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Catching Objects in Flight
Seungsu Kim, Ashwini Shukla, and Aude Billard

Abstract—We address the difficult problem of catching in-flight
objects with uneven shapes. This requires the solution of three
complex problems: accurate prediction of the trajectory of fast-
moving objects, predicting the feasible catching configuration, and
planning the arm motion, and all within milliseconds. We follow a
programming-by-demonstration approach in order to learn, from
throwing examples, models of the object dynamics and arm move-
ment. We propose a new methodology to find a feasible catching
configuration in a probabilistic manner. We use the dynamical
systems approach to encode motion from several demonstrations.
This enables a rapid and reactive adaptation of the arm motion
in the presence of sensor uncertainty. We validate the approach in
simulation with the iCub humanoid robot and in real-world exper-
iments with the KUKA LWR 4+ (7-degree-of-freedom arm robot)
to catch a hammer, a tennis racket, an empty bottle, a partially
filled bottle, and a cardboard box.

Index Terms—Catching, Gaussian mixture model, machine
learning, robot control, support vector machines.

I. INTRODUCTION

W E consider the problem of catching fast-flying objects
on nonballistic flight trajectories: in flights that last less

than a second, with objects that have arbitrary shapes and mass,
and when the catching point is not located at the center of
mass (COM). The latter condition requires the robot to adopt a
particular orientation of the arm to catch the object at a specific
point (e.g., catching the lower part of the handle of a hammer).

Catching such an object in-flight is extremely challenging and
requires the solution to three complex problems.

1) accurate prediction of the trajectory of the objects: the fact
that an arbitrary shaped or nonrigid object yields a highly
nonlinear translational and rotational motion of the object;

2) predicting the optimal catching configuration (intercept
point): As the robot must catch the object with a particu-
lar hand orientation, this limits tremendously the possible
catching configurations;

3) fast planning of precise trajectories for the robot’s arm to
intercept and catch the object on time, given that the object
is in-flight for less than a second.
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Fig. 1. Schematic overview of the system.

Accurate prediction of the flight trajectory of the object relies
on accurate sensing, which cannot always be ensured in robotics.
This requires a frequent reestimation of the target’s location as
both robot and object move. To compensate for such inaccu-
rate sensing, we need to predict robustly the whole trajectory
of fast-moving objects against sensor noise and external pertur-
bations. At the same time, we need to constantly and rapidly
repredict a feasible catching configuration and regenerate the
desired trajectory of the robot’s arm. A schematic overview of
our framework is shown in Fig. 1.

A. Robotic Catching

A body of work has been devoted to the autonomous control of
fast movements such as catching [13], [18], [25], [28], [30]–[32],
[44], hitting flying objects [24], [37], and juggling [6], [33], [35].
We here briefly review these works with a focus on how they 1)
predict trajectories of moving objects, 2) determine the catching
posture, and 3) generate desired trajectories for the robot’s arm
and hand.

1) Object Trajectory Prediction: To catch effectively a mov-
ing object, we must predict its trajectory ahead of time. This then
serves to determine the catching point along this trajectory. Most
approaches assume a known model of the dynamics of motion.
For instance, Hong and Slotine [18] and Riley and Atkeson [32]
model the trajectory of a flying ball as a parabola and estimate
the parameters of the model recursively through least squares
optimization. Frese et al. [13] use a ballistic model incorporated
with air drag for the ball trajectories; they use it in conjunction
with an extended Kalman filter (EKF) [3] for online reestimation
of the trajectory.

Such approaches are accurate at estimating the trajectories,
but they rely on an analytical motion model for the object. In
addition, most of the study is tuned for spherical objects by
estimating only the position of the object’s COM. However, to
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catch a complex object such as a hammer or a tennis racket, we
need to estimate the complete pose of the object to determine the
precise location of the grasping posture. This grasping posture
is usually not located on the COM of the object.1 Rigid body
dynamics [5] can be applied to estimate the complete pose of
the object but still requires the properties of the object to be
measured (such as its mass, position of the COM, and moment
of inertia).

In our previous work [22], we learned from demonstrations
the dynamics of more complex objects whose shapes are arbi-
trary, nonrigid, or their points of interest are not at the COM. We
encode the demonstrations using a dynamical system (DS) that
provides an efficient way to model the dynamics of a moving
object, solely by observing examples of the object’s motion in
space. Note that this does not require any prior information on
the physical properties of the object, such as its mass, position
of COM, and moment of inertia. In order to deal with noise and
unseen perturbations, we combine the output of the regression
model of the machine-learning techniques with EKF. Once the
system is learned from the demonstrations, it is used to predict
the object acceleration and angular acceleration at each step in
time given an observed current position, velocity, orientation,
and angular velocity of the object. We estimate the whole tra-
jectory of the object by integrating these values further in time.
It is noted that the estimates are in the 6-D space (position of the
point of interest and an orientation of a frame rigidly attached
to the object). In this paper, we further develop the previous
work by combining it with an algorithm to accurately predict
the grasping posture of the hand. Next, we review the state of
the art to determine the catching configuration.

2) Catching Pose Prediction: One way to determine the de-
sired catching posture is to determine the intersection between
the robot’s reachable space (usually its boundary is represented
as a series of spheres or planes) and the object’s trajectory. If
there is more than one solution, one chooses the intersection
point that is closest to either the robot’s base [18] or to the
initial position of the end-effector [13]. Although this method
works well to determine the location of the catching point, it
does not determine the orientation of the object because these
works only consider ball-shaped objects. Furthermore, these ap-
proaches give a coarse approximation of the robot’s reachable
space in Cartesian space by limiting the radius and height of a
robot [18] or using an infinite polyhedron [13].

3) Planning Catching Motion: The final catching configu-
ration is constantly updated at a very fast rate to counter unseen
dynamic effects. From a control viewpoint, this requires the
robot motion planner to be very rapid (of the order of 10 ms) in
replanning the desired trajectory as the position of the catching
point keeps changing (as an effect of reestimating the trajectory
of the object). Moreover, for efficient catching, in addition to
the end-effector motion, the dynamics of the fingers need to
be properly tuned to avoid the object bouncing off the palm or
fingers.

To represent the desired trajectory for the end-effector in
catching tasks, many researchers [18], [30], [37], [44] use poly-

1In our experiments, the grasping points are represented by a constant trans-
formation from the user-defined measurement frame of the object.

nomials that satisfy boundary values. For instance, Namiki and
Ishikawa [30] minimize the sum of the torques and angular ve-
locities to satisfy constraints on the initial and final position,
velocity, and acceleration of the end-effector. Note here that,
although all of these approaches were successfully applied to
object catching, hitting, or juggling, they were explicitly time
dependent; hence, any temporal perturbation after the onset of
the motion was not properly handled.

Spline-based trajectory generation [1], [19] and minimum-
jerk [27] methods have also been popular means to encode time-
indexed trajectories with a finite set of terminal constraints, e.g.,
positions, velocities, and accelerations at start and end points.
However, the number of control points and degrees of the spline
need to be tuned depending on the nonlinearity of the motions.
Moreover, as the constraints are only terminal, it is difficult to
establish the feasibility of the state space (position-orientation
tuples) visited because of interpolation. One way to alleviate
this problem is to directly model trajectories in joint space. This
would require a fast and global inverse kinematics (IK) solver. It
is difficult to obtain an IK solver without heuristics for general
kinematic chains. Furthermore, it is hard to learn a global IK
solver from human demonstrations because of the redundancy
and singularities of the human and robot work spaces.

Another approach for generating end-effector trajectories
uses human demonstrations to learn generalized descriptions
of a skill. To catch vertically falling objects, Riley et al. [32]
use point-to-point motion primitives that are learned using pro-
grammable pattern generators [34] based on human movements.
Their approach is capable of modifying the trajectory online for
a new target. Our work follows this line of research and fur-
ther develops controllers to guide hand–arm motion, which is
learned from human demonstration.

In our recent work [14], [20], we take the approaches of
using time-invariant DSs as a method for encoding robot
motion. We showed that this could be applied to various tasks
that require rapid and precise recomputation of the end-effector
motion, such as obstacle avoidance [21]. The drawback of using
time-invariant controllers is that one does not control explicitly
for time. When catching an object in flight, controlling for time
is crucial. In [23], we offered a solution to control for the task
duration in time-invariant DS controller, through fast-forward
integration and scaling. Even though many approaches might
be valid for the robotic catching task, we follow our previous
approach here to enable the robot to intercept the flying object at
a particular time and particular posture by boosting the learned
dynamics. One of the advantages of this approach is that we
expect that the trajectory generated by the learned model is fea-
sible, as the approach uses feasible demonstrations to train the
model. Furthermore, for the frequent changes of predicted catch-
ing posture, our method provides a way of adapting the robot
motion to these changes by expecting the feasibility [14], [20].

Another aspect of object catching that is inadequately or not
at all addressed by the aforementioned works is the motion of
the fingers. To complete the catch, the dynamics of the finger
motion need to be appropriately tuned and coupled to the arm
motion.

Most works on catching depend on the very rapid closing of
the fingers. Usually, finger closure is triggered once the distance
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between the object and the end-effector has decreased below a
certain threshold [18], [28], [30], [32]. This approach requires
the precise tuning of several parameters including the threshold,
the finger trajectory, and velocity. Bauml et al. [4] present an
optimization-based approach that minimizes the acceleration
of robot’s joints during the catching. Although this method is
very effective, it requires significant computing power in the
form of 32-core parallel programming to compute the optimized
solution at run time. In our previous work on ball catching
[23], we simply perform a linear interpolation between the rest
position and grasping configuration of the fingers, depending on
the distance of the ball from the palm.

In [38], we show that modeling arm and hand motion through
coupled dynamical systems (CDS) is advantageous over the
classic approaches reviewed previously. The explicit coupling
between arm and hand dynamics ensures that the finger closure
will be naturally triggered at the right time, even when the hand
motion is delayed or accelerated to adapt to changes in the
prediction of the catching point. This offers a robust and fast
control of the complete hand–arm system without resorting to
extensive parameter tuning.

B. Reachable Space Modeling

Representing the space of the robot’s feasible hand postures
is essential for both catching the object and for planning the arm
motion. Before initiating the arm movement for catching, we
need to calculate if any graspable part of the object lies inside
the reachable space.

Early investigations of this issue focus on determining and
generating a geometrical model of the reachable space of the
robot. Polynomial discriminants [43] and classic geometric ap-
proaches [29], [26] are used to characterize the boundaries of
the robot’s reachable space. However, these methods cover only
a few special kinematic chains and are not applicable to all
manipulators.

Another body of approaches approximates the reachable
space of a robot as density functions [9], [40]. These prove
to be useful for dealing with large datasets of reachable end-
effector positions. However, these methods are evaluated only
for discretely actuated manipulators. Detry et al. [11] introduce
a method to model a graspable space by using a density func-
tion approach. They model the 6-D graspable space by using
kernel density function. The model is learned by letting a robot
to explore successful grasping postures. Our study is similar to
that of Detry et al. [11] in that we also model the graspable
space. Additionally, we model the reachable space and propose
a means by which we can combine the two probabilistic repre-
sentations. To ensure finding the best grasping posture in real
time, combining the two (reachable space and graspable space)
models is essential in our application.

More recent approaches target the creation of full databases
of the reachable positions obtained by sampling the Cartesian
space Guilamo et al. [17] use a database of mapping between
the joint angles of a robot and the discrete voxel representation
of the reachable space. Guan and Yokoi [16] also propose a
database approach to represent the reachable space for a full-

body humanoid robot. Three-dimensional reachable space is
discretely divided into cells, and while the robot ensures proper
balancing, it tests each cell to check the reachability. All the
successful configurations are then stored in the database. In
another work, the same authors [15] propose a mathematical
method to model the boundary of the reachable space, while
the robot ensures kinematic constraints and proper balancing.
However, these methods yield a discrete approximation of the
reachable space without a precise description of the boundary.
Moreover, these are expressed as only 3-D positions in Cartesian
space.

A few works consider the orientation to model the reachable
space of a robot. Zacharias et al. [41], [42] propose a compact
representation of the Cartesian reachable space. They uniformly
divide the complete reachable space into 3-D cells. Then, they
build a capability map that represents how many orientations are
reachable at each position cell. However, this map is discrete
and only gives a score that reflects the ease of reaching to that
position. Similarly, DianKov et al. [12] store all the valid 6-D
end-effector positions by randomly sampling the 6-D poses and
solving IK for each of these.

The reachable space depends on the number of degrees
of freedom (DOF) of a robot, joint limits, link lengths, self-
collision, etc. Hence, the 6-D reachable space, which is spanned
by the feasible positions and orientations of a robot, is highly
nonlinear and varies drastically from robot to robot. Here, we
propose a probabilistic model of the 6-D reachable space of the
robot hand (all feasible positions and orientations).

C. Our Approaches and Contributions

In this paper, we propose a framework that enables a robot to
catch flying objects. We combine three strands of our previous
works on 1) learning how to predict accurately the trajectory of
fast-moving objects [22], 2) learning hand–finger coordinated
motion [38], and 3) controlling the timing of motion when con-
trolled with DSs [23].

Additionally, we propose a new approach for modeling the
reachable space of the robot arm and for modeling the graspable
space of an object, in order to determine the optimal catching
configuration. We also exploit the probabilistic nature of this
model to query conditional information (e.g., given a position,
we can query the best orientation). Finally, this paper proposes
a novel approach for learning how to determine the mid-flight
catching configuration (intercept point).

The experimental validation of this study in which a robot
catches in-flight objects with uneven mass distribution (see
Section III) is, in our view, the core contribution of this study.
We believe that it significantly advances the field, in offering
an example of ultrafast control in the face of uncertainty. Al-
though in the past, the field has seen impressive examples of
object catching in-flight, they were either restricted to catch-
ing simple spherical objects [13], [28], [30]–[32], [44] or to
catching objects with a slow changing orientation (e.g., a paper
airplane [18]). The speed of computation in the experiments we
present here is not the mere effect of having more rapid comput-
ing facilities than available in the past; it also benefits from the
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Fig. 2. Block diagram for robotic catching.

use of new control laws based on DSs for both the estimation of
the flying trajectory of the object and for controlling the robot
motion.

The remainder of this paper is divided as follows. In
Section II, we present the technical details of the methods. In
Section III, we validate the method in simulation by using the
iCub simulator, and in a real robot by using the LWR 4+.
Section IV concludes with a summary of remaining issues that
will be addressed in future work.

II. METHODS

We start by giving an overview of our robotic catching system.
As illustrated in the schematic of Fig. 2, the system is divided
into two iterating threads. The first thread continuously pre-
dicts the object trajectory (to be introduced in Section II-A)
and iteratively updates the best-catching configuration and
catching time (see Section II-B) with each new measurement
of the flying object. The updated catching configuration is set
as the target for the robot-arm controller (see Section II-C).
The second thread, i.e., the arm controller, continuously adapts
the end-effector posture to the changes in the predicted best-
catching configuration and catching time. The arm controller
computes the trajectory of the hand in Cartesian space. In our
implementation, this trajectory is then converted into joint an-
gles by solving the IK.

We evaluate the system first in simulation by using the iCub
simulator [39]. Only the upper body of the iCub robot is con-
trolled in this experiment, i.e., we control the robot’s 7-DOF
right arm, its 3-DOF waist, and its 9-DOF hand. The simulator
uses the ODE physics engine to simulate gravity, friction, and
the interaction forces across the body structure of the robot.

Second, we validate the system in a real robotic catching
experiment by using the LWR 4+ and the 16-DOF Allegro
hand [2] as the end-effector. The repeatability of this LWR 4+
is 0.05 mm, the Cartesian reachable space volume in 3-D is

1.7 m3 , and the maximum joint velocity is 112.5–180 ◦/s. The
robot is controlled in joint positions at 500 Hz.

In the experiments with the iCub simulator, we use a hammer
and a tennis racket. For the experiments with the real LWR 4+,
we used one empty bottle and one partially filled bottle, a tennis
racket, and a cardboard box.

A. Learning the Dynamics of a Moving Object

We begin by briefly reviewing the method we developed to
estimate the dynamics of motion of the object. A complete
description of the method with a detailed comparison across
different techniques for the estimation is available in [22].

In its most generic form, the dynamics of a free-flying object
follows a second-order autonomous DS:

ξ̈ = f
(
ξ, ξ̇

)
(1)

where ξ ∈ RD denotes the state of the object (position and
orientation vector of the point of interest attached to the ob-
ject). We use quaternions to represent orientations, thus to avoid
the problem of gimbal lock and numerical drift compared with
Euler angles, and to allow for a more compact representa-
tion than rotational matrices. ξ̇ ∈ RD and ξ̈ ∈ RD denote the
first and second derivatives of ξ, respectively. N training tra-
jectories with T data points are used to model the dynamics
{{ξt,n , ξ̇t,n , ξ̈t,n}t=1...T }n=1...N .

We use support vector regression (SVR) [8] to model the
unknown function f(.). SVR [8] performs nonlinear regression
from a multidimensional input ζ = [ξ; ξ̇] ∈ R2×D to a unidi-
mensional output. As our output is multidimensional, here, we
train D SVR models, which are denoted dfSVR , d = 1, . . . , D.
After training, we obtain a regression estimate given by

ξ̈ = fSVR (ζ) =
[
dfSVR (ζ)

]
d=1...D

(2)

dfSVR (ζ) =
M∑

m=1

dαm K
(
ζ, dζm

)
+ db. (3)

Only the subset of data points ζm , m = 1 . . . M , M <=
(N × T ) is used in the regression. They are called the support
vectors and have associated coefficient αm �= 0, |αm | < C

M . C
is a regularized constant that determines a tradeoff between the
empirical risk and the regularization. In this paper, the opti-
mal value of C is determined through a grid search. The kernel
function K : RD ×RD → R is a nonlinear metric of distance
across data points. It is a key to the so-called kernel machines
such as SVR and enables the features to be extracted across
data points that would not be visible through Euclidian metrics,
such as norm 2. The choice of kernel is, therefore, of paramount
importance. In this study, we use the radial basis function (RBF)
kernel, K(ζ, ζm ) = exp(−γ‖ζ − ζm‖2) with radius γ ∈ R and
determine the optimal values for the open parameters of these
kernels through grid search.

To enable real-time tracking, the estimated model of the ob-
jects dynamics is coupled with an EKF [3] for robustness against
noisy sensing.

For the trajectory estimation of a free-flying object, simpler
models, such as a rigid-body dynamics model, can estimate very
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accurately the trajectory. However, these techniques usually re-
quire modeling all the forces acting on the object and measuring
properties of the object, such as its mass, position of COM, mo-
ment of inertia, shape, and size. Measuring these values for
arbitrary objects (such as a bottle, racket, or a cardboard box) is
not a trivial problem. Furthermore, these properties might not
even be constant and may change during flight (as it is the case
with a partially filled bottle). The machine-learning approach
we follow in this paper avoids gathering such a priori informa-
tion on the object and estimates directly the nonlinear dynamics
of the object’s flight from observing several examples of such
trajectories [22].

B. Predicting the Catching Configuration

We now turn to the problem of determining where to catch the
object. As mentioned in Section I, the problem is particularly
difficult when we aim at catching the object with a particular
grasping configuration. In this case, we must proceed in three
steps. 1) First, we must determine how to grasp the object. For
this, we show several demonstrations of various grasps on the
considered object, and we learn a distribution of possible hand
positions and orientations. 2) Second, we must determine the
reachable space of the robot that is the possible positions and
orientations the robot’s hand can achieve. 3) Finally, we must
determine a point along the object trajectory for which we can
find a feasible posture of the robot’s hand [using the solution
to problem (2)], which will yield a possible grasp [using the
solution to problem (1)]. Next, we describe how we achieve
each of these three steps.

We define η = [ηpos ; ηori ] as the catching configuration,
where ηpos ∈ R3 denotes the end-effector position, and ηori ∈
R6 denotes the orientation that is composed of the first
two column vectors of the corresponding rotation matrix
representation.

The way we represent orientation (ηori) requires more di-
mensions than the Euler angle or quaternion representation. Ex-
pressing orientation by using the rotation matrix, however, has
several benefits. First, we can easily rotate the trained Gaussian
model in real time by simply multiplying the original model
with the rotation matrix, as will be described in Section II-B1.
This is highly advantageous for catching tasks that require rapid
computation. Furthermore, the rotation matrix representation is
unambiguous and singularity free. It can also represent the sim-
ilarity between orientations more accurately than Euler angle or
quaternion representation. For instance, the Euclidean distance
between the quaternions q and −q is large; however, the actual
orientation is the same. This is important as the closeness be-
tween postures is exploited in our probabilistic model to query
for regions encapsulating close and feasible postures.

1) Graspable-Space Model: To acquire a series of possi-
ble grasping positions and orientations for a given robot hand,
we perform grasping demonstrations by passively driving the
robot’s hand joint close on the object. We put markers on both
the object and the robot hand. Using our motion capture sys-
tem, we record a series of grasping postures by changing the

positions and orientations of the object and the robot hand. The
grasping postures are stored in the object coordinate system.

We model the density distribution of these positions and
orientations using the Gaussian mixture model (GMM) [7].
The trained graspable-space model, objMgrasp composed of
K Gaussians, is represented as obj{πk , μk ,Σk}k=1:K . obj de-
notes the coordinate frame in which the data and the Gaussians
are represented. πk , μk , and Σk are the parameters of kth Gaus-
sian and correspond to the prior, mean, and covariance matrix,
respectively. These parameters are calculated using expectation
maximization [10]. The probability density of a given grasping
configuration η ∈ R9 for the graspable-space model is given by

P (η|Mgrasp) =
K∑

k=1

πkN (η|μk ,Σk ) . (4)

A given configuration η is said to be feasible (i.e., it will
yield a successful grasp) when P (η|Mgrasp) exceeds a gras-
pable likelihood threshold ρgrasp . The threshold is determined
such that the likelihoods of 99% of grasping demonstrations are
higher than the threshold. The number of Gaussians K is deter-
mined using the Bayesian information criterion (BIC) [36]. Two
sets of grasping demonstrations and their graspable probability
contour are shown in Figs. 3, 4, 18, and 19.

The likelihood is a measure of the density of feasible grasps
in the immediate vicinity. It represents a measure of fitness of a
region for grasping. High density (likelihood) in a region results
from the fact that this region was more frequently explored by
humans; hence, it has a high probability of being a successful
grasping location, whereas less- dense regions (likelihood less
than a threshold) are bad regions to grasp, as they are rarely
seen in the demonstrations. The graspability in these regions is
known with much less certainty.

As the graspable-space model of the object is expressed in
the object reference frame and the object moves, we provide a
simple way of changing the reference frame of the model to the
robot’s reference frame by using the following transformation:

robotμ(t)k = Ω(t)ob jμk + P (t) (5)
robotΣ(t)k = Ω(t)ob jΣkΩ(t)T (6)

P (t) =
[

p (t)

zeros(6, 1)

]
. (7)

Here, p (t) ∈ R3 and R (t) ∈ R3×3 are the position vector
and orientation matrix of the object reference frame (measure-
ment frame) with respect to the robot’s base reference frame;
Ω(t) = diag (R(t), R(t), R(t)) is a 9 × 9 matrix whose diag-
onal entries are R(t); zeros(6, 1) represents 6 × 1 zero vector.
For convenience, we will skip the superscript robot. Note that in
all our experiments, the robot is fixed at the hip, i.e., the robot’s
base reference frame does not move.

2) Reachable-Space Model: In order to choose a catching
configuration, the robot needs to know that the graspable part
of the object is in a reachable space, before initiating the
arm movement. To model the reachable space, we simulate all
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Fig. 3. Modeling the graspable space of a hammer for the iCub hand using a GMM with ten Gaussians. The likelihood contour for end-effector position (d)–(f)
and x- and y-directional vectors of orientation (c) with fixed position [0.0; 0.0; −0.035]. (a) Teaching. (b) Grasping configurations for a hammer. (c) ηpos = (0.0,
0.0, 0.035). (d) ηpos (3) = 0.0. (e) ηpos (2) = 0.0. (f) ηpos (1) = 0.0.

Fig. 4. Modeling the graspable space of a bottle for the Allegro hand using a GMM with 15 Gaussians. The likelihood contour for end-effector position (d)–(f)
and x- and y-directional vectors of orientation (d) with fixed position [0.0; 0.0; −0.12]. (a) Allegro hand. (b) Teaching. (c) Grasping samples. (d) ηpos = (0.0, 0.0,
0.12). (e) ηpos (3) = 0.0. (f) ηpos (2) = 0.0. (g) ηpos (1) = 0.0.

possible motion of the robot’s movement by testing systemati-
cally all displacements of its joints. In the case of the iCub, we
sample uniformly (ten slices for each joint) its displacement of
7-DOF arm and 3-DOF waist within its respective joint limits.

This yielded a total of 1010 feasible postures in end-effector
postures.

The resulting reachable-space samples for the iCub robot and
LWR 4+ are shown in Figs. 6 and 7. We model the probability
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Fig. 5. BIC curves to model the graspable-space models. We determine the
number of Gaussians as 10 for the graspable-space model of a hummer (a) and
15, 13, 14, for the graspable-space model of a bottel, a tennis racket, and a
cardboard box, respectively (b). (a) A hammer for iCub hand. (b) For Allegro
hand.

distribution of these positions and orientations using GMMs
Mreach , {πl, μl ,Σl}l=1:L . Similarly to what was performed for
the graspable-space model, we compute the likelihood of any
given pose being reachable.

The optimal numbers of Gaussians for the reachable-space
model of the iCub and LWR 4+ are determined using BIC [36].
Their BIC curves are shown in Fig. 8. Based on this analysis,
the number of Gaussians we determined is 23 for the reachable-
space model of the iCub, and 22 for the LWR 4+. To verify the
accuracy of the reachable-space models, we randomly sample
1 million joint configurations within the joint limits for each
robot and evaluate them. Only 0.12% (for iCub) and 0.13% (for
LWR 4+) of samples fell outside the estimated reachable space.

In this specific catching experiment with LWR, we discard the
reachable samples that are in a condition of z < 0.1 m. This en-
sures that the robot avoids collision with the table whose surface
is the plane z = 0. To build a self-collision-free reachable-space
model, we conservatively limit the joint ranges. Furthermore, we
also discard the reachable samples in which the palm direction
is facing toward the ground. Using this way, we discard the
undesirable postures without using any heuristics at runtime.

By embedding the set of reachable postures in a probabil-
ity density function, we directly check if a target end-effector
posture is reachable, which saves computational time during
execution.

3) Predicting Catching Configuration: The graspable-space
and reachable-space models explained previously are statisti-
cally independent. Hence, we can calculate their joint probabil-
ity distribution by simply multiplying the distributions. The joint
model M(t)joint , {π(t)j , μ(t)j ,Σ(t)j}j=1:J , has J = K × L
number of Gaussians. Each of the J Gaussians are expressed as

Σ(t)j =
(
Σ(t)k

−1 + Σl
−1

)−1
(8)

μ(t)j = Σ(t)jΣ(t)k
−1μ(t)k + Σ(t)jΣl

−1μl (9)

π(t)j =
π(t)k

ηgrasp
· πl

ηreach
· N (μ(t)k |μl,Σ(t)k + Σl) (10)

where j = (l − 1) × L + k.
In order to find the optimal catching configuration η(t)

at a predicted object pose (at a time slice of the pre-
dicted trajectory), we use the joint model M(t)joint of

graspable-space and reachable-space models. We compute
arg maxη (t) P(η(t)|M(t)joint), through gradient ascent on the
joint model. The Jacobian of this objective function is given by

∂P
(
η(t)|M(t)joint

)

∂η(t)
=

−
J∑

j=1

π(t)jΣ(t)j
−1

(
η(t) − μ(t)j

)
N

(
η(t)|μ(t)j ,Σ(t)j

)
.

(11)

We initialize the gradient ascent with the center μ(t)j of the
Gaussian that is closest to the current hand pose (Euclidean
distance in 6-D), and we solve this optimization problem. The
output of the optimization is a hand pose that has the highest
likelihood at the time slice. We compute this for each time
slice until the predicted end of flight. The optimal catching
configuration and catching time is the configuration and time
slice with the highest likelihood. Each time we receive a new
measurement of the object’s current pose, we again predict the
trajectory and repeat the procedure described previously.

The lengths of the resultant two directional vectors in η(t)ori
are not exactly 1. At each step of the gradient ascent method,
we normalize the vectors and orthogonalize them so that the
resulting rotation matrix is orthonormal. Theoretically, this is
a modeling inaccuracy, but because of the reprojection step
onto the set of valid rotation matrices, we get a suboptimal but
feasible solution.

To reduce the risk that the hand enters in collision with the
object, we make sure that the direction of the palm in the catch-
ing configuration is opposite from the direction of the object
velocity.2 This is achieved by requiring the dot product between
the direction of the robot’s palm and the negative velocity of the
object to be greater than a threshold as the below constraint:

dot
(
η̇(t)pos , η(t)palm

)
< d (12)

where η(t)palm is a palm direction vector [for LWR with Allegro
Hand, the palm direction is −η(t)ori,x , see Fig. 4(a)]. d is a
direction difference threshold constant. In our experiment, d
was set as 0.5, which allows for 60.0◦ direction difference. This
heuristic constraint greatly decreases the chance of a collision
between the robot hand (on the back or side) and the object.

The predicted end-effector pose is mapped into the attractor
of the DS-based controller that drives the hand toward the target,
and the predicted catching time is set as the desired reaching
time in the timing controller [23], as we will explain in the next
section.

2Because of the rapid nature of this task, it is not possible to detect and
handle the collisions in real time as this would require an additional optimization
subroutine in the control loop. Performing fast and reactive obstacle avoidance
in full configuration space, while adhering to the timing constraints of the task,
is an open and difficult problem. In place of doing explicit collision avoidance,
we use a heuristic to avoid collisions between the robot fingers and the flying
objects. When we determine the best catching posture, we make sure that the
palm direction in the catching configuration is opposite from the direction of
the object velocity.



1056 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014

Fig. 6. Modeling of the reachable space for the right arm of the iCub. (a), (d), and (f) Reachable 3-D Cartesian points that are demonstrated from the uniform
distribution in joint space. (b), (e), and (g) Probability contour of the reachable-space model that is trained through the Gaussian Mixture Model with 23 Gaussians.
(c) Orientation contour when the iCub’s end-effector position [see Fig. 3(a)] is [−0.2, 0.2, 0.45]. (a) Samples x–y. (b) Model x–y. (c) Orientation. (d) Samples x–z.
(e) Model x–z. (f) Samples y–z. (g) Model y–z.

Fig. 7. Modeling of the reachable space for the LWR 4+. (a), (e), and (g) Reachable 3-D Cartesian points that are demonstrated from the uniform distribution
in joint space. (b), (f), and (h) Probability contour of the reachable-space model that is trained through the Gaussian mixture model with 22 Gaussians. (c) and (d)
Orientation contour when LWR 4+’s end-effector position [Allegro hand; see Fig. 4(a)] is [−0.13,−0.26, 0.79]. (a) Samples x–y. (b) Model x–y. (c) Orientation
(X-axis). (d) Orientation (Y-axis). (e) Samples x–z. (f) Model x–z. (g) Samples y–z. (h) Model y–z.

C. Hand–Arm Coordinated Motion

We model the trajectories for the end-effector position ξh ∈
R3 and orientation ξo ∈ R3 by using a DS-based model that is
learned using the stable estimator of dynamical system (SEDS)
technique [20]. The orientation is parameterized using the scaled
axis-angle representation as ξo ∈ R3 ≡ {ξ1

o ; ξ2
o ; ξ3

o }, where the

direction ξo represents the axis of rotation, and ‖ξo‖ represents
the angle of rotation.

We also encode the hand–finger coupling using the CDS
model [38] to ensure the coordinated motion of all joints.
This approach consists of coupling two different dynami-
cal systems for reaching and grasping by using an inference
model that learns a task metric for hand–arm coupling. In this
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implementation, we achieve the coupling by using the metric
of distance-to-target. Such a spatial coupling between hand and
fingers ensures timely closure of the fingers while following the
learned dynamics as closely as possible, even in the presence of
arbitrary perturbations.

Here, we briefly summarize the CDS model and the task
execution algorithm. For more details, see [38].

1) Model Learning: Let ξh ∈ R3 denote the Cartesian posi-
tion of the hand and ξf ∈ Rdf the joint angles of the fingers. df

denotes the total number of DOFs of the fingers. The hand and
the fingers follow a separate autonomous DS with associated
attractors. For convenience, we place the attractors at the origin
of the frames of reference of both the hand motion and the finger
motion and, hence, we have ξ∗

h = 0 and ξ∗
f = 0. In other words,

the hand motion is expressed in a reference frame attached to
the object to be grasped, and the zero of the joint angles of the
fingers is placed at the joint configuration adopted by the fingers
when the object is in the grasp.

The following three joint distributions, learned as separate
GMMs, combine to form the CDS model:

1) P(ξh , ξ̇h |θh): encoding the dynamics of the hand trans-
port, called the master subsystem;

2) P (Ψ(ξh), ξf |θinf ): encoding the joint probability distri-
bution of the inferred state of the fingers and the current
hand position, called the inference subsystem;

3) P(ξf , ξ̇f |θf ): encoding the dynamics of the finger mo-
tion, called the slave subsystem

Here, Ψ : R3 	→ R denotes the coupling function satisfying

lim
ξh →0

Ψ(ξh) = 0. (13)

θh , θf , and θinf denote the parameter vectors of the GMMs
encoding the master, slave, and the inference models, respec-
tively. The distributions in 1) and 3) above are learned by using
the SEDS technique [20] that ensures that the learned DS has
a single, globally and asymptotically stable attractor. This, in
turn, ensures that the overall coupled system will terminate at
the desired targets for both the hand pose and the joint angles of
the fingers. The probability distribution in 2) does not represent
a dynamic3; hence, it is learned using a variant of SEDS where
we maximize the likelihood of the model under the constraint

lim
x→0

E [ξf |x ] = 0. (14)

Note that the master DS runs independently and the slave
adapts accordingly to maintain the desired coupling. This im-
plies that the dynamics of the reaching motion for the end-
effector can be altered without having undesirable effects on the
coupling behavior. As explained next, in order to intercept the
flying object at the desired instant, we use the timed DS con-
troller of [23] for the reaching motion. No change in the other
member models of CDS is needed to be compatible with the
new reaching dynamics.

2) Trajectory Generation Using Coupled Dynamical Sys-
tems: While executing a catching motion, the model essentially

3Here, the dimension of input and output variables is not equal. SEDS can
only be applied to learn the dynamics, where the inputs are positions and outputs
are velocities and, thus, have the same dimensionality.

Fig. 8. BIC curves to find the optimal number of a reachable-space model.
We determine the number of Gaussians as 23 for the graspable-space model of
(a) iCub and 22 for the reachable-space model of (b) LWR 4+. (a) iCub. (b)
KUKA LWR 4+.

works in three phases: Update hand pose → Infer finger joints
→ Increment finger joints. The end-effector pose is generated
independently at every time step by using the master DS. This
dynamics is, however, continuously corrected in magnitude with
a scalar boost factor so that the robot reaches the catching con-
figuration at the desired instant. The change in the boost factor
is then set proportional to the difference between the desired
reaching time and the reaching time of the current master DS,
which is achieved by integrating the DS forward in time (see [23]
for detailed description). Subsequently, the current end-effector
position is used to modulate the dynamics of the finger motion
through the coupling mechanism explained previously. Such a
scheme is desired because it ensures that any perturbation is
reflected appropriately in both subsystems.

The process starts by generating a velocity command for the
hand transport subsystem and increments its state by one time
step. Ψ(ξh) transforms the current hand state that is fed to the
inference model that calculates the desired state of the joint an-
gles of the fingers by conditioning the learned joint distribution.
The velocity to drive the finger joints from their current state
to the inferred (desired) state is generated by Gaussian mixture
regression conditioned on the error between the two. The fingers
reach a new state, and the cycle is repeated until convergence.
Algorithm 1 explains the complete process in pseudocode, and
Fig. 9 shows the closure of the fingers when the robot catches
flying objects at different speed.

III. EMPIRICAL VALIDATION

In order to evaluate the performance of the proposed system,
we construct two sets of experiments. The first set uses the
iCub simulator. The other uses the LWR 4+ platform. In these
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Fig. 9. Snapshots of the finger motions when the robot catches objects coming
with different speeds. Note that the starting times for finger motion varies
with the incoming object speed, i.e., approximately 33 ms (top) versus 50 ms
(bottom).

experiments, the state of the fingers was represented by ξf ∈ R.
We use a 1-D finger motion model as this was sufficient for
modeling the power grasps used in this study.

A. Implementation in iCub Simulator

Because of hardware limitations in speed and accuracy on
the real iCub humanoid robot, we use the iCub simulator [39].
We simulate two objects: a hammer and a tennis racket. In
the simulator, each object is thrown 20 times; we randomly
change the initial position with the following range, [−2.5 ± 0.5
0.15 ± 0.3 0.8 ± 0.3] (m). We also vary the translational veloc-
ity between [5.0 ± 2.0 0.0 ± 0.3 3 ± 0.5] (m/s), and the angu-
lar velocity between [0.0 ± 10 0.0 ± 10 0.0 ± 10] (rad/s).

We record the trajectory at 100 Hz. The obtained trajecto-
ries are used to train the dynamic model using the SVR tech-
nique with the RBF kernel (see Section II-A). We predict the
feasible catching configuration and the catching time by us-
ing the trained dynamics of the hammer, the graspable-space
model (see Section II-B1), and the reachable-space model (see
Section II-B2) of the iCub. Various catching configurations of
the iCub robot and their orientation contours at the catching
position are shown in Fig. 10. The real-time simulation results
for the in-flight catching of a hammer and racket are shown in
Fig. 11. As real-world uncertainties (such as air drag or measure-
ment noise) are not presented in the simulator, the predictions
converge very quickly to the true value and are very accurate. To
determine the success rate, we perform 50 throws with random
initial position, velocity, and angular velocity in the same range
with the training throws. The success rate for catching the two
objects in simulation is 100%. Note that we excluded the failed
throws (three out of the 50 throws) that are not passed into the
reachable space of the iCub.

B. Catching Experiment With Real Robot

To validate our method on a real platform, we choose the
LWR 4+ mounted with the Allegro Hand.4

4Real iCub robot is not fast enough to allow for objects to be caught at the
targeted speed. In the simulator, we boosted the gains to ensure rapid motion.

Fig. 10. iCub could generate different catching configurations. Final catching
configuration (left), x-directional contour (middle), and y-directional contour
(right) at the catching point.

In the experiments presented here, we use four objects: an
empty bottle, a partially filled bottle, a tennis racket, and a
cardboard box. In the experiment with a partially filled bottle,
we pour 100 g of water inside the empty bottle that weights
33 g. To capture both the position and orientation of the object
in-flight, we attached three markers to each of the objects. These
were captured using the Optitrack motion capture system from
natural point. The position and orientations were captured at
240 Hz.

To train the dynamic models of the moving objects, each ob-
ject is thrown 20 times with a varying initial translational and
rotational velocity. The trajectories of the measurement frame
virtually attached on the object were recorded. Each recorded
trajectory is filtered through a Butterworth filter at 25 Hz. We
calculate the velocity and acceleration by using cubic spline in-
terpolation. The minimum and maximum values of initial posi-
tion, velocity, and angular velocity of the trajectories are shown
in Table I in the Appendix. We use SVR-RBF, which are the
technique presented in Section II (see [22] for details), to train
the dynamics of the objects.

The models of the dynamics of each object are trained sep-
arately offline; the trained models are stored in text files so as
to use the models in a real-time application. Once a dynamics
model is trained, we can predict the position and orientation tra-
jectories by measuring the states for a few capturing cycles. The
position and orientation accuracy for predictions encompassing
0.5 to 0.0 s is shown in Fig. 12.

To show the dynamic complexity of a partially filled bottle,
we compare our dynamics model with a rigid-body dynamics
model. The COM of the bottle is measured manually. For this
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Fig. 11. iCub simulation result. The full video is available at http://lasa.epfl.ch/videos/downloads/robotcatchingsim.mp4.

Fig. 12. Prediction error across the four objects in real flight. For each of the
objects, ten trajectories are tested. By integrating the estimated acceleration and
angular acceleration for the dynamic model, the model predicts future positions
and orientations. We varied the amount of data used for prediction from 0.5
to 0.0 s of trajectory time, counting backward from the catching configuration.
(a) A bottle. (b) A partially filled bottle. (c) A tennis racket. (d) A cardboard
box.

comparison, we place the object coordinate system on the ap-
proximated COM. We set as mass for the rigid-body model the
weight of the partially filled bottle. We approximate the moment
of inertia of the bottle with that of a cylinder. Air drag is ignored.

Fig. 13 shows the trajectory of the partially filled bottle. Us-
ing the superimposed real trajectory, we show the prediction of
the rigid-body model and of nonlinear estimate of the dynam-
ics using SVR-RBF. The SVR-RBF predicts the trajectory very
accurately. The predictions of the rigid-body dynamics model,
in contrast, is very poor, particularly so for the orientation. The
discontinuities in the orientation of Fig. 13 come from the sin-

gularity of using Euler angles to represent the orientation (note
that the real orientation trajectory of the both models are con-
tinuous).

To learn the graspable-space model, we show demonstrations
of possible catching hand configurations to the robot. During the
demonstrations (around 15 s, 15 (s)× 240 (Hz) = 3600 catching
configuration samples), the positions and orientations of the
robot hand and the object are captured using the motion capture
system, as shown in Fig. 4(b). Among the recorded catching
configurations, 300 samples are randomly selected. The selected
samples are trained using GMM. The trained model for grasping
a bottle using the Allegro hand is shown in Fig. 4. We also model
the reachable space of LWR 4+ by using the method introduced
in Section II-B2. Using these three models (object dynamics,
graspable-space model of the object, and the reachable-space
model of the robot), we predict the best catching configuration
and the catching time.

We use the CDS model, explained in Section II-C, to execute
the motion of the arm toward the predicted catching configu-
ration. The dynamic models for the end-effector position and
orientation are learned by using kinesthetic demonstrations (see
Fig. 14). In order to obtain a fair coverage of the reachable space
of the robot, we take demonstrations by starting always from a
fixed configuration of the robot, which is also the starting con-
figuration during the catch executions. The demonstrations ter-
minate at several catching configurations in the reachable space
of the robot [see Fig. 14(b)]. Although more demonstrations
imply a better coverage of the reachable space, hence more
reliable path generation, in practice, we find that around 20
demonstrations give a reasonable performance. In order to han-
dle different starting configurations, one would need to collect
more demonstrations starting around those configurations. The
hand–arm coupling model is learned from a separate set of
demonstrations taken by tracking both the object (using the
motion capture system) and the joint angles of the fingers (us-
ing 5DT data-glove) synchronously, while a human is catch-
ing the object. Note that we separate the demonstrations for
learning the master DS from the slave DS and the inference
model. This is to facilitate ease of demonstration as kinesthet-
ically controlling the position, orientation, and the joint angles
of the fingers, all at the same time, is a tedious task. In addi-
tion, it is not possible to learn the position/orientation dynamics



1060 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014

Fig. 13. Trajectory of a partially filled bottle and its prediction by using trained SVR-RBF dynamics model and rigid-body dynamics model. (a) Position.
(b) Orientation.

Fig. 14. (a) Kinesthetic demonstrations of catching an object. (c) We track the hand and object using the marker-based OptiTrack system. The finger joint angles
are recorded synchronously for learning the hand–finger coupling. (d) Human catching the object while the hand position, object position, and finger joint angles
are recorded simultaneously.

Fig. 15. (a)–(d) Member models of the CDS used to control the Barrett Hand and KUKA LWR arm in coordination to execute the catching motions.
(e)–(g) Orientation dynamics estimated using the SEDS technique.

solely using the latter procedure [see Fig. 14(d)], as this would
require a remapping of the human data to the nonanthropomor-
phic LWR arm. Fig. 15 shows the learned member models of
the CDS formulation, i.e., the end-effector position represented
by ξh ∈ R3 ≡ {ξ1

h ; ξ2
h ; ξ3

h}, the state of the fingers represented
by ξf ∈ R, and the DS encoding the orientation trajectories in
the scaled axis-angle representation ξo ∈ R3 ≡ {ξ1

o ; ξ2
o ; ξ3

o }.

The predicted catching configuration, calculated by the above
best catching configuration prediction module, is fed as the
target for the position and orientation DSs. The fingers are
controlled as the slave subsystem coordinated with the end-
effector position with respect to the predicted catching config-
uration. The end-effector and finger joint trajectories generated
by our model adapt to the predicted catching configuration that is
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Fig. 16. Example of trajectory generated by the robot in response to the
predicted and real trajectory of the object when catching an empty bottle. The
end-effector of the robot continuously adapts to the target and reaches the target
on time. In practice, we stop predicting the best catching posture when the
predicted time of contact is less than 0.09 s. When the object is very close to
the robot, its view from the cameras located in the back of the robot is partially
obstructed, yielding a less-accurate estimate of its position. For this reason, we
stop predicting the best catching posture when the predicted time at contact is
inferior to 0.09 s, which corresponds to a position for the object in the near
vicinity of the robot.

updated at every control cycle. The robot continuously adapts
the arm and finger motion as the prediction of the final catching
configuration improves over time. The output of the position and
orientation of the DS is converted into the 7-DOF joint state us-
ing the damped least squares IK. We simply choose conservative
joint limits for the IK which, in turn, ensure no self-collision.
The resultant joint angle is filtered by a critically damped fil-
ter to avoid high torques, and the robot is then controlled in
joint positions at a rate of 500 Hz. The snapshots of the real
robot experiments are shown in Fig. 17. An example of robot
end-effector trajectory according to object measurements and
predictions of catching posture is shown in Fig. 16.

To compute the rate of success, we throw the empty bottle, the
partially filled bottle, the racket, and the cardboard box 20 times
each. The prediction of the flying trajectory can start only once
the object is visible, i.e., once it enters the region tracked by the
motion capture system. This corresponds to an area about 3.5 m
from the robot. The average flying time across all trials for the
four objects is 4.97 ± 0.46 (mean ± standard deviation) s. Out
of 80 trials, we exclude nine trials that never enter the reachable
space of the robot. The robot successfully caught the object
52 times out of 71 total trials, yielding a 73.2% success rate.

Failures come in three categories. The first cause of the fail-
ures is due to the IK solution for the best catching configuration.
If the resulting joint configuration is far away from the initial
configuration, the robot cannot reach the target on time, even
with its maximum attainable velocity. The CDS and our timing
controller generate the Cartesian space end-effector trajectory
to bring the end-effector to the target on the desired time, even
for the unrespectable prediction change or the dynamically in-
feasible target. However, as our CDS in Cartesian space does
not take into account the limits of robot in joint space (e.g.,
joint velocity or torque), it is possible that the robot cannot
reach the target at the desired time. This consists of 12 of the
19 failed attempts. Another cause of the failures is when a fin-
ger hits the object, which in turn causes the object to bounce
away. This happens rarely, and we observe this in four out of 19
failures. The other failures (three out of 19) are caused by vio-
lations of the joint torque limits (the robot automatically stops
its motion when one of the measured joint torques exceeds the
limit).

To compare the success rate of LWR 4+ with a human, we
performed a catching experiment with a human with the same
constraints as the above robotic catching experiment. Ten un-
trained subjects (seven males and three females, all of whom
are right-handed and between 25 and 32 years old) are asked
to stand next to the robot and to catch the object with their
right arm, using nothing else than their hand (e.g., all successful
catches where the subject catches the object using his chest or
upper arm as support are considered to be failed attempts). Step-
ping motions are not allowed either. We throw the empty bottle
ten times each, totaling 100 throws. The humans successfully
caught the object in 38 out of 100 trials, yielding an overall
success rate of 10% for the poorest subject to 70% for the best
subjects.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a framework to teach a robot
how to catch in-flight objects with 1) rigid but uneven mass
distributions and 2) nonrigid mass distributions. Emphasis is
placed on allowing the robot to acquire each step of the process,
either through observation of human demonstrations or through
exploration. This core learning approach enables us to imple-
ment the catching task on two robotic platforms with different
kinematics, and for four objects with different motion dynamics.

The learning framework is based on three modules. To esti-
mate the trajectory of complex flying objects, we build a model
of the translational and rotational motion by using about 20
examples in which each object is thrown by a human demon-
strator (see Section II-A). In order to determine the final catching
configuration, we develop a data-driven probabilistic approach
both to estimate a distribution of admissible grasping posture
on the object and to compute the robot’s reachable space. We
show that these techniques enable us to determine the optimal
catching configuration in real time (see Section II-B). To gener-
ate the robot arm and finger motion to intercept the object, we
use CDS and a timing controller (see Section II-C).
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Fig. 17. Thrower throws four objects, i.e., a bottle (top), a partially filled bottle (second row), a racket (third row), and a cardboard box (bottom), at around 3.5-m
from the robot. The robot catches the bottles in flight. The full video is available at http://lasa.epfl.ch/videos/downloads/kukacatching.mp4.

Fig. 18. Modeling the graspable space of a racket for the Allegro hand using a GMM with 13 Gaussians. The likelihood contour for the end-effector position
(e)–(g) and x- and y-directional vectors of orientation (d) with fixed position [0.0; 0.0; 0.035]. (a) A racket, (b) a teaching demonstration, (c) demonstration samples,
(d) ηpos = (0.0, 0.0, 0.035), (e) ηpos (3) = 0.0, (f) ηpos (2) = 0.0, and (g) ηpos (1) = 0.0.

To validate and show the general nature of our method, we
perform two different experiments on both the iCub robot (in
simulation) and the LWR 4+ mounted with an Allegro hand (in
real world), very different in terms of the configuration space.
We use four objects with very complex dynamics (e.g., a par-
tially filled bottle), which leads to a variety of catching config-
urations that are difficult to predict and calculate. The average
success rate for catching an object in iCub simulation is around

100%, and for the real experiment of LWR 4+, it is approxi-
mately 73%. The real robot experiment results are considerably
higher than the catching success rate for humans (38%).

To predict the trajectory of the free-flying object, the SVR-
RBF method [22] models the dynamics of the object accurately
enough for this catching task but only locally (generalization
could be inaccurate far away from the demonstrated states). For
example, if an object is thrown in a fashion that is considerably
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Fig. 19. Modeling the graspable space of a bottle for the Allegro hand using a GMM with 14 Gaussians. The likelihood contour for end-effector position (e)–(g);
and x- and y-directional vector of orientation (d) with fixed position [−0.125; 0.0; 0.0]. (a) A box, (b) a teaching demonstration, (c) demonstration samples,
(d) ηpos = (0.0, 0.0, 0.12), (e) ηpos (3) = 0.0, (f) ηpos (2) = 0.0, and (g) ηpos (1) = 0.0.

differently compared with the demonstrations, the predicted tra-
jectory might be inaccurate. This effect is more pronounced for
objects with high nonlinearity in the motion, e.g., a partially
filled bottle.

Prediction errors such as the above can possibly lead to an
incorrect prediction of the catching configuration. This, in turn,
can lead to a catching failure because the robot will start moving
in the wrong direction until a better prediction is available. How-
ever, as new measurements of the object posture are collected
and the future trajectory is reestimated, the catching configura-
tion prediction error is reduced gradually.

We use human demonstrations to model the graspable space
around an object. Teaching a robot where to grasp via hu-
man demonstrations is simple and intuitive. It does not require
any prior knowledge about the exact shape, material, and
weight of the objects to be grasped. However, only the demon-
strated parts of an object can be modeled as possible catching
points.

We use probabilistic techniques to model the reachable and
graspable spaces. As introduced in Section I, several ways ex-
ist to model the reachable space, e.g., numerical modeling,
databases, or density-based modeling. To our knowledge, how-
ever, there are no generalized methods for building a continuous
model of the 6-D reachable and graspable space and that can be
queried in real time. Using a probabilistic encoding to model the
graspable and reachable spaces has several benefits. It provides
us with a notion of the likelihood from which we can determine
the most likely catching point. It can easily be rotated and trans-
lated so as to perform the computation online in the moving
object’s frame of reference.

To ensure timely and rapid computation time, whenever pos-
sible, we find closed-form expressions for each computational
step. We show that the overall computation is extremely rapid,
thus enabling us to compute the best catching configuration in
around 0.2 ms (on 2.7-GHz quad-core PC) and to catch objects
when the overall flying time does not exceed 0.7 s.

The choice of modeling reachable and graspable space with
positive examples is inspired by the one-class classification
scheme where there are only data from the positive class, and
there is an attempt to fit a boundary around it as tightly as possi-
ble. Although this procedure can generate some false negatives
(feasible regions decided as infeasible by the model), it is highly
unlikely to generate false positives (infeasible regions decided
as feasible). The frequency of such errors can be further de-
creased by making the threshold (currently 99%) even lower.
We find that, in practice, setting the threshold to 99% does not
yield to sample infeasible regions.

As we model the reachable space through a joint-probability
distribution, we can compute conditional probability on all vari-
ables. For example, when a robot needs to grasp a static object
at a specific position, the feasible orientations can be computed
simply by conditioning the orientation on the position. We can
also compute the likelihood of each of the marginal distribu-
tions to determine separately the likelihood of the position and
orientation. We can, for instance, determine the reachability of
a given 3-D position while ignoring orientation. This can be
useful when only the position is relevant, such as when catching
a ball.

This is, as far as we are concerned, a very challenging catching
task; there are many aspects in the methods presented here
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TABLE I
INITIALS VALUES OF THE THROWING DEMONSTRATIONS

that need improvement. For starters, we consider only catching
motions that stop at the target. This results in the object bouncing
off after hitting the robot’s hand. This is undesirable, especially
as the object can produce a strong impact force on the hand,
which can lead to damage. Addressing the shortcomings with
compliant catching will be our next challenge.

As mentioned in the main text of the paper, we do not explic-
itly compute collisions, before catching, between the object and
the hand and arm. Although we prevent this from happening
through simple heuristics (opposite orientation of the palm to
the object velocity vector), this is not sufficient and leads to a
few cases of failures in the experiments. We conservatively limit
the joint ranges to avoid self-collision when modeling the reach-
able space and in solving IK. This reduces the usable reachable
space of a robot. Recently, a real-time optimization method was
applied to a robotic catching task to avoid self-collisions and
environment-collisions, to avoid joint limits (position and ve-
locity), and to find smooth joint angle trajectories. However, it
requires a large amount of computational power (Bauml et al. [4]
use external 32-core high-performance computer in a ball catch-
ing experiment). Indeed, computing obstacle avoidance in real
time for catching complex objects is a very challenging task,
and we do not yet have a solution to this problem. These is-
sues are open issues in robotics, and we consider them as future
work.

The graspable model is used solely to learn power grasps.
Precision grasps might be interesting for catching very small
objects. It would be possible to extend the GMM approach to
embed a representation of the grasping points on each finger, as
a triplet, by expanding the space of control.

Finally, and perhaps most importantly, we model solely the
dynamics of the task and do not model the robot’s dynamics. As a
result, some of the trajectories generated by our CDS model lead
to generate velocities that the robot could not follow. This is the
third cause of failure to catch the objects in the real experiment.
A potential direction to address this issue would be to generate
dynamically feasible trajectories from optimal control (in place
of using human demonstrations) to populate the CDS model
with examples of motion that satisfy the dynamics of the robot.
These problems remain for potential resolution in future work.

APPENDIX

See Table I, which shows the initial values of the throwing
demonstrations.
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