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COP-SLAM: Closed-Form Online Pose-Chain
Optimization for Visual SLAM
Gijs Dubbelman, Member, IEEE, and Brett Browning, Member, IEEE

Abstract—In this paper, we analyze and extend the recently pro-
posed closed-form online pose-chain simultaneous localization and
mapping (SLAM) algorithm. Pose-chains are a specific type of ex-
tremely sparse pose-graphs and a product of contemporary SLAM
front-ends, which perform accurate visual odometry and reliable
appearance-based loop detection. They are relevant for challeng-
ing robotic applications in large-scale 3-D environments for which
frequent loop detection is not desired or not possible. Closed-form
online pose-chain SLAM efficiently and accurately optimizes pose-
chains by exploiting their Lie group structure. The convergence
and optimality properties of this solution are discussed in detail
and are compared against state-of-the-art iterative methods. We
also provide a novel solution space, that of similarity transforms,
which has not been considered earlier for the proposed algorithm.
This allows for closed-form optimization of pose-chains that ex-
hibit scale drift, which is important to monocular SLAM systems.
On the basis of extensive experiments, specifically targeting 3-D
pose-chains and using a total of 60 km of challenging binocular
and monocular data, it is shown that the accuracy obtained by
closed-form online pose-chain SLAM is comparable with that of
state-of-the-art iterative methods, while the time it needs to com-
pute its solution is orders of magnitudes lower. This novel SLAM
technique thereby is relevant to a broad range of robotic applica-
tions and computational platforms.

Index Terms—Computer vision, pose-graph optimization, simul-
taneous localization and mapping (SLAM).

I. INTRODUCTION

W E focus on the challenge of simultaneous localization
and mapping (SLAM) [1] solely on the basis of visual

sensors and both analyze and extend a recently proposed solu-
tion called closed-form online pose-chain SLAM (COP-SLAM)
[2]. Improving on current SLAM solutions is relevant to many
contemporary and future robotic applications such as intelligent
vehicles, autonomous inspection and surveying platforms, as
well as supportive healthcare and domestic robots. The current
consensus [3] is to use filter-based solutions, e.g., based on
EKF-SLAM, UKF-SLAM, IKF-SLAM [4], [5] or particle filter
SLAM [6]–[8], when computational resources are limited, and

Manuscript received September 29, 2014; revised April 7, 2015; accepted
August 23, 2015. Date of publication September 18, 2015; date of current
version September 30, 2015. This paper was recommended for publication by
Associate Editor D. Scaramuzza and Editor D. Fox upon evaluation of the
reviewers’ comments.

G. Dubbelman is with the Department of Electrical Engineering, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands (e-mail: g.
dubbelman@tue.nl).

B. Browning is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (e-mail: brettb@cs.cmu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2015.2473455

to use more accurate graph-based approaches [9]–[16], bundle
adjustment-based approaches [17]–[19], or a combination [20]
when sufficient computational resources are available. COP-
SLAM optimizes a specific kind of extremely sparse graphs,
called pose-chains, and its contribution is that it computes a
nonlinear solution in closed form for large-scale 3-D SLAM
problems. Although COP-SLAM can also be used to optimize
(or initialize) dense pose-graphs, its advantages are most rele-
vant when it is applied to pose-chains. The conceptual differ-
ences between general graph-based SLAM, pose-graph SLAM,
and pose-chain SLAM is discussed in Section I-A.

SLAM systems using graph-based representations typically
consist of front-end and back-end subsystems. The responsi-
bility of the front-end is to provide an initial solution, e.g., by
using odometry, visual odometry [21]–[23], or structure from
motion [24], [25] methods, as well as to detect loops in the
robot’s trajectory, e.g., by using appearance-based loop detec-
tion [26], [27] or local map matching [28]. The responsibility of
the back-end is to turn the initial solution into a maximum like-
lihood solution considering all available data. Such approaches
are typically more accurate than filter-based approaches, as they
are better able to capture the nonlinearities that are inherent to
SLAM. At their core, graph-based approaches, of which bundle
adjustment is a specific example, rely on computationally de-
manding nonlinear iterative optimization techniques with their
usual sensitivity to improper initialization.

COP-SLAM is specifically designed to be a lightweight
SLAM back-end that is to be used with strong vision-based
SLAM front-ends, which perform accurate visual odometry and
reliable appearance-based loop detection. The output of such
contemporary SLAM front-ends in large-scale environments
are chains of many relative poses with relatively few loop-
closure poses. These pose-chains are optimized by COP-SLAM
in closed form while respecting most of their nonlinearities, by
employing Lie group methods. COP-SLAM can be used with
any Lie group for which its logarithmic map and exponential
map can be computed; it can, therefore, be applied to 2-D and to
3-D SLAM problems. The ability to use closed-form nonlinear
optimization for 3-D pose-chains is currently a unique and novel
theoretical property offered by COP-SLAM. In Section II, the
inner workings of COP-SLAM are described in detail, and a
theoretical analysis of its convergence and optimality properties
is provided. This analysis is one of the main contributions of
this study. The relation to other efficient graph optimizers is
described in Section I-B.

COP-SLAM was first presented in [2] and is based on
earlier work on trajectory bending [29], [30], which in turn was
inspired by Newman [31]. Until now, it has only been applied to
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Fig. 1. Different types of graph-based SLAM. (a) General graph SLAM, (b) pose-graph SLAM, (c) sparse pose-graph SLAM, and (d) pose-chain SLAM. The
initial absolute pose is depicted by the green triangle and all successive absolute poses by orange triangles. Landmarks are shown by blue stars. In (a), the nodes
in the graph model absolute poses and landmarks. The edges, depicted by the black lines, between the nodes in (a) model landmark observations. In (b) and
(c), the nodes in the pose-graph only model absolute poses and edges model the relative poses between them. This is the same for the pose-chain depicted in
(d). In pose-chain SLAM, we, however, only model edges between successive nodes and (loop-closing) edges that contain sufficient information on the globally
accumulated error of the nodes. In COP-SLAM, only the most recent loop closure is considered as an active edge; it is depicted by the heavy black line in (d).
Previous loop closures, e.g., the one depicted by the dashed heavy black line in (d), that have been processed earlier, are no longer actively considered, but are
accounted for by a filter-like mechanism inside COP-SLAM. Iterative optimizers consider all edges of current and past loop closures as active edges.

pose-chains in which each pose is represented by a six-
dimension-of-freedom (dof) Euclidean motion, i.e., an element
of the Lie group SE(3). A second important contribution of
this study is that we extend COP-SLAM with a novel solution
space, i.e., the space of seven-dof similarity transforms SIM(3).
This has great practical value when applying COP-SLAM to
pose-chains that are obtained from monocular odometry where
no constraints can be imposed to prevent scale drift. From
the theoretical analysis in Section II, it will become clear that
the optimality properties of COP-SLAM partially depend on
the Lie group properties of the solution space to which it is
applied. Both solution spaces SE(3) and SIM(3) are, therefore,
discussed in Section III.

In Section IV, we investigate to which extent the theoret-
ical differences between COP-SLAM and its iterative coun-
terparts influence their performance on challenging large-scale
3-D pose-chain datasets. We use simulated data for detailed
analysis as well as extensive real-world binocular and monoc-
ular datasets to highlight the applied benefits of COP-SLAM.
The pose-chains used for our experiments as well as our COP-
SLAM implementation are made publicly available in [32]. In
Section IV, we also provide our third contribution, by incorpo-
rating landmark position updating into COP-SLAM, and show
that this provides an excellent closed-form initialization strat-
egy to sequential bundle adjustment. Finally, our conclusions
are put forward in Section V.

A. Pose-Graph Simultaneous Localization and Mapping
Versus Pose-Chain Simultaneous Localization and Mapping

The conceptual differences between general graph-based
SLAM, pose-graph SLAM, and pose-chain SLAM are depicted
in Fig. 1 and described further in this section.

About a decade ago, the SLAM front-end typically consisted
of regular odometry (wheel rotation and steering angle) with,
for example, a single laser range scanner. Such front-ends pro-
duced relatively erroneous initial estimates, creating the need to
optimize with respect to poses and landmarks within the SLAM
back-end [see Fig. 1(a)]. As sensor technology and processing
power advanced over the years, the methods used inside front-
ends started to produce more accurate initial estimates. This
lowered the requirements given to the back-end, which made
pose-graph SLAM a popular technique [see Fig. 1(b)]. With the
increase of the accuracy of front-ends, the need to keep track of
all edges between nodes diminished, allowing for sparse pose-
graph approaches [see Fig. 1(c)]. It is important to consider
that the reduction of the number of edges in sparse pose-graphs

Fig. 2. Connectivity of a graph in graph-based SLAM is partially determined
by the observation processing used in the front-end and partially determined by
the robot’s environment and the robot’s movement. In (a), the robot is moving
around a single object and always viewing this object. Such a setting results
in dense graphs, as landmarks can be tracked over many views. In (b), a more
realistic robot movement is depicted, which is typical for a robot moving through
a street or through a corridor. Such a setting results in relatively sparser graphs,
as most landmarks can only be tracked over relatively fewer frames.

is not necessarily the result of an explicit marginalization or
sparsification process acting on a dense graph. It can also be a
direct consequence of the type of SLAM front-end that is being
used, the robot’s exploration strategy, or challenges posed by
the robot’s environment. This is illustrated in Fig. 2.

Visual odometry and visual loop detection methods have
significantly gained in accuracy and robustness in the past
decade. Contemporary methods based on RANSAC [33], [34]
and sliding-window bundle adjustment (possibly aided by iner-
tial measurement units) are able to robustly estimate the robot’s
pose with high accuracy over significant distances [35]. As these
vision-based front-ends can themselves optimize over multiple
frames and only accumulate error (drift) slowly, there is no
direct necessity to model dense dependences between poses;
moreover, loop closures need to be performed significantly less
times than when using a regular odometer. The ability to stay
accurately localized while requiring less loop closures allows
robots to perform more efficient and effective exploration strate-
gies in more diverse and more large-scale environments. These
developments allow for a shift of using a relatively weak regular
odometry front-end, which has to be compensated for by using
a strong back-end, to systems that use a strong vision-based
front-end together with a lightweight back-end.

COP-SLAM is such a lightweight back-end and is specifi-
cally designed to be used with strong vision-based front-ends.
It models the robot’s trajectory with extremely sparse pose-
graphs, called pose-chains. In pose-chains, successive edges,
i.e., relative poses from time t to t + 1, are added to the chain
and directly provide adequate initial estimates for the nodes, i.e.,
the absolute poses. In the context of this study, we specifically
define pose-chains to have high local accuracy, but their global
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accuracy can be arbitrarily low. While this is a valid property
for slowly drifting contemporary vision-based front-ends, there
are clearly no such restrictions for pose-graphs in general.

The process of adding successive edges to the pose-chain con-
tinues until a loop is detected by the SLAM front-end. Loop de-
tection (and verification) adds a loop-closing edge to the chain,
which links the final node of time t back to a node with time
t − l, e.g., for a relatively large l > 1000. In COP-SLAM, the
loop-closing edge is in some way special, as it contains vital in-
formation on the globally accumulated error of the nodes. In its
purest form, a pose-chain can thus be seen as the sparsest possi-
ble pose-graph, which has many successive edges and only one
loop-closing edge. As more successive edges and more loop-
closing edges are added to the pose-chain over time, it turns
into an increasingly denser but still an extremely sparse timely
ordered pose-graph. It is important to consider that COP-SLAM
does not discard or ignore loops that are detected by the front-
end. It uses all detected loops, but those loops for which l is
relatively large are most important to COP-SLAM.

As pose-chains are a type of pose-graphs, they can be op-
timized with general nonlinear iterative graph optimizers like
[9]. Their extremely sparse structure, their high local accuracy,
and the fact that they can be modeled as chains of Lie group
transformations also allow using the specialized optimization
methods of COP-SLAM. These are highly efficient and accu-
rate, but it will also become clear that COP-SLAM does not
share all advantages of general graph optimizers. COP-SLAM
must, therefore, be seen as a highly relevant, but also a very
specific, and specialized SLAM approach.

B. Related Work

A significant body of SLAM research is available on efficient
graph optimization. Here, we only discuss recent work that is
most relevant to the optimization approach used in COP-SLAM.

Carlone et al. [36] presented a closed-form optimization tech-
nique, called linear approximation for pose graph optimization
(LAGO). It exploits a specific relative orientation representation,
allowing the pose-graph problem to be formulated as a quadratic
optimization task. It is then solved in three steps, involving only
closed-form linear methods. Similar to COP-SLAM, optimiz-
ing for rotation and translation is performed separately. This
is shown to be very efficient, even for extremely large pose-
graphs, while the impact on accuracy with respect to iterative
solvers is marginal. The critical difference between LAGO and
COP-SLAM is that the applicability of the optimization strategy
of LAGO is restricted to planar 2-D SLAM problems, whereas
COP-SLAM can be applied to 2-D and 3-D SLAM problems.
In fact, COP-SLAM can be applied to any (SLAM) problem in
which the graph’s nodes and edges can be modeled as Lie group
transformations, for which Exponential and Logarithmic maps
can be computed.

Using a carefully chosen (manifold-based) relative parame-
terization, as done by LAGO and by COP-SLAM, is a frequently
used technique to make the SLAM problem less nonlinear. This
can greatly reduce the number of iterations required by iterative
optimizers and also improve their stability. For example, Olson
et al. [14] presented an efficient technique for 2-D pose-graph

SLAM based on a relative parameterization. Grisetti et al. [10]
extended this approach to 3-D pose-graph SLAM. A similar
concept is also used for bundle adjustment by Mei et al. [17].
All these methods are, however, iterative nonlinear methods
and are not as efficient as closed-form methods like LAGO and
COP-SLAM. Recently, Zhao et al. [37] proposed a submap rel-
ative parameterization in which submaps can be merged with
linear optimization. Similar to COP-SLAM, the benefit of this
approach is its stability and robustness, but in contrast with
COP-SLAM, its optimized implementation is not more efficient
than contemporary nonlinear iterative graph optimizers, like that
of Grisetti et al. [9], for large-scale 3-D pose-chains.

Much research has focused on mechanisms to distinguish
informative edges from less informative edges in the graph.
Computation is then only spent on informative edges, while ig-
noring or removing less informative edges. A recent approach
is the double-window-based optimization technique of Strasdat
et al. [20] that, similar to COP-SLAM, is aimed at large-scale 3-
D visual-SLAM tasks. This approach is based on the observation
that keeping track of all edges between poses and landmarks is
only really advantageous when the same landmarks are observed
from many different poses. An example situation in which this
happens is shown in Fig. 2(a). In many realistic scenarios, this
does not always occur, as is shown in Fig. 2(b). Therefore, Stras-
dat et al. [20] use an approach that applies bundle-adjustment to
densely connected parts of the graph and pose-graph SLAM to
weakly connected parts all in one monolithic iterative nonlinear
optimizer. The decision on what is densely connected and what
is weakly connected is performed by a dynamic and fully au-
tomated process. The reasoning behind this is similar to that of
COP-SLAM, but we a priori model everything as an extremely
sparse pose-graph, i.e., a pose-chain. In theory, COP-SLAM
can, therefore, never obtain the same levels of accuracy as [20].
However, in Section IV, we show that COP-SLAM does obtain
satisfactory accuracy on realistic and challenging large-scale
3-D visual-SLAM datasets at a fraction of the computational
footprint of iterative nonlinear methods.

In general, SLAM literature offers three established concep-
tual mechanisms that can be used to make pose-graph SLAM
more stable and more efficient: 1) using a carefully chosen
(manifold-based) relative parameterization; 2) using this param-
eterization to separately optimize for rotations and for transla-
tions; and 3) only optimize with respect to the most informative
edges in the graph. COP-SLAM applies all these three con-
ceptual mechanisms in novel ways, making it a unique SLAM
method from a theoretical perspective. From an applied per-
spective, the benefits of COP-SLAM as a back-end optimizer
cannot be seen separately from the use of slowly drifting vision-
based front-ends. Such front-ends are currently very popular in
visual-SLAM research, and their components are also publicly
available [27], [38].

II. CLOSED-FORM ONLINE POSE-CHAIN SIMULTANEOUS

LOCALIZATION AND MAPPING

In this section, we provide a detailed theoretical description of
COP-SLAM, which optimizes pose-chains online and in closed
form. The ability to do this comes at the cost of not being able to
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provide maximum likelihood solutions under the same general
conditions as iterative optimizers. The underlying fundamental
properties are derived here, and their applied effects are later on
investigated with experiments in Section IV.

The conceptual working of COP-SLAM’s closed-form solu-
tion is best introduced by considering how a single-loop pose-
chain is optimized by an iterative nonlinear graph optimizer
like [9]. A typical (nonlinear summed squared error) objective
function for general pose-graph SLAM is

f(A1 , . . . ,An ) =
n∑

i=2

ε(Ai−1 ,Ai ,Mi−1,i ,Σi−1,i)2

+
l∑

j=1

ε(Ak ,Am , jLk,m , jΣk,m )2 . (1)

Here, Ai is a node that models the absolute pose at time i, and
Mi−1,i is an edge that models the relative pose that links the
nodes of times i − 1 and i. The jth (loop-closing) edge that
links nodes of times steps k and m with m − k > 1 is denoted
with jLk,m . The (nonlinear) function ε(Ai ,Aj ,Mi,j ,Σi,j ) puts
an error metric on the difference between the relative pose of an
edge Mi,j and the absolute poses of its two nodes Ai and Aj ,
taking into consideration the uncertainty in the edge, which is
denoted with Σi,j . For our purposes, we have split the objective
function in terms related to edges for which their time difference
is unity (i.e., successive edges) and edges for which their time
difference is larger than unity (i.e., loop-closing edges), but there
is no fundamental reason to do so.

The task of the SLAM back-end is to minimize f with re-
spect the absolute poses A1 , . . . ,An , which generally requires
nonlinear iterative optimization. In case of a pure pose-chain,
there is only one edge whose time difference is larger than unity.
This is the loop-closing edge, and all other edges are successive
edges. The interesting observations now is that after initializa-
tion (concatenating relative poses to form absolute poses), but
before optimization, all the contributions of all error terms re-
lated to successive edges are 0 (because A−1

i−1Ai = Mi−1,i), and
the total error is completely determined by the contribution of
the single loop-closing edge 1Lm,n . After nonlinear iterative
optimization, the error of the loop-closing edge 1Lm,n is dis-
tributed optimally over all successive edges.

This concept, of distributing the error of a single loop-closing
edges over successive edges, forms the basis for the closed-
form solution of COP-SLAM, whose conceptual working is
provided in Algorithm 1. At its core, COP-SLAM performs
trajectory bending every time a loop is detected by the SLAM
front-end. Trajectory bending acts on a single loop and ensures
that this loop is closed. It only considers the current loop-closing
edge and not any previous loop-closing edges. Hence, once
a loop-closing edge is processed, it is no longer considered
as an (active) edge in the pose-chain (but it can always be
reactivated for further iterative optimization). COP-SLAM does,
however, uses a filter-like mechanism, which allows it to account
for the statistical information of past loop closures, without
keeping them as active edges in the pose-chain. This filter-like
mechanism is of critical importance and described further in

Section II-B and demonstrated with an experiment in Section IV-
E2.

Trajectory bending, which is at the core of COP-SLAM, is
described first in general terms of Lie groups in the next sec-
tion. A Lie group can be seen as a Riemannian manifold M
together with a product structure � that acts on points of this
Riemannian manifold (for more background on this, see [39]–
[41]). In Section III, we provide detailed algorithms for spe-
cific Lie groups that are relevant to robotics. In Section II-C,
we show that despite the single-loop simplification made by
COP-SLAM, it is guaranteed to provide a solution that provably
closes loops in linear time complexity in the number of edges
for pose-chains in which nodes and edges can be modeled as
elements of a Lie group M, � for which exponential and loga-
rithmic maps can be computed such that M = exp(log(M)) for
all M ∈ M. In Section II-D, we furthermore show that when the
Lie group’s logarithmic map is related to a bi-invariant metric,
i.e., ‖ log(M)‖ = ‖ log(C � M � C−1)‖, C,M ∈ M and when
uncertainties of edges are isotropic, then COP-SLAM provides
optimal solutions for pose-chains in which loops do not interact
with each other.

Algorithm 1 COP-SLAM
while running do

Get edge from SLAM front-end
if edge is a loop-closing edge then

• Add loop-closing edge to end of pose-chain.
• Close its loop using trajectory bending (see Section II-A)
and transfer its statistical information to the pose-chain (see
Section II-B). For details on specific solutions spaces SE(3)
and SIM(3), see Algorithms 2 and 3.
• Deactivate loop-closing edge.

else
• Add successive edge to the end of the pose-chain and
compute new last absolute pose.

end if
end while

A. Trajectory Bending

The task of trajectory bending on general Lie groups is to
optimally update a chain of relative transformations (relative
poses), such that the last absolute transformation (absolute pose)
is equal to a desired transformation. In this study, the desired
transformation is related to a loop detection, but it can also
be related to GPS, AHRS, or any other absolute pose sensor.
The conceptual working of closed-form trajectory bending is
visualized in Fig. 3. Prior to describing it in detail, we need to
introduce the following notations.

Let M1 ,M2 , . . . ,Mn be the set of relative transformations,
which are all elements of the Lie group M, �. The elements
of the set are strictly ordered in time, and their subscripts de-
note their time steps. Each transformation also comes with its
own uncertainty measure, which are modeled with zero-mean
isotropic Gaussians with variances σ2

1 , σ2
2 , . . . , σ2

n . Each Gaus-
sian is locally expressed in the tangent space of the Riemannian
manifold M associated with the Lie group at the position of its
respective Mi .
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Fig. 3. Conceptual illustration of closed-form trajectory bending. In (a), the absolute poses of the ground-truth trajectory are depicted by the green triangles
and the ground-truth relative pose-displacements by the green edges. Estimates for the absolute poses of the trajectory are depicted by the orange triangles and
estimates for the relative pose-displacements by black edges. At a certain point in time, the system obtains more accurate information on its last absolute pose,
i.e., the blue triangle in (b). The first step is to find relative pose updates, shown by the small light gray triangles in (b), which bring the last absolute pose onto
the desired last pose, i.e., the blue triangle. These updates are called the local updates. The second step is to compute transformations, which distribute these local
updates over the trajectory (c). The result of these transformations are the distributed updates, which are depicted in (d) by the small black triangles. In (d), an
improved trajectory is computed using the relative pose-displacements together with their distributed updates. The result is that the trajectory ends in the desired
absolute pose.

An initial estimate for the absolute transformation An at time
step n can be computed with

An =
n∏

i=1

Mi = M1 � M2 � M3 · · · � Mn . (2)

The task of trajectory bending can now be formalized mathe-
matically with

Dn =
n∏

i=1

(Mi � Ui) (3)

i.e., each relative transformation Mi is improved with its own
update Ui such that the last absolute transformation An be-
comes equal to a certain desired transformation Dn . The up-
dates U1 ,U2 , . . . ,Un are called the distributed updates, and the
desired transformation Dn puts a constraint on the last absolute
transformation An , which is enforced exactly.

The absolute transformation (obtained from, e.g., loop de-
tection) is denoted with Ln , and in all practical circumstances,
this transformation is subject to uncertainty, which is modeled
with σLn

. Because of this uncertainty, the desired transforma-
tion Dn , which is enforced exactly, cannot be Ln but must be
an optimal combination of Ln and An . When the uncertainty
in each relative transformation is isotropic and is Gaussian, and
when the Lie group’s logarithmic map is related to a bi-invariant
Riemannian distance metric over the Riemannian manifold as-
sociated with the Lie group, then the uncertainty σAn

in An can
be computed with

σ2
An

=
n∑

i=1

σ2
i . (4)

The optimal fusion of An and Ln is then

Dn = An � exp

(
σ2

An

σ2
An

+ σ2
Ln

log
(
A−1

n � Ln

)
)

. (5)

The transformation Dn lies on the geodesic from An to Ln such
that the ratio of the geodesic distances between An to Dn and
Dn to Ln is equal to σ2

An
/σ2

Ln
. The uncertainty in the fused

result Dn is

σ2
Dn

=
1

1/σ2
An

+ 1/σ2
Ln

. (6)

The fusion in (5) does not need to be performed before applying
trajectory bending but is taken care of inside trajectory bending
itself, as is explained next.

1) Closed-Form Solution: The concept behind the closed-
form solution to trajectory bending is to optimally transfer the
error at the loop-closing edge over all successive edges. The
error at the loop-closing edge is the transformation between the
last transformation An and the desired absolute transformation
Dn , which is provided with A−1

n � Dn . The successive edges
are the relative transformations M1 ,M2 , . . . ,Mn , and the goal
is to optimally distribute the error A−1

n � Dn over these relative
transformations by computing relative updates U1 ,U2 , . . . ,Un .
This is performed by a three-step closed-form process.

The first step [see Fig. 3(b)] is to compute the n local updates
Û1 , Û2 , . . . , Ûn such that

Dn = An �

n∏

i=1

Ûi (7)

i.e., when putting all local updates behind the last absolute trans-
formation An , the result is equal to the desired transformation
Dn . Each local update can be computed from the last absolute
pose An and the absolute pose Ln (obtained from, e.g., loop
detection) using the relative interpolation function

Ûi =

⎡

⎣I

⎛

⎝
i−1∑

j=1

wj

⎞

⎠

⎤

⎦
−1

I

⎛

⎝
i∑

j=1

wj

⎞

⎠ (8)

where

I(α) = exp(α log(A−1
n � Ln )). (9)

The normalized weights w1 , w2 , . . . , wn are computed from the
variances with

wj =
σ2

j

σ2
Ln

+ σ2
An

(10)

and determine how much of the update is distributed to a partic-
ular relative transformation in the chain. The more uncertain a
transformation is, the more it will be improved relatively to the
other relative transformations. In Section II-D1, it is proven that
when using these particular weights, trajectory bending obtains
a maximum likelihood solution.

This first step automatically performs the optimal fusion be-
tween An and Ln to come to Dn . To see this, observe that for
the last term in (7), we have

n∏

i=1

Ûi =
n∏

i=1

⎛

⎝

⎡

⎣I

⎛

⎝
i−1∑

j=1

wj

⎞

⎠

⎤

⎦
−1

I

⎛

⎝
i∑

j=1

wj

⎞

⎠

⎞

⎠
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Fig. 4. (a) External and (b) internal fusion mechanisms for trajectory bending.
The uncertainty in the last absolute pose is depicted by the orange circle and
the uncertainty in the loop-closing pose by the blue circle. The minimal length
geodesic between the last absolute pose and the loop-closing pose is depicted by
the dashed black line. The optimal combination of the last absolute pose and the
loop-closing pose lies on this geodesic and is shown by the black triangle in (a).
It is called the desired pose and can be computed externally in one step by using
(5). In (b), the local updates of trajectory bending, obtained by interpolating
with (8) over the geodesic, end at the large gray triangle, which has the same
position as the desired pose.
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If we now use the last equality to rewrite (7), we obtain

Dn = An � exp

(
σ2

An

σ2
An

+ σ2
Ln

log
(
A−1

n � Ln

)
)

. (12)

It is the optimal fusion formula of (5). What happens is that the
relative interpolation function moves over the geodesic from An

to Ln in n steps until the point of optimal fusion Dn is reached;
see Fig. 4 for a conceptual illustration of this process.

The second step [see Fig. 3(c)] is to distribute the local updates
over all relative transformations. We thus seek a set of distributed
updates U1 ,U2 , . . . ,Un such that

Dn = An �

n∏

i=1

Ûi =
n∏

i=1

(Mi � Ui). (13)

Instead of putting all the updates behind the last absolute trans-
formation An , each relative transformation Mi is succeeded by
its own distributed update Ui . The relation between each local
update Ûi and its distributed update Ui is given by the map

T(Ûi) = A−1
i � Dn � Ûi � D−1

n � Ai = Ui . (14)

A proof for this map is provided in Section II-C. The interesting
property is that the map T for each Ûi only depends on the orig-
inal absolute pose Ai and the desired absolute pose Dn . The so-
lution to trajectory bending can, therefore, be obtained in closed
form and has computational complexity O(n). As the mapping
can be computed independently for each Û1 , . . . , Ûn , the mem-
ory requirements are constant for volatile memory (e.g., RAM)
and linear in n for nonvolatile memory (e.g., a hard disk or

flash memory). This allows for straightforward distributed (out-
of-core) processing for big pose-chains. These aspects make the
trajectory bending algorithm significantly more efficient than
alternative iterative approaches.

The third and final step [see Fig. 3(d)] is to update the relative
transformations and their uncertainties as well as to compute the
new absolute transformations. Updating the relative and abso-
lute transformations can be done with Mi � Ui → Mi and then
using (2). Updating the uncertainties of the relative transfor-
mations, as modeled by the variances σ2

1 , σ2
2 , . . . , σ2

n , is more
involved and explained in the next section.

B. Multiple Loops and Filter-Like Behavior

Updating the variances σ2
1 , σ2

2 , . . . , σ2
n is crucial when apply-

ing trajectory bending in the context of COP-SLAM. It allows
utilizing statistical information of previous loop-closing edges,
without the need to keep them as active edges in the pose-chain.

The variances express how accurate a certain relative transfor-
mation is expected to be with respect to the other relative trans-
formations. When closing a loop, the desired absolute transfor-
mation adds important information making all the relative trans-
formations within the loop more accurate with respect to relative
transformations that were not inside the loop. When a new loop
is detected that contains relative transformations that were part
of previous loops and relative transformations that were not part
of previous loops, we want to focus bending more on the rela-
tive transformations that were not part of the previous loop, as
these are less accurate with respect to relative transformations
that were part of previous loops. In a sense, we do not want to
destroy previously closed loops, when closing new loops. What
we, therefore, need is a mechanism to optimally compute new
values for the variances of relative transformations involved in
loop closing, such that their increase in accuracy is accounted
for when closing future loops.

This mechanism is obtained by considering that before a loop
is closed, the uncertainty of the last absolute transformation is
obtained by summing all relative transformation uncertainties
with (4). After loop closure, the uncertainty in the updated last
transformation is provided by (6). The goal is to update all
relative transformation uncertainties σ2

1 , σ2
2 , . . . , σ2

n such that
when they are summed up in (4), the result is equal to the new
uncertainty of the last transformation provided by (6). Put in
mathematical terms, we seek a scalar β such that

n∑

i=1

βσ2
i =

1
1/σ2

An
+ 1/σ2

Ln

. (15)

After some straightforward manipulation, we find that β is pro-
vided by

β =
1

1 + σ2
An

/σ2
Ln

(16)

and the variances can be updated with βσ2
i → σ2

i .
At the conceptual level, this mechanism has similarities with a

Kalman filter. Adding relative transformations to the pose-chain
can be seen as a prediction step and increases the uncertainty
of the final absolute transformations. When detecting a loop,
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the final absolute transformation is optimally fused with the
loop-closing transformation [see (5)], much like as is done in
the update step of a Kalman filter, resulting in the desired fi-
nal absolute transformation. Next, all relative transformations
in the loop are updated in accordance with the desired final
absolute transformation with trajectory bending. Similar to the
update step in a Kalman filter, the uncertainty in the desired
final absolute transformation is also recomputed ([see (6)]. In
COP-SLAM, this uncertainty is then back-propagated to the
uncertainty of all relative transformation in the loop, by updat-
ing their variances [see (16)]. This ensures that the statistical
information of the current loop closure is represented for in
the pose-chain, when closing future loops, although it will no
longer be modeled as an active edge in the pose-chain. The crit-
ical importance of this filter-like behavior is demonstrated with
an experiment in Section IV-E2.

C. Convergence

Here, we prove that COP-SLAM converges in a single step to
a solution that closes each new loop exactly (i.e., to within ma-
chine precision). The variance updating strategy of Section II-A
assures that previously closed loops are respected in a manner
that is as optimal as can be without explicitly modeling past
loop-closing edges. The only prerequisite is that local updates
can be computed with the relative interpolation function (9),
which requires that exponential and logarithmic maps can be
computed such that M = exp(log(M)) for all M ∈ M. Given
this prerequisite, we only need to prove that the relation between
the local updates and the distributed updates is provided by the
map T of (14). This is captured mathematically by the following
theorem.

Theorem 1: A map from the local updates Û1 · · · Ûn to the
distributed updates U1 · · ·Un obeying the loop-closing con-
straint (3) is provided by

T(Ûi) = A−1
i Dn ÛiD−1

n Ai

=

⎛

⎝
i∏

j=1

Mj

⎞

⎠
−1

Dn ÛiD−1
n

⎛

⎝
i∏

j=1

Mj

⎞

⎠ .

= Ui . (17)

The details of the proof for Theorem 1 are in supplementary
material [42, Sec. 3], which can be skipped at first reading. The
proof is based on induction and starts with the proposition

P (k) :
n−k∏

j=1

Mj

n∏

j=n−k+1

(MjT(Ûj ))
n−k∏

j=1

Ûj = Dn . (18)

For k = 0, the proposition conceptually expresses that when
putting all local updates behind the last absolute transformation,
the result is equal to the desired transformation Dn . This is the
initial step of trajectory bending, depicted in Fig. 3(b), and the
validity of P (0) is guaranteed by using the relative interpolation
function (8). For k = n, the proposition conceptually expresses
that when all updates are distributed over the trajectory, it ends
in the desired absolute transformation. This is the end goal of
the trajectory bending algorithm and depicted in Fig. 3(d).

In summary, to prove Theorem 1, the proposition P (k) needs
to be valid for all 1 ≤ k ≤ n. The basis for induction is then
P (1), whose validity is proven by algebraic manipulation. The
next step is to prove the inductive step, i.e., the correctness of
P (k + 1) when assuming that the inductive hypothesis P (k)
holds. This is also performed using algebraic manipulation, and
the proof then follows from induction.

D. Optimality

As COP-SLAM uses trajectory bending to close loops, its
optimality conditions are mainly determined by the optimality
conditions of trajectory bending, which are, therefore, described
first in Section II-D1. Those of COP-SLAM itself are provided
in Section II-D2.

1) Trajectory Bending: Trajectory bending can be seen as a
constrained optimization task. It requires a solution that closes
the loop (i.e., the constraint) such that the trajectory is bent
minimally (i.e., the cost function). The constraint is given by (3)
and is repeated here for completeness

Dn =
n∏

i=1

(Mi � Ui). (19)

When uncertainties in relative transformations are isotropic, a
maximum likelihood objective function for trajectory bending
can be formulated as

f(U1 , . . . ,Un ) =
n∏

i=1

1√
2πσ2

i

e
‖ l o g (U i ) ‖2

2 σ 2
i

.
(20)

It expresses that we are seeking those distributed updates, which
are most likely given the uncertainties of the relative transforma-
tions. This likelihood function is expressed over the Riemannian
manifoldM related to the Lie groupM, �, and ‖ log(Ui)‖ is the
Euclidean metric computed on the vectorized Lie algebra ele-
ment log(Ui) (i.e., a tangent vector of the Riemannian manifold
M). We now prove the following theorem.

Theorem 2: Trajectory bending provides a maximum likeli-
hood solution to (20) under the constraint (19) when the logarith-
mic map of the Lie group M, � allows for a bi-invariant metric
‖ log(M)‖ = ‖ log(C � M � C−1)‖, C,M ∈ M by setting the
interpolation weights to

wi =
σ2

i

σ2
Ln

+
∑n

i=1
σ2

i

. (21)

The details of the proof for Theorem 2 are in supplementary
material [42, Sec. 4], which can be skipped at first reading.
In summary, the proof consists of two parts. In the first part,
we show that the constraint and the likelihood function, which
are expressed in terms of distributed updates, can be expressed
alternatively in terms of local updates. The key to this is the
availability of a bi-invariant metric. In the second part, we show
that the solution for trajectory bending presented in Section II-A
provides a maximum likelihood solution for the local updates.

2) Closed-Form Online Pose-Chain Simultaneous Localiza-
tion and Mapping: So far, we have discussed the optimality
conditions of trajectory bending when applied to a single loop.
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Here, we discuss the optimality conditions of COP-SLAM when
applied to pose-chains that generally consist of several entan-
gled loops. Even when assuming isotropic noise, obtaining max-
imum likelihood solutions for such pose-chains requires itera-
tive nonlinear optimization. Because COP-SLAM’s closed-form
approach cannot propagate information of a loop-closure back
past the start of the loop that is being closed, it can only provide
maximum likelihood solutions if all loops in the pose-chains
do not interact with each other, i.e., when the pose-chain is a
sequence of multiple pure pose-chains. We, therefore, say that
COP-SLAM generally provides loop-wise optimal solutions.
The more entangled a pose-chain is (i.e., the more it looks like
a general pose-graph), the bigger the expected difference in ac-
curacy is between COP-SLAM’s closed-form solution and that
of iterative optimizers. This is investigated experimentally in
Section IV-D3.

Another fundamental aspect is that in order for trajectory
bending to be optimal and hence for COP-SLAM to be loop-
wise optimal, the Lie group must allow for a bi-invariant metric.
The most relevant Lie groups for robotics, i.e., the group of
Euclidean motions and the group of similarity transforms, do,
however, not allow for such a bi-invariant metric [43]. The op-
timality of iterative optimizers is not harmed by this because
they can actively alter relative rotation or relative scale esti-
mates to reduce absolute position errors. COP-SLAM cannot
makes such tradeoffs actively, but in Section III, we show that
COP-SLAM can do this passively by applying a (subspace)
stratified trajectory bending approach. In Section IV, we inves-
tigate experimentally how close the accuracy of such stratified
algorithms is to the accuracy of iterative optimizers that provide
maximum likelihood solutions.

III. SOLUTION SPACES AND THEIR OPTIMALITY

In previous sections, we have discussed COP-SLAM in gen-
eral terms of Lie groups. In this section, we provide stratified
algorithms for the specific solution spaces of Euclidean motions
SE(3) and that of similarity transforms SIM(3). We, furthermore,
show that the accuracy of these stratified algorithms is between
specific lower and upper bounds. All our conclusions for these
solution spaces also apply to their 2-D counterparts SE(2) and
SIM(2).

A. SE(3)

Let us first introduce the efficient notation A = [R, t], R ∈
SO(3), t ∈ R3 to express an element of SE(3). The Lie group
product and the inverse of SE(3) can then be denoted with

A1 � A2 = [R1R2 ,R1t2 + t1 ]

A−1 = [R�,−R�t]. (22)

As noted earlier, the Lie group SE(3) does not allow for a
bi-invariant metric. Conceptually, this is because its subgroup
SO(3) and its subgroup R3 are geometrically coupled such that
SO(3) acts on R3 . This prevents COP-SLAM from obtaining
loop-wise optimal solutions, because it cannot actively make
tradeoffs between rotational and translational errors. Both sub-

groups SO(3) and R3 do allow for a bi-invariant metric them-
selves and so does their direct product space SO(3) ×R3 in
which SO(3) does not act on R3 . This can be utilized to derive
a stratified algorithm together with upper and lower bounds on
its accuracy.

Deriving the lower bound is based on decoupling SO(3) and
R3 when integrating the relative poses into absolute poses. At the
time of estimating the relative poses, this decoupling is not pos-
sible as a relative translation of time t is expressed with respect
to a basis with the absolute orientation of time t − 1. However,
at the moment of loop closure, this decoupling becomes possi-
ble. We first compute all absolute poses in the chain from the
relative poses by using the Lie group structure of SE(3). Once
all absolute positions and orientations are known, the relative
pose-displacements can alternatively be expressed as elements
of the Lie group SO(3) ×R3 . These decoupled relative pose-
displacements can be obtained from the absolute poses with

Mn = A−1
t−1 ∗ At (23)

but now using the Lie group product and inverse of SO(3) ×R3 ,
which are

A1 ∗ A2 = [R1R2 , t1 + t2 ]

A−1 = [R�,−t]. (24)

The exponential and logarithmic maps of SO(3) ×R3 are

log(M) = [log(R), t] = [r, t] = m

exp(m) = [exp(r), t] = [R, t] = M (25)

and its bi-invariant metric is

‖ log(M)‖ =
√

r2
x + r2

y + r2
z + t2

x + t2
y + t2

z (26)

which can be generalized in the usual way. The functional ex-
pressions for the exponential and logarithm maps for SO(3) can
be found in [44, p. 42].

By using the Lie group SO(3) ×R3 , COP-SLAM closes the
loop exactly in SO(3) and in R3 such that it is loop-wise optimal
with respect to the metric (26). This is what we call a monolithic
approach, as COP-SLAM acts simultaneously on all subgroups
of SO(3) ×R3 . We can improve on the accuracy of this mono-
lithic approach by using stratification. In our stratified approach,
provided in Algorithm 2, we first apply trajectory bending solely
to the subgroup of rotations SO(3). This will close the loop in
the rotational subspace and will improve all relative rotations on
average. Then, we reintegrate the trajectory utilizing SE(3) to
obtain improved absolute positions given the improved relative
rotations. Finally, we perform trajectory bending to the trans-
lational subgroup R3 to nullify any absolute position residual
errors in the loop-constraint. The end results is that again the
loop is closed in both the rotation and translation subspaces, but
now, we have (passively) used improvements in relative rota-
tions to improve absolute positions. This stratified approach is,
therefore, theoretically more accurate than the monolithic ap-
proach of using SO(3) ×R3 but also theoretically less accurate
than an iterative optimizer using SE(3). This gives clear lower
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and upper bounds on the accuracy of stratified COP-SLAM
when applied to pose-chains consisting of Euclidean motions.

Note that using the Lie group SE(3) and its exponential and
logarithm maps within monolithic COP-SLAM will generally
lead to even less accurate results than the monolithic approach
using SO(3) ×R3 . This is because the one-parameter subgroups
(used for computing the local updates) of SE(3) through its sub-
space R3 are not straight lines and, therefore, not minimizing
geodesics in R3 . Only iterative optimizers can truly overcome
this by actively seeking tradeoffs between rotational and trans-
lational errors.

Algorithm 2 Stratified trajectory bending in SE(3) To be
used inside algorithm 1

Restrict computations to the Lie group of rotations SO(3).
R.1) Compute the local updates with (9).
R.2) Compute the distributed updates with (14).
R.3) Update all relative orientations given the distributed updates
and multiply each σ2 of each relative orientation with the factor β
of (16).
Recompute all absolute orientations and absolute positions given
the updated relative orientations using SE(3).
Restrict computations to the Lie group of translations R3 .
T.1) Compute the local updates with (9).
T.2) Compute the distributed updates with (14).
T.3) Update all relative translations given the distributed updates
and multiply each σ2 of each relative translation with the factor β
of (16).
Recompute all absolute positions given the updated relative
translations.

B. SIM(3)

We now introduce a new solution space that was not consid-
ered before in the context of closed-form trajectory bending or
in the context of COP-SLAM. It is the Lie group of similarity
transforms SIM(3), i.e., Euclidean motions with uniform scal-
ing. This group has been considered earlier in the context of
iterative optimization methods [25] and allows closing the loop
under scale-drift, which is a common nuisance in monocular
odometry. The Lie group of similarity transforms does also not
allow for a bi-invariant metric but, similar to SE(3), a stratified
trajectory bending algorithm can be derived.

Let us introduce an efficient notation A = [R, t, s], R ∈
SO(3), t ∈ R3 and s ∈ R×/0 to express an element of SIM(3)
(here, R×/0 denotes the group of real numbers modulo 0 under
multiplication). Its group operator and inverse are

A1 ◦ A2 = [R1R2 , s1R1t2 + 12 , s1s2 ]

A−1 =
[
R�,−R� 1

s
t,

1
s

]
. (27)

The stratified algorithm for SIM(3) then follows in a similar
fashion as that of SE(3). First, we decouple all subgroups of
SIM(3) by introducing the direct product space SO(3) ×R3 ×
R×/0, which has the following group operator and inverse:

A1 	 A2 = [R1R2 , t1 + t2 , s1s2 ]

A−1 = [R�,−t,
1
s
] (28)

and its logarithmic and exponential mappings are

log(M) = [log(R), t, log(s)] = [r, t, s] = m

exp(m) = [exp(r), t, exp(s)] = [R, t, s] = M (29)

where log(s) and exp(s) are the usual (base 10) logarithm
and exponent for natural numbers. The bi-invariant metric of
SO(3) ×R3 ×R×/0 is

‖ log(M)‖ =
√

r2
x + r2

y + r2
z + t2

x + t2
y + t2

z + s2 (30)

which again can be generalized in the usual way.
The stratified algorithm for similarity transforms is provided

in Algorithm 3. It allows utilizing improvements in relative
scales and in relative rotations to improve absolute positions.
For similar reasons as for the stratified algorithm for SE(3), this
stratified algorithms is theoretically more accurate than mono-
lithic trajectory bending using SIM(3) or monolithic trajectory
bending using SO(3) ×R3 ×R×/0 but less accurate than an
iterative optimizer using SIM(3).

Algorithm 3 Stratified trajectory bending in SIM(3) To be
used inside algorithm 1

Restrict computations to the Lie group of scaling R×/0.
S.1) Compute the local updates with (9).
S.2) Compute the distributed updates with (14).
S.3) Update all relative scale factors given the distributed updates
and multiply each σ2 of each relative scaling with the factor β of
(16).
Restrict computations to the Lie group of rotations SO(3).
R.1) Compute the local updates with (9).
R.2) Compute the distributed updates with (14).
R.3) Update all relative orientations given the distributed updates
and multiply each σ2 of each relative orientation with the factor β
of (16).
Recompute all absolute orientations, absolute scale factors and
absolute positions given the updated relative orientations an
updated relative scale factors using SIM(3).
Restrict computations to the Lie group of translations R3 .
T.1) Compute the local updates with (9).
T.2) Compute the distributed updates with (14).
T.3) Update all relative translations given the distributed updates
and multiply each σ2 of each relative translation with the factor β
of (16).
Recompute all absolute positions given the updated relative
translations.

In Section IV, we use this novel stratified algorithm for simi-
larity transforms together with landmark position updating as a
closed-form initialization strategy for sequential bundle adjust-
ment.

C. Note on Efficiency

At first, it may seem that a stratified approach requires more
computation than a monolithic approach, as we are applying
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trajectory bending twice. The opposite is true, it is more effi-
cient. For example, for Euclidean motions, the number of float-
ing point operations required when dealing with rotations and
translation separately is less than when dealing with them within
SE(3). Multiplying two elements of SE(3) will take 36 multi-
plications and 27 additions. Multiplying two element of SO(3)
takes 27 multiplications and 18 additions and adding two trans-
lations takes three additions. Therefore, there is a total of only
27 multiplications and only 21 additions, when dealing with
rotations and translations separately. A similar reduction is ob-
served for computing the inverse. These reductions in floating
point operations compensate for the additional steps of the strat-
ified algorithm.

IV. EVALUATION

The main body of our experiments specifically target online 3-
D pose-chain SLAM, where the pose-chain is obtained by using
accurate visual odometry and reliable appearance-based loop
detection. Within this scope, we investigate the performance
differences between monolithic COP-SLAM, stratified COP-
SLAM, and an iterative method that provides maximum likeli-
hood solutions. From our theoretical analysis of COP-SLAM,
it is already clear that it generally cannot obtain similar accu-
racy as iterative methods. The accuracy of iterative methods is,
however, partially determined by the density and the topology
of the pose-graphs to which they are applied, i.e., the more
(loop-closing) edges, the more accurate its solution will be. It
is, therefore, relevant to evaluate how much benefits remain of
iterative methods when applying them to pose-chains, which are
extremely sparse by nature, and to compare this to the perfor-
mance of COP-SLAM, which is specifically designed to opti-
mize pose-chains. We do this on basis of simulated data as well
as extensive real-world binocular data and monocular data.

In recent work [9], several iterative methods were compared
against the G2O back-end optimizer. It was shown that G2O
provides either better or comparable accuracy and efficiency
than alternative optimization methods. Therefore, here, we only
compare to G2O. During initial experiments, we have observed
that the Gauss–Newton method (which does not perform a line
search) with the CHOLMOD solver of G2O outperforms other
solvers in accuracy and efficiency on our datasets. Therefore,
we only report the performance using this optimizer and solver.
The original online version of G2O runs the optimizer every
time a certain number of edges has been added. For pose-chains,
this is an inefficient approach, as successive edges do not add
information to the chain that is of value to past nodes. We have,
therefore, modified the original code of G2O such that it only
runs the optimizer when a loop-closing edge is added to the
chain. This allows G2O to save a huge amount of unnecessary
computations.

All our experiments are performed on a laptop using a single
core of a Core 2 Duo T9400 CPU (2.53 GHz) accompanied by
4 GB of SDRAM. Both COP-SLAM and G2O run equally opti-
mized C/C++ code based on SSE instructions. Our COP-SLAM
program along with the pose-chains used for our experiments
are made publicly available in [32]. Before discussing the ex-

perimental results, we first provide important details on the used
performance metrics, our SLAM front-ends, and the datasets.

A. Performance Metrics

To provide detailed insight into the performance of COP-
SLAM, we use several metrics during our evaluations. The fo-
cus of our experiments is on SLAM systems that use accurate
vision-based front-ends. Because of this, the error of successive
edges (relative poses) is extremely low, typically in the order of
millimeters and millidegrees, making it virtually impossible to
directly measure improvements at the granularity of successive
edges, e.g., on basis of (RTK-)GPS ground truth. The errors of
successive edges will, however, accumulate in the nodes (abso-
lute poses), resulting in significant errors, which can be mea-
sured adequately using (RTK-)GPS ground truth. Therefore, our
performance metrics are based on errors in absolute positions
and on errors in absolute orientations averaged over the number
of nodes. These metrics are reported as absolute values and as
percentages of the initial error of the visual-SLAM front-end.
The latter allows for more direct comparison of errors between
different datasets.

To prevent overconfident error measurements, due to esti-
mated absolute positions coincidentally being close to ground-
truth positions, all our error measurements are based on time
stamps. Hence, an estimated pose is only compared with the
ground-truth pose, having the same time stamp. For this, we
linearly interpolate the GPS trajectory, such that for each (key-
)frame, there is an interpolated GPS ground-truth measurement.
For certain datasets, the global orientation of the first pose is not
known with sufficient accuracy. Therefore, before error com-
putation, we automatically align the trajectory with the ground
truth. To again prevent overconfident error measurements, we
only use the first 50% of the trajectory when aligning to the
ground truth.

In accordance with [45], we also use the Chi square error as a
performance metric for specific experiments. This metric mea-
sures the residual of the SLAM cost function after optimization.
Comparing SLAM methods on basis of this metric is only truly
useful if both optimize exactly the same cost function. In our
setting, this is not the case. COP-SLAM minimizes the error
between the final absolute pose and the desired final absolute
pose to zero (within machine precision). It thereby implicitly
optimizes an approximation of the cost function of G2O. The
two cost functions are, therefore, not directly comparable. To
overcome this, we load the solution of COP-SLAM into G2O
and measure the initial Chi square error, i.e., the error before
G2O optimization, and compare this to the final Chi square error
of G2O’s solution. This gives an indication of how well COP-
SLAM implicitly optimizes the nonlinear maximum likelihood
cost function of G2O.

B. Simultaneous Localization and Mapping Front-End

To show the versatility of COP-SLAM, we evaluate it in com-
bination with different state-of-the-art visual odemetry methods
in the SLAM front-end. The first binocular odometer that we
use is a key-frame method that is similar to the one used in
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Fig. 5. Example images from the three binocular Pittsburg datasets, used for
our experiments.

[23]. It provides a robust maximum likelihood solution by min-
imizing reprojection errors over two stereo frames. It outputs
relative poses Mi−1,i (i.e., successive edges) accompanied by
anisotropic 6 × 6 covariance matrices Σi−1,i , which are ob-
tained by linear error propagation. Conceptually, these covari-
ance matrices represent the effect of the uncertainty of all inlier
image features on the relative pose estimates. The second stereo
odometer is LIBVISO2 [38]. This RANSAC-based method does
not provide covariance matrices, but does provide the number
and the percentage of image feature inliers, which can also be
used as a measure for the reliability of the odometry estimate.
The monocular odometer that we use is a key-frame sliding-
window method similar to the one used in [46], but now only
optimizing for a single camera view.

In the front-end, state-of-the-art loop detection is done by
feeding every (key-)frame into RTAB-MAP[27]. Several loop-
verification strategies are used inside RTAB-MAP (e.g., mul-
tiframe consistency check, multiframe winner-margin check),
and once it detects a loop, it is fed to an external RANSAC
strategy in order to robustly obtain the loop-closing edge. If the
number of landmark inliers obtained by the RANSAC strategy
is less than 50, the detected loop is rejected; otherwise, the loop-
closing edge jLk,m and its uncertainty jΣk,m are computed on
all inlier image features. This whole procedure allows for ex-
tremely robust and accurate loop detection at the expense of
detecting many loops and at the expense of detecting loops in
repetitive environments. In other words, with respect to loop
detection, we explicitly prefer precision over recall.

Please note that both COP-SLAM and G2O use every loop
that is detected by the SLAM front-end. There is no marginaliza-
tion, loop selection, or sparsification being used, and the input
to COP-SLAM and to G2O is exactly the same. Consequently,
G2O uses all information that is provided by the state-of-the-
art visual SLAM front-ends, and only COP-SLAM internally
approximates the covariances matrices Σ of each edge by two
scalars, i.e., one for the translation σ2

t and one for the rotation
σ2

r .

C. Datasets

To demonstrate the applicability of COP-SLAM, we use chal-
lenging publicly available visual datasets as well as specifically
recorded datasets, of which representative images are shown in
Fig. 5. Our experiments target online 3-D SLAM applications
and large-scale outdoor environments in which frequent loop
detections are not desired or not possible. Although these types
of applications do not cover the complete scope of SLAM, they
are nevertheless very relevant. We, however, find that many
standard SLAM benchmark datasets do not target the same
type of applications and environments. A notable exception is

the KITTI benchmark dataset [35], but even its visual odome-
try datasets are not as challenging as the ones we specifically
recorded for our experiments. To illustrate this, we show prop-
erties and statistics of our datasets (Pittsburgh A,B,C), that of
the longest KITTI datasets with loops, and also that of the fre-
quently used New College dataset [47] in Table I. These are all
stereo vision datasets.

The key information in Table I is the length of each dataset
and the percentage of overlap in the trajectory. This percentage
is representative for the portion of the trajectory where loop
detection is possible. It is determined by measuring the number
of poses, which have nonconsecutive poses with a somewhat
similar position and orientation. It can clearly be observed that
our datasets (Pittsburgh A,B,C) are longer and have less oppor-
tunities to close loops than the other datasets. Furthermore, only
our datasets and the KITTI datasets are accompanied by ground
truth that is of sufficient accuracy for quantitative comparisons.
Nevertheless, we also process the New College dataset to qual-
itatively show that COP-SLAM can also be used for denser
pose-graphs.

To, furthermore, show the extensibility of COP-SLAM, we
apply it to a monocular dataset, which besides drift in posi-
tion and orientation also suffers from drift in scale. For this
experiment, we use the novel SIM(3) solution space on a 800-
m-long trajectory recorded by a monocular camera (640×480
gray scale, 6-mm focal length, 30 frames/s) mounted on top of
a vehicle. Although this dataset potentially allows using other
methods to prevent scale drift (e.g., by utilizing the fixed camera
height above the ground plane or measuring wheel rotations),
we use it because it has accurate ground truth based on dif-
ferential GPS (3-cm standard deviation). This ground truth is
important for our quantitative comparisons and is more difficult
to obtain for, e.g., an (indoor) hand-held monocular dataset in
which scale drift cannot be prevented by alternative methods.

We also use simulated data for precise comparison of the ac-
curacy of COP-SLAM with that of G2O under specific circum-
stances. For these simulated datasets, we mimic the statistical
error characteristics of binocular front-ends. We use ten differ-
ent datasets, and for each dataset, 100 different pose-chains are
randomly generated, resulting in a total of 1000 unique experi-
ments. Fig. 6 shows typical pose-chains of our datasets. For the
Loop and Flower datasets [see Fig. 6(a) and (b)], which encom-
pass one loop and eight loops, respectively, the ground truth is
based on a template. For the World datasets [see Fig. 6(c) and
(d)], the ground truth is generated by simulating a vehicle driv-
ing over a sphere. For these datasets, we have precise control
over when a loop is detected, and for how many poses, a loop
extends back in time. With this, we can detailedly investigate the
differences in accuracy of COP-SLAM and of G2O for increas-
ing numbers of loops (5, 25, 100, 500) and for weak and strong
overlap between loops, resulting in eight different datasets. For
example, Fig. 6(c) shows typical results obtained when using
five weakly overlapping loops and Fig. 6(d) when using 500
strongly overlapping loops.

For each of the 1000 pose-chains and for each of the edges
in a pose-chain, including all loop-closing edges, a different
anisotropic 6 × 6 covariance matrix is generated. In the 3 × 3
submatrices, related to translation and to rotation, respectively,
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TABLE I
BINOCULAR VISUAL-SLAM BENCHMARK DATASETS (SORTED ON LENGTH OF TRAJECTORY)

Dataset Length Overlap Frames FPS Resolution HFOV Baseline Ground truth

Pittsburg C 27 km 12% 110 k 30 (auto key framing) 640x480 43◦ 12 cm GPS
Pittsburg B 14 km 10% 57 k 30 (auto key framing) 640x480 43◦ 12 cm GPS
Pittsburg A 8 km 31% 40 k 30 (auto key framing) 640x480 43◦ 12 cm GPS
KITTI VO 02 5 km 15% 5 k 10 1241x376 80◦ 54 cm RTK-GPS + IMU
KITTI VO 00 4 km 38% 5 k 10 1241x376 80◦ 54 cm RTK-GPS + IMU
New College 3 km 96% 52 k 20 512x384 66◦ 12 cm GPS (poor reception)

Fig. 6. Results of both methods obtained on one of the 100 simulated trajectories for simulated datasets. Loop is shown in (a), Flower in (b), World with five
weakly overlapping loops in (c), and World with 500 strongly overlapping loops in (d). From left to right: ground truth, simulated visual odometry, stratified
COP-SLAM, G2 O.

the ratio between the largest eigenvalue of the submatrix and its
smallest eigenvalue is, on average, 100. This is similar to what
we observe for covariance matrices obtained by linear error
propagation inside real binocular front-ends. According to the
covariance matrices, random error terms are sampled and added
to the ground-truth edges (this is all performed using Lie group
methods). Although the errors per edge are relatively small, the
accumulated error (drift) they cause in nodes is significant. This
can be observed in Fig. 6 and is similar to what we have ob-
served for results of real binocular front-ends. For the simulated
datasets, the ground truth of each node is known exactly. There-
fore, no ground-truth interpolation or prealignment is required,
as is done for our real-world binocular and monocular datasets.

Besides our own simulated datasets, we also use the well-
known Sphere dataset [9]; see Fig. 8. With its 2500 nodes and
its 9800 edges, it is a densely connected pose-graph and the
exact opposite of a pose-chain. We use this dataset to investi-
gate COP-SLAM’s performance outside the domain for which
it is designed. The combination of our extensive and realis-
tic datasets, including 60 km of binocular data, together with
the different performance metrics and the different vision-based
front-ends that we use, set a challenging standard for pose-chain
visual-SLAM evaluation.

D. Results Simulated Data

We start with a detailed analysis of the accuracy and efficiency
of COP-SLAM and of G2O on our simulated datasets, which are

Fig. 7. Results of both methods on the Flower dataset for increasing VO
noise. Simulated VO estimates are shown in (a), results of COP-SLAM in (b),
and results of G2 O in (c).
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Fig. 8. Results of both methods on the publicly available Sphere benchmark
dataset [9] for increasing VO noise. Simulated VO estimates are shown in (a),
results of COP-SLAM in (b), and results of G2 O in (c).

conceptually similar to our stereo benchmark datasets. These are
the Loop, Flower, World-5, and World-25 datasets, which have
relatively few loops and little overlap between loops. COP-
SLAM’s optimality conditions are investigated next, for the
different solution spaces R3, SO(3), SE(3), and SIM(3). After
this, we analyze the influence of increasing the number of loops
(i.e., 5, 25, 100, and 500 loops), as well as the influence of
weakly and strongly overlapping loops. Finally, we demonstrate
COP-SLAM’s guaranteed convergence property by subjecting
it to a degradation test. For this experiment, we use the densely
connected Sphere pose-graph dataset [9].

For all experiments, the edges of a simulated pose-chain to-
gether with their covariance matrices are sequentially fed to
COP-SLAM and to G2O, thereby mimicking an online SLAM
system. As COP-SLAM can only deal with isotropic uncertainty
for the rotational and translational subspaces, we compute the
average variance from the two 3 × 3 submatrices related to the
rotational and translational subspaces. Please note that the com-
puted variances are different for each edge in the pose-chain,
depending on how accurate each edge is expected to be. G2O
uses the original covariance matrices and does take all statisti-
cal information into account, giving it an extra advantage over
COP-SLAM for all our simulated experiments.

1) Accuracy and Efficiency: By setting the number of iter-
ations used by the Gauss–Newton optimizer of G2O, we can
trade off accuracy and efficiency. In our first experiment, we,
therefore, investigate the speed of convergence of monolithic
COP-SLAM, stratified COP-SLAM and of G2O using 1, 2, 3, 5,
10, and 100 Gauss–Newton iterations after each loop detection.
The performance metrics averaged over all 100 trajectories of all

four datasets (Loop, Flower, World-5, and World-25 datasets)
are shown in Fig. 9. The reported timing values only include
time spent on optimization and not time spent on file IO.

It can be observed that both COP-SLAM approaches (mono-
lithic and stratified) converge in a single step to a level of ac-
curacy that is similar to that of G2O, while needing a factor
100 less computation time. The stratified COP-SLAM approach
slightly outperforms the monolithic COP-SLAM approach both
in accuracy and efficiency, as expected.

For the absolute position performance metric, it takes G2O
on average four iterations to become more accurate than COP-
SLAM. For the absolute orientation metric, there are two iter-
ations, and for the Chi square metric, there are three iterations.
When using a single Gauss–Newton iteration, the accuracy of
G2O is significantly less than that of COP-SLAM for all perfor-
mance metrics, while G2O’s computation time is significantly
higher than that of COP-SLAM.

Table II provides a more detailed look into the absolute posi-
tion performance metric (all other performance metrics show the
same behavior). The reported values provide this performance
metric averaged over all 100 experiments for each dataset in-
dividually. The standard deviation and the error relative to the
error of the simulated visual odometer are also provided. Fur-
thermore, we now also show the computation time of stratified
COP-SLAM as a percentage of the computation time of G2O. It
can be observed that the accuracy of COP-SLAM versus G2O
is very dataset dependent. Also note that the difference in accu-
racy between COP-SLAM and G2O relative to the initial error
is marginal. Even when G2O uses 100 iterations after each loop
detection, the differences are only a few percentages of the initial
error. In contrast, the computation time of G2O is significantly
higher than that of COP-SLAM, even when using only three
iterations.

For all experiments for which their results are summarized
in Table II, G2O has converged to a point in the solution space
that is close to the global minimum within four Gauss–Newton
iterations. However, iterative optimizers like Gauss–Newton of-
fer no guarantees that a satisfactory solution is obtained within
a fixed number of iterations. To illustrate this, we have per-
formed an additional experiment in which we kept simulating
trajectories, until the result of G2O when using four iterations
was higher than the initial error of the simulated visual odome-
ter. The first trajectory for which this has occurred is shown in
Fig. 11, along with the results of G2O and of G2O initialized by
COP-SLAM. It can be seen that only when using COP-SLAM
as an initializer, G2O provides satisfactory result within four
Gauss–Newton iterations for this specific experiment.

An alternative would be to use an adaptive number of Gauss–
Newton iterations inside G2O and to guarantee that a solution is
returned with a value for the cost function that is less than that
of the initialization. This would require the use of line search or
trust region methods inside G2O. We observed that using such
a trust region method (i.e., the Levenberg–Marquardt optimizer
of G2O) increases G2O’s computation time several orders of
magnitude for our datasets, whereas the overhead of using COP-
SLAM as an initializer is shown to be marginal.
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Fig. 9. Convergence, averaged over all synthetic datasets, of monolithic COP-SLAM (COP-SLAM Mono) in red, stratified COP-SLAM (COP-SLAM Strat) in
blue, and G2 O in black. For G2 O, its convergence is shown when using 1, 2, 3, 4, 5, 10, and 100 iterations after each loop detection. The initial errors are 600 m,
47◦, and 1.31×103 , for the position, orientation, and Chi2 metrics, respectively.

TABLE II
RESULTS ON SIMULATED DATA AVERAGED OVER 100 EXPERIMENTS

Position Error (m) Time (ms)

Poses Loops VO COP-SLAM Mono COP-SLAM Strat G2 O ( 3 iter.) COP-SLAM Mono COP-SLAM Strat G2 O ( 3 iter.)

Loop 10000 1 117 ± 40 63 ± 26 (54.1%) 53 ± 21 (45.3%) 75 ± 72 (63.9%) 8 8 (3.8%) 215
Flower 8120 8 252 ± 88 43 ± 11 (16.9%) 39 ± 11 (15.3%) 35 ± 10 (14.0%) 14 14 (1.6%) 855
World 5 4026 5 1008 ± 204 532 ± 154 (52.8%) 499 ± 99 (49.5%) 589 ± 236 (58.5%) 6 6 (1.9%) 316
World 25 4026 25 1025 ± 216 332 ± 65 (32.4%) 326 ± 64 (31.8%) 276 ± 57 (26.9%) 24 23 (1.4%) 1644

Position Error (m) Time (ms)

Poses Loops VO COP-SLAM Mono COP-SLAM Strat G2 O ( 4 iter.) COP-SLAM Mono COP-SLAM Strat G2 O ( 4 iter.)

Loop 10000 1 117 ± 40 63 ± 26 (54.1%) 53 ± 21 (45.3%) 50 ± 20 (43.0%) 8 8 (3.1%) 269
Flower 8120 8 252 ± 88 43 ± 11 (16.9%) 39 ± 11 (15.3%) 35 ± 10 (14.0%) 14 14 (1.3%) 1089
World 5 4026 5 1008 ± 204 532 ± 154 (52.8%) 499 ± 99 (49.5%) 512 ± 108 (50.8%) 6 6 (1.5%) 406
World 25 4026 25 1025 ± 216 332 ± 65 (32.4%) 326 ± 64 (31.8%) 276 ± 57 (26.9%) 24 23 (1.1%) 2082

Position Error (m) Time (ms)

Poses Loops VO COP-SLAM Mono COP-SLAM Strat G2 O (100 iter.) COP-SLAM Mono COP-SLAM Strat G2 O (100 iter.)

Loop 10000 1 117 ± 40 63 ± 26 (54.1%) 53 ± 21 (45.3%) 49 ± 19 (42.0%) 8 8 (0.2%) 5245
Flower 8120 8 252 ± 88 43 ± 11 (16.9%) 39 ± 11 (15.3%) 35 ± 10 (14.0%) 14 14 (0.1%) 24137
World 5 4026 5 1008 ± 204 532 ± 154 (52.8%) 499 ± 99 (49.5%) 503 ± 102 (49.9%) 6 6 (0.1%) 8642
World 25 4026 25 1025 ± 216 332 ± 65 (32.4%) 326 ± 64 (31.8%) 276 ± 57 (26.9%) 24 23 (0.1%) 45486

G2 O using 3, 4, and 100 iterations.

TABLE III
ERROR ON SIMULATED DATA AVERAGED OVER 100 EXPERIMENTS (ERRORS ARE RELATIVE TO INITIAL ERROR)

R3 SO(3) SE(3) SIM(3)

isotropic anisotropic isotropic anisotropic isotropic anisotropic isotropic anisotropic

Position error COP-SLAM 55.89% 58.66% na. na. 42.10% 42.74% 17.52% 21.81%
G2 O (100 iter.) 55.89% 58.62% na. na. 35.03% 35.63% 17.55% 20.86%

Orientation error COP-SLAM na. na. 58.37% 59.46% 57.17% 58.91% 62.11% 62.39%
G2 O (100 iter.) na. na. 58.37% 59.44% 48.46% 50.84% 57.36% 59.03%

Chi2 error COP-SLAM 0.02% 0.11% 0.08% 0.63% 2.47% 12.21% 2.73% 16.96%
G2 O (100 iter.) 0.02% 0.02% 0.08% 0.08% 0.004% 0.004% 0.004% 0.004%

2) Optimality: The proof for COP-SLAM’s optimality (see
Theorem 2) states that when the solution space allows for a
bi-invariant metric and when noise in relative pose estimates
is isotropic, then COP-SLAM provides an optimal solution to
the pose-graph problem for singe loops. In other words, under
these restricted conditions, it provides an optimal solution to the
pose-graph problem that is similar to that of G2O. When we
violate these conditions, i.e., add an-isotropic noise and no bi-
invariant metric is available, then COP-SLAM cannot provide
optimal solutions, whereas G2O can. To get more insight in

these aspects, we simulated a single loop, consisting of 1000
poses, in the solution spaces R3, SO(3), SE(3), and SIM(3),
and we experimented with isotropic and anisotropic noise. The
results averaged over 100 experiments are provided in Table III.

Both R3 and SO(3) allow for a bi-invariant metric. When we
look at their respective columns for isotropic noise in Table III,
then COP-SLAM and G2O provide the same optimal results,
as expected. When adding anisotropic noise, we can see minor
difference between the accuracy of COP-SLAM and G2O.
When looking at solution spaces that do not have a bi-invariant
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Fig. 10. Effect of the number of loop closures and the overlap between loops
on the absolute position performance metric. The left figure (a) shows results for
increasing numbers of weakly overlapping loops, and the right figure (b) shows
the results for increasing numbers of strongly overlapping loops. The error of
the visual odometer for these experiments is 1008 m.

metric, i.e., SE(3) and SIM(3), we see that the differences
in accuracy between COP-SLAM and G2O are increased. It
is important to observe that although COP-SLAM can only
provide optimal solutions to the pose-graph problem under
restricted conditions, it always returns a solution that exhibits
a significant reduction in error. Furthermore, for pose-chains,
its reduction in error is also close to that of G2O. This is due
to its provable property of convergence and we come back to
this in Section IV-D4. Before that, we first consider another
type of violation of COP-SLAM’s optimality conditions, i.e.,
multiple loops.

3) Graph Density and Topology: In this experiment, we
evaluate the effect of increasing the number of loop closures
(graph density) and increasing the overlap between loops (graph
topology). For this, we use the four World datasets with 5, 25,
100, and 500 loops, respectively. We generate 100 test trajec-
tories for each four datasets with weak overlap between loops
and 100 test trajectories with strong overlap between loops. As
the number of successive edges in the pose-chain is the same
for all World datasets, increasing the number of weakly over-
lapping loops implies that the length of loops must reduce. For
strongly overlapping loops, this is not the case. The results for
the absolute position performance metric are shown in Fig. 10
(all other performance metrics show the same behavior).

The first thing that can be observed is that G2O’s accuracy
improves when increasing the number of loops and also when
increasing the overlap between loops. Clearly, this is as expected
from a nonlinear iterative pose-graph optimizer. COP-SLAM
behaves differently, however. While its accuracy also improves
with the number of loops, its accuracy does not necessarily
improve when increasing the overlap between loops. When there
are few loops, e.g., 5, then it is better for COP-SLAM to have
strong overlap. When there are many loops, e.g., 500, then it is
better for COP-SLAM to have weak overlap between loops.

This behavior can be explained from its theoretical properties,
which were provided in Section II-D2. COP-SLAM provides
subspace optimal solutions for single loops. For COP-SLAM,
it is, therefore, ideal that every node is part of one loop or only
a few loops. Consequently, when there are only few loops, then
they should be long, such that every node is at least part of

Fig. 11. Simulated trajectory for which G2 O did not converge within four
iterations. From left to right: ground truth, result of G2 O using four iterations,
and result of COP-SLAM followed by G2 O using four iterations.

one loop. However, when there are many loops, they should be
shorter to prevent nodes being part of too many loops.

4) Graceful Degradation: The proof for COP-SLAM’s con-
vergence (see Theorem 1) states that COP-SLAM will return
a solution in which loops are closed, regardless of the error in
relative pose estimates. This implies that COP-SLAM exhibits
graceful degradation.

To demonstrate this, we have performed two experiments
where we increase the relative pose error far beyond what is
typically encountered for real-world datasets. In one experiment,
we use a typical weakly connected pose-chain (see Fig. 7), and
in the other, we use the densely connected Sphere pose-graph
(see Fig. 8). For the pose-chain in Fig. 7, we can clearly see that
COP-SLAM always closes the loops, but its results gets more
distorted, as the noise is increased. For G2O, we observe similar
performance, but for the highest noise level, it got stuck in a local
minima. When applying the same test to the densely connected
Sphere pose-graph, we see in Fig. 8 that G2O can, as expected,
take advantage of the increase in graph edges. Nevertheless,
COP-SLAM can even for this densely connected pose-graph
close all loops and reduce the error significantly.

This is a remarkable result, as COP-SLAM’s computation
time for the Sphere dataset is only 77 ms and does not depend
on the noise level. G2O’s computation time for the highest noise
level is 40 s, when using batch processing with 100 Gauss–
Newton iterations and 7 min when using online processing with
one Gauss–Newton iteration per detected loop.

To conclude our simulations, we would like to point out that
although COP-SLAM is less accurate than G2O for densely
connected pose-graphs, it provably provides solutions in which
loops are closed. The relative performance difference between
COP-SLAM and G2O simply increases with the number of loops
and with more overlap between loops. This behavior is as ex-
pected, because more overlapping loops makes the pose-graph
problem more nonlinear. Although there are robotic tasks in
environments that will result in densely connected pose-graphs,
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TABLE IV
RESULTS ON 60 KILOMETERS OF BINOCULAR TRAJECTORIES

Position Error (m) Orientation Error (degrees) Time (ms)

Poses Loops VO COP-SLAM Strat G2 O (4 iter.) VO COP-SLAM Strat G2 O (4 iter.) COP-SLAM Strat G2 O (4 iter.)

Pittsburgh A 6927 14 15 6 (40.0%) 6 (40.0%) n/a n/a n/a 49 (1.6%) 2972
Pittsburgh B 10 396 6 249 49 (19.7%) 50 (20.0%) n/a n/a n/a 30 (1.4%) 2100
Pittsburgh C 19 268 20 422 37 (8.8%) 37 (8.8%) n/a n/a n/a 166 (1.8%) 9056
KITTI 00 4541 9 48 13 (27.1%) 13 (27.1%) 14 4 (28.6%) 2 (14.3%) 24 (1.8%) 1336
KITTI 02 4661 3 54 33 (61.1%) 26 (48.1%) 10 6 (60.0%) 5 (50.0%) 9 (1.3%) 693
New College 52 480 98 n/a n/a n/a n/a n/a n/a 1531 (1.6%) 94928

there are also many tasks and environments that will results
in weakly connected pose-graphs, i.e., result in pose-chains.
When this is the case, COP-SLAM is an excellent light-weight
alternative to iterative non-linear optimizers like G2O. We em-
phasize this further with experiments using challenging real-
world binocular data.

E. Results Binocular Data

In this section, we evaluate the real-world applicability of
COP-SLAM, by quantitatively comparing its accuracy to that
of G2O. For this, we use our own datasets (Pittsburgh A,B,C) and
the two longest KITTI benchmark datasets that have loops (see
Table I). A qualitative comparison is also provided on the New
College dataset. The Pittsburgh datasets are processed with our
visual odometer [23], and the KITTI and New College datasets
are processed with the publicly available LIBVISO2 [38]. For
loop detection, we use RTAB-MAP [27]. The images of the
benchmark datasets are sequentially fed to the SLAM front-end,
whose estimated edges are again sequentially fed to COP-SLAM
and to G2O, thereby mimicking an online SLAM system.

Furthermore, the importance of the filter-like mechanism of
COP-SLAM, discussed in Section II-B, is illustrated with a spe-
cific experiment. This is an important experiment as it shows
that COP-SLAM can (to a certain extent) account for the statis-
tical information of past loop closures, without the need to keep
them as active edges in the pose-chain. This property is crucial
when applying COP-SLAM to multiloop datasets.

1) Accuracy: The results of monolithic and stratified COP-
SLAM and of G2O on all six datasets are shown in Table IV.
When a performance metric is not reported for a dataset, it is
because no ground truth of sufficient quality is available for this
dataset. For all datasets, the trajectories obtained by GPS, the
visual-SLAM front-end, stratified COP-SLAM, and G2O are
visualized in Fig. 12 in 3-D.

Similar to our simulations, we observe that COP-SLAM pro-
vides satisfactory results that are similar to that of G2O, while
its computation time is significantly lower. Only from the val-
ues in Table IV, one can observe minor differences in accuracy
between both methods, which are hardly observable in Fig. 12.
Although no precise comparison is possible for the New College
dataset, we can qualitatively observe that also for this dataset,
which has significantly more loops, COP-SLAM provides sat-
isfactory results that are similar to that of G2O. In our view,
COP-SLAM’s results are of sufficient quality to be used in
many contemporary and future robotic applications.

The results obtained on challenging binocular data, thereby
underpinning those obtained on simulated data, show that COP-
SLAM provides similar accuracy as G2O on pose-chain datasets
at a significant reduction in computation time. This observation
allows for two interpretations: 1) COP-SLAM is able to use
the most important local and global information contained in
pose-chains; and 2) more general nonlinear iterative optimizers
are an overkill when applied to pose-chains, as pose-chains
are already relatively accurate at local scales. Clearly, these
statements only apply to pose-chains and not to pose-graphs
in general. Nevertheless, as pose-chains are a typical result of
evermore widely used vision-based SLAM front-ends, we find
them a relevant and promising SLAM representation.

2) Multiloop Filter-Like Behavior: In this experiment, we
illustrate the importance of the filter-like behavior of COP-
SLAM. This behavior is realized by the mechanism described
in Section II-B, which updates the expected accuracy of edges,
modeled by per-edge variances, after a loop is closed. The re-
sults on the Pittsburgh C dataset with and without using this
filter-like mechanism, are shown in Fig. 13.

The critical utility of COP-SLAM’s filter-like behavior is un-
mistakable. When it is not used, the results severely deteriorate.
In this case, new loops can destroy previously closed loops. The
updating of edge variances makes sure that the statistical infor-
mation of previously closed loops is optimally accounted for
when closing new loops. Conceptually, this mechanism makes
an adaptive and optimal tradeoff between the statistical infor-
mation of successive edges, of previous loops, and of the new
loop.

F. Results Monocular Data

In this experiment, we demonstrate the extensibility of COP-
SLAM as a back-end SLAM optimizer. To this purpose, we
apply it to the novel solution space SIM(3) and extend it with a
straightforward landmark updating mechanism (see Fig. 14).

Our SLAM front-end performs sliding-window bundle ad-
justment and provides estimates for the relative and absolute
poses as well as for landmark locations. The difficulty is that
the local scale of the reconstruction, provided by the SLAM
front-end, will drift. This is a well-known nuisance of monoc-
ular SLAM and is typically caused by imperfections in the
camera model and its calibrated parameters. Only by detecting
loops, the scale drift becomes observable to the SLAM back-
end and global optimization techniques, like [20], [25], are truly
effective.
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Fig. 12. Results plotted in 3-D for stratified COP-SLAM and for G2 O for all datasets. Pittsburgh A, Pittsburgh B, and Pittsburgh C are shown in (a)–(c),
respectively, the KITTI O2 and KITTI 00 in (d) and (e), and the New College dataset in (f). The tile size in all figures is 200 m.
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Fig. 13. Results of COP-SLAM on the Pittsburgh C dataset (c) with and (d) without using its per-edge variance (weight) updating mechanism, as described in
Section II-B.

Fig. 14. Landmark modeling in COP-SLAM. The model is similar to that
in Fig. 1(c) but with the addition of landmark edges between landmarks and
absolute poses, which model the relative position of a landmark with respect
to an absolute pose. Note that each landmark is only connected to one absolute
pose, in our case that absolute pose at which the landmark was last observed.
With this straightforward modeling, an improvement in absolute poses directly
translates into an improvement of landmark positions.

Here, we apply COP-SLAM as the back-end optimizer, as
an example of how it can be extended to other SLAM tasks.
In order for COP-SLAM to close loops in the SIM(3) solution
space, relative scale information must be explicitly available in
loop-closing edges. The required relative scale transformation
between the start and the end of a loop is estimated from
efficient local map matching. One map is based on observations
of loop-closing landmarks made at the start of the loop. The
other map is based on observations made at the end of the loop.
These maps are directly obtained from the sliding-window
monocular odometer. The relative scale transformation then
becomes observable by estimating the scale difference between
these two local maps. COP-SLAM puts an error metric on this
observable absolute scale difference, which is then minimized
by altering the relative scale changes of successive edges.

In Fig. 15(a), we show the trajectory and map estimated by
the monocular front-end. To illustrate that global optimization
with scale drift is not a trivial task, Fig. 15(b) shows the result
when using full bundle adjustment as a back-end optimizer. It
is clear that it was not able to provide a satisfactory result, by
reducing the value of its reprojection-based objective function
from 1275 × 106 to 12 × 106 , using 300 Levenberg–Marquardt
iterations and taking 127 s. The satisfactory result obtained by
stratified COP-SLAM in 1 ms is shown in Fig. 15(c). The value
for the bundle adjustment objective function of COP-SLAM’s
solution is 232 × 103 and thereby significantly less than that of
the SLAM front-end. When applying 100 iterations of bundle
adjustment after COP-SLAM, the objective function reduced
further to 9 × 103 , and the result is shown in Fig. 15(d).

This experiment demonstrates the utility of COP-SLAM as
a back-end SLAM optimizer. Its results will be usable as is
for many robotic tasks or will be an excellent initialization for
nonlinear optimization.

Fig. 15. Results on our 800-m-long monocular dataset. (a) Output of SLAM
front-end. (b) Result after 300 iterations of full bundle adjustment. (c) Result of
stratified COP-SLAM and (d) result when applying 100 iterations of full bundle
adjustment after stratified COP-SLAM.

V. CONCLUSION

We have presented a detailed analysis of the recently pro-
posed COP-SLAM method. It is a theoretically unique SLAM
approach that is specifically designed to optimize pose-chains,
which are extremely sparse locally accurate pose-graphs that
result from applying state-of-the-art visual-SLAM front-ends in
large-scale environments for which frequent loop detection is
not desired or not possible.

At its core, COP-SLAM uses Lie group computational meth-
ods, whose convergence and optimality properties have been
theoretically proven. It is highly extensible and can be applied
to any Lie group for which its exponential and logarithmic maps
can be computed, of which SE(2), SE(3), and SIM(3) are most
relevant to robotics. On the basis of extensive real-world exper-
iments, we can conclude that its theoretical properties, which
allow it to compute its solution in closed form and in linear
complexity in the number of edges, have minimal impact on its
empirical performance. When applied to pose-chains, the differ-
ence between the accuracy of COP-SLAM and that of iterative
optimizers, which are a factor 50–100 times more computa-
tionally demanding, is shown to be only a few percentages of
the initial error. COP-SLAM’s accuracy on pose-chain datasets



1212 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 5, OCTOBER 2015

is thereby very close to that of maximum likelihood solutions
provided by iterative optimizers.

We have shown that COP-SLAM has utility also outside
the pose-chain domain. Its results for densely connected pose-
graphs and for bundle adjustment show that it is a versatile
method. In future work, it can easily be extended to other Lie
groups for which exponential and logarithmic maps can be com-
puted. This makes COP-SLAM an excellent lightweight SLAM
back-end, when only limited computation resources are avail-
able. If adequate computation resources are available, it can
be used as an initializer and thereby reduce the overall com-
putation time and simultaneously increase the robustness and
effectiveness of the robotic system.
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