors via twice numerical
differentiation, an appropriate method to observe the operational
space acceleration of the robot flange is required.

For this, the nonlinear disturbance observer from [33], which
is defined as

ˆ̈q = M̂−1(q)(τ − n̂(q, q̇)−KO (ˆ̇q − q̇)) (66)

is extended. In this observer, ˆ̇q denotes the observed joint ve-
locity, n̂(q, q̇) = Ĉ(q, q̇)q̇ + ĝ(q), KO = diag{koi > 0}, i =
1, ..., n is the observer gain matrix and {M̂(q), Ĉ(q, q̇), ĝ(q)}
are the estimated robot dynamics including the load of the end-
effector. The torque τ denotes the motor joint torque in case
of rigid dynamics and the elastic joint torque τ J in the flexible
joint case. With this, an observation ˆ̈q of q̈ that relies on the mea-
surement of joint position and velocity, as well as joint torque
only is obtained. The dashed upper frame in Fig. 21 depicts the
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Fig. 21. Extended velocity disturbance observer.

according signal flow diagram. Note that the estimated external
torque τ̂ ext [see (83)], is already shown as a compensator for
the unknown disturbance τ ext . This compensation is not yet
considered in the subsequent analysis of the observer dynamics
and stability. Its benefit for the acceleration estimation is shown
in Fig. 23.

The observer error e and its dynamics are given by

e : = ˆ̇q − q̇ (67)

ė = M̂−1(q)(τ − n̂(q, q̇)−KO (ˆ̇q − q̇))

−M−1(q)(τ − n(q, q̇) + τ ext). (68)

Under ideal conditions [M̂(q) = M(q), n̂(q, q̇) = n(q, q̇)],
the error dynamics become

ė = −M−1(q)KO e−M−1(q)τ ext (69)

K−1
O M(q)ė + e = −K−1

O τ ext (70)

where −M−1(q)KO is the time-varying system matrix. Since
the inertia matrix M(q) has an upper and lower bound for revo-
lute joints only, e.g., [34], its inverse −M−1(q) and, therefore,
also −M−1(q)KO are bounded. From the static disturbance
gain matrix K−1

O one can conclude that the influence of τ ext
can be reduced with increasing observer gain.

Fig. 22. Normalized observer error ˜̈q∗3 for the acceleration in axis 3 in
relation to its maximal absolute value (denoted by ∗); external wrench
E E F ext = (20 N, 10 N, 0, 0, 0, 0)T for 10 ≤ t ≤ 30 ms, kO ,i = 50 s−1 ,
q01 = (0, 0, 0, 0, 0, 0, 0)T rad and q02 = (0, 1.3, 0, 1.3, 0, 1, 0)T rad.

The stability of the observer error can be proven by a linear
transform of e

ē : = K
1
2
O e ⇔ e = K

− 1
2

O ē (71)

˙̄e = K
1
2
O ė = −K

1
2
O M−1(q)KO e−K

1
2
O M−1(q)τ ext (72)

= −K
1
2
O M−1(q)K

1
2
O ē−K

1
2
O M−1(q)τ ext (73)

with K
1
2
O = diag

{√
kO,i > 0

}
being nonsingular and symmet-

ric. Since M(q) and M−1(q) are symmetric and positive def-

inite, it follows from [35, Th. C.4] that K
1
2
O M−1(q)K

1
2
O is

also symmetric and positive definite. The Lyapunov function
V = ēT Qē with a symmetric, positive matrix Q, τ ext = 0, and

Ā = ĀT = −K
1
2
O M−1(q)K

1
2
O results in

V̇ = ˙̄eT Qē + ēT Q ˙̄e = ēT
(
ĀT Q + QĀ

)
ē. (74)

Selecting Q to be the identity matrix, the remaining system
matrix

ĀT + Ā = 2Ā = −2K
1
2
O M−1K

1
2
O (75)

of the observer error dynamics is negative definite and the ob-
server error is asymptotically stable.

The influence of M(q) on e is demonstrated by the following
exemplary simulation. Fig. 22 depicts the results for the accel-
eration error ˜̈q∗3 in axis 3 of the LWR (normalized with respect
to its absolute maximum) with observer gains kO,i = 5 and
the presence of unknown external torques caused by EE F ext =
(20 N, 10 N, 0, 0, 0, 0)T for 10 ms ≤ t ≤ 30 ms. The observer
dynamics are affected by M(q) resulting in a configuration
depending and, thus, more difficult tuning of the observer dy-
namics. The plot depicts the results for initial conditions q01 =
(0, 0, 0, 0, 0, 0, 0) rad and q02 = (0, 1.3, 0, 1.3, 0, 1, 0) rad.
The current configuration significantly influences the observer
dynamics. Moreover, although M−1(q) is bounded, some of its
components may reach rather high values, thus acting as ob-
server gains, possibly causing numerical problems. However,
for the subsequent experiments the results are satisfactory and
led to good performance.

With the observed joint accelerations ˆ̈q, one may now easily
obtain the Cartesian accelerations and, consequently, also the
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wrenches due to load accelerations via the well-known relation

ˆ̈x = J̇ ˆ̇q + J ˆ̈q. (76)

In order to reconstruct the contact wrench due to ball contact,
a wrist force/torque sensor can be used. However, this sensor
does not only measure the contact wrench but also inertial and
gravity effects of the robot parts attached to the force sensor,
including the end-effector. Consequently, the sensor measures
the wrench

SFmeas =SF ext +SF load + SF g (77)

=SREE
EE F ext + S F load + S F g︸ ︷︷ ︸

S F l o a d , g

(78)

which is expressed in the sensor frame {S}. The rotation
S REE ∈ R6×6 transforms a wrench expressed in {EE} frame
into the {S} frame. For the desired estimation of EE F ext , the
load and gravitational effects obtaining S F load,g have to be
compensated, leading to the estimation

EE F̂ ext =EERS

(
S Fmeas − S F̂ load,g

)
(79)

of the contact wrench with

S F̂ load,g =SF̂ load(ˆ̈x) + S F̂ g (q) (80)

= I∗EE
ˆ̈x +

(
m∗EE

S R0(q) 0g

xS,EE ×m∗EE
S R0(q) 0g

)
. (81)

In (81), I∗EE and m∗EE denote the inertia and mass effectively
acting at the force/torque sensor. These are slightly different
compared to the inertia IEE and mass mEE of the end-effector
since parts of the sensor and its housing are also included in I∗EE

and m∗EE . The gravity vector 0g expressed in the base frame {0}
is transformed into the sensor frame by the matrix S R0(q). The
constant translation vector from the sensor to the end-effector
is denoted by xS,EE and is expressed in the sensor frame. The
lower dashed box in Fig. 21 shows the resulting block diagram
of the external force estimation.

In addition to the contact wrench EE F ext itself, its impact
on the robot in form of the disturbance τ ext can now be esti-
mated and compensated in the acceleration observer in order to
improve its accuracy. The torque τ ext is generally caused by
contacts at the end-effector τ ext,EE and along the links of the
robot τ ext,link , i.e.,

τ ext = τ ext,link + τ ext,EE . (82)

Unintended collisions with the robot along its structure are not
considered, i.e., τ ext,link = 0 and finally

τ̂ ext = JT EE F̂ ext . (83)

Note that model uncertainties related to the end-effector are also
included in the estimated external torque τ ext . The estimation of
τ ext is based on measurements but also on S F̂ load,g , which in
turn depends on the observer outputs ˆ̈q and ˆ̇q. Therefore, feeding
τ̂ ext back into the observer for compensation changes the dy-
namics of the observer and the stability proof shown above for
the observer without compensation does not hold any longer.

Fig. 23. Observer error for the acceleration in axes 2, 3, and 4 (top left
and right) and estimation of external forces (bottom left and right) for
E E F ext = (20, 10, 0, 0, 0, 0)T N for 10 ≤ t ≤ 30 ms, kO ,i = 50 and
q0 = (0, 1.3, 0, 1.3, 0, 1, 0)T rad.

However, assuming a sufficient accurate model, the resulting
precise estimation of S F̂ load,g is compensated by S F load,g in
(79), which is the related part in the measured quantity. The im-
pact of the additional observer feedback via τ̂ ext might, there-
fore, be neglected compared to the nominal feedback KO . This
is confirmed by experimental results and simulations, where the
observer with τ̂ ext compensation remains stable.

The performance of the wrench estimation together with the
compensation of external torques was verified by means of sim-
ulation. Fig. 23 depicts simulation results for an external wrench
of EE F ext = (20, 10, 0, 0, 0, 0)T N for 10 ≤ t ≤ 30 ms. The
effect of the resulting unknown external torques can be seen in
the estimation errors for the acceleration and the external wrench
(left subfigures). However, compensating the external torque by
its estimation τ̂ ext considerably improves the estimation results
(right subfigures). The force/torque sensor at the end-effector is
modeled by a first-order delay with a bandwidth of 500 Hz.

In summary, the observer presented in this section allows
to estimate the external contact wrench EE F ext from the ball,
which is required for the 6-Dof reference control described in
Section IV-E.

E. 6-Dof Reference Control

In general, we intend to stabilize the ball at a steady point
xBC d e s

(in fact at a projection on the horizontal plane). For the
vertical motion, we refer to the scheme from Section III-C

z(t) =

⎧⎪⎪⎨
⎪⎪⎩

A sin
(

5π

4T
t

)
+ z0 , for t ∈

[
0;

4
5
T

]

−1
4
A sin

(
5π

T
t

)
+ z0 , for t ∈

]
4
5
T ;T

[
.

(84)

Now, we incorporate also the horizontal ball motion. For stabi-
lizing the lateral motion the hand needs to follow the observed
ball position from Section IV-D. Since we want to control the
ball in cylindrical coordinates (see Fig. 4), the resulting desired
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Fig. 24. Overall dribbling controller consists of the trajectory generator, the
ball observer and the wrench filter. The trajectory generator takes into account
the ball estimation coming from the ball observer, which is purely generated
from interaction force measurement.

position of the robot hand following the ball is⎡
⎣ xdes

ydes
ϕdes

⎤
⎦ =

⎡
⎣−(dB −ΔH ) sin(ϕB )

(dB −ΔH ) cos(ϕB )
ϕB

⎤
⎦ (85)

with ΔH being an offset from the {EE} coordinate system to
the middle of the finger. For attracting the ball to its desired
horizontal position xBC d e s

, we use a simple PID control for the
two remaining hand rotations β and γ

βdes = KP β (dBd e s − dB ) + KDγ (ϕ̇Bd e s − ϕ̇B )

+ KIβ

∫ t

0
(dBd e s − dB )dτ (86)

γdes = KP γ (ϕBd e s − ϕB ) + KDγ (ϕ̇Bd e s − ϕ̇B )

+ KIγ

∫ t

0
(ϕBd e s − ϕB )dτ (87)

with K{P ID},{βγ} being the respective gains for the PID control.
The overall structure of the closed-loop system is shown in

Fig. 24. A, z0 , and T are specified by the user for the given pa-
rameters of the z-axis trajectory. G denotes the robot ball model.
Its measured outputs are the contact force wrench EE F ext and
the robot position x. EE F ext is filtered in ΣFil . This filtered
signal EE FFil is fed to the observer ΣObs in order to construct
the position estimate x̂B , which is then used in the control laws
given by (86) and (87).

In order to prepare future experiments with intrinsically elas-
tic systems such as the DLR hand-arm system, we decided
to interface the LWR-III from the trajectory generation side via
Cartesian impedance control. This can be considered as the clos-
est approximation of a full passively compliant system that can
be realized with the LWR-III. Therefore, we shortly summarize
the main characteristics of the used scheme.

F. Cartesian Impedance Controller

Based on the elastic joint model described in Section II-B4
following controller structure8 is used for controlling the full
robot dynamics simulation and the real robot. It enables high-
performance Cartesian impedance control at a rate of 1 kHz with

8Please note that this is a simplified view on the structure, which was chosen
for better understanding.

velocity feedforward. The closed-form solution of the overall
scheme can be written as

u = −J(q̄)T (Kx x̃(q̄) + Dx
˙̃x(q̄)) + ḡ(θ) (88)

where u is a new control input (instead of motor torque) for a
lower level full state feedback controller that is however omitted
for brevity (incorporation of motor position, joint torque, and
their respective derivatives) [36]. The impedance controller is
designed with Kx,Dx ∈ Rm×m , which are the diagonal posi-
tive definite desired stiffness and damping matrices. xd ∈ Rm is
the desired tip position in Cartesian coordinates, which is com-
manded via the control law described in the previous subsection
and x̃(q̄) = x(q̄)− xd . x(q̄) = T (q̄) is the forward kinematics
map. q̄ = h−1(θ) is the static equivalent of q. The gravity com-
pensation term ḡ(θ) is a function of the motor position and is
designed in such a way, that it provides exact gravity compensa-
tion in static case. In the simulation and experiments, we selected
Kx to be Kx = diag{1500 1500 1500 200 200 200} (transla-
tional stiffness in N/m and rotational stiffness in Nm/rad).

Note that the effective stiffness resulting from the hand to-
gether with the robot arm might be dynamically adapted in order
to move the stiffness depending stability areas (see Figs. 15 and
16) over the desired operating point. When, e.g., reducing the
amplitude A and the cycle time T during dribbling, it is advis-
able to increase the stiffness in order to keep the operating point
(A, T ) within the stability areas or even within the inscribed
circles.

V. SIMULATIONS AND EXPERIMENTS

In this section, we show simulation results for the proposed
model and observer, as well as provide a human dribbling
analysis. Before going into the details of our robot dribbling
simulations and experimental results, we analyze dribbling
measurements obtained via passive marker tracking of a semipro
human basketball player. Our theoretical dribbling model is
used to analyze this human manipulation skills. The resulting
dribbling parameters of our presented methods are fitted to the
real dribbling motions showing good consistency. Subsequently,
a stability analysis of the real human motions is presented.

A. Human Dribbling Measurement

For capturing human dribbling, the position and velocity were
obtained with a Vicon passive marker tracking system. The
system consists of eight cameras running at 180 Hz and several
markers on the human arm and ball ensured the observability
over the full cycle. Overall, it can be seen that the curves from
Section IV-C and the human measurement look qualitatively the
same.9

Fig. 25 (left and center) depicts the locations of the tracked
markers that were attached to the arm, hand, and ball. The
markers of the ball were placed such that both, its position and
orientation could be extracted despite occlusion during hand
contact. Fig. 25 (right) depicts a visualization of a tracked pose

9Please note that the offset is not subtracted, as for human measurement it is
not exactly known.
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Fig. 25. Setup and marker positions for the human dribbling experiments (left
and center), sample data of a tracked pose visualized in ViconIQ (right).

Fig. 26. Dribbling position and velocity of a semipro human player, begin
and end of contact phases are indicated by vertical dashed lines.

including the human hand and the ball. In Fig. 26 some sample
cycles of the measured position (upper) and velocity (lower)
for the ball and three hand markers are shown. Interesting to
notice is that besides the vertical motion the hand also performs
a rotation around the radial axes of the hand which can be
observed from the velocity plot (Fig. 26, lower), where the wrist
and knuckle of the middle finger stop accelerating at the end of
the hand contact. Then, the fingertip guides the ball and injects
the most significant amount of energy into it.

The above mentioned wrist rotation is also visible in Fig. 27,
where the arm motion is shown along the time axis. The indi-
cated points from top to bottom are the shoulder, elbow, wrist,
knuckle of the middle finger, and tip of the middle finger. It is
clear that the two lowest lines, which represent the palm and the
finger, are rotating.

B. Human Dribbling Analysis

The captured data is used to analyze the human dribbling
with the framework presented in this paper. Directly using the
measured human hand motion for fitting the model parameters
KH and z0 of the hand trajectory (23) would lead to a similar
hand trajectory but not necessarily to a suitable dribbling cycle
of the ball. Instead, the model parameters were optimized based
on the dynamical model (2) of the ball from hand contact until
next ground contact for minimizing the integrated squared er-

Fig. 27. Tracked arm/hand configuration for human dribbling of a semipro
human player.

TABLE II
OPTIMAL PARAMETERS OF THE HAND TRAJECTORY (23) AND BALL

DYNAMICS (2)

Fitted param. KH z0 A t0 p E{e2}

KH , z0 , 42 0.707 0.287 0.000 0.800 7.0e−04
KH , z0 , t0 , p 77 0.790 0.267 0.123 0.601 2.8e−04
Lower bound 0 0.200 — −0.600 0.050
Upper bound 1000 1.600 — 0.600 0.950

ror between simulated and measured ball motion. This ensures
best possible ball motions given a certain trajectory form. As
depicted in Fig. 11(a), the hand trajectory z(t) starts at each
ground contact of the ball, where the time is reset to t = 0. The
amplitude A of the hand trajectory is not independently tunable,
since it is derived from z0 in order to guarantee that the hand
gets contact to the ball at the beginning of the model contact se-
quence. The time T for the mean of a complete cycle is defined
by the experiment itself and was therefore not fitted either.

The fitting was carried out with the following two different
approaches.

1) The time shifting and relation of the sine half-waves was
kept fixed to t0 = 0 and p = 4/5.

2) The time shifting and the relation of the sine half-waves
are subject to the fitting procedure, i.e., p �= 4/5 and
t0 �= 0.

The model parameters were fitted by minimizing the squared
error sum between ẑ1B and z1B using Octave’s sqp function
with the default tolerance 1.5e−8 and the constraints, as shown
in Table II. The optimal parameters and the related mean squared
error E{e2} (per datapoint) are listed in Table II.

Fig. 28 depicts results from the first fitting approach (first row
in Table II). It shows the simulated (ẑ1B ) and measured (z1B )
ball position during the fitted contact and postcontact interval
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Fig. 28. Measured ball position z1B during the three phases from hand contact
until next ground contact (Fig. 26) and simulated ball position ẑ1B where the
parameters KH and z0 are fitted over all shown phases via minimizing the
squared error between ball dynamics (2) together with hand trajectory (23) and
measurements.

as well as the resulting hand trajectory over the full measured
cycle for each of the three analyzed phases.

The ball trajectory is fitted rather well, especially immedi-
ately before the next ground contact, which is important for a
correct ball trajectory in the upwards phase before the next hand
contact. The observed human dribbling can, thus, be modeled
very well with the hand trajectory (23) together with a stiffness
KH = 42 N/m. However, KH is estimated much lower than the
expected value of KH > 200 N/m. A possible explanation of
this effect is, that a human declines the wrist at the beginning of
the hand contact leading to a smaller stiffness. As shown in Sec-
tion I, Table I, a small stiffness around KH ≈ 50 . . . 100 N/m
results in a small required maximal power Pmax and force Fmax .
From this, a possible explanation might be that a human adapts
the resulting hand stiffness toward lower values by declining the
wrist in order to reduce maximal power and force.

Comparing the measured hand trajectories in Fig. 26 with the
hand trajectory (23) leads to the conclusion that a fixed relation
p = 4/5 between the slow and fast sine half-wave without time
shift t0 might be a too restrictive assumption. Letting also p and
t0 free leads to even better results, see Fig. 29 and the second
row of Table II. On the one hand, the error between measured
and simulated ball trajectories is smaller. On the other hand,
the parameter optimization leads to a more realistic stiffness
KH = 77 N/m.

The resulting areas of stable dribbling cycles (ref. Section III)
for the optimized parameter sets in both approaches are shown
in Fig. 30. With p = 4

5 and t0 = 0 the resulting combination
of T and A lies within the stable area but rather close to its
upper bound. When also fitting the parameters p and t0 of the
hand trajectory, the resulting parameter combination for T and
A provides a significantly larger stability margin.

The hand trajectory z(t) with optimized parameters z0 , t0 , and
p is compared to the real human hand movement, see Fig. 31.
The proposed model reasonably explains the measured finger tip
trajectory. Differences may have multiple causes. For example,

Fig. 29. Measured ball position z1B during the three phases from hand contact
until next ground contact (see Fig. 26) and simulated ball position ẑ1B where
the parameters KH and z0 together with the time shift t0 and the relation p are
fitted in order to minimize the squared error between ball dynamics (2) together
with hand trajectory (23) and measurements.

Fig. 30. Operating point and stability regions for the two approaches. Left:
only KH and z0 are optimized with fixed relation p of the two sine half-waves
and time shift t0 right: p and t0 are also optimized.

Fig. 31. Measured human hand position (wrist and tips, marker offset cor-
rected) compared to hand trajectory with optimized parameters (t0 , p also
fitted), begin and end of contact phases are indicated by vertical dashed lines.

the human hand pitching for achieving the required amplitude
is not yet considered. Still, note that the ball motions that result
from these different hand movements are almost identical.

In summary, the following can be concluded from the analyses
above.

1) Our modeling framework also allows us to model human
dribbling cycles with rather high accuracy.

2) The hand stiffness KH is found to be lower than expected
by our rather simple model. We conclude that the effective
stiffness in humans is reduced by declining the wrist at
the beginning of the hand-ball contact for reducing peak
power and force.
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Fig. 32. Position for a simulation with a 3-DoF ball. The upper plot shows
the distal coordinate, while the lower one depicts the actual dribbling motion.

3) A fixed relation p = 4/5 of the two sine half-waves of
the hand trajectory without time shift t0 is too restrictive
for explaining human dribbling. Optimizing these two
parameters further improves the fitting results and leads
to a larger stability margin of the dribbling cycles.

4) The framework might be used in future research works for
evaluating and optimizing human dribbling with respect
to stability as well as required peak force and power.

Next, we analyze the multi-DoF robot dribbling cases. The
simulation results shown in Section V-C are planar, i.e., the ball
has 3 DoF. The robot is modeled as a velocity source on which
the elastic finger is mounted. Basically, we lock the adaptation
of the translation in x-direction and the rotations about the y-
and z-axis in the model from Section II.

C. Simulation With a 3 DoF Ball in 2−D Space

For this first simulation, we assume the robot to be a po-
sition/velocity source (i.e., ideal dynamic trajectory tracking).
In all simulations and experiments, we use following material
parameters of the robot hand (see Fig. 5) for calculating the
reflected contact stiffness: E = 210000 N/mm2 , Iy = bh3/12,
b = 30 mm, and h = 1 mm. Fig. 32 depicts the resulting ball,
observer, and hand motion. In the upper plot the lateral posi-
tion is shown. The steady-state point of the ball is located at
dB = 0. The hand is expressed in {EE}, which leads to the
shift of the hand with respect to the ball (finger length). Clearly,
the ball stabilizes at the desired position. In the lower plot, the
vertical position is depicted. In this direction, we obtain a stable
cycle for the ball motion. Furthermore, we see that the observer
converges within two cycles toward the true ball trajectory.

D. Simulation With a 6-DoF Ball in 3−D Space

The simulation results presented now are done with the full
dynamic model of the LWR-III (see Section II-B4) that is con-
trolled via Cartesian impedance control (see Section IV-F).

Fig. 33 again depicts the ball and hand position expressed in
{W} for a regulation dribbling task, however, this time for a full
simulation of robot and impedance controller. Please note that
the same y-axis offset as for the 3-DoF simulation is present. As

Fig. 33. Relevant ball coordinates for a full dynamic simulation (robot mod-
eled as a flexible joint robot, full-state feedback controller for the motor and
overlaid Cartesian impedance controller) with a 6-DoF ball.

Fig. 34. Contact forces for a full dynamic simulation (robot modeled as a
flexible joint robot, full-state feedback controller for the motor, and overlaid
Cartesian impedance controller) with a 6-DoF ball.

Fig. 35. Relevant ball coordinates for a tracking dribbling simulation (online
setpoint adjustment) with a 6-DoF ball.

one can see the motion converges quickly to the desired stable
dribbling cycle in all three axes. Fig. 34 shows the contact forces
expressed in {EE}. The maximal contact force is≈ 20 N along
the x-axis. The forces in the z-axis are caused by the friction of
the ball.

Fig. 35 shows that it is also possible to vary the lateral set-
point and desired distal point online, i.e., with the designed
controller the robot is able to follow a desired dribbling trajec-
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Fig. 36. Snapshots from basketball dribbling with the LWR-III that is equipped with an elastic hand.

Fig. 37. Distal coordinate dB and rotation ϕB measured for a the LWR-III
dribbling experiment.

Fig. 38. Force E E F at the end-effector during the experiment.

tory [dB (t), ϕB (t)] without destabilization. The possible online
adjustment of dribbling frequency, dribbling height, and am-
plitude is not shown for brevity. However, this can be viewed
in the video. In the depicted simulation, the robot performs a
simultaneous rotation of 45o and distal motion of 7 cm. Clearly,
the dribbling cycle is maintained.

The experimental validation with the LWR-III that is
equipped with an elastic hand is described next.

E. 6-DoF Experiments With LWR-III

Fig. 36 shows an image series of successful elastic dribbling
with a LWR-III. The utilization of the elastic fingers can be
clearly observed. A sample measurement is depicted in Figs. 37
and 38. In Fig. 37, the ball position in cylindrical coordinates dB

and ϕB is shown. In Fig. 38, we find the disturbance compen-
sated end-effector forces. The maximal force in the upper plot
is in a similar range as for the 6-DoF simulation, see Fig. 34.
Furthermore, the finger oscillations can be observed mainly in
x-direction of {EE}. Overall, the robot is able to stabilize the
motion of the ball.

VI. CONCLUSION

In this paper, we developed a theoretical foundation for blind
dribbling with an intrinsically elastic robot. We show the stabil-
ity of a limit cycle with a perturbation approach and the cycle
stability for a finite-time convergence sliding mode observer.
This scheme is suitable to observe the ball motion even for the
partially observable cycle with force sensing only, i.e., no vision
information is necessary for our approach, though it could be
easily integrated. Based on this conceptual design, we derived
significant beneficial effects of intrinsic elasticity in terms of
required peak power, impact force, and robustness compared to
stiff actuation.

In order to support the theoretical contribution, we extend
the results to stable dribbling with an intrinsically compli-
ant robot. Based on force sensing together with an accelera-
tion observer and associated “haptic” ball observation only, we
were able to reactively adjust the robot motion such that sys-
tem errors (ball, robot, and sensing uncertainties) can be coped
with. The robustness of the proposed method, which incorpo-
rates intrinsic contact compliance and resulting energy trans-
fers, shows the large benefit one can gain from intrinsically
compliant actuation in terms of cycle stability, robustness, and
manipulability.

Finally, the proposed framework was applied to captured
data from human dribbling. As a result, the dribbling cycles of
humans could be accurately described and analyzed by our pro-
posed models.
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