3044

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Autonomous Drone Racing: A Survey

Drew Hanover ”, Antonio Loquercio
Angel Romero
Giovanni Cioffi

and Davide Scaramuzza

, Leonard Bauersfeld
, Graduate Student Member, IEEE, Robert Penicka
, Student Member, IEEE, Elia Kaufmann

, Graduate Student Member, IEEE,
, Yunlong Song ',

, Member, IEEE,

, Senior Member, IEEE

(Survey Paper)

Abstract—Over the last decade, the use of autonomous drone sys-
tems for surveying, search and rescue, or last-mile delivery has in-
creased exponentially. With the rise of these applications comes the
need for highly robust, safety-critical algorithms that can operate
drones in complex and uncertain environments. In addition, flying
fast enables drones to cover more ground, increasing productivity
and further strengthening their use case. One proxy for developing
algorithms used in high-speed navigation is the task of autonomous
drone racing (ADR), where researchers program drones to fly
through a sequence of gates and avoid obstacles as quickly as
possible using onboard sensors and limited computational power.
Speeds and accelerations exceed over 80 km /h and 4 g, respectively,
raising significant challenges across perception, planning, control,
and state estimation. To achieve maximum performance, systems
require real-time algorithms that are robust to motion blur, high dy-
namic range, model uncertainties, aerodynamic disturbances, and
often unpredictable opponents. This survey covers the progression
of ADR across model-based and learning-based approaches. In this
article, we provide an overview of the field, its evolution over the
years, and conclude with the biggest challenges and open questions
to be faced in the future.

Index Terms—Autonomous robots, autonomous aerial vehicles,
drones.

I. INTRODUCTION

HROUGHOUT history, humans have been obsessed with
T racing competitions, where physical and mental fitness are
put to the test. The earliest mention of a formal race dates all
the way back to 3000 BC in ancient Egypt, where the Pharaoh

Manuscript received 1 February 2024; accepted 3 March 2024. Date of
publication 14 May 2024; date of current version 6 June 2024. This paper was
recommended for publication by Associate Editor Giuseppe Loianno and Editor
Paolo Robuffo Giordano upon evaluation of the reviewers’ comments. This work
was supported in part by the Swiss National Science Foundation (SNSF) through
the National Centre of Competence in Research (NCCR) Robotics, the Czech
Science Foundation (GACR) under research project 23-06162M, in part by the
European Union’s Horizon 2020 Research and Innovation Programme under
Grant 871479 (AERIAL-CORE), and in part by the European Research Council
(ERC) under Grant 864042 (AGILEFLIGHT). (Corresponding author: Leonard
Bauersfeld.)

Drew Hanover, Leonard Bauersfeld, Angel Romero, Yunlong Song, Giovanni
Cioffi, Elia Kaufmann, and Davide Scaramuzza are with the Robotics and
Perception Group, University of Ziirich, 8050 Ziirich, Switzerland (e-mail:
bauersfeld @ifi.uzh.ch).

Antonio Loquercio is with the University of California, Berkeley (UC Berke-
ley), Berkeley, CA 4720 USA.

Robert Penicka is with the Multi-Robot Systems Group, Czech Technical
University in Prague, 160 00 Prague, Czech Republic.

Digital Object Identifier 10.1109/TRO.2024.3400838

was thought to have run a race at the Sed festival to demonstrate
his physical fitness, indicating his ability to rule over the king-
dom [1], [2]. As time has progressed, humans have moved from
racing on-foot to using chariots, cars, planes, and more recently,
quadcopters [3]. Although the vessel frequently changes, one
thing that has remained constant since the early days of racing
has been the recurring theme of using the task as a catalyst for
scientific and engineering development. Recently, we have seen
a push to remove humans from the loop, automating the highly
complex task of racing in order to push vehicle performance
beyond what humans can achieve [4], [5].

A. Why Autonomous Drone Racing (ADR)?

Drone racing is a popular sport with high-profile international
competitions. In a traditional drone race, each vehicle is con-
trolled by a human pilot, who receives a first-person-view (FPV)
live stream from an onboard camera and flies the drone via a
radio transmitter. An onboard image from the drone can be seen
in Fig. 1(b). Having access to an FPV feed sets drone racing apart
from remote-controlled fixed-wing aircraft racing, where pilots
typically control the vehicle in a line-of-sight fashion. Human
drone pilots need years of training to master the advanced
navigation and control skills required to succeed in international
competitions. Such skills would also be valuable to autonomous
systems that must fly through complex environments in appli-
cations such as disaster response, aerial delivery, and inspec-
tion of complex structures. For example, automating inspection
tasks can save lives while being more productive than manual
inspection. According to a recent survey on unmanned aerial
vehicle (UAV) use in bridge inspection [6], most drones used for
inspection tasks rely on GPS navigation with the biggest limiting
factor on inspection efficiency being the drones’ endurance
and mobility. In addition, the most popular drones used for
surveying by several US Departments of Transportation are not
fully autonomous and require expert human pilots [6]. In these
applications, an increase in autonomy and operational speed will
offer gains in utility as faster flight increases the operating radius
achievable with a given battery [7]. Drone racing research has
made significant progress in bringing the skills of autonomous
drones closer to those of professional human pilots [5]. This
required advances on all parts of the flight stack, i.e., estimation,
planning, control, and hardware [8], which we cover in length
in this survey. However, several challenges remain to bridge the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1463-0260
https://orcid.org/0000-0002-8410-3933
https://orcid.org/0000-0002-5790-9982
https://orcid.org/0000-0002-7977-7802
https://orcid.org/0000-0001-8549-4932
https://orcid.org/0000-0002-6352-3744
https://orcid.org/0000-0003-3964-8552
https://orcid.org/0000-0001-6094-5901
https://orcid.org/0000-0002-3831-6778
mailto:bauersfeld@ifi.uzh.ch

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY
(a) Number of Papers on Autonomous Drone Racing

275
223
138
95
69 I
16
6
0 3 L mm
21 22 23

516 '17 18 '19 20
Year

Fig. 1.

3045

Drone racing is a sport rapidly gaining popularity where opponents compete on a predefined race track consisting of a series of gates. ADR research

aims to build algorithms that can outperform human pilots in such competitions. (a) Task of ADR has gained a substantial amount of interest from the research
community in the last few years, as indicated by the increasing number of related publications per year, as evidenced by a Google Scholar search for “ADR.”
(b) Autonomous drones rely on visual and inertial sensors to estimate their own states, as well as their opponents’ states. (c) Agile maneuvers are required to

overtake opponents and win the race.

IROS ADR II

The following year, another autonomous drone
racing competition took place in Vancouver,
Canada. Similar to the year prior, teams used
classical methods to navigate a challenging course
with compute done onboard and the INAOE team
from Mexico won with a speed of 0.7 m/s.

2016 2018

AlphaPilot

to teams who could successfully navigate a
challenging drone racing course completely
autonomously. The MAVLAB team from TU Delft
won, with top speeds approaching 10 m/s, showing
a significant jump over previous competitions.

2022

2017

IROS ADR I
The first autonomous drone racing challenge at
IROS 2016, Daejong Korea. Slow moving

quadrotors cautiously navi-gated the course shown
above using only onboard sensors. Team KIRD
from KAIST placed 1st, reaching a top speed of
0.6 m/s.

Vo = 2.0m/s

2019

IROS ADR III

In the third iteration of the ADR challenge held in
Madrid, teams began implementing learning based
methods with optimal control techniques. The
Robotics and Perception Group from the
University of Zurich successfully completed the
course the fastest with speeds up to 2.0 m/s.

Swiss Drone Days

In summer of 2022, the Robotics and Perception
Group of the University of Zurich hosted a drone
racing competition to face their autonomous
drones off against some of the best human FPV
pilots in the world. Speeds exceeded 20 m/s,
relying only on onboard sensing.

Fig. 2.

gap between drone racing and real-world applications, such as
safety [9] and generalization over tasks and environments.
Over the last five years, several projects have been launched
to encourage rapid progress within the field, such as DARPA’s
Fast Lightweight Autonomy [11], European Research Coun-
cil’s AgileFlight [12], and the AutoAssess project [13]. With
million-dollar funding for each of these projects and significant
commercial potential, a large incentive exists for researchers
and entrepreneurs alike to achieve autonomous operation in

History of drone racing competitions that use real drones for navigating the race track, IROS ADR II photo credit [10].

GNSS-denied and confined critical infrastructure. Competitions
such as the International Conference on Intelligent Robots and
Systems (IROS 2016-2019) ADR series [14], NeurIPS 2019’s
Game of Drones [15], and the 2019 AlphaPilot Challenge [16],
[17] provided further opportunity for researchers to compare
their methodologies against one another in a competitive fash-
ion. A depiction of the progress made from these competi-
tions can be seen in Fig. 2. However, we are far from having
solved ADR—A notion reflected by the recently announced

3046

competition scheduled for 2025 and to be hosted by the Abu
Dhabi Autonomous Racing League [18].

Drone racing is a challenging benchmark that can help re-
searchers to gauge progress on complex perception, planning,
and control algorithms. Autonomous drones in a racing setting
must be able to perceive, reason, plan, and act on the tens of mil-
liseconds scale, all onboard a computationally limited platform.
Apart from being very challenging to solve, the drone racing
task offers a single measure of the progress of the state-of-the-art
in autonomous flying robotics: lap time. Solving this problem
requires efficient, lightweight algorithms to provide optimal
decision and control behaviors in real time. Just a few years
back, it was unclear whether such a problem was feasible in
the first place, even given perfect information. Drone racing
research has advanced much since its early stages [19]. Such
advances required radically new algorithmic ideas, e.g., train-
ing learning-based sensorimotor controllers only in simulation,
together with engineering advances to the platform and the
overall system [8]. Now that superhuman performance has been
achieved [5] (despite being in controlled conditions), we predict
that more work will be done on safety and generalization over
tasks and environments to bridge the gap between drone racing
and real-world applications. This research effort is already evi-
dent today, as shown by the increasing number of articles in the
field over the years [see Fig. 1(a)].

This is the first survey on the state of the art in ADR.
This overview will be useful to researchers who wish to make
connections between existing works, learn about the strengths
and weaknesses of current and past approaches, and identify
directions moving forward which should progress the field in a
meaningful way.

B. Task Specification

The drone racing task is to fly a quadrotor through a sequence
of gates in a given order in minimum time while avoiding
collisions. Humans are astonishingly good at this task, flying
at speeds well over 100 km/h with only an FPV camera as their
sensory input. Beyond this, expert pilots can adapt to new race
tracks quickly in a matter of minutes, however, the sensorimotor
skills required by professional drone pilots take years of training
to acquire.

For an autonomous drone to successfully complete this task,
it must be able to detect opponents and waypoints along the
track, calculate their location and orientation in 3-D space, and
compute an action that enables navigation through the track as
quickly as possible while still controlling a highly nonlinear
system at the limits. This is challenging in three different aspects:
Perception, Planning, and Control. Poor design in any of these
aspects can make the difference between winning and losing the
race, which can be decided by less than a tenth of a second.

The rest of this article is organized as follows. First, the mod-
eling procedure of the drone, including aerodynamics, batteries,
motors, cameras, and the system nonlinearities, are discussed
in detail in Section II. A classical robotics pipeline is then
introduced in Section I11I, with a deep dive into literature relevant

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

to agile flight split into perception, planning, and control subsec-
tions. All of these components are equally important because,
at the edge of a drone’s performance envelope, all parts—
perception, state estimation, planning, and control—need to
meticulously work together. Next, we delve into learning-based
methods for perception, planning, and control, which rely on
recent advancements from the machine learning community in
Section I'V. Then, a discussion of the development of simulation
tools that can enable rapid development for agile flight applica-
tions in Section V. A history of drone racing competitions and
the methods used for each are included in Section VI. Next, a
summary of open source code bases, hardware platforms, and
datasets for researchers is provided in Section VII. A forward-
looking discussion on the opportunities and challenges for future
researchers interested in ADR is presented in Section VIII.
Finally, Section IX concludes this article.

II. DRONE MODELING

To further advance research on fast and agile flight, it is
important to have accurate models that capture the complex
nonlinear dynamics of multicopter vehicles at the limit of their
performance envelope.

This section reviews different dynamics modeling approaches
from classic, first-principles modeling to pure data-driven mod-
els in the context of drone racing. For the vehicle dynamics,
the key aspects that need to be modeled are the kinematics,
aerodynamics, the electric motors, and the battery. In addition to
the vehicle dynamics models discussed in this section, many dif-
ficulties for ADR models are introduced by the onboard sensors,
whose characteristics need to be modeled. For example, inertial
measurement units (IMUs) are subject to bias and noise, and
the intrinsic as well as extrinsic parameters of onboard sensors
change over time as hard crashes may lead to miscalibration.

A. Kinematics

Typically, the vehicle is assumed to be a 6-degree-of-freedom
(DoF) rigid body of mass m with a (diagonal) inertia matrix J =
diag(Jy, Jy, J.). Given a dynamic state z € R'7, the equations
describing its evolution in time are commonly written as

. vw

Pwnb 0
' P ; q.WB dw B w2 "
= f(x,u)=| v =

wv; %(QWBQJ‘)""QW
Q Jfl(r—waJwB)
2o (s —)
L o

where py, 5 € R? is the position of the center of mass given
in the world frame, gy, € SO(3) is a quaternion defining the
rotation of the body frame relative to the world (vehicle attitude),
vy € R3 is the velocity of the vehicle in the world frame, wp €
R3 is the body rate of the vehicle, 2 € R* is the motor speed,
gw = [0,0,—9.81m/s?|T denotes Earth’s gravity, and u € R*
is the input. Depending on the control modality, the input can
be single rotor thrusts or collective thrust and body rates. In this

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

setting, the task of the model is to calculate the total force f and
total torque 7 that acts on the drone as accurately as possible.
Note the quaternion-vector product denoted by © representing
a rotation of the vector by the quaternion as in ¢q©® f =gq -
[0, fT]T - g, where q is the quaternion’s conjugate. Those forces
and torques, collectively referred to as wrench, are determined
by the aerodynamics of the platform as well as the vehicles’
actuators, e.g., the propellers.

B. Aerodynamics

This section discusses the different approaches to modeling
the aerodynamics of the drone and its propellers. The most
widely used modeling assumption is that the propeller thrust
and drag torque are proportional to the square of the rotational
speed [20], [21], [22], [23], [24] and that the body drag is neg-
ligible. These assumptions quickly break down at high speeds
encountered in drone racing as this model neglects the following:

1) linear rotor drag [25], [26];

2) dynamic lift [25];

3) rotor-to-rotor [27], [28], [29];

4) rotor-to-body [27], [28], [29] interactions;

5) aerodynamic body drag [26], [28].

The accuracy of the propeller model can be improved by
leveraging the blade-element-momentum (BEM) theory, where
the propeller is modeled as a rotating wing. Such first-principle
approaches [30], [31], [32], [33], [34] have been shown to
provide very accurate models of the wrench generated by a single
propeller as they properly capture effects 1) and 2). Implemented
efficiently, a BEM model can be run in real time [35] and has
been successfully used to test algorithms in simulation [36], [37].

Accounting for the remaining open points 3)-5), the aero-
dynamics of the drone body as well as any interaction effects
need to be calculated, which requires a full computational fluid
dynamics (CFD) simulation [27], [28], [29], [38], [39]. Due to
the extreme computational demands, this is impractical in drone
racing. To still get close to the accuracy of CFD methods while
retaining the computational simplicity of the previously men-
tioned methods, data-driven approaches are employed [35], [40],
[41], [42], [43], [44]. In the early works [42], [43], the whole
vehicle dynamics model was learned from data. In a similar fash-
ion, Sun et al. [41] use a combination of polynomials—identified
from wind-tunnel flight data—to represent the vehicle dynam-
ics. In [35] and [40], it has been shown that higher modeling
accuracies can be achieved when combining a first-principle
model with a data-driven component. Such a combination of
first-principle and data-driven models also leads to improved
generalization performance, as shown in [35], which combines
a BEM model with a temporal convolutional network [45] to
regress the residual wrench. Recently, a similar hybrid modeling
approach has been applied to moving-horizon estimation [46].

C. Motor and Battery Models

The previous section outlines different approaches to how the
aerodynamic wrench can be estimated based on the state of the
vehicle. However, for all such models, the rotational speed of
the propeller is assumed to be known. On most multicopters, the

3047

motors are not equipped with closed-loop motor speed control
but are controlled by a “throttle” command, which controls the
duty cycle of a pulsewidth-modulation signal applied to the
motors. The actual rotational speed that the motor achieves is
a function of the throttle command as well as other parameters
such as the battery voltage and the drag torque of the rotor [7].
Therefore, in order to have a dynamics model for the motors,
we need a model of the battery to calculate the voltage applied
to the motors. Most literature on battery modeling relies on
so-called Peukert models [47], but for lithium-polymer batteries
in drone racing, this is hardly applicable because the battery
discharge current often exceeds 100 A (e.g., 50-100C) [48],
[49]. Graybox battery models for the voltage that are based on a
one-time-constant (OTC) equivalent circuit [50], [51] are much
more suitable for drone racing tasks as shownin [7], because they
are applicable to the extremely high loads experienced during
a racing scenario. In combination with either a polynomial or a
constant-efficiency motor model, such OTC models can be used
to accurately simulate the battery voltage during agile flight [7].
Given a simulation of the battery voltage, one can measure the
performance characteristics of a given motor-propeller com-
bination to determine the mapping of throttle command and
voltage to resulting steady-state propeller speed {s,. When the
highest model fidelity is desired, a more sophisticated motor
simulation [52] can further improve the accuracy, which can be
desirable if the controller directly outputs single-rotor thrusts
instead of the more commonly used collective-thrust and body
rates control modality.

D. Camera and IMU Modeling

Drone racing pushes not only the mechanical and electrical
components of drones to their limits, but is also highly demand-
ing in terms of sensor performance. For an in-depth overview of
the many different sensor options for drone racing, the reader is
referred to [53]. The most common sensors aboard autonomous
drones are monocular or stereo cameras combined with IMUs
thanks to their low cost, low weight, and mechanical robustness.

For vision-based drone racing, having an accurate simulation
of the perception pipeline is critical for validation and controller
development. In terms of modeling and simulation of the cam-
era, it is common to use a pinhole model [54] and estimate
the focal length, image center, and distortion parameters from
measurements. Combined with accurate information on how far
the camera is displaced from the center of gravity of the vehicle,
this allows simulating observations. Either low-level sensory
observations (e.g., images) are simulated using a rendering
engine [22], [55] or more abstract visual features (e.g., landmark
positions) are simulated using the projection equations.

In the context of using a simulation to test approaches before
attempting real-world deployment, an accurate model of the
IMU characteristics is important, as the bias and noise strongly
influence the performance of many methods. The IMU intrinsic
calibration estimates the noise characteristic of the sensor. The
camera-IMU extrinsic calibration estimates the relative position
and orientation of the two sensors as well as the time offset.
Kalibr [56] is a widespread tool to perform these calibrations.

3048

Hardware Software

Sensors || Perception || Planning | Control | Drone |

Fig. 3. Architecture 1: A classic architecture for an autonomous system
programmed using model-based approaches.

However, the biggest source of measurement error of the
inertial sensors onboard a drone is not the sensors themselves
but the strong high-frequency vibrations introduced by the fast-
spinning propellers. The vibrations lead to aliasing effects on the
IMU measurements and introduce additional motion blur on the
camera images. The structural vibrations and their effect on the
measurements are extremely difficult to model and correct for.
Therefore, a suitable hardware design is imperative that dampens
the mount of the camera and the IMU with respect to the vehicle
frame.

III. CLASSICAL PERCEPTION, PLANNING, AND CONTROL
PIPELINE

Since the inception of mobile robotics, a common architec-
ture has been primarily used to achieve autonomous navigation
capabilities across various systems. In a traditional robotics
software stack, the navigation task is broken into three main
components: perception, planning, and control. A diagram of
this architecture can be seen in Fig. 3. This section covers
recent research in these areas relating specifically to agile flight
and ADR. All approaches detailed in this section rely on first
principles modeling and optimization techniques.

A. Perception

The perception block estimates the vehicle state and perceives
the environment using onboard sensors. The most common
solution for state estimation of flying vehicles is visual-inertial
odometry (VIO), thanks to its low cost and low weight require-
ments. VIO uses camera and IMU measurements to estimate
the state @ (position, orientation, and velocity) of the drone
platform. The inertial measurements are integrated to obtain
relative position, orientation, and velocity estimates in a short
time, e.g., between two camera images. However, the integration
for a longer time, e.g., a few seconds, accumulates large drift
due to scale factor errors, axis misalignment errors, and time-
varying biases [57] that commonly affect off-the-self IMU mea-
surements. The camera measurements provide rich information
about the environment at a lower rate, usually around 30 Hz, than
IMU measurements. Unlike the IMU measurements, the camera
measurements are affected by environmental conditions. The
quality of information they provide for state estimation degrades
in the case of poor illumination conditions, textureless scenes,
and motion blur. For this reason, the camera and inertial mea-
surements complement each other and are the standard choice
for state estimation of flying vehicles [58]. In this section, we first
give an overview of VIO with a focus on the methods that can
be applied for online state estimation of a racing drone. Second,
we give an overview of possible additional sensor modalities

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

that integrated into the classical VIO pipeline have the potential
to improve state estimation at high speed. Finally, we conclude
with a discussion on the application of classical VIO methods
to drone racing tasks.

1) Visual-Inertial Odometry (VIO): VIO is the most com-
mon solution for state estimation of aerial vehicles [58] using
only onboard sensing and computing, thanks to its favorable
tradeoff between accuracy and computational requirements.
VIO algorithms usually comprise two main blocks: the frontend
and the backend.

The frontend uses camera images to estimate the motion of
the sensor. Two main approaches exist in the literature: direct
methods [59], [60] and feature-based methods [61], [62], [63].
Direct methods work directly on the raw pixel intensities. These
methods commonly extract image patches and estimate the
camera trajectory by tracking the motion of such patches through
consecutive images. The tracking is achieved by minimizing
a photometric error defined on the raw pixel intensities [59].
This tracking method is particularly interesting for drone racing
because of its robustness in featureless scenarios. In fact, a direct
frontend [60] is used to estimate the state of a racing drone
in [16]. On the contrary, feature-based methods [61], [62], [63]
extract points of interest, commonly known as visual features or
keypoints, from the raw image pixels. The camera trajectory is
estimated by tracking these points through consecutive images.
High-speed motions make it difficult (e.g., due to motion blur) to
track features on many consecutive; consequently, feature-based
methods struggle in drone racing scenarios. However, feature-
based methods exhibit higher robustness than direct methods
to brightness changes. The VIO methods used in [64] and [65]
demonstrate that a hybrid frontend, combining the benefits of
direct and feature-based methods, is beneficial for drone racing
tasks.

The backend fuses the output of the fronted with the inertial
measurements. Two categories exist in the literature according to
how the sensor fusion problem is solved: filtering methods [61]
and fixed-lag smoothing methods [62], [63]. Filtering methods
are based on an extended Kalman filter (EKF). These methods
propagate the system’s state using the inertial measurements and
fuse the camera measurements in the update step. The pioneer
filter-based VIO algorithm is the multistate constraint Kalman
filter (MSCKF) originally proposed in [61]. Since then, many
different versions of the MSCKF have been developed [66].
Fixed-lag smoothing methods, also called sliding window es-
timators, solve a nonlinear optimization problem where the
variables to be optimized are a window of the recent robot
states. The cost function to minimize contains visual, inertial,
and past states marginalized residuals. Thanks to their favorable
tradeoff between accuracy and computational cost, filter-based
methods have been commonly used in drone racing [16], [64],
[65].

2) Additional Sensor Modalities in VIO: Recently, classical
VIO pipelines have been augmented with event cameras [67],
[68], [69] or drone dynamics [70], [71], [72], to improve state
estimation at high speed.

Low latency, high temporal resolution (in the order of mi-
crosecond) and high dynamic range (140 dB compared to 60 dB

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

of standard cameras) are the main properties of event cam-
eras [73], which make this novel sensor a great complementary
sensor to standard cameras. Including event data in VIO algo-
rithms onboard flying vehicles achieves increased robustness
against motion blur as demonstrated in [67], [68], and [69].
Although applications of event cameras in drone racing tasks
are yet to be explored, investigating the use of this sensor is a
promising research direction to robustify VIO systems for agile
flights.

The drone dynamics are used to define additional constraints
in the estimation process. VIMO [70] is the first to integrate
error terms related to the drone transitional dynamics in a VIO
backend. VIMO inspired a few works [71], [74] that propose
an improved noise model of the dynamics [74] and a learned
component to account for unmodeled aerodynamics [71]. In
particular, the results of [71] show that the learned aerodynamics
effects help to improve the VIO estimates at high speeds.

Cioffi et al. [72] propose an odometry algorithm that relies on
an IMU as the only sensor modality (no camera is needed), and
leverages a learned dynamics component to estimate the state
of the racing drone. Consequently, this method does not use a
visual frontend.

3) Discussions: Delmerico and Scaramuzza [75] present a
benchmark comparison between a number of VIO solutions on
the EuRoC dataset [76]. The EuRoC dataset contains camera
and IMU data recorded onboard a drone flying in indoor envi-
ronments. The drone moves with average linear and angular
velocities up to 0.9 m/s and 0.75 rad/s, respectively. These
values are far below the ones reached in drone racing. The
conclusions of [75] show that state-of-the-art VIO algorithms
provide reliable solutions for estimating the state of the drone at
limited speeds. However, these classical VIO methods cannot
provide accurate state estimates for drone racing tasks. VIO
methods accumulate large drift in scenarios characterized by
motion blur, low texture, and high dynamic range [77]. These
scenarios are the norm in drone racing.

To help research VIO algorithms for drone racing tasks,
Delmerico et al. [78] propose the UZH-FPV Drone Racing
dataset. This dataset contains images recorded from standard
cameras, event camera data, and IMU data recorded onboard a
quadrotor flown by a human pilot. All the flights include visual
challenges similar to those in drone racing competitions.

Successful state estimation solutions for drone racing [77],
[79] reduce the drift accumulated in VIO by localizing to a
prior map of the track. In drone racing competitions, a map
of the track in the form of gate positions is known beforehand.
The localization process is based on the detection of the gates.
Performing gate detection is challenging. Often during the race,
none of the gates is visible in the camera’s field of view. More-
over, motion blur makes gate corner detection difficult. For this
reason, gate detection and VIO are complementary. In [80], a
gate detector was proposed that uses an RGB camera to identify
the gates based on their color. This detector, tailored to the IROS
drone racing context [19], is aimed at extreme computational
efficiency, which is particularly important for tiny drones. The
method in [81] relies on detecting gates and using a model
of the drone dynamics to estimate the position of the racing

3049

drone. Differently from [77] and [79], this method does not
use a VIO but controls the drone based on a visual-servoing
approach. All the other gate detection methods in the literature
are based on deep learning techniques [82]. We review them in
Section IV. The known gate positions and the detections in the
onboard images are used to estimate the relative pose between
the camera and the gate using the perspective-n-point algorithm
(PnP) [83]. This relative pose is used to constrain the VIO
estimates, and consequently, reduce the drift. There is significant
room for innovation on this front, as the VIO-PnP paradigm has
existed for several years with little innovation. However, one
clear benefit of the VIO-PnP approach is its ability to use a
monocular camera setup with a large FOV. While this comes
with a lack of scale and higher uncertainty in motion estimation,
both can be compensated using inertial sensors and localization
with respect to known landmarks (e.g., gates). As evidenced by
the rich literature, this makes a monocular setup the preferred
solution for ADR practitioners. The choice of a monocular
sensor is very much in agreement with how human pilots fly:
while they have goggles with two monitors, the video stream they
receive is from a monocular camera system on the drone. Other
approaches used in early drone racing competitions relied on the
technique of visual servoing via stereo cameras [10], but relying
on a stereo camera pair comes with inherent difficulties. In the
presence of motion blur, stereo-matching approaches degrade
quickly. Furthermore, drones only allow for a very small baseline
and require a wide-angle camera to perceive as much of the
surroundings as possible. Both lead to very high depth estimation
errors in the stereo setup. The solution proposed in [10] was
found to be sensitive to indoor lighting changes and needed to
be hand-tuned for every flight.

Recent works [84], [85], [86] proposed vision-based odome-
try algorithms that are learned end-to-end. Theoretically, these
methods could be specialized to drone racing tasks and poten-
tially outperform classical VIO approaches. However, they are in
the early development phase, and how to customize them for the
drone racing task is still an open research question. In addition,
they currently have high computational costs that make them
impractical for online state estimation onboard drones. We refer
the reader to Setion IV for a detailed review of VIO methods
based on deep learning.

B. Planning

Once a state estimate & has been obtained from the perception
module, the next step in the classical pipeline is to plan a fea-
sible, time-optimal trajectory Tyef = (@ref, Uref)x VE € 0... N,
which respects the physical limits of the platform as well as
the constraints imposed by the environment. This requires pre-
dicting the drone’s future states such that minimum lap time is
reached without crashing.

The planning for drones has matured over the last decade
from works mostly verified in simulation to works shown in
both controlled lab environments and unknown unstructured
environments. In the classical pipeline, planning can include up
to two distinct planning problems, path planning and trajectory

3050

planning. Path planning tackles the problem of finding a geomet-
rical path between a given start and goal position while passing
specified waypoints and avoiding obstacles. Trajectory planning
then uses a found geometric path to either create a collision-free
flight corridor [87], [88], to find new waypoints for the trajectory
to avoid collisions [37], [89], to constrain the trajectory to stay
close to the found path [90], [91], or directly finds time allocation
for a given path [92], [93]. Therefore, path planning can be
seen as a way to select the homotopy class of the collision-free
space the drone flies through, while trajectory planning finds the
full (or simplified) time-allocated drone state predictions to be
followed by the control pipeline (see Section III-C). However,
many works rely solely on trajectory planning as they assume no
collision with the environment when a trajectory is found [94],
[95], [96], [97], [98]. Other works directly find a collision-free
trajectory [99], [100], [101], [102] without having a previously
found path. On the other hand, some control approaches [103],
[104] do not need a specified time-allocated trajectory and rely
only on the geometrical path for controlling the drone.

In the following text, we first overview the most popular path
planning approaches for drones that are used for further trajec-
tory planning. Then, we categorize trajectory planning meth-
ods in polynomial and spline trajectory planning, optimization-
based trajectory planning, search-based trajectory planning, and
sampling-based trajectory planning.

1) Path Planning: Path planning approaches can be broadly
divided into sampling-based planning and combinatorial plan-
ning [105]. Sampling-based methods do not construct the obsta-
cle space explicitly but rather rely on random sampling of the
configuration space together with collision detection. The most
popular variants of the sampling-based methods with numerous
modified versions are the probabilistic roadmaps (PRM) [106]
and rapidly exploring random trees (RRT) [107]. Important
variants of these algorithms named RRT* and PRM* [108],
can find the optimal path given infinite time. The combinatorial
planning methods, in contrast to the sampling-based methods,
directly represent the obstacle or free space using e.g. polygonal
maps or cell decomposition such as grid-based maps. With the
help of a graph representation of the decomposed free space,
classical path search algorithms such as A* [109] or Dijkstra’s
algorithm [110] can be used to find a path.

Variants of the aforementioned path planning approaches are
used in many of the methods listed in Section III-B2-III-B5
to help find trajectories for either fast flight or even drone
racing. The RRT#* algorithm is used to find new waypoints for
polynomial trajectory planning in [89], and the PRM* is used
as a path planning part to guide sampling-based trajectory plan-
ning in [37]. The sampling-based planning in [101] and [102]
directly performs both path and trajectory planning. While the
trajectory planning objective can be to minimize time duration of
a trajectory, the path planning typically tries to find the shortest
paths. Therefore, some methods search for multiple distinct
paths to enable the trajectory planning to search over multiple
options on how to navigate around obstacles [37], [90], [91].
Other methods [87] use search-based algorithms to find an initial
path and to create a convex flight corridor for constraining the

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

collision-free trajectory planning. Similarly, the search-based
methods [99], [100] use a variant of A* to perform both path
and trajectory planning at the same time.

2) Polynomial and Spline Trajectory Planning: The poly-
nomial and spline methods leverage the differential flatness
property [111], [112] of quadrotors and represent a trajectory as
a continuous-time polynomial or spline. This property simplifies
the full-state trajectory planning to a variant where only four flat
outputs need to be planned (typically 3-D position and heading).
By taking their high-order derivatives, these flat outputs can
represent a dynamically feasible trajectory with their respective
control inputs. This property is used by many polynomial and
spline methods that are nowadays among the most used for
general quadrotor flight.

The widely used polynomial trajectories [111], [112] min-
imize snap (fourth-order position derivative) of a trajectory.
Different methods opted for minimizing jerk (third-order po-
sition derivative) for planning a trajectory [113]. However, the
trajectories that result from having jerk as the primary objective
have been shown to minimize the aggressiveness of the control
inputs [113], which is fundamentally different from minimiz-
ing the lap times, where extremely aggressive trajectories are
generally required. Richter et al. [89], therefore, extended the
objective by jointly optimizing both the snap of a trajectory
and the total time through a user-specified penalty on time.
Recently, Han et al. [87] proposed a polynomial-based trajectory
planning method for drone racing. It jointly optimizes control
effort and regularized time and penalizes the dynamic feasibility
and collisions.

Because of their numerical stability, other methods use B-
splines to represent trajectories [90], [91] instead of high-
order polynomial representations that are numerically sensitive.
These methods jointly optimize different objectives, simulta-
neously smoothness, dynamic feasibility, collision avoidance,
safety [91], and vision-based target tracking [94]. Recently, Qin
et al. [114] proposed a polynomial trajectory representation
based on [115] and use it to plan time-optimal trajectories
through gates of arbitrary shapes for drone racing, achieving
close-to-time-optimal results while being more computationally
efficient than [95].

Although both polynomial and spline trajectories are widely
used due to their computational efficiency, polynomial-based
trajectories (and their derivatives) are smooth by definition.
Therefore, only smooth control inputs can be sampled from
them. For this reason, the traditional polynomial planning [111]
with a finite number of coefficients and one polynomial segment
between every two waypoints (gates) cannot represent true time-
optimal trajectories [95]. Yet, direct collocation methods [116]
that rely on polynomials to approximate the input and state dy-
namics can achieve nearly optimal performance. This is mainly
due to a larger number of polynomial segments between the
waypoints in collocation methods, joint optimization of both
polynomial coefficients and collocation points, and due to the
approximation of the entire dynamics by polynomials. This
allows to keep the acceleration at the possible maximum at all
times similar to the optimization-based shooting method [95].

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

Therefore, while the classical polynomial and spline methods
can be considered optimization-based, they only optimize coef-
ficients of a single polynomial between every two waypoints to
describe quadrotor position and heading, leveraging the differ-
ential flatness property [111], [112].

3) Optimization-Based Trajectory Planning: Optimization-
based trajectory planning enables us to independently select the
optimal sequence of states and inputs at every time step, which
inherently considers time minimization while complying with
quadrotor dynamics and input constraints. Optimization-based
approaches have been extensively considered in the literature,
ranging from exploiting point-mass models [96], simplified
quadrotor models [97], [117], and full-state quadrotor mod-
els [88], [95].

Time-optimality of a trajectory could also be accomplished by
using a specific path parameterization that maximizes velocity
over a given path [92]. This method was shown for quadrotors
in [93] for minimizing time of flight considering both transla-
tional and rotational quadrotor dynamics. However, the method
only creates a velocity profile over a given path that is not further
optimized.

Apart from time optimality, complying with intermediate
waypoint constraints is another requirement for path planning in
ADR. A common practice of solving a trajectory optimization
problem with waypoint constraints is allocating waypoints to
specific time steps and minimizing the spatial distance between
these waypoints and the position at the corresponding allocated
time steps on the reference trajectory (e.g., [98] and [118]). The
time allocation of the waypoints is, however, nontrivial and diffi-
cult to determine. This is tackled in [88], but the work uses body
rates and collective thrust as control inputs and does not repre-
sent realistic actuator saturation. Recent work [95] introduces a
complementary progress constraints approach, which considers
true actuator saturation, uses single rotor thrusts as control
inputs, and exploits quaternions to create full, singularity-free
representations of the orientation space with consistent lin-
earization characteristics. While the aforementioned methods
create time-optimal trajectories passing through given gates,
they are computationally costly, and hence, intractable in
real time.

4) Search-Based Trajectory Planning: Search-based plan-
ning methods [99], [100] rely on discretized state and time
spaces. They solve the trajectory planning through graph search
algorithms such as A*. The search graph is built using minimum-
time motion primitives with discretized velocity, acceleration,
or jerk input. The algorithms then use trajectories of a simpler
model, e.g., with velocity input, as heuristics for the search
with a more complex model. Search-based planning methods
can optimize the flight time up to discretization, but they suf-
fer from the curse of dimensionality, which renders them too
computationally demanding for a complex quadrotor model.
Furthermore, the employed per-axis dynamic limits (velocity,
acceleration, and jerk) do not represent the true quadrotor model,
further decreasing the quality of found plans. Finally, although
searching for minimum time trajectories, the methods are cur-
rently limited to planning between two states, which is not
suitable for multiwaypoint drone racing.

3051

5) Sampling-Based Trajectory Planning: Sampling-based
methods like RRT* [119] can be used for planning trajecto-
ries for linearized quadrotor models. Several time-minimizing
approaches [77], [101] use a point-mass model for high-level
time-optimal trajectory planning. In [101], an additional trajec-
tory smoothing step is performed where the generated trajectory
is connected with high-order polynomials by leveraging the dif-
ferential flatness property of the quadrotor. Ichter et al. [120] use
sampling-based approach with massive GPU parallelization and
a 6-D double integrator system of UAV with additional single
integrator yaw dynamics. However, these point-mass approaches
need to relax the single actuator constraints and instead limit
the per-axis acceleration, which results in trajectories that are
conservative and suboptimal given a minimum time objective.
Zhiling et al. [102] use minimum-jerk motion primitives for
connecting randomly sampled states inside RRT* to plan a
collision-free trajectory. Since the authors use polynomials, this
approach can only generate smooth control inputs, meaning
that they cannot rapidly switch from full thrust to zero thrust
if required.

The first method for planning minimum-time trajectories in a
cluttered environment for the full quadrotor model was proposed
in [37]. It uses a hierarchical sampling-based approach with
an incrementally more complex quadrotor model to guide the
sampling. The authors showed that the method outperforms both
polynomial and search-based methods in minimizing trajectory
time. Yet, the method is offline and intractable in real time. Most
recently, Romero et al. [104] proposed an online replanning
approach that plans minimum-time trajectories for a point-mass
model. The paths of replanned trajectories are then consequently
used by model predictive contouring control [103] with a full
quadrotor model to maximize the progress along the path. This
method is capable of outperforming other classical approaches
due to the replanning capability and progress maximization with
a full quadrotor model.

6) Discussion: A planned trajectory can be understood as
an intermediate representation that, given information about the
robot’s dynamics and the environment, helps guide the platform
through the race track and ultimately perform the task at hand.
One might argue if this intermediate representation is needed at
all, since ultimately, what we are looking for is a policy that maps
sensor information and current environment knowledge to the
actuation space. This is generally achieved with learning-based
approaches, discussed in Section IV, which bypass the plan-
ning stage and directly convert sensor observations to actuation
commands [121], [122], [123].

One of the biggest benefits of explicit planning is modu-
larity. This means that the developed algorithms can be used
off-the-shelf for different drone tasks outside racing, such as
search and rescue, which is not the case for single-purpose
learned approaches. However, explicit planning suffers from the
disconnection (or an open loop) between the planning and the
deployment stage. Unexpected deviations from the plan, be it
in the time domain (like unmodeled system delays) or in the
state-space domain (like state estimation drifts or jumps in the
VIO pipeline), can lead to compound errors, and ultimately, a
complete system failure.

3052

2 30 | 3
E
3 [124], [125]
2 20 2
7}
=
=
£ 10 i
3
=
0 | | | |
2016 2017 2018 2019 2020 2021 2022
Year
Fig. 4. Top speeds demonstrated on autonomous drones over time from both

literature and competition data.

This can be tackled with more complex control approaches
that do some part of the replanning online [104].

C. Control

Over the last decade, significant advancements have been
made in agile multicopter control. Every year, increasing top
speeds are demonstrated in the literature as shown in Fig. 4.

Controllers must be able to make real-time decisions in the
face of poor sensor information and model mismatch. Control
inputs, u(t), can come in a variety of modalities for quadrotor
control, such as velocity and heading, body rates and collective
thrust, or direct rotor thrust commands [36]. Typically, a high-
level controller computes a desired virtual input such as body
rates and collective thrust, which is then passed down to a low-
level flight controller that directly controls the individual rotors
on the multicopter.

Commonly used open source controllers such as PixHawk' or
BetaFlight? are widely available to the drone racing community.
BetaFlight is the most commonly used low-level controller for
agile drone flight and has been widely adopted by the FPV racing
community.

In the following sections, we provide an overview of suc-
cessful approaches to achieving high speeds in both simulation
and real-world applications. We sort the approaches into model-
based control and coupled perception and control.

1) Model-Based Control: Inmodel-based control, an explicit
model of the dynamic system is used to calculate control com-
mands that satisfy a given objective such as minimizing time or
tracking error. Models enable the prediction of future states of
the drone and provide information about the system’s stability
properties. In [126], geometric tracking control is introduced
on the special Euclidean group SE(3) and completely avoids
singularities commonly associated with Euler angle formula-
tions on SO(3). This nonlinear controller showed the ability
to execute acrobatic maneuvers in simulation and was the first
to demonstrate recovery from an inverted initial attitude. The
dynamic model of a quadrotor is shown to be differentially flat

![Online]. Available: https://pixhawk.org/
2[Online]. Available: https://github.com/betaflight/betaflight

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

when choosing its position and heading as flat outputs in [112].
In this work, many agile maneuvers are performed onboard real
drones with speeds up to 2.6 m/s.

The previous work is extended in [26], proving that the
dynamics model of a quadrotor subject to linear rotor drag is
also differentially flat. The inclusion of the aerodynamic model
within the nonlinear controller led to demonstrated flight speeds
up to 4 m/s while reducing tracking error by 50% onboard a real
drone.

The differential flatness method is further extended in [127] by
cascading an incremental nonlinear dynamic inversion (INDI)
controller with the differential flatness controller described
in [112] but neglects the aerodynamic model addition from [26].
The INDI controller is designed to track the angular acceleration
commands €2 from the given reference trajectory. Top speeds of
nearly 13 m/s and accelerations over 2 g are demonstrated on-
board a real quadrotor. The controller shows robustness against
large aerodynamic disturbances in part due to the INDI con-
troller.

An investigation of the performance of nonlinear model pre-
dictive control (NMPC) against differential flatness methods
is available in [125]. Cascaded controllers of INDI-NMPC
and INDI-differential flatness are shown to track aggressive
racing trajectories that achieve speeds of around 20m/s and
accelerations of over 4 g. While differential flatness methods
are computationally efficient controllers and relatively easy to
implement, they are outperformed on racing tasks by NMPC.

An excellent overview of model predictive control (MPC)
methods applied to microaerial vehicles can be found in [128].
Because quadrotors are highly nonlinear systems, nonlinear
MPC is often used as the tool of choice for agile maneuvers. The
debate of linear versus nonlinear MPC is thoroughly discussed
in [129]. Model predictive path integral (MPPI) control is a
sampling-based optimal control method that has found excellent
success on the AutoRally project, a 1/5th scale ground vehicle
designed to drive as fast as possible on loose dirt surfaces [130],
[131]. An introduction to MPPI can be found online.> The MPPI
approach can be used on agile quadrotors to navigate complex
forest environments, however, analysis was only performed in
simulation [130]. Most of the successful demonstrations of
MPPI come from ground robots [130], [131]. Because MPPI is
a sampling-based algorithm, scaling to higher dimension state
spaces of quadrotors can lead to performance issues as shown
in [124].

Nonlinear MPC methods are also used in [40] where a nom-
inal quadrotor model is augmented with a data-driven model
composed of Gaussian processes and used directly within the
MPC formulation. The authors found that the Gaussian-process
model could capture highly nonlinear aerodynamic behavior,
which is difficult to model in practice as described in Section II.
The additional terms introduced by the Gaussian process added
computational overhead to the MPC solve times, but it was still
able to run onboard a Jetson TX2 computer.

Similar to [127], Hanover et al. [124] question whether or not
it is necessary to explicitly model the additional aerodynamic

3[Online]. Available: https://autorally.github.io/

https://pixhawk.org/
https://github.com/betaflight/betaflight
https://autorally.github.io/

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

terms from [40] due to the added computational and modeling
complexity. Instead, they propose to learn residual model dy-
namics online using a cascaded adaptive NMPC architecture.
Aggressive flight approaching 20m/s and over 4 g acceleration
is demonstrated on real racing quadrotors. In addition, com-
pletely unknown payloads can be introduced to the system,
with minimal degradation in tracking performance. The adaptive
inner loop controller added minimal computational overhead
and improved tracking performance over the Gaussian process
MPC by 70% on a series of high-speed flights of a racing
quadrotor [40], [124].

Contouring control methods can deal with competing opti-
mization goals such as trajectory tracking accuracy and mini-
mum flight times [132]. These methods minimize a cost func-
tion, which makes tradeoffs between these competing objec-
tives. In [133], nonlinear model predictive contouring control
(MPCC) is applied to control small model race cars. MPCC was
then extended to agile quadrotor flight in [103]. Although the
velocities achieved by the MPCC controller were lower than
that of [124] and [125], the lap times for the same race track
were actually lower due to the ability of the controller to find a
new time allocation that takes into account the current state of the
platform at every timestep. The work is further extended to solve
the time-allocation problem online, and to replan online [104]
while also controlling near the limit of the flight system. Sim-
ilar work uses tunneling constraints in the MPCC formulation
in [134].

2) Perception Awareness: Other methods that lie in the inter-
section of perception, planning, and control include a perception
objective in the cost function that helps improve the visibility
of an objective or the quality of the state-estimation pipeline.
The methods are called perception aware, and the first methods
were proposed in [135], [136], and [137]. This is integral to
the drone-racing problem because, to navigate a challenging
race course, the gates that define the course layout must be
kept in view of the onboard cameras as much as possible.
In addition, coupling the perception with the planning and/or
control problem can alleviate issues in state estimation because
the racing gates are usually feature rich. Therefore, the use
of perception-related objectives in both planning and control
pipelines is commonplace [91], [93], [120], [137], [138]. For
example, in [93] and [137], the authors tackle the problem
of minimizing the time required by a quadrotor to execute a
given path, while maintaining a given set of landmarks within
the field of view of its on-board camera, or Tordesillas and
How [139] include a perception-aware term in the cost function
to maximize the visibility of the closest dynamic obstacle, in
order to readily plan a path that avoids it. These methods are
called perception aware [140], and in the following, we highlight
their core characteristics.

The goal is as follows: navigate a trajectory with low tracking
error while keeping a point of interest in view while minimizing
motion blur for maximum feature detection and tracking. The
first instance applied to agile quadrotors was perception-aware
model predictive control (PAMPC) introduced in [140]. In this
work, a nonlinear program is optimized using a sequential
quadratic programming approximation in real time. The cost

3053

function contains both vehicle dynamic terms as well as percep-
tion awareness terms such as keeping an area of interest in the
center of the camera frame.

This technique is applied to the drone racing problemin [141],
where an MPPI controller is designed with a deep optical flow
component that predicts the movement of relevant pixels (i.e.,
gates). The perception constraints are introduced into a nonlinear
optimization problem and deployed in a drone-racing simulator.
The approach was not demonstrated onboard real hardware.
In [142], a perception-aware MPC based on differential flatness
was used to ensure that a minimum number of features are
tracked between control updates and thus guarantee localization.
To achieve this, a perception chance constraint within the MPC
formulation is introduced to ensure that at least n number of
landmarks are within the field of view of the camera at all times
with some bounded probability.

3) Discussion: The performance of model-based controllers
degrades when the model they operate on is inaccurate [124]. For
drones, defining a good enough model is an arduous process due
to highly complex aerodynamic forces, which can be difficult to
capture accurately within a real-time capable model. In addition,
the tuning process of many model-based controllers can be
arduous, and requires a high level of domain expertise to achieve
satisfactory performance.

In any optimal control problem, a cost function that the
user wants to optimize must be defined. Traditionally, conve-
nient mathematical functions leveraging convex costs are used
because these functions are easy to optimize and there is a
large toolchain available for optimizing such problems such as
Acados [143], CVXGEN [144], HPIPM [145], or Mosek [146].
In many drone racing articles, the optimal control problem is
formulated as follows:

N-1
mgn QN + Z z} Qzy + uj Ruy,
k=0

subject to: Try1 = fpra(@r, ug, ot)
Ty = Tinit, Umin < Uk < WUmax ()

where the state is given by z, the control input is given by uy,
the state cost matrix is given by @), and the control cost matrix
is given by R. The optimization problem is constrained by the
dynamics of the system given by f(x,uy,0t) where 0t is a
finite time step. The nonlinear dynamics are typically propagated
forward using an integrator such as fourth-order Runge—Kautta,
RKA4. In addition, the problem is subject to the thrust limits of
the platform, wpi, and up.x, and some initial condition of the
system xg. In this formulation, a reference position and control
are provided by a high-level planner and the goal of the controller
is to track the given reference, but this objective is ill-defined for
the drone racing problem: in drone racing, we wish to complete
the track in as little time as possible; therefore, our objective can
be better formulated as follows:

T
min Z ot
k=0

subject to: @®p41 = frra(Tk, wg, 6t)

3054

To=Tipit, TEX, ueld 3)
where 7' is the number of discrete time steps it takes to complete
therace, and the set U/ contains the input constraints (e.g., single-
rotor thrust constraints). The set X encodes all state constraints,
from possible limits in the state itself (e.g., attitude or velocity
constraints), to more complex constraints such as the fact that the
drone has to pass through a set of gates in a predetermined order
without colliding. This approach requires a time-horizon that
predicts all the way until the end of the task, which is intractable
to optimize online.

Reinforcement learning (RL) methods [36], [122] can opti-
mize a proxy of this cost function, however do so in an offline
fashion, requiring large amounts of training experience to ap-
proximate the value function. RL methods do not necessarily
depend on a high-level planner to provide a reference to track.
We will discuss some recent approaches using RL methods in
the following section.

IV. LEARNING-BASED APPROACHES

In this section, we present various learning-based approaches
for drone racing. These approaches replace the planner, con-
troller, and/or perception stack with a neural network. Learning-
based methods have gained significant traction in the last few
years, given their ability to cope with both high-dimensional
(e.g., images) or low-dimensional (e.g., states) input data, their
representation power, and the ease of developing and deploying
them on hardware.

The big advantage of these methods is that they require less
computational effort than traditional methods, possibly enabling
low-latency replanning and control. In addition, they are much
more robust to system latencies and sensor noise, which can be
easily accounted for by identifying them on physical drones, and
then, adding them to the training environments [36]. However,
the major limitation of these methods is their sample com-
plexity. There are currently two possibilities for data gathering.
The first, mostly popular in the initial stages of learning-based
robotics [64],[79], [147], [148], [149] is to collect data in the real
world. The data are then annotated by a human or an automated
process, and used for training. The second, much more popular in
recent years and currently achieving the best results, consists of
using simulation for collecting training data [36], [65], [121],
[150], [151]. However, significant simulation engineering is
required to enable generalization if the training data come from
a simulator. Conversely, generalization is easier if data come
from the real world, but the data collection process is very slow,
tedious, and expensive.

Surveys covering existing methods for learning-based flight
already exist [152], [153]. In contrast to them, we cover the
most recent advances and give a broader discussion on the
comparison between learning-based and traditional methods for
drone racing.

A. Learned Perception

For learned perception modules, the goal of the network is
to use images from an RGB, depth, or event camera to detect

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Hardware Software
Sensors '—> —4 Planning H Control H Drone
Fig. 5. Architecture 2: Learned perception.

landmarks within the environment and output useful representa-
tions such as waypoints, or the location of gates on the track. A
depiction of this architecture can be seen in Fig. 5. An overview
of deep learning methods for vision-based navigation specific to
drone racing can be found in [153].

In [64], a dataset of images is collected from a forward-facing
camera mounted on a drone labeled with the relative position
to the closest gate. This dataset is used to train a network
that predicts from an image both the next gate location and its
uncertainty. Predictions are then fused with a VIO system in an
(EKEF to predict the position of the drone on the track. Similarly
in [16], a convolutional neural network (CNN) is used to detect
gate corners in the AlphaPilot challenge. Once the gate corners
are detected, classical computer vision algorithms like PnP can
be used to find the coordinates of the gate in the camera frame.
Using an EKF, the gate corner locations can be fused with a
traditional VIO pipeline to improve the estimates of the drone’s
location and orientation [16].

Oftentimes, perception networks consume precious resources
onboard computationally limited drones. To minimize the net-
work processing time, the authors in [82] and [154] proposed
optimized architectures for gate detection on real-world data. A
similar optimization went into “GateNet” [155], a CNN to detect
gate center locations, distance, and orientation relative to the
drone. The same authors developed a follow-up work denoted
as “Pencil-Net” to do gate detection using a lightweight CNN
in [156]. Most learning-based perception networks can suffer
from poor generalization when deployed in environments that
were not included in the training data. To reduce deployment
sensitivity to lighting conditions or background content, virtual
gates can be added to real-world backgrounds [157].

Up until recently, RGB and depth cameras were used exclu-
sively in the drone racing task, however, these sensor modalities
can be sensitive to changes in the environment such as illumina-
tion changes. To overcome this, Andersen et al. [158] proposed
using event cameras coupled with a sparse CNN, recurrent
modules, and a you only look once object detector to detect
gates. The use of event cameras overcomes potential issues with
motion blur from the rapid movement of the drone and is a
promising path forward for high-speed navigation.

Overall, deep learning methods for gate detection are the
de facto standard in all drone racing systems. However, such
gate detectors are always coupled with traditional VIO systems.
which explicitly estimate the metric state of the drone. These
approaches are discussed in Section III. It is interesting to notice
that learning-based odometry systems, such as in [84], [85],
and [86], have not yet replaced traditional methods. This is
particularly surprising since deep visual odometry systems can
specialize to a particular environment, which can be useful for
drone racing since the race track is fixed and known in advance.

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

3055

Hardware Software Hardware Software
Sensors F—> —>‘ Control H Drone ‘ ‘ Sensors H Perception H Planning }—» —4 Drone
Fig. 6. Architecture 3: Learned planning and perception. Fig. 7. Architecture 4: Learned control.

A disadvantage of these methods is the high computational cost
that makes them impractical for online applications. However,
research in end-to-end visual odometry is moving forward at
a fast pace [86]. Recently, works proposing end-to-end VIO
systems for drones have been published [159], [160], [161].
Sanket et al. [159] propose to learn global optical flow, which
is then loosely fused with an IMU for full 6-DoF relative
pose estimation. The method in [160] and its extension [161]
proposes a CNN-based ego-motion estimator for fast flights.
The performance of this method in the UZH-FPV dataset shows
that although end-to-end VIO methods are a promising solution
for agile flights, they are not yet mature for drone racing. We
foresee that in the near future, researchers will be able to apply
these methods to the drone racing task.

B. Learned Planning and Perception

A tightly coupled planning and perception stack (see Fig. 6)
is a very attractive algorithmic perspective. First, it greatly
simplifies the perception task: an explicit notion of a map
or globally consistent metric state is not required. Second, it
largely reduces computational costs, both in the pretraining and
evaluation stages. Finally, it can leverage large amounts of data,
collected either in simulation or the real world, to become robust
against noise in perception or dynamics. Yet, an interesting
observation is that these methods still work best when coupled
with an explicit estimator of the metric state [5]. In contrast
to traditional methods, a locally consistent odometry system is
sufficient [65], [79], [150], waving away the complexities of
full-slam methods (e.g., loop closure).

In [79], a coupled perception and planning stack for drone
racing is trained using real-world flight demonstrations. While
good performance is indicated on the racing task as well as
robustness against drift in state estimation, the method requires
retraining for each new environment. Therefore, in the follow-
up work [65], data generated entirely in simulation are used
to train the perception-planning stack, waiving the labor and
time-consuming requirement of data collection in the real world.
A similar pipeline was used for high-speed autonomous flight
through complex environments in [150], which proposes to train
a neural network in simulation to map noisy sensory observa-
tions to collision-free trajectories directly. This approach was
later extended to nanoquadcopters [162], which won the authors
the first position in the IMAV 2022 Nanocopter Al Challenge.
Recent work [163], [164] has shown the possibility of training
sensorimotor controllers for obstacle avoidance end-to-end us-
ing RL, paving the way toward a system that could solve drone
racing completely end-to-end. However, these works still rely
on explicit state estimation and a controller to execute velocity
commands.

Several other works apply a similar stacked perception and
planning pipeline for other ADR tasks [147], [148], [149], [165].
We point the interested reader to existing surveys on the role of
learning in drone navigation [152].

A few works also studied the planning problem using data-
driven methods, decoupling it from the perception problem.
An interesting approach demonstrated in the NeurIPS Game of
Drones competition [166] used an off-the-shelf RL algorithm in
place of a classic model-based planner for drone racing [167].

C. Learned Control

Data-driven control (see Fig. 7), like RL, allows for over-
coming many limitations of prior model-based controller de-
signs by learning effective controllers directly from experience.
For example, model-free RL was applied to low-level attitude
control [168], in which a learned low-level controller trained
with proximal policy optimization (PPO) outperformed a fully
tuned PID controller on almost every metric. Similarly, Lambert
et al. [169] used model-based RL for low-level control of an a
priori unknown dynamic system. More related to drone racing,
recent works showcased the potential of learning-based con-
trollers for high-speed trajectory tracking and drone racing [36].
Imitation learning is more data efficient compared to model-free
RL. In [170], aggressive online control of a quadrotor has been
achieved via training a network policy offline to imitate the
control command produced by a model-based controller. Simi-
larly, Sanchez-Séanchez and Izzo [171] studied real-time optimal
control via deep neural networks in an autonomous landing
problem. Other work in this category has shown that RL can
find optimal [122], [172] or highly adaptive controllers [173].

With a learning-based controller, it can be difficult to provide
robustness guarantees as with traditional methods such as the
linear quadratic regulator (LQR). While a learning-based con-
troller may provide superior performance to classical methods in
simulation, it may be that they cannot be used in the real world
due to the inability to provide an analysis of the controller’s
stability properties. This is particularly problematic for tracking
the time-optimal trajectories required by drone racing. Recent
works have attempted to address this using the Lyapunov-stable
neural network design for the control of quadrotors [174]. This
work shows that it is possible to have a learning-based controller
with guarantees that can also outperform classical LQR methods.
Building upon this concept, reachability analysis and safety
checks can be embedded in a learned safety layer [175].

D. Learned Planning and Control

The second paradigm of learned control is to produce the
control command directly from state inputs without requiring
a high-level trajectory planner, as shown in the architecture

3056

Hardware Software

Sensors H Perception }-»

—4 Drone

Fig. 8. Architecture 5: Learned planning and control.
Hardware Software
Sensors }’-' —>
Fig. 9. Architecture 6: End-to-end learning.

diagram of Fig. 8. This approach enabled an autonomous drone
with only onboard perception, for the first time, to outperform
a professional human, and is state-of-the-art at the time of
writing [5]. In ADR, this was proposed in [4] and [122], where
a neural network policy is trained with RL to fly through a race
track in simulation in near-minimum time. Major advantages
of the RL-based method are its capability to handle large track
changes and the scalability to tackle large-scale random track
layouts while retaining computational efficiency. In [123], deep
RL is combined with classical topological path planning to train
robust neural network controllers for minimum-time quadrotor
flight in cluttered environments. The learned policy solves the
planning and control problem simultaneously, forgoing the need
for explicit trajectory planning and control.

In this same category, another class of algorithms try to ex-
ploit the benefits of model-based and learning-based approaches
using differentiable optimizers approaches [176], [177], [178],
which leverage differentiability through controllers. For exam-
ple, for tuning linear controllers by getting the analytic gradi-
ents [179], or for creating a differentiable prediction, planning,
and controller pipeline for autonomous vehicles [180]. On this
same direction, Romero et al. [181] equip the RL agent with a
differentiable MPC [176], located at the last layer of the actor
network that provides the system with online replanning capabil-
ities and allows the policy to predict and optimize the short-term
consequences of its actions while retaining the benefits of RL
training.

All these methods inherit the classic advantage of policy
learning. In addition, they do not require an external controller
to track the plan. This eliminates the discrepancy between the
planning and deployment stages, which is one of the main limita-
tions of traditional planning methods (see Section III-B). Some
of the limitations of traditional planning remain, such as the
requirement of a globally consistent state estimation and a map
of the environment. Also, they have not yet been demonstrated
in sparse long-horizon planning problems, e.g., flying through a
maze at high speeds, where their performance would likely drop
due to sample complexity.

E. End-to-End Flight

Expert pilots take raw sensory images from an FPV camera
stream and map directly to control commands. In this section, we
explore approaches emulating this holistic navigation paradigm
in autonomous drones (see Fig. 9).

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Two families of approaches can be used to pursue an end-to-
end navigation paradigm. The first is substituting each of the
perception, planning, and control blocks with a neural network.
This structure is followed by [182] and [183], where the authors
train a perception-planning network and a control network using
imitation learning. The perception network takes raw images
as input and predicts waypoints to the next gate. The control
network uses such predictions with ground-truth velocity and
attitude information to predict control commands for tracking
the waypoints. They showed improvements over pure end-to-end
approaches, which directly map pixels to control commands and
were able to show competitive lap times on par with intermediate
human pilots within the Sim4CV simulator [184]. Yet, the
division into independent blocks leads to compounding errors
and latencies, which negatively affect performance when flying
at high speeds [150].

The second family of approaches directly maps sensor ob-
servation to commands without any modularity. This design
is used in [185], which to date remains the only example of
the completely end-to-end racing system. Indeed, other end-
to-end systems generally require an inner loop controller and
inertial information to be executed. For instance, Rojas-Perez
and Martinez-Carranza [186] train an end-to-end CNN to di-
rectly predict roll, pitch, yaw, and altitude from camera images.
Similarly,the authors in [187] and [188] use a neural network
to predict commands directly from vision. To improve sample
complexity, they use contrastive learning to extractrobust feature
representations from images and leverage a two-stage learning-
by-cheating framework.

Independently of the design paradigm they follow, end-to-end
navigation algorithms are currently bound to simulation. The
reasons why no method was successfully deployed in the real
world include weak generalization to unseen environments,
large computational complexity, and inferior performance to
other modular methods. Another interesting observation is that
humans can pilot a drone exclusively from visual observations.
Conversely, except for [185], end-to-end systems still rely on the
state extracted from other measurement modalities, e.g., an IMU.
The question of whether autonomous drones can race in the real
world at high-speed without any inertial information remains
open. We provide more details on this question in Section VIII.

F. Discussion

Data-driven approaches are revolutionizing the research in
ADR, ranging from improving the system model to end-to-end
control. Currently, the best-performing algorithms for drone
racing include a learning-based component [16], [17], and
this trend is unlikely to change in the coming years. Indeed,
compared to classical model-driven design, they can process
high-dimensional sensory inputs directly, can be made robust to
any modeling uncertainty (e.g., latency) by simply incorporating
it in the training pipeline, and require far less engineering effort
for tuning and deploying them [36].

Our analysis shows that the majority of learning-based ap-
proaches heavily rely on simulators. While simulators may get

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

better and faster in the near future, recent advances in real-
world training [189], [190] and fine tuning [191], [192] offer
a potential alternative for zero-shot simulation to reality transfer
for sensorimotor policies. However, so far, these works have
been limited to legged locomotion. Extension to agile drones
could lead to the successful deployment of end-to-end policies,
possibly improving the state of the art in agile flight.

Another limitation of the approaches discussed in this section
is their inability to adapt to new and uncertain environments
quickly. The field of adaptive control has studied this problem
extensively [193], [194], [195]. Inspired by these works, there
has been a recent push to use advancements in machine learning
within the adaptive control framework. A method to learn para-
metric uncertainty functions is introduced in [196]. These un-
certainty functions could be learned offline using data captured
from agile flight experiments, and then, embedded within an
adaptive controller to adjust controller parameters online during
flight. Results indicate that highly accurate trajectory tracking
can be achieved with this approach, even in the face of strong
wing gusts exceeding 6.5 m/s. More recently, learning-based
controllers have shown the ability to adapt zero-shot to large
variations in hardware and external disturbances [197]. We see
this as a promising area of research and one that is integral for
reliable performance in changing environmental conditions.

V. DRONE RACING SIMULATORS

One tool that has drastically accelerated the progress of
research in autonomous drone flight is the use of simulation
environments that attempt to recreate the conditions that real
drones experience when flying. Over the years, several simula-
tion environments have been developed for the use of general
research.

In 2016, the widely used RotorS simulation environment was
published, which extends the capabilities of the popular Gazebo
simulation engine to multirotors [23]. Gazebo uses the Bullet
physics engine for basic dynamic simulation and contact forces.
Linear drag on the body of the multicopter is simulated based
on the cross-sectional area and linear velocity of the simulated
object. The RotorS extension features many easy-to-use plug-
ins for developing multirotors, however, it distinctly lacks the
photorealistic details needed to simulate accurate behavior of
estimation and perception pipelines.

AirSim was introduced by Microsoft in 2018 as a photore-
alistic simulator for the control of drones [21]. It is built on
the unreal graphics engine and features easy-to-use plugins
for popular flight controllers such as PX4,* ArduPilot,> and
others. It was used in the 2019 NeurIPS Game of Drones
challenge [166]. Because of the photorealism of AirSim, it is
possible to simulate the entire perception and estimation pipeline
with a good possibility of transfer to real-world drone systems.
In addition, AirSim comes prepackaged with an OpenAIl-Gym
environment for training RL algorithms. Organizations such
as Bell, Airtonomy, and NASA are using AirSim to generate
training data for learning-based perception models.

4[Online]. Available: https://px4.io/
5[Online]. Available: https://ardupilot.org/

3057

FlightGoggles [55] was developed as another photorealistic
simulator and was used as the primary simulation environment
for the Lockheed Martin AlphaPilot challenge. FlightGoggles
contains two separate components: a photorealistic rendering en-
gine built with Unity3D and a dynamic simulation implemented
in C++. FlightGoggles provides an interface with real-world
vehicles using a motion capture system; such an interface allows
the rendering of simulated images that correspond to the position
of physical vehicles in the real world.

A recent simulator focused on safe RL was proposed in [198].
It uses Gazebo and the Pybullet physics engine as the backend.
Leaderboards for several safety-focused training environments
exist, encouraging researchers to submit their approaches and
compete with other researchers around the world.

Flightmare [22] is a simulation environment featuring pho-
torealistic graphics provided by the Unity engine. The physics
engineis decoupled and can be swapped out with various engines
for user-defined levels of simulation fidelity. Similar to Flight-
Goggles, Flightmare can also provide hardware-in-the-loop sim-
ulation functions where a virtual, synthetic camera image can
be provided to the drone for use in control and estimation [8].

Finally, Aerial Gym [199] is a GPU-accelerated simulator that
allows simulating millions of multirotor vehicles in parallel with
nonlinear geometric controllers for attitude, velocity, and posi-
tion tracking. In addition, the simulator offers a flexible interface
for modeling a large number of obstacles and generating data
such as RGB, depth, segmentation, and optical flow.

VI. COMPETITIONS

To gauge the progress of the field as a whole, several drone
racing competitions have taken place since 2016. We include a
graphical overview of these events in Fig. 2. The ADR com-
petition was an annual competition that took place during the
IROS conference between 2016 and 2019. In 2016, 11 teams
competed in ADR and were tasked to navigate a series of gates
in sequence. The positions of the gates were not known to the
participating teams ahead of time, therefore, teams flew very
cautiously identifying the next waypoints online. Each team was
given 30 min prior to the official competition to fly the course
as many times as they wished. The winning team, from korea
advanced institute of science & technology (KAIST), made it
through 10 of the 26 gates in 1 min and 26 s. For comparison, a
human was able to complete the entire 26-gate course in 1 min
31 s. A survey summarizing the approaches used for these early
competitions can be found in [19]. The following year, a similar
competition took place during IROS in Vancouver, Canada, with
better results. This time, 14 teams participated and were given a
CAD drawing of the course prior to the event with locations and
dimensions of all gates. Only five teams participated in the final
in-person event, with the winning team making it through 9 out
of 13 gates in over 3 min. A summary of the winning approaches
can be found in [14]. Two more ADR competitions took place
at IROS 2018 and 2019, with drones navigating courses faster
and more reliably.

In2019, Lockheed Martin sponsored the AlphaPilot Al Drone
Racing Innovation Challenge where a 1 million dollar grand

https://px4.io/
https://ardupilot.org/

3058

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE I
OPEN SOURCE SOFTWARE AND DATASETS

Name and Reference Category Year Link
PAMPC [140] Controller 2018 https://github.com/uzh-rpg/rpg_mpc
Deep Drone Acrobatics [121] Controller 2019 https://github.com/uzh-rpg/deep_drone_acrobatics
Data Driven MPC [40] Controller 2020 https://github.com/uzh-rpg/data_driven_mpc
High MPC [203] Controller 2022 https://github.com/uzh-rpg/high_mpc
AutoTune [204] Controller Tuner |2022 https://github.com/uzh-rpg/mh_autotune
Blackbird [205] Dataset 2018 https://github.com/mit-aera/Blackbird- Dataset
UZH-FPV [78] Dataset 2019 https://fpv.ifi.uzh.ch/
NeuroBEM [35] Dataset 2020 https://rpg.ifi.uzh.ch/NeuroBEM.html
Eye Gaze Drone Racing [206] Dataset 2021 https://osf.io/gvdse/
TII Drone Racing Dataset [207] Dataset 2024 https://github.com/tii-racing/drone-racing-dataset
Time-optimal Planning for Quadrotor Waypoint Flight [95] Planner 2021 https://github.com/uzh-rpg/rpg_time_optimal
Minimum-Time Quadrotor Waypoint Flight in Cluttered Planner 2022 | https://github.com/uzh-rpg/sb_min_time_quadrotor_planning
Environments [37]
RotorS [23] Simulator 2016 https://github.com/ethz-asl/rotors_simulator
AirSim [166] Simulator 2018 https://microsoft.github.io/AirSim/
FlightGoggles [55] Simulator 2019 https://github.com/mit-aera/FlightGoggles
Flightmare [22] Simulator 2020 https://uzh-rpg.github.io/flightmare/
Learning to fly—a gym environment with pybullet physics for Simulator 2021 https://github.com/utiasDSL/gym-pybullet-drones
RL of multi agent quadcopter control [198]
Aerial Gym [199] Simulator 2023 https://github.com/ntnu-arl/aerial_gym_simulator
Sim 2 Real Domain Randomization [65] Sim2Real Transfer |2019 https://github.com/uzh-rpg/sim2real_drone_racing
RPG Quadrotor Control [26] Software Stack [2017 https://github.com/uzh-rpg/rpg_quadrotor_control
Agilicious [8] Software Stack |2022 https://github.com/uzh-rpg/agilicious
Kalibr [56] Camera Calibration | 2022 https://github.com/ethz-asl/kalibr
VID-Fusion [74] Estimation 2021 https://github.com/ZJU-FAST-Lab/VID-Fusion
Fast-Racing [87] Planner 2021 https://github.com/ZJU-FAST-Lab/Fast-Racing
Ego-planner [208] Planner 2021 https://github.com/ZJU-FAST-Lab/ego-planner
GCOPTER [115] Planner 2022 https://github.com/ZJU-FAST-Lab/GCOPTER
FASTER [209] Planner 2021 https://github.com/mit-acl/faster
Panther [139] Planner 2022 https://github.com/mit-acl/panther
Deep Panther [138] Planner 2023 https://github.com/mit-acl/deep_panther
Raptor [91] Planner 2021| https://github.com/HKUST- Aerial-Robotics/Fast-Planner

prize was awarded to the winning team [200]. The compe-
tition took place first in a virtual qualifying round that used
the FlightGoggles simulation environment [55]. Nine teams
out of more than 400 worldwide qualified for the final chal-
lenge, which included navigating a new track in a time-trial
setting against an expert human pilot. Such competition took
the form of a tournament, with three seasonal races and a final
championship race. This made it very different from previous
single-day competitions. Ultimately, professional pilot Gabriel
Kocher, from the Drone Racing League, manually piloted his
drone through the course in only 6 s. It took 11 s to the winner,
MAVLab from TU Delft, and 15 s to the second-place winner,
UZH-RPG from the University of Ziirich, to complete the course
autonomously. The two different approaches are documented
in [16] and [17]. Further comments are provided by the winner
in [201]. Rojas-Perez and Martinez-Carranza [53] provide an
overview of the types of hardware used for some of the drone
racing competitions mentioned so far.

In 2019, the Game of Drones competition took place at the
NeurIPS conference. This competition was purely simulation-
based and used the AirSim simulation environment built by
Microsoft [15], [21], [166]. Participants in the Game of Drones
competition raced against simulated opponents in a head-to-head
fashion, similar to how humans compete in FPV drone racing.
Teams raced against a single simulated opponent, navigating
through a complex series of gates in three different tiers: Plan-
ning only, perception only, and perception with planning.

In 2022, at the Swiss Drone Days event in Ziirich, Switzer-
land, three of the world’s best human pilots competed against

researchers from the Robotics and Perception Group of the
University of Ziirich. Flight speeds exceeding 100 km/h were
demonstrated by the autonomous drones. When relying on
motion capture, the autonomous drones were able to achieve
significantly faster laptimes than the expert human pilots. They
additionally demonstrated it was possible to win races without
motion capture, using only onboard computing and sensors to
navigate the race track. IEEE Spectrum author E. Ackermann
discusses the multiday event in [202].

Looking into the future, the Abu Dhabi Autonomous Racing
League recently announced plans for an ADR competition in
2025.

VII. DATASETS, HARDWARE, AND OPEN SOURCE CODE

In this section, we provide an overview of the existing open
source code bases, useful datasets for ADR as well as hardware
considerations. We first discuss datasets, and then, group the
existing open source code bases by their use-cases in Table I
and conclude with a brief overview over drone racing hardware.

A. Datasets

In 2018, researchers from MIT released a large-scale dataset
for perception during aggressive UAV flight [205]. This dataset
contains over 10 h of flight data, which include simulated stereo
and downward-facing camera images at 120 Hz, real-world IMU
data at 100 Hz, motor speed data at 190 Hz, and motion capture
data at 360 Hz. The sensor suite was chosen such that algorithms

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

like VIO or simultaneous localization and mapping could be
evaluated on the dataset.

In 2019, the UZH-FPV Drone Racing Dataset was released,
which contains many agile maneuvers flown by a professional
racing pilot [78]. The dataset includes indoors and outdoors
real-world camera images, inertial measurements, event camera
data, and ground-truth poses provided by an advanced motion
capture system (a total station) providing millimeter-level accu-
racy. In 2024, the dataset was extended with new data recorded
onboard an autonomous racing drone flying in a racing track
with peak speed exceeding 20 m/s. These new data include large
field-of-view camera images, inertial measurements, and ground
truth from a motion capture system. Similar to [205], the authors
of this dataset hope to push the state of the art in state estimation
during aggressive motion and have created competitions to allow
researchers to compete against one another on this agile flight
benchmark.® A recent effort reported in [207] open-sourced
high-quality data from both autonomous and human-piloted
flights. This effort enables the study of both the perception and
control problem without actual hardware, lowering the barrier
of entry for studying drone racing.

Research on how expert human pilots focus on their targets
during flying and provide a dataset that contains flight trajecto-
ries, videos, and data from the pilots is examined in [206]

NeuroBEM [35] is a hybrid aerodynamic quadrotor model
that combines BEM theory models with learned aerodynamic
representations from highly aggressive maneuvers. While the
model is fit to the specific quadrotor platform defined in [8], the
approach can be used for any quadrotor platform and provides
over 50% reduction in model prediction errors compared to
traditional, exclusively first-principles approaches.

B. Open-Source Code

A significant amount of ADR research has been open sourced
to the community, making implementation less daunting for
newcomers to the field. A collection of all known drone racing
repositories has been provided to the reader in Table 1. These
code bases range across controllers, planners, sensor calibration,
and even entire software stacks dedicated to drone racing. We en-
courage both newcomers and experienced researchers to check
out the extensive amount of open source code bases available
and contribute back to the community.

C. Hardware

This survey does not intend to cover the hardware design
of racing drones rigorously. For an in-depth overview, see [8],
where the hardware and software design for developing a very
capable research platform are discussed. To make this survey
self-contained, this section presents a brief overview of the
hardware design of a racing drone nevertheless.

1) Racing Drone Design: A suitable hardware design should
maximize the agility and acceleration of the drone, and hence, it
needs to be as lightweight as possible [210]. For drones featuring
onboard compute, the drone size is thus lower bounded by the

[Online]. Available: https:/fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/

3059

size of the computer. Currently, the NVIDIA Jetson family is the
smallest off-the-shelf hardware with sufficient compute to run
complex neural networks, and it leads to drones built on 6-in
frames. Carbon fiber offers an excellent compromise between
the weight and durability of the frame, while other parts (such
as holders for the computer) can be designed using a 3-D printer.

For actuation, fast-spinning brushless dc motors are ideal
because of their high specific power output, often exceeding
500 W for a 50-g motor. In general, larger propellers will
improve the energy efficiency of the drone [7] while smaller
propellers lead to a faster motor response. On a 6-in frame,
three-bladed 5-in propellers present a good compromise. To
sustain the power demand of brushless drone-racing motors
(often exceeding 2 kW at full throttle [7]), a lithium-polymer
battery with a sufficiently high discharge current rating (e.g.,
120 C) is required.

The Pixhawk PX4 flightstack, despite being commonly used
for quadrotors [11], [211], fixed-wings [212], and hybrid vertical
takeoff and landing (VTOL) platforms [213], is not optimized
for agile flight. Conversely, agile autonomous research plat-
forms [5], [8] use Betaflight as a low-level controller, similar
to professional human racing pilots.

The design of a capable racing drone is important for re-
searchers developing new technology. However, in many drone
racing competitions, the hardware design is not left to the
participants but is standardized. This approach is common in
human drone racing, where thousands of identical drones are
built before each competition. This concept was also adopted by
the AlphaPilot [200] competition, where all participants used a
given platform. Overall, this approach ensures fair competition.

2) Beyond Quadcopters: While this survey focuses on mul-
ticopter drones, future drone racing competitions will go be-
yond this platform. Indeed, FPV fixed-wing racing is already a
popular sport among human pilots [214]. For example, VTOL
drones might offer a great alternative to quadcopters. VTOL
aircraft combine the high speeds achieved by fixed-wing drones
with some of the maneuverability of multicopters. Pioneering
works on this platform have already shown agile control [215]
and trajectory generation for aerobatic VTOL flight [216]. Per-
haps, once such research platforms are available off the shelf,
VTOL aircraft racing will become a popular platform for ADR
research.

VIII. OPEN RESEARCH QUESTIONS AND CHALLENGES

While a lot of progress has been made, there are still many
challenges to be overcome in drone racing research. In the
following, we discuss the most interesting challenges in detail.

A. Challenge 1: Reliable State Estimation at High Speeds

In its current form, online, robust, and accurate state esti-
mation is highly beneficial when pushing autonomous drones
to their limits. Currently, classical state estimation approaches
based on VIO cannot cope with the perceptual challenges present
in drone racing tasks. Motion blur, low texture, and high dynamic
range are some reasons why classical VIO algorithms accumu-
late large errors in localization. The miscalibration of intrinsic

https://fpv.ifi.uzh.ch/uzh/uzh-fpv-leader-board/

3060

and extrinsic camera parameters can lead to improper estimates
of the camera pose on a drone. This is due to local movements
of the camera frame relative to the drone body, as well as
changes in temperature and pressure. VIO drift can render the
state estimates unusable unless corrected through localizations
to a prior map. New sensor modalities, such as event cameras,
could potentially alleviate this issue. Although event-aided VIO
algorithms for drones have been proposed to improve robustness
to motion blur, they have not been demonstrated at high speeds as
seen in drone racing. Future research in agile flight may focus
on finding new event representations that are computationally
efficient and compatible with classical VIO formulations. One
example is to exploit direct methods [217]. Other promising
sensor modalities are motor speed controllers and force sensors.
These sensor measurements could be used to include more
advanced drone models in VIO, e.g., modeling aerodynamics
effects, in order to limit the drift that accumulates where camera
measurements are degraded. One of the main consequences of
motion blur, low texture, and high dynamic range is unreliable
feature extraction and matching. This consequently degrades
the performance of the visual frontend. Deep learning methods
have the potential to solve this problem. What hinders the appli-
cation of these methods to drone racing at the moment is their
computational cost. Future research should work on lightweight
neural networks that can provide inference at a high rate. Neural
networks could also be used to remove nonzero mean noise and
constant errors from the inertial measurements. A potentially
fruitful area of research is in combining neural networks for input
processing with a geometry-based VIO backend. This could lead
to the next step in the research on VIO for drone racing. Current
works [86], [218] have shown that this direction outperforms
end-to-end visual-based odometry methods.

B. Challenge 2: Flying From Purely Vision

State-of-the-art autonomous navigation methods rely on vi-
sual and inertial information, usually combined with classic
perception algorithms. Conversely, expert human pilots rely
on nothing more than a FPV video stream, which they use to
identify goals and estimate the ego-motion of the drone. Building
systems that, similarly to human pilots, only rely on visual
information is very interesting from a scientific perspective.
Indeed, since simulating RGB is very challenging, solving this
question might require lifelong learning algorithms operating
in the real world. In addition, eliminating inertial information
might have some engineering advantages too, e.g., data through-
put, power consumption, and lower cost. Seminal works in this
direction try to understand how humans solve this task [206],
[219]. They found that expert pilots can control drones despite
a 200-ms latency, which is compensated by the human brain.
Taking inspiration from biology, a recent work [220] shows
that it is possible to fly with camera images and an onboard
gyroscope (e.g., removing the accelerometer), as long as the
system never hovers. However, the aforementioned questions
still remain mostly open and a good avenue for research at the
intersection of computer vision, neuroscience, and biology.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

C. Challenge 3: Multiplayer Racing

Much of the work done up until this point on ADR has fo-
cused on time-optimal flight without considering how a capable
opponent might impact the competition dynamics. In FPV races,
pilots can compete against up to five opponents simultaneously,
bringing about the need to anticipate how their opponents might
behave. Humans are astonishingly capable of recognizing op-
portunities for overtaking and executing complex maneuvers in
the face of large aerodynamic disturbances caused by flying
close to another drone. Achieving such capabilities requires
an agent to estimate their opponent’s state using only onboard
visual sensors. However, these observations in drone racing are
sparse because the camera faces forward along the heading axis,
meaning that the only time an opponent is observable is when
the ego-agent is behind them. Sophisticated motion and plan-
ning models that can propagate predictions of the opponents’
states and racing lines through time are necessary to anticipate
collisions or overtaking opportunities. One way to simplify the
problem is combining classical vision with learning-based con-
trol, which has shown promising results in multiagent zero-sum
games for locomotion [221]. An initial study [222] examined
how game-theoretic planners can lead to highly competitive
behavior in two-player drone racing, however, this work was
confined to racing on a 2-D plane. The work was further extended
to 3-D spaces in [223], but there is a significant opportunity for
researchers to explore the competitive nature of drone racing and
develop interesting racing strategies that lead to time-optimal
agents that are able to deal with complex opponent behavior.

D. Challenge 4: Safety

ADR research has so far focused on demonstrating that su-
perhuman performance in racing is possible in controlled condi-
tions [5] but has put less emphasis on risk and safety. We predict
that this trend will soon change. Adding safety to agile flight has
gained much attention recently [9], [198]. Initial works focused
on generating a collision-free trajectory [224], [225], [226] with
less emphasis on performance. More geared toward agile flight,
the authors in [209], [227], [228], and [229] have studied the
problem of trading off safety and performance. All the aforemen-
tioned works rely on solving constrained optimization problems.
Outside of drone racing, similar paradigms have been developed
and have the potential to inspire future algorithms. Such methods
are, for example, conformal analysis [230], chance-constrained
dynamic programming [231], control barrier functions [232],
or reachability analysis [233]. The latter has been successfully
applied in the context of autonomous driving with collision
avoidance [234], [235].

More modern, learning-based methods have been explored
for risk-aware autonomous driving in the context of a map-
prediction approach [236] and in combination with Tube
MPC [237], a form of MPC that takes stochasticity into ac-
count. However, such approaches generally do not scale to
high-dimensional perception but rely on robust state estimation
for all involved agents. Combining such algorithms with the
methods for vision-based, high-speed drone racing presented in
this survey could solve both of these problems simultaneously.

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

As a first step in this direction, recent work [238] has shown that
alearned control policy can be conditioned on an auxiliary input
signal from a user. The signal regulates the maximally available
thrust, leading to a single learned policy that can race at various
speeds and risk levels.

E. Challenge 5: Transfer to Real-World Applications

Drone racing, while an extraordinarily challenging research
environment, is ultimately not the end goal. Opportunities ex-
ist for technology transfer between the drone racing research
community to real-world applications such as search and res-
cue, inspection, agriculture, videography, delivery, passenger air
vehicles, law enforcement, and defense. However, applications
that leverage the full agility of the platform have much to
gain. Drones that fly fast, fly farther, therefore, increasing the
productivity of drones in every commercial sector [7].

One of the major challenges to real-world application is gen-
eralization to conditions where the environmental knowledge
before deployment is limited. For example, we often do not have
a known map ahead of time for real-world applications, which
requires simultaneous estimation of the state of the drone while
mapping the environment. However, a central theme of drone
racing research has been the development of adaptive control
strategies and decision-making algorithms to enable drones to
react rapidly to changes in the race track or the robot condition
(see Section III-A and III-C). These strategies can be used to
handle real-world applications where environmental knowledge
is imperfect and to enable adaptation to unforeseen obstacles
and challenges. In addition, learning-based sensorimotor con-
trollers for drones, increasingly more popular due to research on
racing, have been designed with the ability to generalize from
limited data, adapt, and improve their performance over time
(see Section IV). Such generalization and adaptation abilities
have already been applied to cases where there is no previous
knowledge of the environment [150].

Building algorithms that can continually improve from their
experience is another alternative to favor this transfer. While
recent advances in RL research point to the feasibility of this
path [191], [192], [239], it is unclear when and how such recent
approaches would be applicable to drones or similarly agile
platforms in the real world. Collecting data for continual RL
onboard a drone is notoriously difficult. This is because the drone
does not have the luxury of remaining in contact with the ground
like legged robots and cars, and thus, has to immediately know
how to hover otherwise a crash will occur. One interesting area
that may be useful for continual RL in drones is the notion of
“safe-RL.” The goal of safe RL is to enable exploration without
ever incurring catastrophic failure of the system. Initial work on
this topic can be found in [240]. A survey article covering safe
RL methods can be found in [9]. Furthermore, a thorough review
article on continual, or life-long RL can be found in [241].

IX. CONCLUSION

From racing at a pace comparable to walking speed [19],
autonomous drones have advanced to surpassing world cham-
pions [5]. Such an exponential advance has been driven by both

3061

algorithmic innovations, e.g., learning sensorimotor controllers
in simulation, and system engineering improvements. Such ad-
vances span the entire navigation pipeline: perception, planning,
and control. This article comprehensively covered each of these
topics. Methodologically, the dominant trend was a shift from
conventional methods to data-driven solutions. However, in
contrast to fields like computer vision and natural language
processing, neural networks did not replace but coexist with
traditional methods: no method with competitive performance
in the real world was fully data driven. The most resilient part of
the pipeline was state estimation, where strong prior knowledge
about the dynamics and environment were still needed to cope
with the lack of sensorimotor data. In the short term, we pre-
dicted that such a hybrid approach could be applied to other phys-
ical systems, e.g., autonomous ground vehicles and personal
robots. However, in the long term, we predicted that, similarly
to research in computer vision and natural language processing,
neural networks will replace each part of the pipeline. This
will require many innovations, e.g., computationally efficient
architectures, offline pretraining strategies, and fast adaptation
schemes to previously unseen conditions. While autonomous
drones are already superhuman in controlled scenarios, many
challenges are yet to be solved to outperform human champions
in official drone racing leagues and transfer the findings to
real-world applications.

ACKNOWLEDGMENT

The authors would like to thank M. Muglikar for her valu-
able inputs on event-camera methods for state estimation and
perception.

Authors’ Contributions: D. Hanover initiated the idea of
this article, created the article structure, and contributed to all
sections of this article while coordinating efforts among the
co-authors. A. Loquercio contributed to the article structure and
the learning-based sections. L. Bauersfeld authored the Drone
Modeling section and created the graphics seen throughout.
A. Romero contributed to the Classical Planning and Control
sections. G. Cioffi contributed to the Classical Perception and
Challenges sections. Y. Song contributed to the Simulators
and Learning-Based Planning/Control sections. R. Penicka con-
tributed to both Classical and Learning-Based Planning sections.
E. Kaufmann contributed to the article structure and throughout
the Learning-Based sections. D. Scaramuzza contributed to the
general article structure and revised the article thoroughly and
critically.

REFERENCES

[1] T. A. Wilkinson, Early Dynastic Egypt. Evanston, IL, USA: Routledge,
2002.

[2] S. M. Arab, “The sed-festival (heb sed) renewal of the kings’ reign,”
Arab World Books, Nov. 2017, Accessed: May 22, 2024. [Online]. Avail-
able: https://www.arabworldbooks.com/en/e-zine/the-sed- festival-heb-
sed-renewal-of-the-kings-reign

[3] J.Betzetal., “Autonomous vehicles on the edge: A survey on autonomous
vehicle racing,” IEEE Open J. Intell. Transp. Syst., vol. 3, pp. 458-488,
2022.

[4] Y.Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza, “Reach-
ing the limit in autonomous racing: Optimal control versus reinforcement
learning,” Sci. Robot., vol. §, no. 82, 2023, Art. no. adg1462.

https://www.arabworldbooks.com/en/e-zine/the-sed-festival-heb-sed-renewal-of-the-kings-reign
https://www.arabworldbooks.com/en/e-zine/the-sed-festival-heb-sed-renewal-of-the-kings-reign

3062

[5]

(6]

(71

(8]

(91

[10]

(11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982-987, Aug. 2023.

Z. Ameli, Y. Aremanda, W. A. Friess, and E. N. Landis, “Impact of UAV
hardware options on bridge inspection mission capabilities,” Drones,
vol. 6, no. 3, 2022, Art. no. 64.

L. Bauersfeld and D. Scaramuzza, “Range, endurance, and optimal speed
estimates for multicopters,” IEEE Robot. Automat. Lett., vol. 7, no. 2,
pp- 2953-2960, Apr. 2022.

P. Foehn et al., “Agilicious: Open-source and open-hardware agile
quadrotor for vision-based flight,” Sci. Robot., vol. 7, no. 67, 2022,
Art. no. eabl6259.

L. Brunke et al., “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control, Robot., Auton. Syst.,
vol. 5, pp. 411-444,2022.

S.Jung, S.Cho, D. Lee, H. Lee, and D. H. Shim, ““A direct visual servoing-
based framework for the 2016 IROS autonomous drone racing challenge,”
J. Field Robot., vol. 35, no. 1, pp. 146-166, 2018.

K. Mohta et al., “Fast, autonomous flight in GPS-denied and cluttered
environments,” J. Field Robot., vol. 35, no. 1, pp. 101-120, 2018.
AGILEFLIGHT: Low-latency Perception and Action for Agile Vision-
based Flight, Accessed: May 22,2024. [Online]. Available: https://cordis.
europa.eu/project/id/864042

AUTOASSES: Autonomous Aaerial Inspection of GNSS-Denied and
Confined Critical Infrastructures, Accessed: May 22, 2024. [Online].
Available: https://cordis.europa.eu/project/id/101120732

H. Moon et al., “Challenges and implemented technologies used in au-
tonomous drone racing,” Intell. Serv. Robot., vol. 12, no. 2, pp. 137-148,
2019.

Microsoft, “Game of drones”, Accessed: May 22, 2024. [Online]. Avail-
able: https://microsoft.github.io/ AirSim-Neur[PS2019-Drone-Racing/
P. Foehn et al., “Alphapilot: Autonomous drone racing,” Auton. Robots,
vol. 46, no. 1, pp. 307-320, 2022.

C. De Wagter, F. Paredes-Vallés, N. Sheth, and G. de Croon, “The artificial
intelligence behind the winning entry to the 2019 Al robotic racing
competition,” Field Robot., vol. 2, pp. 1263-1290, 2022.

The Motorsport Concept Building an Autonomous Mobility Ecosys-
tem, [Online]. Available: https://a2rl.io/news/18/The-Motorsport-
Concept-Building-an- Autonomous-Mobility-Ecosystem--- ASPIRE-s-
Executive-Director,-Dr-Tom-McCarthy

H. Moon, Y. Sun, J. Baltes, and S. J. Kim, “The IROS 2016 competitions
[competitions],” IEEE Robot. Automat. Mag., vol. 24, no. 1, pp. 20-29,
Mar. 2017.

R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Model-
ing, estimation, and control of quadrotor,” IEEE Robot. Automat. Mag.,
vol. 19, no. 3, pp. 20-32, Sep. 2012.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics. Berlin, Germany: Springer, 2018, pp. 621-635.

Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Proc. Conf. Robot
Learn., 2021, pp. 1147-1157.

F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—A modular
Gazebo MAV simulator framework,” in Robot Operating System. Berlin,
Germany: Springer, 2016, pp. 595-625.

J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. Von Stryk,
“Comprehensive simulation of quadrotor UAVs using ROS and Gazebo,”
in Proc. Int. Conf. Simul., Model., Program. Auton. Robots, 2012,
pp. 400-411.

R. W. Prouty, Helicopter Performance, Stability, and Control. Melbourne,
FL, USA: Krieger Pub. Co, 1995.

M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robot. Automat. Lett., vol. 3, no. 2,
pp. 620-626, Apr. 2018.

S. Yoon, H. C. Lee, and T. H. Pulliam, “Computational analysis of multi-
rotor flows,” in Proc. 54th AIAA Aerosp. Sci. Meeting, 2016, Art.no. 0812.
P. V. Diaz and S. Yoon, “High-fidelity computational aerodynamics
of multi-rotor unmanned aerial vehicles,” in Proc. AIAA Aerosp. Sci.
Meeting, 2018, Art. no. 1266.

S. Yoon, P. V. Diaz, D. D. Boyd, W. M. Chan, and C. R. Theodore,
“Computational aerodynamic modeling of small quadcopter vehicles,”
in Proc. Amer. Helicopter Soc. 73rd Annu. Forum, Fort Worth, TX, USA,
2017, pp. 371-386.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

R. Gill and R. D’ Andrea, “Propeller thrust and drag in forward flight,” in
Proc. IEEE Conf. Control Technol. Appl., 2017, pp. 73-79.

R. Gill and R. D’ Andrea, “Computationally efficient force and moment
models for propellers in UAV forward flight applications,” Drones, vol. 3,
no. 4, pp. 77-124, 2019.

W. Khan and M. Nahon, “Toward an accurate physics-based UAV thruster
model,” IEEE/ASME Trans. Mechatron., vol. 18, no. 4, pp. 1269-1279,
Aug. 2013.

G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,” in Proc.
AIAA Guid., Navigation Control Conf. Exhib., 2007, Art. no. 6461.

M. Bangura and R. Mahony, “Thrust control for multirotor aerial vehi-
cles,” IEEE Trans. Robot., vol. 33, no. 2, pp. 390-405, Apr. 2017.

L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” RSS: Robot., Sci.,
Syst., 2021, pp. 1-10.

E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark com-
parison of learned control policies for agile quadrotor flight,” in Proc.
Int. Conf. Robot. Automat., 2022,pp. 10504-10510.

R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint
flight in cluttered environments,” IEEE Robot. Automat. Lett., vol. 7,
no. 2, pp. 5719-5726, Apr. 2022.

P. V. Diaz and S. Yoon, “High-fidelity computational aerodynamics
of multi-rotor unmanned aerial vehicles,” in Proc. AIAA Aerosp. Sci.
Meeting, 2018, Art. no. 1266.

J. Luo, L. Zhu, and G. Yan, “Novel quadrotor forward-flight model based
on wake interference,” AIAA J., vol. 53, no. 12, pp. 3522-3533, 2015.
G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza, “Data-driven
MPC for quadrotors,” IEEE Robot. Automat. Lett., vol. 6, no. 2,
pp. 3769-3776, Apr. 2021.

S. Sun, C. C. de Visser, and Q. Chu, “Quadrotor gray-box model identifi-
cation from high-speed flight data,” J. Aircr., vol. 56, no. 2, pp. 645-661,
2019.

S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin,
“Learning quadrotor dynamics using neural network for flight control,”
in Proc. IEEE 55th Conf. Decis. Control, 2016, pp. 4653-4660.

A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,”
in Proc. IEEE Int. Conf. Robot. Automat., 2015, pp. 3223-3230.

G. Shi et al.,, “Neural lander: Stable drone landing control using
learned dynamics,” in Proc. IEEE Int. Conf. Robot. Automat., 2019,
pp. 9784-9790.

A. van den Oord et al., “WaveNet: A generative model for raw audio,” in
Proc. 9th ISCA Workshop Speech Synth. Workshop, 2016, p. 125.

B. Wang, Z. Ma, S. Lai, and L. Zhao, “Neural moving horizon estimation
for robust flight control,” IEEE Trans. Robot., vol. 40, pp. 639-659, 2024.
W. Peukert, “Uber die abhingigkeit der kapazitit von der entlade-
stromstiarke bei bleiakkumulatoren,” Elektrotechn. Zeitschr., vol. 20,
, pp- 287-288 1897.

N. Galushkin, N. Yazvinskaya, and D. Galushkin, “Generalized analytical
model for capacity evaluation of automotive-grade lithium batteries,” J.
Electrochem. Soc., vol. 162, pp. A308-A314, 2015.

N. Galushkin, N. N. Yazvinskaya, and D. N. Galushkin, “A critical review
of using the Peukert equation and its generalizations for lithium-ion cells,”
J. Electrochem. Soc., vol. 167, no. 12, Aug. 2020, Art. no. 120516.

X. Zhang, W. Zhang, and G. Lei, “A review of li-ion battery equivalent
circuit models,” Trans. Elect. Electron. Mater., vol. 17, pp. 311-316,
2016.

L. Zhang, S. Wang, D.-1. Stroe, C. Zou, C. Fernandez, and C. Yu, “An
accurate time constant parameter determination method for the varying
condition equivalent circuit model of lithium batteries,” Energies, vol. 13,
no. 8, 2020, Art. no. 2057.

D. Bicego, J. Mazzetto, R. Carli, M. Farina, A. Franchi, and V. Arellano-
Quintana, “Nonlinear model predictive control with enhanced actuator
model for multi-rotor aerial vehicles with generic designs,” J. Intell.
Robot. Syst., vol. 100, pp. 1213-1247, 2020.

L. O. Rojas-Perez and J. Martinez-Carranza, “On-board processing for
autonomous drone racing: An overview,” Integration, vol. 80, pp. 4659,
2021.

D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robot. Automat. Mag., vol. 18, no. 4, pp. 80-92, Dec. 2011.

W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “FlightGoggles:
Photorealistic sensor simulation for perception-driven robotics using
photogrammetry and virtual reality,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 6941-6948.

https://cordis.europa.eu/project/id/864042
https://cordis.europa.eu/project/id/864042
https://cordis.europa.eu/project/id/101120732
https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy
https://a2rl.io/news/18/The-Motorsport-Concept-Building-an-Autonomous-Mobility-Ecosystem---ASPIRE-s-Executive-Director,-Dr-Tom-McCarthy

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and
of individual axes,” in Proc. IEEE Int. Conf. Robot. Automat., 2016,
pp. 4304-4311.

Y. Yang, P. Geneva, X. Zuo, and G. Huang, “Online IMU intrinsic
calibration: Is it necessary?,” in Proc. Robot., Sci. Syst., Corvallis, OR,
USA, 2020, p. 1-10.

D. Scaramuzza and Z. Zhang, “Visual-inertial odometry of aerial robots,”
in Encyclopedia Robot., M. Ang, O. Khatib, and B. Siciliano, Ed., Berlin,
Heidelberg: Springer, 2019, doi: 10.1007/978-3-642-41610-1_71-1.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” I[EEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611-625, Mar. 2018.
M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial
odometry using a direct EKF-based approach,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2015, pp. 298-304.

A. 1. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., 2007, pp. 3565-3572.

S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” Int. J. Robot. Res., vol. 34, no. 3, pp. 314-334, 2015.

T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34, no. 4,
pp- 1004-1020, Aug. 2018.

E. Kaufmann et al., “Beauty and the beast: Optimal methods meet
learning for drone racing,” in Proc. Int. Conf. Robot. Automat., 2019,
pp. 690-696.

A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D.
Scaramuzza, “Deep drone racing: From simulation to reality with domain
randomization,” IEEE Trans. Robot., vol. 36, no. 1, pp. 1-14, Feb. 2019.
P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS: A
research platform for visual-inertial estimation,” in Proc. IEEE Int. Conf.
Robot. Autom., 2020, pp. 4666-4672.

A.R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
SLAM? Combining events, images, and IMU for robust visual SLAM
in HDR and high-speed scenarios,” IEEE Robot. Automat. Lett., vol. 3,
no. 2, pp. 994-1001, Apr. 2018.

S. Sun, G. Cioffi, C. De Visser, and D. Scaramuzza, “Autonomous
quadrotor flight despite rotor failure with onboard vision sensors: Frames
vs. events,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 580-587,
Apr. 2021.

P. Chen, W. Guan, and P. Lu, “ESVIO: Event-based stereo visual inertial
odometry,” IEEE Robot. Autom. Lett., vol. 8, no. 6, pp. 3661-3668,
Jun. 2023.

B. Nisar, P. Foehn, D. Falanga, and D. Scaramuzza, “VIMO: Simulta-
neous visual inertial model-based odometry and force estimation,” IEEE
Robot. Automat. Lett., vol. 4, no. 3, pp. 2785-2792, Jul. 2019.

G. Cioffi, L. Bauersfeld, and D. Scaramuzza, “HDVIO: Improving local-
ization and disturbance estimation with hybrid dynamics VIO,” Robot.,
Sci. Syst., 2023.

G. Cioffi, L. Bauersfeld, E. Kaufmann, and D. Scaramuzza, “Learned
inertial odometry for autonomous drone racing,” IEEE Robot. Automat.
Lett., vol. 8, no. 5, pp. 2684-2691, May 2023.

G. Gallego et al., “Event-based vision: A survey,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 1, pp. 154-180, Jan. 2022.

Z. Ding, T. Yang, K. Zhang, C. Xu, and F. Gao, “VID-Fusion: Robust
visual-inertial-dynamics odometry for accurate external force estima-
tion,” in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 14469-14475.
J. Delmerico and D. Scaramuzza, “A benchmark comparison of monoc-
ular visual-inertial odometry algorithms for flying robots,” in Proc. IEEE
Int. Conf. Robot. Automat., 2018, pp. 2502-2509.

M. Burri et al., “The EuRoC micro aerial vehicle datasets,” Int. J. Robot.
Res., vol. 35, no. 10, pp. 1157-1163, 2016.

P.Foehnetal., “Alphapilot: Autonomous drone racing,” Robot., Sci. Syst.,
vol. 46, no. 1, pp. 307-320, 2020.

J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza,
“Are we ready for autonomous drone racing? The UZH-FPV drone racing
dataset,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 6713-6719.

E. Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, and
D. Scaramuzza, “Deep drone racing: Learning agile flight in dynamic
environments,” in Proc. 2nd Conf. Robot Learn., 2018, pp. 133-145.
S.Li, M. M. Ozo, C. De Wagter, and G. C. de Croon, “Autonomous drone
race: A computationally efficient vision-based navigation and control
strategy,” Robot. Auton. Syst., vol. 133, 2020, Art. no. 103621.

[81]

[82]
[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

3063

S. Li, E. van der Horst, P. Duernay, C. De Wagter, and G. C. de Croon,
“Visual model-predictive localization for computationally efficient au-
tonomous racing of a 72-g drone,” J. Field Robot., vol. 37, no. 4,
pp. 667-692, 2020.

D.Zhang and D. D. Doyle, “Gate detection using deep learning,” in Proc.
IEEE Aerosp. Conf., 2020, pp. 1-11.

R. Szeliski, Computer Vision: Algorithms and Applications. Berlin, Ger-
many: Springer Nature, 2022.

S. Wang, R. Clark, H. Wen, and N. Trigoni, “DeepVO: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks,”
in Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 2043-2050.

W. Wang, Y. Hu, and S. Scherer, “TartanVO: A generalizable learning-
based VO,” in Proc. Conf. Robot. Learn., 2020, pp. 1761-1772.

Z. Teed, L. Lipson, and J. Deng, “Deep patch visual odometry,” Adv.
Neural Inf. Process. Syst., vol. 36, p. 39033-39051, 2024.

Z. Han, Z. Wang, N. Pan, Y. Lin, C. Xu, and F. Gao, “Fast-racing: An
open-source strong baseline for SE(3) planning in autonomous drone
racing,” IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 8631-8638,
Oct. 2021.

S. Spedicato and G. Notarstefano, “Minimum-time trajectory generation
for quadrotors in constrained environments,” [EEE Trans. Control Syst.
Technol., vol. 26, no. 4, pp. 1335-1344, Jul. 2018.

C. Richter, A. Bry, and N. Roy, “Polynomial Trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Berlin, Germany: Springer, 2016, pp. 649—-666.

B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time UAV replanning
using guided gradient-based optimization and topological paths,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 1208-1214.

B. Zhou, J. Pan, F. Gao, and S. Shen, “RAPTOR: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Trans. Robot.,
vol. 37, no. 6, pp. 1992-2009, Dec. 2021.

H. Pham and Q.-C. Pham, “A new approach to time-optimal path param-
eterization based on reachability analysis,” IEEE Trans. Robot., vol. 34,
no. 3, pp. 645-659, Jun. 2018.

1. Spasojevic, V. Murali, and S. Karaman, ‘“Perception-aware time optimal
path parameterization for quadrotors,” in Proc. IEEE Int. Conf. Robot.
Automat., 2020, pp. 3213-3219.

B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions,” IEEE Robot. Automat. Lett., vol. 3, no. 4, pp. 3725-3732,
Oct. 2018.

P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for
quadrotor waypoint flight,” Sci. Robot., vol. 6, no. 56, 2021, Art. no.
eabh1221.

P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza,
“Fast trajectory optimization for agile quadrotor maneuvers with a cable-
suspended payload,” in Proc. Robot., Sci. Syst., 2017, p. 1-10.

M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of
quadrotor systems using time-optimal control,” Auton. Robots, vol. 33,
pp. 69-88, Mar. 2012.

K. Bousson and P. F. Machado, “4D trajectory generation and tracking for
waypoint-based aerial navigation,” WSEAS Trans. Syst. Control, no. 3,
pp. 105-119, 2013.

S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based mo-
tion planning for quadrotors using linear quadratic minimum time
control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 2872-2879.

S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in SE(3),” IEEE Robot. Automat. Lett.,
vol. 3, no. 3, pp. 2439-2446, Jul. 2018.

R. Allen and M. Pavone, “A real-time framework for kinodynamic
planning with application to quadrotor obstacle avoidance,” in Proc. ATAA
Guid., Navigation, Control Conf., 2016, Art. no. 1374.

T. Zhiling, B. Chen, R. Lan, and S. Li, “Vector field guided RRT* based on
motion primitives for quadrotor kinodynamic planning,” J. Intell. Robot.
Syst., vol. 100, pp. 1325-1339, 2020.

A.Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive con-
touring control for time-optimal quadrotor flight,” IEEE Trans. Robot.,
vol. 38, no. 6, pp. 3340-3356, Dec. 2022.

A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online re-
planning for agile quadrotor flight,” IEEE Robot. Automat. Lett., vol. 7,
no. 3, pp. 7730-7737, Jul. 2022.

S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

https://dx.doi.org/10.1007/978-3-642-41610-1_71-1

3064

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, ‘“Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566-580, Aug. 1996.
S. Lavalle and J. Kuffner, “Rapidly-exploring random trees: Progress and
prospects,” in Algorithmic and Computational Robotics: New Directions,
Wellesley, MA, USA: A K Peteres, Jan. 2000, pp. 293-308.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100107, Jul. 1968.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” in
Proc. Edsger Wybe Dijkstra: His Life, Work, Legacy, 1959, pp. 269-271.
D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Autom., 2011,
pp. 2520-2525.

D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” Int. J. Robot.
Res., vol. 31, no. 5, pp. 664-674, 2012.

M. W. Miieller, M. Hehn, and R. D’ Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Trans.
Robot., vol. 31, no. 6, pp. 1294-1310, Dec. 2015.

C. Qin, M. S. Michet, J. Chen, and H. H.-T. Liu, “Time-optimal gate-
traversing planner for autonomous drone racing,” in Proc. IEEE Int. Conf.
Robot. Automat., 2024.

Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained
trajectory optimization for multicopters,” IEEE Trans. Robot., vol. 38,
no. 5, pp. 3259-3278, Oct. 2022.

T. Fork and F. Borrelli, “Euclidean and non-Euclidean trajectory opti-
mization approaches for quadrotor racing,” 2023, arXiv:2309.07262.
W. V. Loock, G. Pipeleers, and J. Swevers, “Time-optimal quadrotor
flight,” in Proc. IEEE Eur. Control Conf., 2013, pp. 1788-1792.

T. R. Jorris and R. G. Cobb, “Three-dimensional trajectory optimization
satisfying waypoint and no-fly zone constraints,” J. Guidance, Control,
Dyn., vol. 32, no. 2, pp. 551-572, 2009.

D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in Proc. IEEE
Int. Conf. Robot. Automat., 2013, pp. 5054-5061.

B. Ichter, B. Landry, E. Schmerling, and M. Pavone, “Perception-aware
motion planning via multiobjective search on gpus,” in Robotics Re-
search. Cham: Springer, 2020, pp. 895-912.

E. Kaufmann, A. Loquercio, R. Ranftl, M. Miiller, V. Koltun, and D.
Scaramuzza, “Deep drone acrobatics,” in Proc. Robot., Sci. Syst., Cor-
valis, OR, USA, 2020, pp. 1-10.

Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2021, pp. 1205-1212.

R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning
minimum-time flight in cluttered environments,” IEEE Robot. Automat.
Lett., vol. 7, no. 3, pp. 7209-7216, Jul. 2022.

D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza,
“Performance, precision, and payloads: Adaptive nonlinear MPC for
quadrotors,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 690-697,
Apr. 2022.

S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A
comparative study of nonlinear MPC and differential-flatness-based
control for quadrotor agile flight,” IEEE Trans. Robot., vol. 38, no. 6,
pp. 3357-3373, Dec. 2022.

T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of
a quadrotor UAV for extreme maneuverability,” IFAC Proc. Vol., vol. 44,
no. 1, pp. 6337-6342, 2011.

E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajec-
tories using incremental nonlinear dynamic inversion and differential flat-
ness,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp. 1203-1218,
May 2021.

H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predictive
control for micro aerial vehicles: A survey,” in Proc. Eur. Control Conf.,
2021, pp. 1556-1563.

M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear MPC for
trajectory tracking applied to rotary wing micro aerial vehicles,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 3463-3469, 2017.

G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path
integral control: From theory to parallel computation,” J. Guid., Control,
Dyn., vol. 40, no. 2, pp. 344-357, 2017.

B. Goldfain et al., “Autorally: An open platform for aggressive au-
tonomous driving,” IEEE Control Syst. Mag., vol. 39, no. 1, pp. 26-55,
Feb. 2019.

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

D. Lam, C. Manzie, and M. Good, “Model predictive contouring control,”
in Proc. IEEE 49th Conf. Decis. Control, 2010, pp. 6137-6142.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Appl. Methods,
vol. 36, no. 5, pp. 628-647, Jul. 2014.

J. Arrizabalaga and M. Ryll, “Towards time-optimal tunnel-following
for quadrotors,” in Proc. Int. Conf. Robot. Automat., 2022,
pp. 4044—-4050.

G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza,
“Perception-aware path planning,” 2016, arXiv:1605.04151.

D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive
quadrotor flight through narrow gaps with onboard sensing and comput-
ing using active vision,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 5774-5781.

B. Penin, R. Spica, P. R. Giordano, and F. Chaumette, “Vision-based
minimum-time trajectory generation for a quadrotor UAV,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017, pp. 6199-6206.

J. Tordesillas and J. P. How, “Deep-panther: Learning-based perception-
aware trajectory planner in dynamic environments,” /IEEE Robot. Au-
tomat. Lett., vol. 8, no. 3, pp. 1399-1406, Mar. 2023.

J. Tordesillas and J. P. How, “PANTHER: Perception-aware tra-
jectory planner in dynamic environments,” /[EEE Access, vol. 10,
pp. 22662-22677, 2022.

D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
aware model predictive control for quadrotors,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2018, pp. 1-8.

K. Lee, J. Gibson, and E. A. Theodorou, “Aggressive perception-aware
navigation using deep optical flow dynamics and pixelMPC,” IEEE
Robot. Automat. Lett., vol. 5, no. 2, pp. 1207-1214, Apr. 2020.

M. Greeff, T. D. Barfoot, and A. P. Schoellig, “A perception-aware
flatness-based model predictive controller for fast vision-based multirotor
flight,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9412-9419, 2020.

R. Verschueren et al., “Acados—A modular open-source framework for
fast embedded optimal control,” Math. Program. Comput., vol. 14, no. 1,
pp. 147-183, 2022.

J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optim. Eng., vol. 13, no. 1, pp. 1-27, 2012.

G. Frison and M. Diehl, “HPIPM: A high-performance quadratic
programming framework for model predictive control,” IFAC-
PapersOnlLine, vol. 53, no. 2, pp. 6563-6569, 2020.

MOSEK ApS, “MOSEK optimization toolbox for MATLAB,” User’s
Guide Reference Manual, vol. 4, no. 1, 2019.

A. Giusti et al., “A machine learning approach to visual perception of
forest trails for mobile robots,” IEEE Robot. Automat. Lett., vol. 1, no. 2,
pp. 661-667, Jul. 2016.

A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza,
“DroNet: Learning to fly by driving,” IEEE Robot. Automat. Lett., vol. 3,
no. 2, pp. 1088-1095, Apr. 2018.

D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in Proc.
Int. Conf. Intell. Robots Syst., 2017, pp. 3948-3955.

A. Loquercio, E. Kaufmann, R. Ranftl, M. Miiller, V. Koltun, and D.
Scaramuzza, “Learning high-speed flight in the wild,” Sci. Robot., vol. 6,
no. 59, 2021, Art. no. eabg5810.

F. Sadeghi and S. Levine, “CAD 2 RL: Real single-image flight without
a single real image,” in Proc. Robot., Sci. Syst., 2017, pp. 48-55.

T. Lee, S. Mckeever, and J. Courtney, “Flying free: A research overview
of deep learning in drone navigation autonomy,” Drones, vol. 5, no. 2,
2021, Art. no. 52.

H. X. Pham, H. I. Ugurlu, J. Le Fevre, D. Bardakci, and E. Kayacan,
“Deep learning for vision-based navigation in autonomous drone racing,”
in Deep Learning for Robot Perception and Cognition. New York, NY,
USA: Elsevier, 2022, pp. 371-406.

A. A. Cabrera-Ponce, L. O. Rojas-Perez, J. A. Carrasco-Ochoa, J. F.
Martinez-Trinidad, and J. Martinez-Carranza, “Gate detection for micro
aerial vehicles using a single shot detector,” IEEE Latin Amer. Trans.,
vol. 17, no. 12, pp. 2045-2052, Dec. 2019.

H. X. Pham, I. Bozcan, A. Sarabakha, S. Haddadin, and E. Kayacan,
“GateNet: An efficient deep neural network architecture for gate per-
ception using fish-eye camera in autonomous drone racing,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2021, pp. 4176—4183.

H. X. Pham, A. Sarabakha, M. Odnoshyvkin, and E. Kayacan, “Pencil-
Net: Zero-shot sim-to-real transfer learning for robust gate perception
in autonomous drone racing,” IEEE Robot. Automat. Lett., vol. 7, no. 4,
pp. 11847-11854, Oct. 2022.

T. Morales, A. Sarabakha, and E. Kayacan, “Image generation for effi-
cient neural network training in autonomous drone racing,” in Proc. Int.
Joint Conf. Neural Netw., 2020, pp. 1-8.

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

K. FE. Andersen, H. X. Pham, H. I. Ugurlu, and E. Kayacan, “Event-
based navigation for autonomous drone racing with sparse gated recurrent
network,” in Proc. Eur. Control Conf., 2022, pp. 1342-1348.

N. J. Sanket, C. D. Singh, C. Fermiiller, and Y. Aloimonos, “PRGFlow:
Unified swap-aware deep global optical flow for aerial robot navigation,”
Electron. Lett., vol. 57, no. 16, pp. 614-617, 2021.

Y. Xu and G. C. de Croon, “CNN-based ego-motion estimation for
fast MAV maneuvers,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 7606-7612.

Y. Xu and G. C. de Croon, “CUAHN-VIO: Content-and-uncertainty-
aware homography network for visual-inertial odometry,” 2022,
arXiv:2208.13935.

L. Lamberti et al., “A sim-to-real deep learning-based framework for
autonomous nano-drone racing,” IEEE Robot. Automat. Lett.,vol.9,no.2,
pp- 1899-1906, Feb. 2024.

H. Yu, C. De Wagter, and G. C. de Croon, “MAVRL: Learn to fly in
cluttered environments with varying speed,” 2024, arXiv:2402.08381.
M. Kulkarni and K. Alexis, “Reinforcement learning for collision-free
flight exploiting deep collision encoding,” in Proc. IEEE Int. Conf. Robot.
Automat., 2024.

K. Amer, M. Samy, M. Shaker, and M. ElHelw, “Deep convolutional
neural network based autonomous drone navigation,” in Proc. 13th Int.
Conf. Mach. Vis., 2021, vol. 11605, pp. 16-24.

R.Madaanetal., “Airsim droneracing lab,” in Proc. NeurIPS Competition
Demonstration Track, 2020, vol. 123, pp. 177-191.

U. Ates, “Long-term planning with deep reinforcement learning on au-
tonomous drones,” in Proc. Innov. Intell. Syst. Appl. Conf., 2020, pp. 1-6.
W. Koch, R. Mancuso, R. West, and A. Bestavros, ‘“Reinforcement
learning for UAV attitude control,” ACM Trans. Cyber-Phys. Syst., vol. 3,
no. 2, pp. 1-21, 2019.

N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. Pister, “Low-level control of a quadrotor with deep model-based
reinforcement learning,” /IEEE Robot. Automat. Lett., vol. 4, no. 4,
pp. 4224-4230, Oct. 2019.

S. Li, E. Oztiirk, C. De Wagter, G. C. De Croon, and D. Izzo, “Aggres-
sive online control of a quadrotor via deep network representations of
optimality principles,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 6282-6287.

C. Sanchez-Sanchez and D. Izzo, “Real-time optimal control via deep
neural networks: Study on landing problems,” J. Guid., Control, Dyn.,
vol. 41, no. 5, pp. 1122-1135, 2018.

R. Ferede, G. de Croon, C. De Wagter, and D. 1zzo, “End-to-end neural
network based optimal quadcopter control,” Robot. Auton. Syst., vol. 172,
2024, Art. no. 104588.

J. Sacks, R. Rana, K. Huang, A. Spitzer, G. Shi, and B. Boots, “Deep
model predictive optimization,” in Proc. I[EEE Int. Conf. Robot. Automat.,
2024.

H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” in Proc. Robot., Sci. Syst., Virtual, 2021,
pp. 1-12.

M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H.
Johansson, “Safe reinforcement learning using black-box reachability
analysis,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 10665-10672,
Oct. 2022.

B. Amos, 1. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
MPC for end-to-end planning and control,” Adv. Neural Inf. Process.
Syst., vol. 31, pp. 8299-8310, 2018.

L. Pineda et al., “Theseus: A library for differentiable nonlinear opti-
mization,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 3801-3818, 2022.
C. Wang et al., “PyPose: A library for robot learning with physics-based
optimization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2023, pp. 22024-22034.

S. Cheng, L. Song, M. Kim, S. Wang, and N. Hovakimyan, “DiffTunet:
Hyperparameter-free auto-tuning using auto-differentiation,” in Proc. 5th
Annu. Learn. Dyn. Control Conf., 2023, vol. 211, pp. 170-183.

P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone, “DiffStack: A dif-
ferentiable and modular control stack for autonomous vehicles,” in Proc.
Conf. Robot Learn., 2023, pp. 2170-2180.

A. Romero, Y. Song, and D. Scaramuzza, “Actor-critic model predictive
control,” in Proc. IEEE Int. Conf. Robot. Automat., 2024.

G. Li, M. Mueller, V. M. Casser, N. Smith, D. Michels, and B. Ghanem,
“Oil: Observational imitation learning,” in Proc. Robot., Sci. Syst.,
Freiburg im Breisgau, Germany, 2019, pp. 1-10.

M. Muller, G. Li, V. Casser, N. Smith, D. L. Michels, and B. Ghanem,
“Learning a controller fusion network by online trajectory filtering for
vision-based UAV racing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops, 2019, pp. 573-581.

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]
[194]
[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

3065

M. Miiller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4CV:
A photo-realistic simulator for computer vision applications,” Int. J.
Comput. Vis., vol. 126, no. 9, pp. 902-919, 2018.

M. Muller, V. Casser, N. Smith, D. L. Michels, and B. Ghanem, “Teaching
UAVs to race: End-to-end regression of agile controls in simulation,” in
Proc. Eur. Conf. Comput. Vis. Workshops, 2018, pp. 11-29.

L. O. Rojas-Perez and J. Martinez-Carranza, “DeepPilot: A CNN for
autonomous drone racing,” Sensors, vol. 20, no. 16, 2020, Art. no. 4524.
J. Fu, Y. Song, Y. Wu, E. Yu, and D. Scaramuzza, “Learning deep
sensorimotor policies for vision-based autonomous drone racing,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023, pp. 5243—
5250.

J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza, “Contrastive
learning for enhancing robust scene transfer in vision-based agile flight,”
in Proc. IEEE Int. Conf. Robot. Automat., 2024.

P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg, “Day-
dreamer: World models for physical robot learning,” in Proc. Conf. Robot
Learn., 2023, pp. 2226-2240.

L. Smith, I. Kostrikov, and S. Levine, “Demonstrating a walk in the park:
Learning to walk in 20 minutes with model-free reinforcement learning,”
in Proc. Robot., Sci. Syst. XIX, 2023, pp. 1-9.

L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine, “Legged
robots that keep on learning: Fine-tuning locomotion policies in the real
world,” in Proc. Int. Conf. Robot. Automat., 2022, pp. 1593-1599.

A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion
with cross-modal supervision,” in Proc. IEEE Int. Conf. Robot. Automat.,
2023, pp. 7295-7302.

P. A. Toannou and J. Sun, Robust Adaptive Control, Ed., Mineola, New
York, USA: Dover Publications, 2012.

K. J. Astrdm and B. Wittenmark, Adaptive Control, Ed., Mineola, New
York, USA: Dover Publications, 2013.

E. Lavretsky and K. A. Wise, “Robust adaptive control,” in Robust and
Adaptive Control. Berlin, Germany: Springer, 2013, pp. 1-449.

S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-
control-Oriented meta-learning for nonlinear systems,” in Proc. Robot.,
Sci. Syst., 2021, pp. 1-12.

D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik, and M. W. Mueller,
“Learning a single near-hover position controller for vastly different
quadcopters,” in Proc. IEEE Int. Conf. Robot. Automat., 2023, pp. 1263—
1269.

J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig,
“Learning to fly—A gym environment with pybullet physics for reinforce-
ment learning of multi-agent quadcopter control,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2021, pp. 7512-7519.

M. Kulkarni, T. J. Forgaard, and K. Alexis, “Aerial gym-Isaac gym
simulator for aerial robots,” 2023, arXiv:2305.16510.

L. Martin, “Alphapilot Al drone innovation challenge,” Jan. 2020.
[Online]. Available: https://lockheedmartin.com/en-us/news/events/ai-
innovation-challenge.html

C. de Wagter, F. Paredes-Vallés, N. Sheth, and G. C. de Croon, “Learning
fast in autonomous drone racing,” Nat. Mach. Intell., vol. 3, 2021,
Art. no. 923.

E. Ackerman, “Autonomous drones challenge human champions in first
“fair’ race,” Jul. 2022. Accessed: May 22, 2024, [Online]. Available:
https://spectrum.ieee.org/zurich-autonomous-drone-race

Y. Song and D. Scaramuzza, “Policy search for model predictive control
with application to agile drone flight,” IEEE Trans. Robot., vol. 38, no. 4,
pp. 2114-2130, Aug. 2022.

A. Loquercio, A. Saviolo, and D. Scaramuzza, “Autotune: Controller
tuning for high-speed flight,” IEEE Robot. Automat. Lett., vol. 7, no. 2,
pp. 4432-4439, Apr. 2022.

A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Kara-
man, “The blackbird dataset: A large-scale dataset for UAV percep-
tion in aggressive flight,” in Proc. Int. Symp. Exp. Robot., 2018,
pp. 130-139.

C. Pfeiffer and D. Scaramuzza, “Human-piloted drone racing: Visual
processing and control,” IEEE Robot. Automat. Lett., vol. 6, no. 2,
pp. 3467-3474, Apr. 2021.

M. Bosello et al., “Race against the machine: A fully-annotated, open-
design dataset of autonomous and piloted high-speed flight,” IEEE Robot.
Automat. Lett., vol. 9, no. 4, pp. 3799-3806, Apr. 2024.

X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “EGO-Planner: An ESDF-
free gradient-based local planner for quadrotors,” IEEE Robot. Automat.
Lett., vol. 6, no. 2, pp. 478-485, Apr. 2021.

J. Tordesillas and J. P. How, “FASTER: Fast and safe trajectory planner
for navigation in unknown environments,” IEEE Trans. Robot., vol. 38,
no. 2, pp. 922-938, Apr. 2022.

https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://spectrum.ieee.org/zurich-autonomous-drone-race

3066

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

V. Kumar and N. Michael, “Opportunities and challenges with au-
tonomous micro aerial vehicles,” Int. J. Robot. Res., vol. 31, no. 11,
pp. 1279-1291, 2012.

T. Baca et al., “The MRS UAV system: Pushing the frontiers of re-
producible research, real-world deployment, and education with au-
tonomous unmanned aerial vehicles,” J. Intell. Robot. Syst., vol. 102,
no. 1, Apr. 2021, Art. no. 26.

L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M.
Pollefeys, “PIXHAWK: A micro aerial vehicle design for autonomous
flight using onboard computer vision,” Auton. Robots, vol. 33, no. 1,
pp. 21-39, Aug. 2012.

L. Bauersfeld, L. Spannagl, G. Ducard, and C. Onder, “MPC flight
control for a tilt-rotor VTOL aircraft,” IEEE Trans. Aerosp. Electron.
Syst., vol. 57, no. 4, pp. 2395-2409, Aug. 2021.

“FPV wing racing association”. [Online]. Accessed: May 22, 2024,
Available: https://wrl-uk.com/

E. Tal and S. Karaman, “Global incremental flight control for agile
maneuvering of a tailsitter flying wing,” J. Guid., Control, Dyn., vol. 45,
no. 12, pp. 2332-2349, 2022.

E. Tal, G. Ryou, and S. Karaman, “Aerobatic trajectory generation for
a VTOL fixed-wing aircraft using differential flatness,” IEEE Trans.
Robot., vol. 39, no. 6, pp. 4805-4819, Dec. 2023.

J. Hidalgo-Carri6, G. Gallego, and D. Scaramuzza, “Event-aided direct
sparse odometry,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2022, pp. 5781-5790.

Z. Teed and J. Deng, “DROID-SLAM: Deep visual slam for monocular,
stereo, and RGB-D cameras,” Adv. Neural Inf. Process. Syst., vol. 34,
pp. 16558-16569, 2021.

C. Pfeiffer, S. Wengeler, A. Loquercio, and D. Scaramuzza, “Visual
attention prediction improves performance of autonomous drone racing
agents,” PLoS One, vol. 17, no. 3, 2022, Art. no. e0264471.

G. C. de Croon, J. J. Dupeyroux, C. De Wagter, A. Chatterjee, D. A.
Olejnik, and F. Ruffier, “Accommodating unobservability to control flight
attitude with optic flow,” Nature, vol. 610, no. 7932, pp. 485490, 2022.
A.Bajcsy, A. Loquercio, A. Kumar, and J. Malik, “Learning vision-based
pursuit-evasion robot policies,” in Proc. IEEE Int. Conf. Robot. Automat.,
2024.

R. Spica, D. Falanga, E. Cristofalo, E. Montijano, D. Scaramuzza, and
M. Schwager, “A real-time game theoretic planner for autonomous two-
player drone racing,” in Proc. Robot., Sci. Syst., 2018, pp. 1-9.

Z. Wang, T. Taubner, and M. Schwager, “Multi-agent sensitivity en-
hanced iterative best response: A real-time game theoretic planner for
drone racing in 3D environments,” Robot. Auton. Syst., vol. 125, 2020,
Art. no. 103410.

J. Chen, K. Su, and S. Shen, “Real-time safe trajectory generation for
quadrotor flight in cluttered environments,” in Proc. IEEE Int. Conf.
Robot. Biomimetics, 2015, pp. 1678-1685.

F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory gener-
ation for quadrotor flight in complex environments,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2017, pp. 3681-3688.

F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation for
quadrotors using fast marching method and Bernstein basis polynomial,”
in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 344-351.

Y.-L. Chow, M. Pavone, B. M. Sadler, and S. Carpin, “Trading safety
versus performance: Rapid deployment of robotic swarms with robust
performance constraints,” J. Dyn. Syst., Meas., Control, vol. 137, no. 3,
2015, Art. n0.031005.

S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in
Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 5883-5890.

S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone, “Robust
tracking with model mismatch for fast and safe planning: An SOS
optimization approach,” in Proc. 13th Workshop Algorithmic Found.
Robot., 2020, pp. 545-564.

R. Luo et al., “Sample-efficient safety assurances using conformal
prediction,” in Proc. Int. Workshop Algorithmic Found. Robot., 2022,
pp. 149-1609.

M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained
dynamic programming with application to risk-aware robotic space ex-
ploration,” Auton. Robots, vol. 39, pp. 555-571, 2015.

A.D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, “Control barrier functions: Theory and applications,” in Proc.
IEEE 18th Eur. Control Conf., 2019, pp. 3420-3431.

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in Proc. IEEE 56th
Annu. Conf. Decis. Control, 2017, pp. 2242-2253.

X. Wang, K. Leung, and M. Pavone, “Infusing reachability-based safety
into planning and control for multi-agent interactions,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2020, pp. 6252—6259.

K. Leung et al., “On infusing reachability-based safety assurance within
planning frameworks for human-robot vehicle interactions,” Int. J. Robot.
Res., vol. 39, no. 10-11, pp. 1326-1345, 2020.

A. Elhafsi, B. Ivanovic, L. Janson, and M. Pavone, “Map-predictive
motion planning in unknown environments,” in Proc. IEEE Int. Conf.
Robot. Automat., 2020, pp. 8552-8558.

K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, ‘“Proba-
bilistic model predictive safety certification for learning-based control,”
IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 176-188, Jan. 2022.

L. Bauersfeld, E. Kaufmann, and D. Scaramuzza, ‘“User-conditioned
neural control policies for mobile robotics,” in Proc. Int. Conf. Robot.
Automat., 2023, pp. 1342-1348.

T. Yu et al., “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Proc. Conf. Robot Learn., 2019,
pp. 1094-1100.

M. Turchetta, A. Kolobov, S. Shah, A. Krause, and A. Agarwal, “Safe re-
inforcement learning via curriculum induction,” Adv. Neural Inf. Process.
Syst., vol. 33, pp. 12151-12162, 2020.

K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards continual
reinforcement learning: A review and perspectives,” J. Artif. Intell. Res.,
vol. 75, pp. 1401-1476, 2022.

Drew Hanover received the bachelor’s degree in me-
chanical engineering from Michigan Technological
University, Houghton, MI, USA, in 2018 and the
master’s degree in robotics from the University of
Michigan, Ann Arbor, M1, in 2022.

He has worked with NASA, General Motors, and
Pratt and Miller Engineering across a multitude of en-
gineering domains. He is currently the Chief Technol-
ogy Officer and the Founder of Innovire AG, Ziirich,
Switzerland.

Antonio Loquercio received the M.Sc. degree in
robotics from ETH Ziirich, Ziirich, Switzerland, in
2017, and the Ph.D. degree in robotics from the
University of Ziirich, Ziirich, in 2021.

He worked with the Berkeley Artificial Intelligence
Research Lab, UC Berkeley, Berkeley, CA, USA,
from 2022 to 2024. He is currently a Professor of
electrical engineering and computer science with the
University of Pennsylvania, Philadelphia, PA, USA.

Leonard Bauersfeld (Graduate Student Member,
IEEE) received the M.Sc. degree in robotics, system
and control from ETH Ziirich, Ziirich, Switzerland
in 2020. He is currently working toward the Ph.D.
degree with the Robotics and Perception Group, Uni-
versity of Ziirich, under the supervision of Prof. D.
Scaramuzza.

He works on novel approaches, combining first-
principles methods with modern data-driven models
to advance agile quadrotor flight. His research in-
terests include autonomous vision-based quadrotor

flight and quadrotor simulations.

https://wrl-uk.com/

HANOVER et al.: AUTONOMOUS DRONE RACING: A SURVEY

Angel Romero (Graduate Student Member, IEEE)
received the B.Sc. degree in electronics engineer-
ing from the University of Malaga, Mdlaga, Spain,
in 2015, and the M.Sc. degree in robotics, systems
and control from ETH Ziirich, Ziirich, Switzerland,
in 2018. He is currently working toward the Ph.D.
degree with the Robotics and Perception Group, Uni-
versity of Ziirich, Ziirich, under the supervision of
Prof. D. Scaramuzza.

His research interests include finding new limits in
the intersection of machine learning, optimal control,
and computer vision applied to super agile autonomous quadrotor flight.

Robert Penicka received the Ph.D. degree in artifi-
cial intelligence from the Czech Technical University
(CTU) in Prague, Prague, Czech Republic, in 2020.

He was a Postdoctoral Researcher with the Uni-
versity of Ziirich between 2020 and 2022 under the
supervision of Prof. D. Scaramuzza. Since 2022, he
has been a Research Fellow with CTU, focusing
on high-level mission planning, trajectory planning,
and control for unmanned aerial vehicles. He is also
currently a Postdoctoral Fellow with the Multi-Robot
Systems (MRS) group, CTU. He bridged the gap
between mission planning and trajectory planning, particularly in cluttered
environments.

Dr. Penicka was the recipient of the Dean’s Prize and second place in the
Werner von Siemens Award for Industry 4.0. He was also the recipient of the
Joseph Fourier Prize and the Antonin Svoboda Award for his doctoral thesis.

Yunlong Song received the M.Sc. degree in infor-
mation and communication engineering from Tech-
nical University of Darmstadt, Darmstadt, Germany,
in 2018. He is currently working toward the Ph.D.
degree in robotics with the Robotics and Perception
Group, University of Ziirich, Ziirich, Switzerland,
under the supervision of Prof. D. Scaramuzza.

His research interests include reinforcement learn-
ing, machine learning, and robotics.

Giovanni Cioffi (Student Member, IEEE) received
the M.Sc. degree in mechanical engineering from
ETH Ziirich, Ziirich, Switzerland, in 2019. He is
currently working toward the Ph.D. degree in robotics
with the University of Ziirich, Ziirich, under the su-
pervision of Prof. D. Scaramuzza.

His research interests include the intersection of
computer vision and robotics, exploring topics such
as visual(-inertial) odometry and simultaneous local-
ization and mapping (SLAM).

Dr. Cioffi was the recipient of multiple awards in
top-tier robotic conferences and journals, such as the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 2023 Best Paper Award
and the RA-L 2021 Best Paper Award.

3067

Elia Kaufmann (Member, IEEE) received the B.Sc.
degree in mechanical engineering in 2014, the M.Sc.
degree in robotics, systems, and control from ETH
Ziirich, Ziirich, Switzerland, in 2017, and the Ph.D.
degree in informatics from the Institute for Informat-
ics, University of Ziirich, Ziirich, in 2022, under the
supervision of Prof. D. Scaramuzza.

His doctoral research focused on advancing the ap-
plication of machine learning techniques to enhance
perception and control of autonomous aerial vehicles.
He is currently a Senior Autonomy Engineer with
Skydio, San Mateo, California, USA.

Davide Scaramuzza (Senior Member, IEEE) re-
ceived the Ph.D. degree in robotics from ETH Ziirich,
Ziirich, Switzerland, in 2008.

He was a Postdoctoral Fellow with the Univer-
sity of Pennsylvania, and was a Visiting Profes-
sor with Stanford University. His research focuses
on autonomous, agile microdrone navigation using
standard and event-based cameras. He pioneered au-
tonomous, vision-based navigation of drones, which
inspired the navigation algorithm of the NASA Mars
helicopter and many drone companies. He contributed
significantly to visual-inertial state estimation, vision-based agile navigation of
microdrones, and low-latency, robust perception with event cameras, which were
transferred to many products, from drones to automobiles, cameras, AR/VR
headsets, and mobile devices. In 2015, he cofounded Ziirich-Eye, today Meta
Ziirich, which developed the world-leading virtual-reality headset Meta Quest.
In 2020, he cofounded SUIND, which builds autonomous drones for precision
agriculture. In 2022, his team demonstrated that an artificial intelligence (AI)-
controlled, vision-based drone could outperform the world champions of drone
racing, a result that was published in Nature. Many aspects of his research have
been featured in the media, such as The New York Times, The Economist,
and Forbes. He is a Consultant for the United Nations on disaster response, Al
for good, and disarmament. He is currently also a Professor of robotics and
perception with the University of Ziirich, Ziirich.

Dr. Scaramuzza was the recipient of many awards, including an IEEE Tech-
nical Field Award, the IEEE Robotics and Automation Society Early Career
Award, a European Research Council Consolidator Grant, a Google Research
Award, two NASA TechBrief Awards, and many paper awards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

