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Abstract—Grasping and manipulating everyday objects in a
goal-directed manner is an important ability of a service robot. The
robot needs to reason about task requirements and ground these in
the sensorimotor information. Grasping and interaction with ob-
jects are challenging in real-world scenarios, where sensorimotor
uncertainty is prevalent. This paper presents a probabilistic frame-
work for the representation and modeling of robot-grasping tasks.
The framework consists of Gaussian mixture models for generic
data discretization, and discrete Bayesian networks for encoding
the probabilistic relations among various task-relevant variables,
including object and action features as well as task constraints.
We evaluate the framework using a grasp database generated in
a simulated environment including a human and two robot hand
models. The generative modeling approach allows the prediction
of grasping tasks given uncertain sensory data, as well as object
and grasp selection in a task-oriented manner. Furthermore, the
graphical model framework provides insights into dependencies
between variables and features relevant for object grasping.

Index Terms—Cognitive human–robot interaction, grasping,
learning and adaptive systems, probabilistic graphical models,
recognition.

I. INTRODUCTION

THE TRANSFER of information between a teacher (hu-
man/robot) and a student (robot) requires a common

knowledge representation. When the human and the robot stu-
dent have identical motor and sensory capabilities, the task may
be simply to transform the action of one to the other by changing
the frame of reference. However, such transfer is not commonly
possible given that the embodiments and associated capabilities
often differ. In such cases, direct copy of an action parameter-
ized specific to a human teacher’s body (such as wrist orientation
and finger joint angles) will not guarantee the success of the task
intended, and sometimes is even not feasible due to distinct kine-
matic structure of the manipulators. This is especially difficult
in the scenarios of object grasping and manipulation because
human and robot often have very different structures and senso-
rimotor capabilities of the hands. This is commonly referred as
the “correspondence problem” in the imitation learning litera-
ture [1]. The way to address it is to focus on achieving the aimed
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goal of a task with any means that the learner is capable of, while
getting around direct imitation at the “action level” [2], which
aims to copy detailed action parameters, such as joint angles
and end-effector (hand) configurations and its trajectories. This
is an approach commonly referred to as “goal-directed imita-
tion.” Goal-directed imitation is an advanced learning strategy
inbuilt in many biological systems, such as human and primates
[3], and has been widely adopted in teaching robots complex
motor tasks [4]–[8].

In this paper, we study how to teach robots to do complex
tasks involving object grasping and manipulation through
goal-directed grasp imitation. We represent the object-grasping
action and its outcomes (the tasks it can afford) at a level that
facilitates a more natural, higher level, and goal-directed grasp
transfer. When less information is transferred, i.e., only the
goal of the grasp action, the student is less constrained by the
teacher in how to perform the task. However, this means that
the student needs to recognize the goal of the teacher’s grasp
action, and the student needs to know how to achieve the goal
through planning grasps with its own embodiment. The former
phase requires the robot to build an internal model encoding the
links of observed human actions and their intended task, i.e.,
the action understanding of the human teacher. The later phase
requires the robot to model its own sensorimotor capabilities
and the relation to the tasks (or goals) it wants to achieve, i.e.,
the action representation of the robot learner.

We take a data-driven approach to address both phases of
operation mentioned above; therefore, to solve the problems
of grasp knowledge transfer between a teacher and a learner.
We first acquire a large set of task-labeled grasps performed
by a human teacher and a robot learner with different embod-
iments (hands). For each hand, we use probabilistic graphical
models—Bayesian networks (BNs) [9]—to encode variations
of all the variables (including task, and other object and grasp
action variables). The learned BNs encode task-oriented object-
grasping capabilities specific to each hand embodiment. The
grasp transfer between the teacher and the learner can be done
in a goal-directed manner by emulating the intended task of the
human demonstrator. The initial development of this model was
presented in [10]–[14].

A. Problem Formulation

Our model implements goal-inference and goal-based grasp
planning suitable for an artificial agent with a specific embod-
iment. The goal inference relates to estimating the intention of
the human teacher by observing an execution of a grasping task.
The grasp planning involves decisions over object selection,
and grasp type so that the requirements posed by the task are
fulfilled.
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Fig. 1. System diagram. The top row shows an online process of goal-directed grasp imitation consisting of a vision-based perception subsystem, a BN-based
reasoning subsystem, and a grasp execution subsystem. The bottom row shows the offline training of the BNs. The scope of this paper is within the red rectangles.

Fig. 2. Left: Task-constrained grasp examples. For each task and each object class that affords the task, one preferred grasp configuration is shown for all three
hands. Right: Constraints considered when generating task-related grasp database.

1) Notations: Before going into the formulation, we first
clarify the use of notations. Commonly, we use the upper case
letters, such as T,O,A,C to represent variables or a group of
variables, and the corresponding lower case letters to represent
their instantiations, such as t,o,a, c. The bold face of the lower
case letter indicates that the represented variable is a vector
instead of a scalar value. A set of data with N instantiations will
then be represented by the bold upper case letters T,O,A,C,
where, for example, C = (ci , i = 1, . . . , N).

In this paper, we use O to represent a group of variables
describing object category, size, and shape-related features, A
a group of variables that parameterize a grasp action such, as
hand position, orientation, and articulation at the moment of
grasping, and C a group of constraint variables that parameter-
ize the object-grasp configuration, such as the free volume on
the grasped object that is not covered by the hand. We use nota-
tion OG to represent an object-grasp configuration illustrated in
Fig. 2.

2) Probabilistic Modeling: In Fig. 2, a set of example OGs
are listed for different hands according to the task they afford.
Each OG can be described by the set of aforementioned O,A,C
features and the task(s) T that the grasp can afford. Our model
aims to encode the interdependencies between the O,A,C, and
T for different hands.

Goal inference can be expressed as finding the mapping
f1 : {o,a, c} → t, object selection f2 : t → o, and grasp plan-
ning f3 : {t,o} → a. In terms of modeling the mappings, the
simplest approach would be to assume f1 , f2 , and f3 to take

functional form for tasks in the task set. This would imply that
{o,a, c} deterministically assesses the task t, which in turn
assesses the object o according to f1 and f3 . However, this
scenario is not a particularly realistic one since different tasks
require different settings on different subsets of O,A,C fea-
tures. Furthermore, for a given task, it is often not a single, but
rather a set of grasps that can be considered as good. For exam-
ple, many side grasps around a bottle are good for pouring. In
other words, we aim to find a distribution of good grasps rather
than a single deterministic mapping. This is also beneficial dur-
ing real-world grasp execution, where one single grasp may not
be feasible due to various factors, such as occlusion or internal
collisions.

Thus, we adopt a probabilistic modeling approach capable of
handling a multimodal problem. If we model the joint distribu-
tion of all variables p(o,a, c, t), we can infer the conditional
probabilistic distributions p(t|o,a, c) for goal inference, and
p(o|t) and p(a|o, t) for goal-directed object selection and grasp
planning, respectively.

In this study, we use a directed graphical model, BN, to
model p(o,a, c, t). Fig. 1 illustrates the entire system. In the
offline learning phase, we obtain hand-specific BNs for the
human teacher and robot learner. During the process of goal-
directed grasp imitation, the robot first uses its perception sys-
tem to extract o,a, c from visual observation of the human
demonstration. The goal inference is then the process that de-
termines the most likely task using human hand-specific BN
(or BNH ) t∗ = arg maxt p(t|o,a, c,BNH ). Grasp planning
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is a process that determines the most appropriate object o∗ =
arg maxo p(o|t∗,BNR ), and then the most appropriate grasp
a∗ = arg maxa p(a|o∗, t∗,BNR ) for executing the given task,
using robot hand-specific BN (or BNR ). Finally, a grasp execu-
tion system performs the planned grasp on a real robot platform.
Note that the scope of this paper is the grasp reasoning and plan-
ning systems.

B. Contributions

The main contributions of this study are as follows: 1) a
human-assisted method for acquiring manually annotated task-
related grasps, 2) a methodology for learning probabilistic rela-
tionships between various task-, object-, and action-related fea-
tures, 3) an embodiment-specific concept of affordance, which
maps symbolic representations of task requirements to the con-
tinuous object and grasp action parameters. Furthermore, using
a probabilistic framework, we can easily extend the object and
action spaces, and allow 4) flexible learning of novel tasks and
adaptation in uncertain environments. Finally, our model can
be applied to a goal-directed imitation framework, which al-
lows 5) a robot to learn from humans despite differences in
their embodiments. Our initial findings have been reported in
[10]–[13]. The application of the modeling framework to pre-
dict human intention in visual observations has been reported
in [14]. Except for summarizing the previous work, this paper
includes the following extensions: 1) a more challenging dataset
including more tasks and hands; 2) the evaluation of two dis-
cretization methods for learning data representation; and 3) a
more detailed evaluation of the proposed modeling framework.
This paper dedicates a large space for designing and evaluating
discretization methods because it is the key to learn the structure
of interaction between a large set of different sensory modalities.
A good structure is the core of a good model for the reasoning
system.

II. RELATED WORK

The work presented in this paper relates to a wide range of
works in robotics and machine learning. To limit the overview,
we identify three separate topics that are central to our work:
imitation learning, affordances, and probabilistic modeling and
their applications in robot grasping.

A. Goal-Directed Imitation Learning

Imitation learning is an effective approach for teaching robots
simple tasks [15]. Most applications of imitation learning are
focused on learning the entire sequence of complex tasks (be-
havior learning) [16], learning full-body locomotion [17], or
motions of the arm [18] and the end effector [19]. When applied
to grasping problems, one important focus is on learning the
trajectories of the end effector, i.e., how to reach to the grasping
position (e.g., [20]). Direct mapping of grasping configuration
from teacher’s to learner’s hands is difficult. The challenge is
imposed by both the kinematic differences of the actor that is the
hands, the “correspondence problem” [21], and the physical in-
teraction with the objects. Several approaches include mapping
in a lower dimensional or “synergy” space, such as “virtual fin-

gers” [22], mapping through classification of grasps, “grasp tax-
onomy” [23], through empirical encoding “master motor maps”
[24], or through a database of demonstrated grasps on a set
of primitive object shapes [25]. Work in [25] addressed grasp
mapping through picking the demonstrated grasps applied on
the object with similar primitive shapes (boxes, cylinders, or
spheres). Schmidts et al. [26] incorporated both motion and
force data to learn grasping skills that showed better generaliza-
tion compared with encoding kinematic relations only. These
works all focused on teaching robots to stably grasp the objects,
which cannot guarantee the success of the grasping tasks. This
is because the success of a grasp relies on both good physical
interaction with the object (stable grasps), and on satisfying the
high-level goal of the subsequent manipulation actions (the goal
of the grasping task).

To solve the correspondence problem in imitation learning,
a number of works have proposed solutions based on differ-
ent levels of imitation from direct action copy to higher level
imitation [1], [2]. The highest level is the effect level, where
the learner emulates the intention or goal of the teacher using
the action that conforms to its own embodiment. Goal-directed
imitation has been explored by a number of robotic researchers
[6]–[8]. This is particularly useful for learning difficult motor
skills that require intensive cognitive guidance’s, such as grasp-
ing tasks. Works in [10] and [12] applied such a concept to
achieve human-to-robot knowledge transfer for the purpose of
goal-directed grasping.

Goal-directed imitation is also supported by the learning
paradigm based on internal models [27]–[30]. Wolpert and
Kawato [27] proposed a modular approach based on multiple
pairs of inverse and forward internal models to explain motor
learning and control in biological systems. In [28], it is shown
that the internal models that represent the brain circuitry sub-
serving sensorimotor control also participate in action recogni-
tion. They are used to predict the goal of observed behavior, and
activate the correct actions to maintain or achieve the “goal”
state. Inspired by this, the authors proposed a robotic archi-
tecture for imitation and learning. The work in [29] and [30]
instantiated such internal models through BNs, a probabilistic
modeling approach that links motor activities and their conse-
quences. A later work in [31] extended the use of an internal
model to the domain of visual-manual tasks. Song et al. [14]
are the first to show that the same BN model used to implement
goal-directed grasp imitation can also be used for recognizing
visual observed human demonstration on a set of house-hold
objects.

B. Affordances

Gibson proposed the concept of affordances that defines ac-
tion possibilities of an individual agent in the environment,
which depends on its action capabilities [32]. Affordances
are, therefore, the fundamental concept for agents (artificial
or human) to act in a complex environment, to interact with
each other and with objects in a flexible manner. Montesano
et al. [8] modeled this affordance on a robot in simple object
manipulation tasks. The authors adopt a self-supervised devel-
opmental approach, where the robot first explores its sensory
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motor capabilities, and then interacts with objects to learn their
affordances. The affordances being modeled are measured as
the salient changes in the agent’s sensory channels, which are
interpreted as effects of specific actions applied on objects. As
an example, an effect of poking a ball is making it roll. Later, the
work in [33] associates the learned affordance model to learning
of words, automatically linking the meaning of the words to the
properties of the objects and the manipulative actions on them.

Although learning through exploration is an important step
for a robot to discover its own motor ability, another necessary
step to achieve goal-directed behavior is to link this immediate
motor act and its effects (as to poke the ball and let it roll)
to the conceptual goal of an assigned task (as to provide the
ball to a child). While trial-and-error-based exploration can be
seen as inefficient to solve such goal learning problems, human
supervision is helpful. Our work reported in [10] and [12] takes
this step to model the affordances at a higher level concept, the
grasp task, that is to be provided by human tutors. As an example,
how an agent grasps an object determines whether this object-
hand configuration can afford the subsequent actions, such as to
pour out water or to handover to another agent. The affordance
is to be recognized, and not perceived directly as in [8] and [33].

C. Probabilistic Modeling of Affordances

Observations from sensory streams in grasping are often un-
certain and corrupted by the significant noise. The data are often
composed of several different views or modalities each being
high dimensional on its own making the concatenated observa-
tion space extremely high dimensional. Furthermore, in terms
of estimation, there is often more than one correct answer, an
example being that there are many different possibilities of how
to grasp a cup in order to pour from it. Each of these charac-
teristics on its own makes a problem more difficult; therefore,
putting them all together provides an even more challenging
scenario. In this paper, we will take a probabilistic approach to
model task-based grasping.

Probabilistic models naturally deal with uncertainty and have
been successfully applied across many different robotic do-
mains, such as control [34], [35], motion transfer [36], and
affordances [8], [33]. We are interested in inferring grasps from
several different combinations of observations, and we expect
the estimation task to be highly multimodal, i.e., that there are
many possible grasps that afford a specific task. A probabilistic
approach from a generative perspective parameterizes the vari-
ations in the data. This makes it ideally suited for the task as
we can perform inference based on partial observations. In this
missing data problem, we do not rely on assumptions about the
distribution of the inference task; therefore, being able to en-
code ambiguities. The high dimensionality of the data we wish
to model requires infeasible amounts of data to circumvent the
curse of dimensionality. However, the concept of affordances
is underpinned by a hierarchical structure, as specific knowl-
edge provides information about other parts of the state space.
Such structures lie at the heart of probabilistic models described
by conditional distributions. More formally, when a set of data
can be described using conditional distributions, this can be ex-
ploited to learn compact and efficient models by investigating

conditional independence. To that end, we will use a directed
factorized probabilistic model known as BN [9]. This model
is used to encode the statistical dependencies between object
attributes, grasp actions, and a set of task constraints; therefore,
linking the symbolic tasks to quantified constraints. The factor-
ization described by the structure of the observations will not
only reduce the requirements on the training data and speed up
learning, but significantly simplify inference as well.

In our previous work [10], we applied this approach to grasp-
ing using a small set of sensory streams with good results.
However, this model required that the hierarchy (the network
structure) needs to be specified a priori. This is difficult because
it requires complete knowledge of conditional relationships in
the data. We improved the model by first learning a compact
data representation, which then allows the hierarchical structure
to be learned from the data [11], [13].

III. DATA REPRESENTATION AND GENERATION

Our approach is data driven. In order to achieve a useful and
expressive model, the data used to create the model need to
reflect the variations we expect to encounter. In this section,
we will describe and motivate the representation and collection
process of the data that form the basis for the work presented in
this paper.

As briefly mentioned in Section I, the features describing
each OG (as exemplified in Fig. 2) are divided into three sub-
sets: object features (O) from the object representation, action
features (A) from the planned grasps, and constraint features
(C) resulting from the complementation of both, i.e., the hand-
object configuration OG. Each OG is visualized in a simulation
environment to a human tutor who associates it with a binary
task label (T ∈ �L ), indicating which tasks in the task set this
grasp affords.

A. Feature Representation

1) Task: In our notation, a task t refers to a “basic task” that
involves grasping or manipulation of a single object. Accord-
ing to [37], such a basic task can be called as a manipulation
segment, which starts and ends with both hands free and the
object at the stationary state. These manipulation segments are
the building blocks for complex manipulation tasks. Although
there may be an infinite number of complex tasks, we assume
the basic building blocks form a finite set of object manipulation
tasks. We therefore choose our task representation at the level
of manipulation segments as each of them has an independent
goal directly constraining how to grasp an object.

2) Object Features: An object feature set O = {O1 , . . . ,
OnO

} specifies the attributes (e.g., size) and/or categorical (e.g.,
class) information of an object. The features in O are not nec-
essarily independent. The same attribute, such as shape, can be
represented by different variables dependent on the capabilities
of the perceptual system and the current object knowledge. For
instance, eccentricity and convexity can be estimated from any
kind of point cloud or mesh, while 3-D shape representations
like Zernike descriptors [38] can be used when a complete and
dense 3-D model of an object is available, i.e., when the object
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is known. Although apparently redundant, a system-dependent
object representation offers flexibility in generalization across
possibly different vision systems, which can provide various
levels of object knowledge.

Note that the O features are object intrinsic properties. We
do not consider state changes of the object, e.g., its pose. Such
a representation is beneficial because it allows us to build a
complete model over what kind of grasps afford a given task,
without being distracted by issues such as reachability. This
encourages a modular design of the robot manipulation systems,
where our system addresses a goal-directed grasp planning and
problems, such as inverse kinematics and collision detection
should be addressed by a path planning system.

3) Action Features: An action feature set A = {A1 , . . . ,
AnA

} describes the object-centered kinematic grasp features,
which may be the direct outputs of a grasp planner. A may in-
clude properties like grasp position, orientation, hand approach
vector, or the grasp-finger configuration.

The action set is a static feature set. We do not look at time
sequences of the data that record how hand is approaching the
object, and how fingers close around the object. Instead, only
data for a single time frame are used. This frame is chosen
manually, for example, when finger close around the object and
establish a stable grasp.

Such a representation is chosen for the following reasons.
First, this is consistent with the output of most grasp planner
systems. Therefore, we can use our system to constrain the se-
lection of one grasp from a set of planned grasps. Second, such
a “goal state” of the “reaching and grasping” process is already
very informative to determine what one can do (i.e., the task)
after lifting the object. The temporal data beforehand are rela-
tively redundant. Finally, a static data are much more compact;
thus, more efficient to model than temporal data, and structural
learning algorithms in BN can be applied in a straightforward
manner.

4) Constraint Features: Finally, constraint feature set C =
{C1 , . . . , CnC

} specifies a set of constraint variables, which
are defined by human experts. They can be considered to be
an abstraction of the combined O,A features, and have direct
links to the possible tasks under consideration. For example, one
may define the enclosure of the object volume as a constraint
feature, which defines the constraints of a handover task. Such
a feature obviously depends on both O (size and shape) and
A (grasp position and finger configuration) features. However,
it is only a 1-D variable; thus, provides a much more compact
representation than using a set of O,A features. They can be
used to quantitatively interpret the “goal” or the “requirements”
of a given task.

B. Feature Generation

Fig. 3 shows the schematic of the data generation process. For
each hand-object pair, we generate a set of stable grasps using
a grasp planner system—Box Approximation, Decomposition,
and Grasping (BADGr) [39]. BADGr is used to extract the set of
{O,A,C} features for each OG configuration. These features
are described in Fig. 9.

Fig. 3. Schematic diagram for generating a task-related grasp database.

To provide task labels for this set of stable grasps, each OG
is visualized as a 3-D scene in GraspIt!. The human tutor then
selects among a set of possible tasks the affordable task(s) for
this OG. If this grasp instance is labeled to be valid for at least
one task, a data instance will be included in the final complete
dataset [O,A,C,T] for training and testing.

IV. METHODOLOGY

As we stated in problem formulation, we use BNs [9] to
model the joint distribution p(O,A,C, T ) for the purpose of
goal-inference and goal-directed grasp planning. The former
is essentially a task classification problem, i.e., to classify T
by inferring p(T |X), where X ⊆ {O,A,C}. BN is a gener-
ative modeling framework, which allows us to learn a single
model from which we are capable to perform inference given
any partial view of the data. However, generative models have
the disadvantage compared with discriminative models that it is
not obvious how to perform feature selection. This means that
the model has to represent all the variations in the data, even
those that are not relevant for the estimation tasks that we are in-
terested in. In order to evaluate the classification performance,
we will compare the generative model with a discriminative
approach, specifically, we will use kernel logistic regression
(KLR). In this section, we provide an overview of the two mod-
eling approaches.

A. Kernel Logistic Regression

Given a class variable T and a input feature set X , KLR
models the probability of the class variable p(T |X) through a
weighted sum of the similarities (kernels K) between a testing
point x and each training point xi [40]

p(t|x;w) =
1

1 + exp
{
−

∑N
i=1 wiK(x,xi)

} (1)

where N is the number of training data points.
In this paper, we choose K to be a Gaussian kernel. Training

a KLR model is to find the weight vector w that maximizes the
regularized probability of the data

−
n∑

i=1

log p(ti |xi ;wi) + η trace(wKwT ) (2)

where ti is one training point of class variable T , K is the kernel
Gram matrix, with Kij = K(xi ,xj ), and η is the regularization
constant. During training, the kernel bandwidth parameters and
η are chosen by cross validation.
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B. Bayesian Networks

A BN [9] is a directed graphical model that encodes the joint
distribution of a set of random variables V = {V1 , V2 , . . . , Vm}
in a network structure. Each node in the network repre-
sents one variable, and the directed arcs represent conditional
(in)dependencies. Given a structure of the network S and a set
of local conditional probability distributions (CPDs) of each
variable Vi , the joint distribution of all the variables can be
decomposed as

p(v) = p(v|θ, S) =
m∏

i=1

p(vi |pai ,θi , S) (3)

where pai denotes the parents of node Vi , and the parameter
vector θ = (θ1 , . . . ,θm ) specifies the CPDs. Learning a BN in-
cludes discovering from a dataset X = {x1 , . . . ,xN }: 1) how
one variable depends on others (θ), and 2) what the conditional
in-dependencies between different variables are (S). The former
is an instance of parameter learning and the latter of structure
learning. Various algorithms and techniques have been devel-
oped to learn a BN in different model and data conditions.

BN models the joint distribution of task and a set of task-
relevant variables, i.e., V = {T,X}, where X ⊆ {O,A,C}. To
correctly describe a manipulation task, both high-level concep-
tual information and continuous low-level sensorimotor vari-
ables are needed. The variables in this study are both discrete
(e.g., task) and continuous (most O,A,C features). The con-
tinuous features, such as hand-grasp configuration can be high
dimensional with complex probabilistic distributions.

Learning BN structures from both continuous and discrete
data are difficult, particularly when continuous data are high di-
mensional and sampled from complex distributions. Most algo-
rithms for structure learning only work with discrete variables.
Therefore, a common approach is to convert the mixed mod-
eling scenario into a completely discrete one by discretizing
the continuous variables [41]. In Section V, we will introduce
two different discretization approaches based on self-organizing
maps (SOM) [42] and Gaussian process latent variable models
(GP-LVM) [43] for this purpose. Given the discretized data,
we use a greedy search algorithm to find the network struc-
ture (the directed acyclic graph, or DAG) in a neighborhood of
graphs that maximizes the network score (Bayesian information
criterion [44]). The search is local and in the space of DAGs;
therefore, the effectiveness of the algorithm relies on the initial
DAG. As suggested by [45], we use another simpler algorithm,
the maximum weight spanning tree [46], to find an oriented tree
structure as the initial DAG. Once the structure is determined,
the conditional probability tables are updated sequentially using
a standard Bayesian parameter updating scheme.

V. DATA DISCRETIZATION

We propose two discretization algorithms for our high dimen-
sional continuous problem based on SOM [42] and GP-LVM
[43] (see Fig. 4). Both approaches result in a Gaussian mixture
model (GMM) representing the density of the input space. This
probability representation can “smooth out” the boundaries in

Fig. 4. Two discretization methods illustrated on 20-D data of human hand
final grasp configuration fcon. Top row is SOM-based method, and bottom row
is the GP-LVM-based method. (a) SOM with the size of the unit determined
by number of original training data that is mapped to that unit. (b) Clustering
results on the SOM. (c) Density map from the trained GMM. The GP-LVM
plots show the location of the latent points and the grayscale value encodes the
posterior probability in the observed space associated with the latent location.

the initial clusters; hence, provide a “soft” discretization similar
to [47]. We will explain them in detail in the following section.

A. Discretization Using Self-Organizing Map

In this approach, we first use SOM to efficiently cluster the
high-dimensional data Y to automatically define the boundaries
of discrete intervals. From the clustering results, we then obtain
a GMM to represent the density of the input space. For a set of
N observed high-dimensional values Y ∈ �N ×D , we first use
a SOM-based clustering approach as in [48] to form K clusters.
The principle is to use SOM to project Y to a set of prototypes
(map units) that are then combined to form final clusters.

SOM [42] is often used in vector quantization and visualiza-
tion of high-dimensional data and consists of a regular usually
2-D grid of M map units. Each unit i is represented by a pro-
totype vector wi that has the same dimensionality as the orig-
inal data. The units are connected by neighborhood relations
discovered from original training data. The SOM can thus be
interpreted as a topology preserving mapping from input space
Y onto the 2-D map units W ∈ �M ×D resembling the density
of the original data. Given this property, the problem of clus-
tering on the original N data points can be reformulated into
clustering on their mapped M prototype vectors on the SOM.
Since M is much smaller than N , clustering is more efficient in
computation.

Fig. 4 top row illustrates this process. First, a large set of
prototypes—much larger than the expected number of clusters
K—is formed using the SOM [see Fig. 4(a)]. Given a predefined
number of clusters K, clustering is performed onW using the K-
means algorithm. To determine K, we use the Davies–Bouldin
validity index [49], defined as

Idb � 1
2

1
K

K∑
k=1

max
l �=k

{
sk + sl

dkl

}
(4)
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where sk is intracluster distance, and dkl the intercluster dis-
tance, K is the minimizer of Idb . Fig. 4(b) shows the clustering
result on the set of prototypes.

Each data point of the original dataset Y is assigned to the
cluster of its prototype wi . This result provides the initial clus-
tering of the data for learning of a GMM

p(y) ∝
K∑

k=1

λkN (y|μk ,Σk ) (5)

where μk ∈ �D and Σk ∈ �D×D are the mean and covariance
of each Gaussian component, and λk are the mixing weights.
The parameters of the mixture model are learned using a stan-
dard EM approach. The learned model encodes the density dis-
tribution in the original data space [see Fig. 4(c)].

B. Latent Space Discretization

The latent space discretization is also a two-stage process.
First, we learn a new low-dimensional representation of the
data over which its density can be easily modeled. Second, a
mixture model is used to model the density of the data in the
new representation. The latent representation is learned using
a sparse approximation of the GP-LVM [43] with the incorpo-
ration of a novel prior model that encourages the data to be
clustered.

1) Sparse Gaussian Process Latent Variable Model: In the
GP-LVM framework, the observed data are assumed to have
been generated from a low-dimensional latent variable through
a functional mapping with the added Gaussian noise yd =
fd(X) + ε,ε ∼ N (0, σ2I), where d indicates the dimension. In
order to find a solution to this general and ill-constrained for-
mulation, one needs to include additional priors to regularize
the solution space. The novelty of the GP-LVM is that it uses a
flexible Gaussian process (GP) [50] priors to model this map-
ping. Formulating the likelihood of the data and marginalizing
out the mapping leads to the marginal likelihood of the model

p(Y|X,Φ) =
D∏

d=1

∫
p(yd |fd)p(fd |X,Φ)df (6)

where Φ are the hyperparameters of the model, which charac-
terizes the prior. A solution to the latent representation can be
found by maximizing the marginal likelihood for the observed
data. However, performing this maximization is an expensive
optimization procedure with O(N 3) complexity, which signifi-
cantly reduces the applicability of the model. Therefore, an au-
gumented model was formulated in [51], where the latent space
is approximated using a set of sparse latent inducing variables,
which significantly reduces the complexity. In [52], a variational
framework was developed to efficiently learn the latent location
X , inducing inputs Xu , as well as the hyperparameters of this
sparse model. Fig. 4(d) shows the 2-D latent space learned from
the hand-grasp configuration data, where black dots are the la-
tent locations of training data X , red stars depict the inducing
inputs Xu .

The intuition behind the inducing variables Xu is that the two
latent function values f and u can only communicate through

Xu ; therefore, induce the dependencies between the outputs
[51]. In other words, Xu compose a sparse set of “support-
ing points” that effectively explain the observed data in a more
compact manner. This means that the inducing input Xu can be
interpreted as a sparse representation of the full latent represen-
tation X, which is a low-dimensional parameterization of the
observed data Y.

2) Discretization Using Sparse Gaussian Process Latent
Variable Model: Dimensionality reduction is a severely ill-
constrained task. The GP-LVM, as described above searches
for a solution by using a GP to encode a preference over the
generative mapping f . However, it is important to note that this
is just one of infinitely many possible solutions. In this paper,
we are interested in a representation that represents the data
in a discretized manner with good accuracy. Using the frame-
work above, we could learn such a representation by encoding
this preference as prior distribution over X. To encode this, we
would need to know which cluster each data point should be
associated with, i.e., “a chicken and an egg problem.” However,
rather than encoding this directly, we can use the sparse model
and place a prior on the inducing points, which encourages each
xu to be independent. This means that each latent point x is
generated by a single inducing point xu .

A prior that will encourage such behavior can be created by
penalizing the L1 norm of the off-diagonal elements of the inner
product matrix computed between the inducing points

p(Xu |θu , βu ) = N (
√

D(Xu, θu )|0, β−1
u ) (7)

D(Xu, θu ) =
M∑
ij

(1 − δij )ku (xui ,xuj , θu )

where δij is the Dirac delta function. If the function
ku (xui ,xuj , θu ) is smooth and monotonically decreasing with
respect to ||xui − xuj ||, the distribution will encourage a repre-
sentation with well-separated clusters. The parameters βu and
θu control the strength of the prior and the smoothness of the
kernel, respectively. In specific, we will use a radial-basis func-
tion, where θu controls the width of the function that relates to
the strength of the prior.

In the second step, one could directly use the inducing points
as cluster centers to discretize the data. However, in order to
reduce the number of hyperparameters in the model, the param-
eters of the covariance function are shared among the inducing
points. This means that in order to increase the representational
power of the model, we fix the location of the inducing points
and learn an independent covariance for each of the centers. In
effect, this implies learning a GMM with the inducing points as
means in the representation provided through the GP-LVM

p(x) ∝
K∑

k=1

λkN (x|μk ,Σ−1
k ) (8)

where λk are the mixing weights. Note that in the latent space
discretization, the cluster centers μk ∈ �q are fixed at the in-
ducing points, i.e., μk = xuk . We choose a spherical covariance
function for each Gaussian component because this is consis-
tent with the RBF kernel used in the inducing prior. Covariance
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matrix for each component is thus Σk = Iσk , where I ∈ �q×q

is the identity matrix, and σk is the variance in each dimen-
sion of the latent space. The parameters λk and σk are opti-
mized through the standard expectation maximization approach.
Fig. 4(e) shows the learned GMM model with the red circles rep-
resenting one standard deviation of the Gaussian components.
Fig. 4(f) shows the density distribution of the latent space.

a) Inference: A trained BN defines a factorization of the joint
distribution p(T,O,A,C) that adheres to the discovered condi-
tional dependencies. The availability of such a BN enables the
computation of the marginal probability density of a group of
variables by conditioning on the rest. This is commonly per-
formed by applying the junction tree algorithm [53]. The re-
sult of the latter is a set of probabilities, for all the discrete
states of a variable Z, conditioned on the observed evidence
e, pk = p(Z = k|e). If the queried variable Z is originally a
discrete variable, such as task, pk s provide a complete proba-
bility information that allows us to classify tasks given observed
object-grasp configurations. If, however, Z is a continuous vari-
able, a further step is required to recover the expected continuous
value E(Z) in its observation space.

Estimating a continuous representation from soft evidence is
an “inverse problem” in soft discretization as it recovers the
continuous value from discrete states. This is also known as
defuzzification in fuzzy set theory, which does not have a sim-
ple solution [54]. The simplest and most common approach for
interpreting the output of a discrete BN is to use the most likely
state of the inferred variable as output, and then take the mean
of that state represented in the one Gaussian component in the
GMM model, i.e., E(Z) = uk , where k = arg maxk (pk ). In
this approach, however, there is a danger of tremendous infor-
mation loss, especially when pk does not have a strong preferred
single state, but it spreads out to multiple states. In such cases,
the most likely solution disregards all the other states that also
have high likelihood. An alternative method would be to esti-
mate the expected value using a weighted sum of the component
centers that takes probabilities of all the states into account. The
expected value of variable Z is then defined as

E(Z) =
K∑

k=1

p(Z = k|e)uk =
K∑

k=1

pkuk . (9)

It is important to note that the recovered continuous representa-
tion E(Z) using (9) is in the space where GMM discretization
model is build on. Therefore, if Z is a high-dimensional contin-
uous variable, such as the hand-grasp configuration and its data
are discretized with the latent space discretization approach,
then a further step is required to recover the original representa-
tion in its observation space through the standard GP mapping.

VI. EXPERIMENTAL DETAILS

We design experiments to evaluate the proposed BN-based
grasp modeling approach. The goals of the experiments are as
follows.

1) To evaluate task classification performances of the pro-
posed generative modeling approach using BNs (see Sec-
tion VI-C).

Fig. 5. Experiment object models.

TABLE I
TOTAL NUMBER OF OGS AND SAMPLE SIZES OF EACH TASK

FOR THE THREE-HAND MODELS

Total Handover Pouring Tool Use Dish Washing Playing

Human 4760 996*2 860*2 986*2 457*2 101*2
Armar 6767 1488*2 1565*2 565*2 767*2 66*2
Schunk 7865 2033*2 2135*2 960*2 759*2 296*2

For each task, there are equal amount of positive and negative data, therefore the sample
size is Np o s i t iv e *2.

2) To evaluate the ability of the BNs to encode task-specific
requirements on grasping parameters (see Section VI-D).

3) To evaluate the two proposed discretization methods on
the high-dimensional data (see Section VI-E).

4) To illustrate the application of the proposed approach in a
goal-directed grasp imitation scenario (see Section VI-F).

The focus of the experiments is to evaluate learning algo-
rithms underlying the reasoning system. The execution on real
robots using the proposed system has been done in [55].

A. Data Collection

We evaluate our grasp modeling framework on three hands:
Human hand (20 DoFs), Armar humanoid hand (11 DoFs) [56],
and three-finger Schunk dexterous hand (7 DoFs) [57]. For each
hand, we generate a large set of stable grasp data on the objects
of four different classes: bottle, mug, hammer, and sedan (toy
car) (see object models in Fig. 5). The total numbers of OG’s
are listed in Table I. For each OG, a human tutor observes the
3-D configuration in a grasp simulator and provides labels of
one or a set of afforded tasks from the task set (handover, pour-
ing, tool use, dish washing, playing). The semantics of the five
tasks are described in Fig. 2. It is important to note that the task
requirements on the grasped object and the grasp configurations
are defined subjectively by the human user. Such task prefer-
ences can change from one user to another, or adapt over time to
different situations. The BN-based modeling approach allows
such knowledge updating in a life-long learning process of the
artificial agent.

For each task, we extract balanced positive and negative ex-
amples from the total dataset, and this will be the basis for
training task-specific BNs. Table I lists the sample sizes for
each task for the three-hand models. We note that there is an



554 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

Fig. 6. Algorithm VI.1 for preprocessing the data.

imbalance in sample sizes across five tasks. This is explained by
different numbers of objects that afford different tasks and how
constrained a task’s requirements is. For example, for playing
task, only sedan can be grasped. For human and Armar hands,
good grasps are those from the top with the thumb and index
fingers facing the driving direction of the car (see Fig. 2). This
is why the “playing” task on human and Armar hands has the
least amount of data.

B. Data Preprocessing

The collected data are a set of OG configurations instantiated
with a set of {O,A,C} features together with the task labels T
provided by human experts. Fig. 8 lists a set of features used
in this paper. We note that, for the purpose of task classifica-
tion, the listed features are not equally discriminative. Some
variables may be very relevant for one task, but not relevant at
all for another. To remove most redundant features and allevi-
ate the effect of the curse of dimensionality, we implement a
feature selection step during data preprocessing. Furthermore,
most {O,A,C} features are continuous-real-valued data and
some of them are multivariate variables. As stated in Section
IV-B, to learn the structure of the BN from data, we need to
discretize the continuous data.

Fig. 6 shows the pseudocode for the two steps of data prepro-
cessing. For feature selection, we applied the optimal variable
selection algorithm HITON proposed by [58]. We select HITON
as the feature selection method because it is sample efficient and
it is based on inducing the Markov blanket of the target class

Fig. 7. Algorithm VI.2 to train and test BN and KLR models for task classi-
fication.

variable, which is the minimum set of variables that make the
other variables conditionally independent from the target vari-
able. Implicitly, the variables in the Markov blanket are a set
of variables that are most relevant to the class variable. HITON
works by first inducing the Markov blanket of the target variable
to be classified (in this paper it is task T ). Then, support vector
machine is used to further remove the unnecessary variables in
the Markov blanket in a greedy hill-climbing fashion. The left
side of Fig. 8 are the task-specific BNs for the three hands, where
the selected variables are displayed. As expected different tasks
and hands have resulted in different set of selected variables.
For example, since playing with the toy car only requires the
Schunk hand to grasp the car from the top, i.e., requirements on
the unified grasp position npos, the feature selection algorithm
does not select the orientation of the hand dir to be relevant.
On the other hand, dir is included for both human-like hands
(human and Armar) because Playing task also requires thumb
and index finger to be facing the driving direction of the car,
thus constrain the possible values of dir.

In the second step of preprocessing, the pseudocode in Fig. 6
specifies the data discretization methods used for each variable.
For 1-D continuous variables, we first apply the equal width
binning to cluster the continuous data into K intervals, and then
train a GMM model based on this initial clustering. The free pa-
rameter K is selected from a given range of Ks that minimize
the Bayesian information criteron. For multivariate variables
{npos, dir, size, coc, fcon}, we apply SOM-based discretiza-
tion. Number of cluster K is determined by minimizing the
Davies–Bouldin index in (4). Only one variable fcon is a high-
dimensional variable that potentially has a lower dimensional
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Fig. 8. DAGs of SOM discretization for three hands and five tasks.

Fig. 9. Feature abbreviations, dimensionality, and descriptions. Note: task and obcl are discrete variables and therefore not assigned with any dimensionality.

Fig. 10. Goal inference: The average ROC curves (true positive versus false positive rates) obtained with 30 trials of hold-out (20% testing) cross validation for
the four tasks and three hands. The shaded region represents two standard deviation on true positive rate (Y-axis). Two colors represent two different observation
conditions: pink—full; blue—partial, where constraint features, such as free volume and grasped part shape are missing. The numbers on the graph reports the
average and standard deviations of AUCs of the full and partial observations, respectively. Note that sometimes the pink and blue curves show same results because
C features were not included in the feature set (see selected features on the DAGs in Fig. 8).
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intrinsic space. We, therefore, also apply the latent space dis-
cretization approach on the data of fcon. In Section VI-E, the
two discretization methods will be evaluated by examining the
reconstruction of fcon in the original observation space.

The following sections will present the experiment using the
preprocessed data.

C. Experiment I: Task Classification With Bayesian Networks
and Kernel Logistic Regressions

For evaluating the classification performance, we compare the
BNs with the discriminative model KLRs under two observation
conditions: the full observation when the values of all selected
variables are observed and when only given partial knowledge.
To get class probabilities with two observation conditions, we
need to train two separate KLR models, KLRf model with a full
feature set, KLRp model with partial feature set; and one BN
model with full feature set. We do not need to train a separate
BN model with partial feature set because task probability can
be inferred with partial observations using BNs. Note that in
some situations, the selected feature set X ′ during first step of
data preprocessing (see Fig. 6) does not contain C variables. In
such cases, the two observation conditions are equivalent thus
return same classification results.

Fig. 7 shows the algorithm for training and testing the BN
and KLR models for the purpose of task classification. Thirty
trials are performed in which each trial divides the total dataset
into 20% of testing and 80% of training data. Note that this
division of the total dataset is not division among different ob-
jects; therefore, the testing data may contain same and different
objects from the training set. The experiment is designed to eval-
uate how the system can generalize not only on novel objects
but on new grasping strategies operated on the same and novel
objects as well.

For KLR models, we use the task label together with the
continuous observations [T,X]. In each of the 30 trials, we first
find the optimal parameters θ∗ (the kernel bandwidth and the
regularization term) for KLR through a grid search using a ten
trials cross validation on the training set. Once θ∗ is found, we
train the KLR model with the total training set, and test on the
20% of testing set to estimate the performance of the classifiers.

For the BNs, the observations are discrete [T,Xd ], where Xd

is obtained using the SOM-based discretization method. We do
not search for the optimal parameters here, as the parameters
that most affect the performance of the BNs are the resolutions
of discretization for all the continuous variables. In addition
searching for the optimal resolutions for all the variables will
take prohibitively long time. In each of the 30 trials, we use the
training data to first obtain the structure of the network, and then
update the parameters (local conditional probability tables).

We use the area (AUC) under the receiver operator character-
istic (ROC) curve as the performance metric for both KLRs and
BNs. During testing, each classifier outputs the task probability
given the specified observation condition p(T |X), which are
then thresholded at different levels to derive the ROC curves.
Fig. 10 shows the average ROC curves over 30 trials under two
different observation conditions (pink color for the full obser-

vation, and blue for the partial observation). The left columns
in Fig. 10 show results from BNs, while the right from KLR
models. The corresponding structures of the BNs are shown in
Fig. 8.

In general, we observed that BN models have quite good clas-
sification performance especially under full observation condi-
tions (AUCs ≤ 0.84). Among the five tasks, handover is the
most challenging one for classification, especially when con-
straint features, such as fvol and coc are not observed (AUCs is
0.76 for Armar hand). This is because handover task is the most
“generous” task that has least requirements on O (all objects
affort handover task) and A (one can grasp from any direction)
variables. In addition, the only requirement is to leave enough
uncovered surface for safe regrasp that is reflected mostly by the
C variable free volume fvol. The BN structure for the handover
task (see Fig. 8) reflects this fact, task has direct connection to
fvol.

KLR models report higher classification performance (AUCs
> 0.91) for handover task in both full and partial observation
conditions. This reflects the “side effect” of data discretization
(for BN training), especially on C variables. Discretization al-
ways leads to loss of information. When the resolution is low
(i.e., very few discrete states), the variance in the original con-
tinuous domain that is discriminative may be smoothed out. On
the other hand, for the variables that are not discriminative, a
high resolution will jeopardize the classification performance
due to the curse of dimensionality. In the future, the granularity
for discretizing each continuous variable should be optimized
in the inner loop of the nested cross validataion similar to KLR
models (see Fig. 7).

Additionally, we observed a large variance in true positive
rates when classifying playing task with the KLR models. This
may be due to the limited training data for this task (see Ta-
ble I), but high-dimensional feature space (dimensionality is the
sum of all selected O,A,C variables). However, such limita-
tion is alleviated in the proposed BN-based modeling approach.
Through data discretization, the high-dimensional feature space
is compressed into a low-dimensional compact representation.
Furthermore, in a learned BN, the less discriminative variables
are further pruned through the conditional independence struc-
tures of the network. In summary, this experiment confirmed that
the proposed BN-based grasp modeling approach can provide
highly accurate and robust (with small variation in true-positive
rate) task classification performance.

D. Experiment II: Inference on Unified Grasp Position

In addition to task classification, i.e., inferring p(T |X), an-
other important purpose of the proposed modeling approach is
to obtain task conditioned distribution of the grasp parameters
p(X|T ) so that grasp planning can be performed in a goal-
directed manner. This conditional distribution should reflect the
requirements of a given task in the original observation space of
the grasping parameters. In this experiment, we examine if the
learned BN models can successfully encode these requirements
using an intuitive action variable, the unified grasp position
npos.
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Fig. 11. Likelihood maps of unified grasp position conditioned on tasks and
object classes p(npos|task, obcl).

A data point of npos is a 3-D vector that lies on a unit
sphere around an object, and it indicates from which direction
the hand approaches and grasps the object. It is important to
note that the constraint of a given task is often encoded by
combination of multiple features, e.g., one should not grasp this
object from this position npos, in this orientation dir, and with
this joint configuration fcon, etc. However, a distribution over
the 4-D quaternion orientation dir and high-dimensional finger
configurations fcon are difficult to visualize. We therefore select
npos for this experiment.

We evenly sample a set of points x on the unified sphere,
where npos lies. For each sampled point, a conditional likeli-
hood is obtained given the five tasks and the four object classes
p(x|task, obcl) using the human hand BNs (the first row in Fig.
8). The values of likelihoods are normalized across all five tasks
and four object classes.

Fig. 11 shows the resulting likelihood maps, where the lighter
color indicates higher probability; therefore, a good grasp at
this point. In general, the resulting maps successfully reflect the
constraining effects of the tasks over both object selection and
grasp planning. For example, for object selection, we observe
pouring task exclude the hammer and the sedan toy car that do
not afford to pour. This is reflected by the dark likelihood maps
around them. Handover can be applied to all objects therefore
no complete dark spheres for this task. For grasp planning,
we observe dark regions on the top of the maps when pouring
with bottles and mugs. This reflect the constraint of the pouring
task, no grasp should block the top, opening part of the object.
Similarly, when using the hammer as a tool, one should avoid the
head of the hammer as it is the functional part. When the goal is
to handover a hammer, the preferred grasps are the ones around
the hammer head so that handle can be exposed for convenient
regrasp. Similar constraining effects are also observed in the
likelihood maps from the other two-hand models. However, due
to space limits, we will not show them this paper.

In summary, this experiment demonstrated the strength of
the proposed framework, by modeling the embodiment-specific
task space using a probabilistic network, we have learned not

Fig. 12. Predict final grasp configuration fcon: (a)–(c) case 1–3 shows the
predicted grasp configurations given three cases of objects and hand poses. Row
1 shows the probability distribution conditioned on object and hand pose on
the SOM and the latent space. Row 2 shows prediction of fcon from the two
distributions above. Row 3 shows the prediction of fcon by GP regression. Row
4 shows the mean and std of the reconstruction errors (measured as Euclidean
distance between predicted and true values) over 398 cases of prediction.

only the affordances of the objects but the robots own motor ca-
pability associated with a task as well. Such motor capabilities
are encoded in the continuous distributions of the grasp action
parameters conditioned on the assigned task. Even though the
KLR approach performs slightly better for most tasks, this dif-
ference in performance does not overcome the benefits of the
BN approach such as being able to use a single model for all
types of inference and providing an interpretability of the data.

E. Prediction on Finger Configuration

Section V introduced two generative soft discretization ap-
proach for high-dimensional data to support learning of BN that
models the conditional relationships of a set of variables. An
ideal discretization should provide a compact representation of
the data in the discrete space, and at the same time maintain,
to a large extend, its original distribution in a high-dimensional
space. The goal is then to recover the high-dimensional data
of one variable given the observation of the other related vari-
ables provided the relations being accurately modeled by the
BN. We used the Euclidean distance between the predicted and
true values of the target variable as the error metric to evaluate
the discretization methods ||ypred − ytrue ||.

The purpose of the experiment in this section is to examine the
reconstruction accuracy using the high-dimensional variable,
the finger configuration fcon when grasping the object given
the observed hand pose {npos, radius, dir}, and the object
size and the object class obcl. We used 80% (1594 cases) of
the human handover dataset as the training data. We train two
Naive Bayes networks each with the fcon being discretized
with one of the two discretizaiton methods. In the naive Bayes
network, the target variable is fcon, and other attributes are
{size, npos, radius, dir}, conditionally independent given the
value of fcon. To compare this with a baseline approach, we also
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train a GP regression model with the input the continuous data
of {size, npos, radius, dir}, and output the high-dimensional
data of fcon.

Given the two trained BNs, we test the prediction of fcon
given observed {obcl, size} and hand pose {npos, radius, dir}
using the 398 testing cases. Fig. 12(a)–(c) shows three sample
cases. For each case, we first obtain the conditional distribution
p(fcon|size, npos, radius, dir) by inference in the BN. The
corresponding probabilistic density in the continuous space is
shown on row 1 of Fig. 12. The predicted value of the finger
configuration in the original observation space ypred (visual-
ized in row 2 of Fig. 12) is then obtained using the weighted
sum methods as explained in Section V-A. We also obtained
the prediction on 398 testing cases using the trained GP regres-
sion model. The three regression results are shown in row 3 of
Fig. 12.

By observing the three sample cases in Fig. 12, we can qual-
itatively evaluate the reconstruction results. Row 1 shows the
conditional distribution of fcon. We see given different ob-
ject and hand poses, fcon has different PDF in the continuous
space. In addition, high probable distribution sometimes (Case
1) spread over multiple states, indicating BNs are “not very
certain,” which state the fcon belongs to. The weighted sum
method takes into account this uncertainty and produces pre-
diction in original space. When comparing the reconstructed
grasps in rows 2 and 3, we see that the SOM-based discretiza-
tion method results in finger configurations that conform slightly
better to the object surface shapes than those from the GP-LVM-
based latent space discretization. SOM method has similar per-
formance to the baseline results from the regression method. The
error metric plotted in row 4 provides a quantitative evaluation
that is consistent with our observation above. Although SOM
method has lower mean error than GP-LVM, the differences are
not significant enough to conclude one method as superior to
the other.

For runtime evaluation, with OS X. Snow Leopard, 2.4-
GHz Intel Core 2 Duo processor, and an unoptimized MAT-
LAB implementation on 1594 data points of the 20-D fcon,
SOM-based discretization process (12.31 sec) is much faster
than the GP-LVM-based latent space discretization (97.43 s).
Most computational time (98%) is due to the training of the
GP-LVM.

To interpret the results in this section, we need to carefully
point out the general challenges in the problem of data recon-
struction after discretization, and the particular challenges in
predicting finger-grasp configurations based on limited observa-
tion of object attributes and hand poses. In general, to reconstruct
real-valued vectors from probability membership assignments
to the discrete states is a big challenge in vector quantization and
defuzzification (in fuzzy logic). More finely spaced discretiza-
tion intervals (i.e., more discrete states) will reduce errors in
data reconstruction, however, at the price of increased com-
putational cost. In addition, high-resolution discretization also
increases the difficulty in BN training because the number of
parameters (the entries of the conditional distribution tables)
increases, which requires larger set of training data to model the
valid conditional distributions.

In the experiment of predicting finger configurations, we have
assumed that the finger-grasp configuration is completely deter-
mined by very gross object property (size) and the pose of the
hand. This assumption is not that accurate because the detailed
finger positions are subject to geometry of the contact surface
on the object. This dependence is very local and is difficult to
model with data-based method such as BN. As a result, the pre-
diction from BNs is only a “gross” estimation of finger position,
which can, in many cases, penetrate the surface of the object.

Nonetheless, the results are still satisfactory as an initial guess
for subsequent optimization. For example, the PDF (row 1 in
Fig. 12) can work as a hand pose prior similar to [59]. Such a
prior can be combined with other physical constraints, such as
object surface geometry and hand kinematics to optimize the
synthesis of grasps and even improve the robustness of hand
pose tracking.

F. Goal-Directed Grasp Imitation

Finally, we illustrate how the proposed modeling framework
can be used for goal-directed grasp imitation on two robot plat-
forms. To achieve this, a robot should be equipped with a per-
ception system to extract O,A,C features from human demon-
stration, a BN-based reasoning system for goal-inference and
goal-directed grasp planning, and a grasp execution system that
plans and executes collision-free reaching motion to place the
hand at the selected grasping pose. We assume the perception
[60] and execution systems [55], [61] are available, and the
focus of this illustration is to show how the reasoning system
allows a goal-directed grasp imitation.

For each robot, the reasoning system consists of grasp models
of two embodiments: one of the human teacher (BNHuman ) and
one of the robot itself (BNRobot). The robot uses BNHuman to
infer the grasp intention t∗. Given the estimated goal t∗, grasp
imitation is accomplished by executing the grasping strategy
(selecting the object to grasp and how to grasp it) according
to the learned grasping policy suitable for the robot’s own em-
bodiment BNRobot . Fig. 13 illustrates this process on two robot
platforms. Note that this is not a real-time implementation but
a simple flowchart to demonstrate how to use the BN-based
grasp reasoning system. First, the robots observe the human
demonstration, and extracts the object and action parameters
o,a, c. They both use a human-specific network BNHuman to
infer the intention of the human, and estimate the most likely
goal is t∗ = pouring with the mug. Second, the robots need to
select the most suitable object for pouring task among the three
novel objects: a hammer, a toy car, and a mug. This requires the
use of the robots’ own experiences encoded in BNSchunk and
BNArmar to infer p(o|t∗). The most likely object in both cases
is the mug. Note that the inferred probability from two robot
BNs are slightly different, which indicates their different ex-
periences with these object categories. Finally, the robots need
to search for the best grasp strategy on the mug that affords
pouring, and execute it on their platforms. Assuming there are
a set of preplanned grasp hypotheses parameterized by a. The
robot can then use p(a|t∗,o∗) to select the most suitable one
in order to pour with the selected mug. Note here, the optimal
grasping policies (including selected object and grasp) may be
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Fig. 13. Process of a goal-directed imitation. This is not a real-time implementation. Image of perception is human-grasp demonstration setup based on the
tracking system in [60]. Execution images on the robot platforms Tombatossals (top) and Armar (bottom) are from [61] and [55], respectively. Armar images are
generated with the proposed system.

different from the exact human demonstration. However, this is
acceptable as long as the task goal is satisfied, and the action is
compatible with the embodiment of the robot.

VII. COMPLEXITY

The complexity of the proposed method comes in two dif-
ferent parts: the training and the testing. In training, the bottle-
necks of the complexity are on learning the discrete represen-
tation using the GP-LVM, and on learning the structure using
the BN. For the GP-LVM, the complexity is O(Nm2), where
N is the number of data points, and m is the number of in-
ducing points, or in our interpretation, the number of clusters.
For the BN structure learning, an estimation of the worst-case
complexity of the greedy search algorithm used in this paper
is O(n2 · 2(n − 1)!), where n is the number of the variables.
Testing with GP-LVM is linear in the number of data points
O(N). Testing with BN with the junction tree algorithm has
the complexity of O(n exp(W − 1)), where W is the size of
largest clique created during inference. In our experiment, the
inference with BNs takes a fraction of a second.

VIII. CONCLUSION

We have presented a framework for representing grasping in
a task- and embodiment-specific setting. The approach allows
for generalization over task, object, and action, which intro-
duces a concept of embodiment-specific concept affordances.
This allows us to perform and plan grasps across different em-
bodiments as the specific affordances are independent across
embodiments. We specifically exploit this to perform imitation
learning, allowing several different robots to be “taught” by the
same instructor and executing the same task, while respecting
its unique constraints.

Our model is formulated in a Bayesian setting, allowing for
inference from partially observed data and providing a notion
of uncertainty. What enables this is a rich parameterization
of the environment, integrating task, action, and object infor-

mation within the same model. We have developed a method
that learns an intermediate discrete representation from com-
plex data, avoiding the challenges posed by the orginal high
dimensionality.

The proposed framework scales well with the number of tasks
since one can obtain an additional network whenever a new task
is added. The scalability of the objects depends on the object
representation used in the network. Since we do not use object
instances, but rather object classes and geometrical properties
that are able to handle the intraclass variabilities, the method
should scale with the limited number of object classes that a
robot usually encounters in its environment.

This study opens up a broad avenue for future research. First,
the framework can be extended to incorporate other sensory
signals such as tactile arrays [62], and force/torque sensors on
the fingers. This way, the model can be used to infer stabil-
ity of a grasp on the fly, and to provide important information
for online task-oriented grasp adaptation. Second, the BNs pre-
sented here model the static grasp before lifting the object. This
can be ambiguous in goal inference since one grasp configu-
ration can potentially afford multiple tasks. One solution is to
exploit the information contained in the dynamic manipulation
of an object after lifting, e.g, by introducing dynamic BNs. The
learned model can then be used for task recognition during hu-
man demonstration and action reproduction on robot platforms.
Finally, with the generative models, the system can detect novel
observations; hence, allows us to build an active learning system
that self-updates and adapts to new situations.
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