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RL-Based Adaptive Controller for High Precision
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Abstract—High precision control of soft robots is challenging
due to their stohcastic behavior and material-dependent nature.
While RL has been applied in soft robotics, achieving precision in
task execution is still a long way off. Traditionally, RL requires
substantial data for convergence, often obtained from a training
environment. Yet, despite exhibiting high accuracy in the training
environment, RL-policies often fall short in reality due to the
training-to-reality gap, and the performance is exacerbated by
the stochastic nature of soft robots. This study paves the way
for the implementation of RL for soft robot control to achieve
high precision in task execution. Two sample-efficient adaptive
control strategies are proposed that leverage the RL-policy. The
schemes can overcome stochasticity, bridge the training-to-reality
gap, and attain desired accuracy even in challenging tasks, such as
obstacle avoidance. In addition, deliberate and reversible damage
is induced to the pneumatic actuation chamber, altering the soft
robot’s behavior to test the adaptability of our solutions. Despite the
damage, desired accuracy was achieved in most scenarios without
needing to retrain the RL-policy.

Index Terms—Bayesian optimization (BO), cerebellum inspired
compensator for motor control, imitation learning by coaching,
machine learning-based control, reinforcement learning (RL), soft
robots.

I. INTRODUCTION

ACCURATE modeling of soft robots poses a significant
challenge due to their highly deformable mechanics [1].

Various solutions have been suggested in this domain (see
Section II-A). One such modeling approach is machine learning
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(ML)-based, chosen for its capacity to learn from real robot
data [2]. ML-based strategies have showcased superior per-
formance in enabling training of complex tasks (see Table I).
However, despite the incorporation of ML-based schemes, there
is a reported decline in control solution performance when tested
on the actual soft robot compared to performance within training
environments. This decline can be attributed to the performance
gap between the learned model and the soft robot behavior,
commonly known as the training-to-reality gap.

The gap results from two primary factors: 1) Data-driven
models, such as trained recurrent neural networks, forecast
future states of the soft arm based on current actions and past pre-
dictions. As these predictions are approximations, small errors in
current and past predictions accumulate over time, contributing
to the performance disparity. 2) Inherent stochasticity, as illus-
trated in Fig. 1(a), in the behavior of a pneumatically actuated
soft arm (see Section III-B), results from intrinsic factors like
nonlinear material properties (e.g., hysteresis) and other elastic
properties under varying environmental conditions, and extrinsic
factors related to the soft arm’s design characteristics, such as
length, number of modules, variable moment of inertia, and
initial positions.

Reinforcement learning (RL)-based algorithms offer the ad-
vantage of training inherently stable control solutions [3] for
complex tasks without an in-depth understanding of the un-
derlying platform. This makes them promising for addressing
the challenges related to the control of soft robots. However,
their adaptability to variations in the evaluation environment
compromises task execution accuracy [4], making the recovery
of desired task accuracy while overcoming the training-to-reality
gap an active area of research in the robotics community. In the
context of soft robot control, this challenge is exacerbated due
to the stochastic nature of the systems.

In this study, we applied proximal policy optimization (PPO),
an RL algorithm [5], to train a policy for a high-precision control
problem using a data-driven dynamics model of a three-module
pneumatically actuated soft continuum arm. The policy was
trained for a reaching task with obstacle avoidance, as depicted
in Fig. 1(b). Experimental evaluation revealed a significant
decrease in policy performance when applied to the soft arm
compared to its performance in the training environment. This
difference is attributed to the training-to-reality gap, worsened
by the inherent stochasticity in the soft arm, negatively impacting
task repeatability with the desired accuracy.
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TABLE I
LITERATURE FOCUSED ON TASK ACCURACY

Fig. 1. Main contributions of this work. (a) Stochasticity exhibited by the three-module soft arm, where two independent random actuation-space trajectories
were used to actuate the soft arm twice. In each trial, the black and blue represent the first and second trajectory for the respective actuation-space trajectory,
respectively. (b) Reaching task with obstacle avoidance with the soft arm in initial and final positions. (c) Comparison between the accuracy, task repeatability, and
sample efficiency achieved with the policies resulted from RL, BOAC, and GPRCA. Please note, trials 1, 3, and 6 in (c) represent collision in RL-policy testing.

Two distinct control strategies were devised to successfully
bridge the performance gap and restore task accuracy in the robot
dynamics domain within seconds, as illustrated in Fig. 1(c).
The first approach, Bayesian optimization assisted coaching
(BOAC), draws inspiration from imitation learning (IL) by
coaching [6], a variant of traditional IL. Traditional IL trains
a task policy based on an expert’s task demonstrations and
action predictions from the same [7] or different supervisor or
oracle [8]. IL by coaching trains a policy based on a coach
and an oracle, with the coach presenting easy-to-reach goals
followed by gradual improvements to reach the final goals, and
the oracle predicting actions to reach the respective goals. The
second approach, Gaussian process-based recurrent cerebellar
architecture (GPRCA), trains an online compensator using er-
rors between observations made by the robot in the task space
and those made in the training environment. This scheme is
inspired by the recurrent architecture proposed in [9]. Both
approaches utilize Bayesian optimization for improved sample
efficiency.

These strategies were evaluated not only for bridging the
training-to-reality gap with task repeatability and desired accu-
racy but also for their adaptability to scenarios that the training
environment could not account for, such as various damage

incidents to the soft arm (see Section V-A) and external loads
(details in the supplementary materials). The adaptive nature
of the control strategies, coupled with sample efficiency and
task repeatability, contributes to the overall reliability of soft
robots, complementing the existing literature on overcoming the
training-to-reality gap.

The main contributions of this study, as summarized in Fig. 1,
include the following.

1) Deploying a soft arm with nine pneumatic chambers for
obstacle avoidance and a high-precision reaching task
using RL in the robot dynamics domain.

2) Bridging the training-to-reality gap by addressing the
soft arm behavioral stochasticity using two online control
strategies (Section V-C).

3) Successfully performing the reaching task with the soft
arm, even after deliberately damaging it in various ways,
using the proposed control schemes (Section V-D).

4) Achieving sample efficiency through the use of Bayesian
optimization in the control strategies.

5) Demonstrating task repeatability with desired accuracy,
despite stochasticity (Section III-B), damage incidents
(Section V-A), or external loading (supplementary ma-
terials).



2500 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

II. RELATED WORK

This section lists the available literature on soft robot
modeling and control using learning and nonlearning-based
schemes, and comparison of proposed control strategies with
similar literature regarding overcoming the performance gap.

A. Nonlearning Versus Learning-Based Methods for Modeling

When it comes to modeling soft robots, there have been nu-
merous advancements dealing with a range of challenges high-
lighted in the literature, including constant curvature (CC) [14],
[15], piecewise constant curvature (PCC) [14], [16], piecewise
smooth curvature (PSC) [17], Cosserat rod theory [18], [19], and
finite element method (FEM)-based [20], [21]. The approaches
explain soft robots’ behavior by either approximating the curved
geometry of a soft uniform robot using fixed geometrical pa-
rameters for single or multiple curved segments, or low-order
polynomials describing the flexure motion by assuming smooth
bending in an elastic beam, or deriving a set of nonlinear par-
tial differential equations to compute differential displacements
around a set of boundary conditions for an elastic rod, or lastly
computing nonlinear and nonuniform deformations in a soft
body, respectively.

Although the underlying behavioral description of soft robots
has improved through new modeling schemes, acquiring the
generic behavior of soft robots even in a controlled environment
is still a long way off [22]. In [23], [24], and [25], soft robot
behavior was emulated by training an artificial neural network
(ANN) on data collected directly on the soft robot. The behavior
was reasonably approximated, although the stochasticity in the
soft platform due to inherent material properties or extrinsic
stimuli still poses a performance discrepancy between the model
and the soft robot.

B. Nonlearning Versus Learning-Based Methods for Control

Controlling soft robots using nonlearning-based control meth-
ods is a challenging area mainly due to intrinsic difficulties in
deriving controllers for systems with virtually infinite degrees
of freedom. Most of the literature attempts to approximate the
inverse statics or Kinematics (IK) of the soft robot to derive
controllers. Chirikjian et al. [26] proposed a modal-approach
based on a set of time-varying backbone curve functions for a
hyper-redundant continuum robot for planar and spatial move-
ments. Coevoet et al. [27] presented an interactive or contact
handling controller based on an IK model approximation using
FEM. Models based on nonlearning have also been used, such as
CC, PCC, PSC, and Cosserat models with a closed-loop control
scheme in 3-D trajectory tracking [28], curvature and bending
control [16], a multicontact point handling framework for con-
tact force estimation, end-effector path planning, and navigat-
ing obstacles through planar structured environments [29], and
finally planer motion control using sliding mode control [30],
respectively. On the account of restricted capability of soft robots
exhibited under the umbrella of nonlearning-based approaches
in sophisticated situations, a comparative analysis of nonlearn-
ing to learning based was used in [31].

1) Supervised Learning (SL) for Control: This is the most
explored area for the control of soft robots [32]. Among the
pioneering works, the authors in [1], [11], [23], [33] use an ANN
trained using SL to approximate IK or forward dynamics model
for position control, quasi-static tracking, dynamic reaching,
and self-stabilizing open-loop dynamic control, respectively.
Similar approaches also include [24], [25] for position con-
trol using model predictive control and open-loop trajectory
tracking, respectively, on a data-driven model using SL. In this
class of algorithms, either an SL-trained model with an external
controller running feedback optimization has to be used [34] or a
controller trained on a task-specific data [35]. In both cases, the
solution may either lack robusticity/adaptability or will perform
merely qualitatively as in dynamic movement primitives [36] or
probabilistic movement primitives [37] assisted adaptive con-
trollers to approximate trajectory control.

2) Beyond SL for Control: RL for control [38] has attracted
more attention of soft roboticists than other classes of ML
algorithms, using nonlearning-based and learning-based mod-
els. Some examples of the former category are: A Cosserat
model simulator in [39] and [40] employed to follow different
trajectories in 2-D and 3-D under cluttered environments using
RL [41]. SoMo [42], a framework able to approximate contin-
uum manipulators through rigid link systems with spring-loaded
joints, deployed for a variety of tasks [43], and also to benchmark
RL-controllers. An FEM simulator [44], which accounts for ma-
terial properties in a soft robot deformation, has been exploited
for tasks where interactions with the external environment are re-
quired [45]. Commercial simulation engines are also used with a
simplified continuum manipulator for feedback, such as Gazebo
to find an unknown object in the robot workspace [46], and
MuJoCo to reach target-positions with the end effector tip [47]
and distance maintenance for minimally invasive surgery [48].

For the second category, the IK or dynamics of a soft robot are
learned using an ANN and employed in an open loop [11], [49]
for self-stabilizing trajectory and position control, respectively,
or closed loop [12], [13] for dynamic reaching and trajectory fol-
lowing, respectively. As opposed to conventional or data-driven
modeling methods, Oikonomou et al. [50] presented a modified
version of continuous actor–critic learning automaton to learn a
policy capable of passing through a series of target waypoints
generated using dynamic movement primitives (and proposed
probabilistic movement primitives for soft robots with stochastic
performance). Approaches other than RL-based schemes may
also follow a similar trend, such as an adaptive controller, using
a cerebellum-inspired approach built on top of a data-driven IK
model [51] to enable desired trajectory tracking.

C. Overcoming Performance Gaps in Controls

The studies outlined in Table I present controllers in the soft
robot’s dynamic domain, revealing significant declines in control
solution performance when they are tested in evaluation envi-
ronments. The declines are a result of the controllers’ inability
to account for the stochasticity, training-to-reality gap, or any
other factor affecting soft robot’s behavior control.
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Fig. 2. Aims to quantify the stochasticity in the form of a distribution, shown
in (a), for the soft arm, shown in (b), based on ten trials conducted using the
same actuation space trajectory. The blue box (with red border) represents the
middle 50% of the underlying dataset and the red horizontal line within the box
represents the median of the central 50% dataset. The lower and upper extreme
red whiskers, extending from the box, represent the minimum and maximum
range of the data, respectively. Each blue circle (with red border) outside the
extreme whiskers represent an outlier.

The studies that focus on addressing the behavioral gaps are
either applied directly to the model [52], [53] or to the derived
control solution [54], [55], [56]. Our proposed schemes belong
to the latter category. For the first category, Fang et al. [52]
proposed learning forward and inverse kinematic models using
neural networks on a simulator. Then, they used fewer samples
directly from the hardware to train additional layers, which, thus,
mitigated the performance gap. Similarly, Dubied et al. [53]
optimized different elements associated with the FEM, such
as meshing elements and resolution, and numerical damping,
to improve the performance disparity between the simulation
environment and the soft robot’s performance.

For the second category, Johnson et al. [54] combined a
deep neural network with a first-principles model to improve
the overall accuracy of a nonlinear model predictive controller
(MPC). Despite being quite similar to our proposed approaches,
this solution does not account for the stochasticity in the robot’s
behavior. The solution in [54] takes 88% more data samples
than our approaches, on average, to reduce the error in the MPC
performance by 52%. Our approaches take fewer samples to
reduce the error in RL-policy performance by 67% on the soft
robotic arm while accounting for the training-to-reality gap and
stochasticity, ensuring task repeatability. Similar approaches are
also presented in [55] and [56] to overcome the performance
disparity. Neither of these approaches accounts for the training-
to-reality gap. The scheme proposed in [55] learns to perform a
trajectory in a simulation environment and validates it (also in the
same simulation environment) by overcoming the uncertainty
introduced in the inverse IK. The adaptor is a cerebellar-inspired
control architecture, which takes approximately 75% more data
samples than our solutions to reduce the error by 70%. On the
other hand, Koryakovskiy et al. [56] used an RL-agent to learn

to compensate for performance discrepancy. This approach may
not be practical for soft robots as it takes approximately 10 hrs
to learn to provide the compensation.

ML-based schemes can emulate a soft robot’s performance
with a good degree of accuracy and control for a desired task.
However, adapting to the range of soft robot’s behaviors over
time while continuing to perform the intended task with a similar
proclivity is still an active area of research. In this study, we have
targeted this area and successfully demonstrated overcoming
stochasticity, bridging the training-to-reality gap, and ensuring
accuracy in the task execution, even for scenarios the trained
model is incapable of accounting for, such as damage incidents
and external loadings. In the following sections, we attempt
to quantify the stochasticity (Section III-B), model the robot
dynamics (Section III-C), derive a control policy offline using
the dynamics model with an RL algorithm (Section IV-A),
present two control schemes (Sections IV-B and IV-C), and the
obtained results (Section V) along with the policy evaluation
scenarios on a soft arm (Section III-A). Section VI discusses the
findings. Finally, Section VII concludes this article.

III. PRELIMINARIES

A. Experimental Setup

The robot in question is a pneumatically actuated three-
module soft continuum arm, as shown in Fig. 2(b). This plat-
form was initially designed to provide support to the elderly in
taking shower as presented in [57] and [58]. Each module in
the soft arm is independently actuated using three pneumatic
chambers placed at 120◦ in a circular arrangement. Each pneu-
matic chamber consists of two McKibben-based flexible fluidic
muscles. The chambers are constrained by thin disks made of
polypropylene. This arrangement ensures bending in all direc-
tions by actuating the chambers individually or in pairs. Once all
three chambers have been actuated simultaneously with equal
pressure, it produces whole arm extension. A collection of such
behaviors ensure that the space around the robot is accessible.
Since each module is actuated independently, the whole arm is
capable of exhibiting redundant behavior, up to a certain degree.
This redundancy, along with adaptive decision-making capabil-
ity, can be exploited to elicit recovery from behavior-altering
factors, such as repeatable and reversible damage incidents and
external loadings. The soft arm (with three modules) is operated
using nine pneumatic control signals.

To pneumatically actuate the chambers we used an electronic
proportional microregulator series K8P with an operating pres-
sure from 0 to 4 bars (400 KPa). For the safety of the soft arm,
the pressure ceiling was set to 1.5 bars (150 KPa). There were
a total of nine regulators responsible for the low-level control
of nine chambers. As a result of the nine pneumatic signals,
we tracked the tip of all three modules using a motion capture
system (Vicon system) with eight Bonita cameras. We placed
three markers arranged at 120◦ on the tip of each module. The
markers acted as the three corners of an equilateral triangle,
the center of this triangle represented the tip position of that
module. Additional three markers were placed on the base of
the soft arm to generate the origin plane for the soft arm, which
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TABLE II
RESULTS FOR ADDITIONAL GOAL-POINTS AND OBSTACLE LOCATIONS WITH ALL DAMAGE SCENARIOS

also served as the origin frame. The cameras of motion capture
system were set to capture different perspectives of the soft robot
with redundancy (i.e., each marker is tracked by at least two
cameras) in order to recreate the entire network of markers. The
Vicon system was set to track the markers at 100 Hz; additional
delays were introduced to synchronize the tracking with our
control/optimization loop. The positions of all the markers (with
respect to the robot origin frame) were published via ROS to the
Python environment for closed-loop control with the RL-policy.

For the task setting, a fixed cuboid obstacle (5 mm thick
rectangle) was placed with a dimension (in mm scale) extending
from −60.0 to 60.0 in the x-direction, −50.0 on the y-axis
(with a thickness of 5 mm), and −500.0 to −700.0 on the
z-axis (according to the robot’s origin plane). The obstacle
was stationary, and mostly restricted the workspace of the third
module and partially the second module of the soft arm, and
completely blocked direct access to the goal-point. The tip of
the third module was required to reach the goal-point in the
3-D robot reference frame, while avoiding a collision with the
obstacle. The learning agent must learn to use the unrestricted
modules of the soft arm, as assistive limbs, to ensure the tip of
the third module reaching the desired goal-point. In addition, for
faster convergence, the search space of the policy was restricted
by introducing a boundary (in mm) that extended from −130.0
to 90.0 along x-axis, −150.0 to 50.0 along the y-axis, and
−700.0 to −570.0 along the z-axis. Different environments
with varied goal-points in all three axes (in the third module)
were trained and tested with proposed schemes. With each of
these goal-points, the obstacle location was also varied, mostly
along the z-axis, to see different ways in which the policy
enabled reaching desired goal-point with sufficient accuracy.
The placement of the goal-points behind the obstacle made some
of the goal-points more difficult to reach than others. The results
with different goal-points are compiled in Table II along with
the evaluation scenarios as listed in Section V-A.

B. Stochasticity Analysis

The stochasticity in the soft robot’s performance could be
linked to either intrinsic factors (inherent to the material), such

as material hysteresis and its variable elastic properties due to
environmental conditions, etc., or extrinsic factors (related to
the characteristic length and mode of actuation), such as variable
initial positions due to flexible shape, variable moments of inertia
due to imbalanced morphology resulted from manufacturing
inaccuracies, and incomplete depletion of pneumatic channels
during operation.

To study the stochasticity in the soft arm, we created a random
trajectory in the actuation space with nine pneumatic actuators
for the three-module soft arm shown in Fig. 2(b). We conducted
ten trials with the same actuation space trajectory. At the end
of each trial, a change in the resting position of the soft arm
was observed due to its flexible morphology. The difference
in the initial conditions introduced visible variability in the
task-space recordings. There is also a possibility that there
are manufacturing inaccuracies in the soft arm, leading to an
imbalanced morphology. This imbalance can cause variations
in the moments of inertia along the length of the soft arm. In
addition, actuating the pneumatic chambers at high frequency
leaves less time for them to inflate and deflate fully. These
factors, combined with material’s own hysteresis, contributes
to the stochasticity in its behavior.

The first trial in the experiments was taken as the base-trial
and distances of the following trials were computed with respect
to the base trial. Population statistics of the trials, in the form of
a dispersion in the mean distances among the trials, is shown as a
boxplot in Fig. 2. We conducted similar experiments on a single-
module and two-module soft arm as well that are one-third and
two-thirds of the length, approximately, compared to the three-
module soft arm, respectively. The stochasticity was found to be
relatively insignificant in the single-module and more visible in
the two-module arm.

C. Dynamics Modeling of Three-Module Soft Arm

To model the dynamics of the three-module soft arm [shown
in Fig. 2(b)], we used a data-driven modeling technique where
the data gathered on the robot were used in SL (using a neural
network as a function approximator) to predict the general
behavior underlying the gathered dataset. For this purpose, we
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collected the tip movements of all three modules using the Vicon
system for a dynamically saturating pressure signal for 10 min
(6000 points at 10 Hz). Here, the time chosen can be treated
as a hyperparameter, which varies depending on the soft arm
complexity, desired accuracy, and the function approximator
selected for modeling. A pressure ceiling was set for safe
operation. During the data gathering, the pressure ceiling was
varied dynamically, while respecting the safety threshold, and
saturated at that pressure for randomly chosen time instants for
all nine pressure signals. This helped in acquiring a variety of
nonrepetitive robot movements within its workspace.

The movement recorded at an instant t is in terms of a state
(xt) and action (τt) vectors with a dimension of 1 × 9 each.
The state vector includes the end-effector positions (in task
space) of all three modules, while the action vector has nine
signals for nine pressure chambers. We trained a recurrent neu-
ral network based architecture [using long-short-term-memory
(LSTM)-type layers] with the gathered data. The architecture
is a single hidden layer with 128 nodes, followed by a Dense
output layer, and a 30% neuron-drop dropout layer with Adam
optimizer and nonlinearly decreasing learning rate from 0.001
to 0.0001. We used the softsign activation function for the input,
hidden, and output layers. The dataset was normalized in the
range −1 to 1 to optimize the training process. The network
architecture was trained with 30 batch size and 50 epochs. It
was treated as a multivariate regression problem for time-series
forecasting. The dynamics model training took approximately
three minutes on a laptop with Python-based environment, a
64 bit Linux-based operating system, 32 GB RAM (with 32 GB
virtual RAM), and Intel core i7-10750H CPU@2.60 GHz. The
trained neural network predicts only a single time step ahead
state vector (xt+1)with an input vector that includes the pressure
signal (τt) associated with the next state vector, the current state
vector and the associated pressure signal (xt, τt−1), and the past
state vector and the associated pressure signal (xt−1, τt−2)

Fφ(xt+1|X , τ) where

X = [xt, xt−1], and τ = [τt, τt−1, τt−2]. (1)

The dynamics model is shown in (1). During model evaluation
or use in the training environment, current predictions of the
trained dynamics model are used as feedback for next instant
state prediction, accumulating error over time and, therefore,
contributing to the training-to-reality gap.

IV. PROPOSED CONTROL ARCHITECTURE

This section presents the offline policy training using an RL
algorithm for the desired task in a training environment with
the data-driven dynamics model, and the two proposed online
control strategies to recover desired accuracy.

A. Offline Policy Training

PPO algorithm [5] exploits monotonic on-policy improve-
ments, while demonstrating improved sample efficiency in
its class of algorithms, with minimal requirements for

hyperparameter tuning. For soft robots, its ability to incorporate
adaptive exploration, flexibility in hyperparameter tuning, and
scalability to complex environments is particularly useful. In this
work, we have used this algorithm for offline policy training.

1) Action and Observation Space: Based on the information
presented in Section III-C, the input and output dimension is 45
and 9, respectively, as shown in (1). For the control policy train-
ing, we wrapped our dynamic model in the training framework
presented by openai gym [59] and employed the algorithmic
routine by Haarnoja et al. [60] for PPO implementation. The
observation space of the learning agent was a continuous space
and consisted of the transition state (xt+1) predicted by the
dynamics model (Fφ) and the distance of the third-module
tip from the goal and the obstacle. The observation space was
normalized in the range −1 to 1 based on the minimum and
maximum values (in individual axes in each module) taken from
the dataset used for the dynamics model training. Similarly, the
action space of the learning agent was also a continuous space
vector of nine signals. Each value in the action space ranged
from −0.2 to 0.2.

2) Task Description: The goal of the task was to achieve high
precision in reaching a chosen goal-point in 3-D space while
avoiding collision with the obstacle, with a controller acting in
the dynamics domain of the soft arm. High-precision is assessed
in terms of a percentage error, i.e., error divided by the soft arm’s
characteristic length. Based on this, the task objective was set to
impose a percentage error of ≤ 1%, i.e., ≤ 5 mm of acceptable
distance error, for a soft arm of length 598 mm, between the
tip of the soft arm’s distal module (denoted by x3

t at a time
instant t) and the chosen goal-point. At every instant t, Gdist and
Odist, the distances of x3

t from the goal-point and the obstacle,
respectively, were calculated. Here, Gdist was always computed
using a simple Euclidean distance formula between current tip
and desired goal-point, while Odist was a Euclidean distance of
a 3-D point from a cuboid plane (Pobs) computed using �n·�V

|�n| ,

where �n is a vector normal to Pobs, �V is a vector from x3
t to an

arbitrary point on Pobs.
The reward function [given in (2)] for this task was composed

of the following three parts.
1) Mind the boundary: It limited the soft arm search space,

ensuring faster convergence by avoiding time spent in
space too far from the desired goal. The boundary in
(2) is represented by B and its limits are described in
Section III-A. It also added a constant −2.0 per-step
penalty to encourage policy search for shortest path to
the goal-point.

2) Avoid collision: At every step, Odist was calculated. If it
ranged from 20 mm to 10 mm, a warning was generated
and a proportional penalty was added to the overall re-
ward, but the environment did not reset. The environment
reset only if the collision flag was up and, if it was, the
environment reset with a substantial penalty. The train-
ing environment did not include contact modeling; The
collisions were detected mathematically, at every instant,
in two ways: a) intersection between a line segment l1 =
line(xt, xt−1) and a finite planePobs, or b)Odist ≤ 10 mm.
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Fig. 3. Offline policy training for the desired task within the training envi-
ronment. The training took three hours on average. The policy training was
performed using the reward function as described in (2). The subfigure on the
top refers to the reward per episode, while the one on the bottom refers to the
average number of timesteps per episode. We set the maximum length of an
episode to 150 timesteps.

3) Distance to the goal: At each step, Gdist was also com-
puted, and its negative added as a continuous penalty to
the overall reward.

The goal-point was considered reached if Gdist ≤ 5 mm.
Note, the first and second penalties were quite sparsely dis-
tributed, so the third penalty mainly drove the policy training,
nonetheless, resulting in successfully learning the task in the
offline training environment Fig. 3.

reward =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−100.0 x3
t /∈ B

−5.0 ∗ (20.0−Odist) 10 < Odist ≤ 20

−10 000.0 �l1 · �n �= 0, Odist ≤ 10

−Gdist Gdist > 5.0.
(2)

3) Training: We used a single hidden dense layer with 128
neurons for the critic network and two hidden dense layers with
64 neurons each for the actor network. For activation in the actor
network, we used softsign in the input, hidden and output layers.
A linearly decreasing learning rate from 0.01 to 0.001 and 0.003
to 0.0001 was selected for the critic and the actor, respectively.
The other hyperparameters were as follows: episode length to
150 timesteps, batch size to 5, epochs to 10, and number of
policy updates per episode to 6.

To speed up the process, the gym-based training environment
with the dynamics model was vectorized and 4 processes (one
training environment per process) were launched in parallel
to share the rollouts for the policy training. On a laptop with
Python-based environment, 64 b Linux-based operating system,
32 GB RAM (with 32 GB virtual RAM), Intel core i7-10750H
CPU@2.60 GHz, and NVIDIA GeForce RTX 4080 GPU, the

policy was trained for approximately 3 hrs for a total of five
million timesteps (35 000 episodes with maximum 150 timesteps
per episode). There was no substantial change in the reward after
15 000 episodes, however, the number of timesteps needed to
reach the goal-point with desired accuracy continued to decrease
as shown in Fig. 3. The significance of this point is highlighted
in Section VI.

The RL-policy (πθ(τt|xt)) aimed to maximize the reward
function given in (2), by attempting to reach the goal-point as
fast as possible while avoiding the obstacle. The policy took
continuous actions in the range−0.2 to 0.2, while the dynamics
model accepted actions in the range −1 to 1. The range−1 to 1
corresponded to the pressure from 0 to 1.5 bars. The gym-based
tracking environment kept track of the action taken by the agent
at the previous step. The current action proposed by the agent
was added to the previous action and passed on to the dynamics
model. A constraint applied in the training environment ensured
that the overall action passed on to the dynamics model was
not above the threshold (1.5 bars) as it might compromise the
safety of the robot during policy testing. Another constraint was
applied to ensure that the difference between the action passed
to the model in the previous step and current step was not above
the safety threshold: if it was, the environment did not take the
action and added the usual penalty. The safety threshold was set
to 0.15 bars.

B. Bayesian Optimization Assisted Coaching

This scheme is based on IL by coaching, inspired from [6]
where there is an oracle responsible for generating trajectories
for a desired task. A student policy is trained by using these
trajectories. The student policy then attempts to predict actions
as good as the oracle’s on the training set. This approach works
particularly well if there exists a significant difference in the
information of the environment available to the oracle and the
student policy [8]. In our setting, the RL-trained policy (πθ)
acted like the oracle while the student policy (πi) was a new
policy trained and optimized based on the trajectories generated
by executing πθ with the soft arm.

IL by coaching also requires a coach as presented by Hal
Daumè et al. [6]. The coach can be a human or a synthetic agent,
responsible for providing the student policy with easy-to-reach
goals and incrementally raising the level to match the desired
goals based on the progress as seen from a value function. In
our case, the coach was a synthetic agent based on a k-means
clustering algorithm, responsible for providing easy-to-follow
trajectories to reach the desired goal-point with reduced accu-
racy, and incrementally raising the accuracy to match desired
precision. The progress was tracked based on a mean squared
error (MSE) computed from the currently-followed trajectory
and coach-proposed trajectory. For a given goal-point and ob-
stacle placement in the training environment, the RL-trained
policy can produce a trajectory that avoids the obstacle and
reaches the goal-point with the desired accuracy. During the
policy evaluation (and also in the training environment), differ-
ent trajectories can be obtained, even when executing the policy
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Fig. 4. Schematic flow of BOAC. Gaussian process-based student policy πi

was trained and optimized periodically using a data buffer D to eliminate the
training-to-reality gap. The policy takes the desired (xd) and the current robot
state (x) to predict an action (τ ) to reach desired state. The dotted line underscores
the batchwise training of the student policy based on the joint buffer D ∪Di.

in the deterministic mode, by changing the initial conditions of
the dynamics model.

So, different deterministic trajectories were accumulated in a
data bufferDd and k-means clustering algorithm was applied on
them. The K-means clustering algorithm generated L×3 clus-
ters where L was equal to the average length of the trajectories.
The coach was trained for 10 different seeds, randomly chosen
initial centroids, and 300 iterations with a tolerance of 10−4
using an expectation–maximization-style algorithm [61]. The
algorithm took less than a second to train on the work station
defined in the Section III-A. The output cluster was a new path
made up of the centroids of clusters whose points have been
visited the more often by the policy in deterministic mode. The
path was treated as a sequential series of target states (xd

t ) to be
reached by the student policy to reach a desired goal-point.

The schematic flow of this approach is presented in Fig. 4 and
the Algorithm 1. In the algorithm, dπθ

represents a distribution
of n episodes as given in (4) where each episode consists of
T state-action pairs (xt, πθ(xt)). The state-action pairs were
converted into a timeseries in a sequence, as shown in (3), where
xt+1 was a state transition from current state (xt) based on
the action (πθ(xt)). Each state-action pair has an associated
reward that was also calculated from the testing environment
with reduced desired accuracy. Based on these rewards, a total
return can be computed for the nth episode as R(n). N episodes
with maximum total return were sampled from dπθ

and stored
in the buffer D. This buffer was used to train and optimize the
student policy (

xt+1, xt, πθ(xt)
)
←

(
xt, πθ(xt)

)
where t = 1 : T − 1

(3)

dπθ
=

{(
x
(n)
t+1, x

(n)
t , πθ(x

(n)
t )

)}T−1

t=1
where n = 1, 2, 3, . . .

(4)

Algorithm 1 and Fig. 4 outline this approach once the coach-
proposed trajectories are acquired. π0 in the Algorithm 1 rep-
resents the preliminary version of the student policy as trained
on D using MSE as a surrogate loss function. Other elements
in the BOAC include Gf , Lf , Di, (πi), nB , and TB , which
are the global goal flag (for the desired goal), local goal flag
(surrogate loss below 5 mm), instantaneous data buffer to store
state-action reformed pairs, ith instant of student policy, batch
size for periodic student policy optimizations, and total number

Algorithm 1: Bayesian Optimization Assisted Coaching
(BOAC).

1: Initialize D, Di, Dd, π0

2: D ← Sample N trajectories from dπθ

3: Train π0 on D
4: while not Gf :
5: Coaching trajectories: K-Means Clustering (Dd)
6: while not Lf :

7: Coaching episode:
{
xd
t

}T

t=0
8: for i = nB : TB do :
9: (state: xt+1, action: τ it )← πi(xt, x

d
t )

10: Reform: Di ← (xt+1, x
d
t , τt) (as in (3))

11: D ← D ∪Di

12: Re-train: πi+1 on D using MSE loss

of batches inside an episode, respectively. Note that the student
policy was based on a Gaussian process and it acted as a local
inverse dynamics model of the underlying soft arm.

C. Gaussian Process-Based Recurrent Cerebellar Architecture

This scheme aims to train an adaptive plant-compensator
based on recurrent cerebellar architecture [9]. It was originally
proposed to compensate for the three-dimensional vestibulo-
ocular reflex to solve the motor-error problem. Porrill et al. [9]
presented it as a converging solution to the modular control of
systems with high degrees of freedom. The architecture is shown
in [9, Fig. 2(b)]. This architecture computes the training signal
(motor-error) for the compensator as e(t) = x̂(t)− x(t) where
x̂(t) is an observation coming from the plant model, and x(t) is
the actual observation.

In our case, the control policy was learned in a training envi-
ronment with the dynamics model (Fφ) of the robot as in (1). The
model was an approximate depiction of a deformable robot with
virtually infinite degrees of freedom and it did not account for the
intrinsic or extrinsic uncertainties in the observations. We, thus,
used [9] as an adaptive compensator to adapt the trained policy
to the real environment. We revamped this recurrent architecture
to suit our current implementation as shown in Fig. 5. The
dynamics model took feedback directly from the soft arm, as
shown in Fig. 5, ensuring the information being fed to it was
X = [xt, xt−1], and consequently, the difference between the
training environment and the soft arm response was captured, at
the current instant without any drift, to train the compensator.

At an instant t = 0, the RL-trained policy (πθ) generated an
action based on the arm’s current resting position. The action
was used to generate the next instant observation of the arm and
the training environment. The discrepancy between the training
environment and the soft arm observation generated the error
signal. The rollout dataset [see (5)] was used to train the Gaussian
process (Gπθ

i ), which sent a compensatory signal in order to
bridge the gap (the gap is visible in Fig. 7 without a compensatory
signal). In the rollout dataset, et = x̂t − xt is the sensory-error
signal where x̂t = Fφ(πθ(st−1)) withX = [xt, xt−1] and, xt is
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Fig. 5. Schematic flow of GPRCA. The approach employs a Gaussian Process
Gπθ
i to bridge the training-to-reality gap with e(t) as the training signal and

actions proposed by the RL-trained policy as an input. The output of this process
is a compensatory signal for the observation from the soft robot based on the
robot dynamics model used in the original training environment. The dotted line
underscores the batchwise training of the compensator based on the joint buffer
D ∪ Di.

Fig. 6. Distribution of a dataset representing the performance gap across
different evaluation scenarios. The gap distribution was formed by executing
an actuation-space trajectory, as used for the trials in Section III-B, with the soft
arm and its dynamics model several times. Mean absolute distance (MAD) error
(in millimeters) was computed between the dynamics model in the training
environment and the response of the individual modules in the soft arm for
scenarios 0 to 4.

the observation from the robot under the same action πθ(st−1)

D =

{(
πθ(st−1), et

)}T

t=1

where et = x̂t − xt, and x̂t = Fφ(πθ(st−1))

st−1 = xt−1 + ct−1, x ∈ XR and c ∈ Gπθ . (5)

The compensator predicted ct given the input signal (action
predicted by the RL-policy); ct was then added to the observa-
tion for the next instant. The new compensated observation was
used to predict the action for the following instant, and so on.
Based on the current action proposed by πθ, Gπθ produced the
compensatory signal for the next instant, as shown in Fig. 5 and
Algorithm 2. In the algorithm, nB is the batch-size for training
the compensator (it may be considered as a hyperparameter, we
set it to five timesteps) and LE is the length of the episode
executed. This scheme was executed until it reached the desired
accuracy (i.e., until the global goal flag (Gf ) was raised), as

Fig. 7. Open-loop testing of πθ . The boxplot presents four quantities cal-
culated from 17 trials: start-point, final point, minimum, and average distance
from the goal. In all the trials, even with different initial conditions the training
environment achieved a 94% success rate with the desired accuracy (≤5 mm).
However, in this setting, policy testing with the soft arm, the success rate dropped
to 0% in terms of achieving desired accuracy. Nevertheless, in 47% of the trials,
the soft arm managed to approach the goal-point within a range of 15–25 mm.
In approximately 20% of the trials, a collision occurred, and in the remaining
cases, the soft arm settled at a distance greater than 25 mm from the goal-point.

Algorithm 2: Gaussian Process based Recurrent Cerebellar
Architecture (GPRCA).

1: Initialize D, Gπθ
0

2: Get Dynamics Model: Fφ, Policy: πθ

3: while not Gf :
4: for i = nB : LE do :
5: ct ← Gπθ

i (πθ(st−1))
6: x̂t+1 ← Fφ(πθ(st))
7: xt+1 ← robot(πθ(st))
8: Di ← (τt, et+1) (as in (5))
9: D ← D ∪Di

10: Re-train Gπθ
i+1 ← D

opposed to gradually increasing the desired accuracy as in
Algorithm 1 where there were also local goal flags (Lf ).

V. RESULTS

This section presents the evaluation scenarios and the results
achieved with the RL-policy and proposed control strategies.

A. Evaluation Scenarios

In the first set of experiments, the RL-policy was tested with
the soft arm in open- and closed-loop setting to achieve task
execution with desired accuracy, without using the proposed
control strategies, demonstrating a performance gap. In the
second set of experiments, labeled as scenario 0 or S0, proposed
control schemes were employed to bridge the exhibited perfor-
mance gap. In the final set of experiments, proposed strategies
were evaluated for additional four scenarios, showcasing their
adaptability to damage incidents.

In the three-module soft arm, each module is independently
actuated with three pneumatic chambers. In scenario 1 or S1,
we disrupted the pressure supply of one of the chambers in the



NAZEER et al.: RL-BASED ADAPTIVE CONTROLLER FOR HIGH PRECISION REACHING IN A SOFT ROBOT ARM 2507

Fig. 8. Closed-loop testing of πθ with the soft arm. Both boxplots illustrate
four quantities derived from 21 trials: start-point, final point, minimum, and
average distance from the goal (left subplot) and the obstacle (right subplot). In
a closed-loop setting, the observed outcomes included successfully reaching the
goal with the newly defined accuracy threshold (38%), experiencing a collision
(33%), or terminating the episode without reaching the goal-point or facing
collision (29%). On average, the outcomes took 63, 15, and 150 timesteps,
respectively.

first module (connected to the base of the soft arm) by deploying
a manual pneumatic rotary knob for pressure control. Similarly
in scenario 2 or S2, we restored the pressure supply for the
chamber in module 1 and disrupted a chamber in module 2.
A similar pattern was also repeated in scenario 3 or S3 where
a chamber in module 3 was disrupted, while the chamber in
module 2 was restored. In scenario 4 or S4, we disrupted two
chambers, one in module 1 and another in module 2. These
disruptions forced the soft arm to employ redundant limbs to
compensate for the change in its behavior. The clear difference
in performance among different scenarios is shown in Fig. 6,
which highlights that each subsequent scenario tends to pose a
bigger performance gap than the preceding one.

B. RL-Policy Testing

1) Open-Loop Testing: The trained policy was tested in an
open-loop setting with the soft arm, where the instantaneous
positions of the soft arm did not influence the action selected by
the policy. We observed that replicating the sequence of actions
taken in the training environment to reach the desired goal did
not result in the soft arm successfully reaching the goal-point
because of the training-to-reality gap. We conducted 17 trials in
this setting, which are summarized in Fig. 7.

2) Closed-Loop Testing: For closed-loop testing, the dynam-
ics model in the testing environment was replaced with the soft
arm. Instantaneous positions of the soft arm, and distances to the
target and obstacle (calculated in real-time) were fed to the policy
for action-selection. Based on the results with the open-loop
setting, we set the desired accuracy to 15 mm. We considered
the policy successful if it managed to get the robot to a distance
≤ 15 mm from the goal-point without collision. The result with
this setting for a total of 21 trials is shown in Fig. 8.

C. Online Optimization for the Training-to-Reality Gap

It is clear from the training-to-reality gap (S0 from Fig. 6) that
we need a solution that can generalize well over the stochastic
nature of the robot and the discrepancy due to the dynamics
model. Although the RL-trained policy was capable of doing
this, it lowered the accuracy of task execution. We now present
two control schemes to recover the desired accuracy.

1) BOAC for Optimization: The algorithmic flow of this
scheme is introduced in the Algorithm 1. A Gaussian pro-
cess [62] based student policy was trained using the data in the
buffer D. The buffer initially has N trajectories sampled from
dπθ

. The value ofN may be considered as a hyperparameter here
because having an insufficient number of these trajectories may
mean that the underlying behavior of the oracle is not elicited,
and too many may cause an increase in the training time. The
value can, in any case, be decided by the hit-and-trial method. In
our case, we chose seven trajectories (N = 7) with high return
to train the initial version of the student policy (π0).

Fig. 9(a) and (b) shows the results with this scheme for the de-
sired goal-point [−30.0,−120.0,−620.0], obstacle positionx ∈
[−60.0, 60.0], y ∈ [−50.0,−55.0], and z ∈ [−700.0,−570.0]
and boundary for the robot operation restricted to dimen-
sion with x ∈ [−130.0, 90.0], y ∈ [−150.0, 50.0], and z ∈
[−700.0,−570.0]. We executed eight optimization trials dedi-
cated to three subsequent coaching profiles (for 15 mm, 10 mm,
and 5 mm, respectively). We recorded the results for various
different goal-points to evaluate the effectiveness of this con-
troller in the training-to-reality gap. The compilation is shown
in Table II under BOAC for S0.

2) GPRCA for Optimization: The algorithmic flow of this
scheme is illustrated in the Algorithm 2. We set the episode dura-
tion to 100 timesteps for this scenario. We tested it with the same
goal as in Section V-C1, i.e., [−30.0,−120.0,−620.0], the posi-
tion and dimension of the obstacle were also kept the same. How-
ever, given the stochastic nature of the policy, the boundaries
for robot operation were relaxed to x ∈ [−170.0, 80.0], y ∈
[−170.0, 50.0], and z ∈ [−700.0,−570.0]. To draw a conclu-
sion on the comparison of Algorithms 1 and 2, we also executed
this scheme for eight iterations of the online optimization. The
results with this scheme are as shown in Fig. 10(a), and 10(b).
We were able to achieve the goal-point in the third trial. In
the first two trials, the scheme ran for the complete episode
length without collision. The results for more goal-points for
this scenario are reported in Table II under GPRCA for S0.

D. Online Optimization for the Damage Recovery

So far, the results for overcoming the training-to-reality gap
have been presented using Algorithm 1 and 2. The following
trials were aimed at evaluating the performance of the proposed
algorithms for scenarios 1 to 4. The RL-trained policy (πθ) was
not retrained for any damage incident to the soft arm. However,
for each new task setting (i.e., different goal-point, obstacle
location or the search boundary), a new RL-policy was trained.

1) BOAC for Task Recovery: BOAC was executed for dam-
age scenario 1 while keeping the obstacle position, exploration
boundary, and goal-point the same as in Section V-C1. The
results achieved after 15 optimization trials are shown in Fig. 9(c)
and (d). We discuss the response of BOAC in Section VI, and the
results with more goal-points and damage scenarios are reported
in Table II.

2) GPRCA for Task Recovery: The training environment
with the dynamics model of the soft arm is kept the same, but the
soft arm undergoes various changes due to the damage scenarios.
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Fig. 9. Results of BOAC implementation for S0 and S1. The 3-D trajectories in (a) and (c) represent the response of the soft arm for S0 and S1, across 8 and 15
trials, respectively. These figures also include a zoomed-in 2-D top view of the desired goal point with a 5 mm radius circle around it. The zoomed-in image only
shows the coordinates along the x and y axes reached at the end of each trial and the colorbar shows their z-coordinates. The boxplots in (b) and (d) highlight the
distance of the tip from the goal and the obstacle (left and right subfigure, respectively) for scenarios 0 and 1, after 8 and 15 trials, respectively. Each trial in both
scenarios is 30 timesteps (3 s) long.

The compensator was trained in real time with each different
scenario to elicit adaptation to the new soft arm behavior by
learning the modal-mismatch from the initial training environ-
ment to the current behavior of the soft arm. The experimental
set-up remained the same, including obstacle position, explo-
ration/boundary restriction, goal-point, and desired accuracy.

To adapt to damage scenario 1, GPRCA was executed with
the same number of time-steps as in S0 (100 timesteps per
optimization trial) and the results are shown in Fig. 10(c) and
(d). For damage scenarios 2, 3, and 4, the soft arm undergoes
substantial changes not only in terms of reduced workspace
access but also the strength diminishes as the robot starts to throb
(see Section VI). Consequently, to adapt to damage scenarios 2,
3, and 4, we executed the online training of the compensator
for 150 time-steps (as done originally in the offline training
environment). The results achieved for scenarios 2, 3, and 4
are shown in Fig. 11. The results with this scheme for different
goal-points and damage scenarios are reported in Table II.

VI. DISCUSSION

Table I reports the decrease in performance when a control
solution derived in a nondata-driven [10] or data-driven [11],
[12], [13] model setting is tested with the soft robot. The stud-
ies, reported in the table, recorded the performance variation
or degradation as a result of the performance gap (from the

simulation or training environment to the robot) without present-
ing any solution for it. Our target here is to impose high-precision
task recovery while overcoming the training-to-reality gap. IL,
traditionally, is a sample-efficient approach but the results are
usually qualitative; However, combining IL with RL decision-
making capability can yield quantitative results, rendering it an
excellent candidate for tackling the problem in question. BOAC
takes inspiration from this approach. Another novel approach to
adaptability can be learning the performance gap and using it as a
compensatory agent, as was presented in [9]. GPRCA employs
similar strategy. In addition, the practicality of such adaptive
approaches for soft robots require sample efficiency. Therefore,
BO was employed in BOAC and GPRCA. The resultant time and
accuracy of our approaches have been compared with similar
studies found in the literature (refer to Section II-C).

Table III reports the average time (offline and online training
time) and accuracy for RL, BOAC, and GPRCA across all the
conducted trials where the goal was reached (with or without
damage) for all the goal-points and obstacle positions. On aver-
age, GPRCA takes longer in online training compared to BOAC,
but both manage to achieve the desired accuracy. Although the
online training time seems longer for GPRCA, it actually took
fewer episodes than BOAC. This is because BOAC relies on
the coach-proposed trajectories, which are always of the same
length (30 timesteps as in Fig. 9, 21 for G1 as in Table II,
and so on). GPRCA, on the other hand, is executed freely
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Fig. 10. Results of Algorithm 2 implementation, using episode length of 100 timesteps, for S0 and S1 for a total of 8 and 5 trials, respectively. The points reached
at t = T for all the trials are shown in (a) and (c) for S0 and S1, respectively. Same as before, the boxplots in (b) and (d) represent the distribution of the dataset
resulted from the GPRCA trials for S0 and S1. On average, S0 and S1 reached the goal-point in 73 and 77 timesteps after 2 and 3 trials, respectively.

TABLE III
AVERAGE TIME AND ACCURACY ACROSS ALL THE EXPERIMENTS (INCLUDING

DIFFERENT GOAL-POINTS AND SCENARIOS) WITH THE THREE-MODULE SOFT

ARM

with chosen timesteps per episode. In many cases, restarting
the episode more often is considered less favorable than letting
an optimization run for longer timesteps. So, BOAC performs
effectively if a smoother performance is required as shown in
Fig. 9 but the user may have to restart the optimization episode
more often. GPRCA performs effectively in the other situation
(when restarting the optimization episode more often is less
favorable Figs. 10 and 11). In addition, executing GPRCA for
higher timesteps results in the compensator learning the gap
better. In the trials shown in Figs. 10 and 11, by continuing to
execute GPRCA after the goal-point has been reached with the
desired accuracy, the compensator continues to learn effectively
from the modal-mismatch and manages to reach the goal faster
in the subsequent trials.

Fig. 6 highlights that the performance gap increases with each
successive scenario. In addition, the soft arm also undergoes
workspace reduction as the pressure supply to the pneumatic
control chambers is interrupted. In the subsequent goal-points
and scenarios, the optimization process in BOAC has slowed
down, as can be seen in Table II. As a result, it is also possible that
the goal may not be reached as the student policy may saturate or
simply start diverging due to error compilation after a significant
number of trials, as observed in S2 of G1, G2 and S0 of G3 (error
percentage is ≥ 1%.). Since GPRCA trains the compensator
(Gπθ ) from scratch based on the modal-mismatch at that point,
the soft arm is able to reach the goal-points, even in later goal-
points and scenarios. However, the number of optimization trials
increases, as shown in Table II. For the goal-point G3 in S3 and
S4, the error percentage is≥ 1% even with a significant number
of iterations. This could be attributed to either the soft arm’s
current damage, making the goal unreachable, or the significant
divergence between the policy generated in the initial training
environment and the one needed for the robot’s current setting.

We conducted an additional set of experiments (included in
the supplementary material of this study) with a two-module
soft arm for trajectory tracking problem, with and without
external loads attached to the tip of both modules. The policy
was trained using an RL algorithm with a data-driven model
with no knowledge of the external loading. Consequently, the
policy performance degraded with the new soft arm setting
due to an increase in the stochasticity and a decrease in the
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Fig. 11. Results of Algorithm 2 implementation, using episode length of 150 timesteps, for S2, S3, and S4 for a total of 8, 10, and 11 trials, respectively. The
points reached at t = T for all the trials are shown in (a), (c), and (d) for S2, S3, and S4, respectively. The goal for S2 is reached in the sixth trial, for S3 in the
ninth, and for S4 in the tenth, with an average of 97, 120, and 106 timesteps, respectively.

workspace of the two-module soft arm, as it was also seen when
we deliberately damaged the three-module soft arm. BOAC and
GPRCA managed to improve accuracy in trajectory tracking,
with external loading, reducing the mean absolute error (MAE),
on average, by 84% and 93%, respectively, without retraining
the RL-policy with the new soft arm setting.

We listed imbalanced morphology due to manufacturing inac-
curacies, varying material properties, and incomplete depletion
of the pneumatic chambers as the factors responsible for the soft
robot’s stochasticity. This variability combined with the drift and
error-accumulation over finite horizon by the dynamics model
are the root causes for the training-to-reality gap. However,
there are other factors responsible for the task performance
degradation. For instance, the ability of a control solution is
greatly affected due to the task execution speed as reported
in [23] where the gap for kinematic control to dynamic control

solution exhibited almost 50% increase in error (MAE changed
from 12–27 mm to 22–44 mm). while our approaches bridge the
gap, they do not present solution for the setting where the task
constraints have changed, such as different goal-point, obstacle
location, or task domain (e.g., IK or dynamics). To tackle new
task settings, a more generic policy (e.g., meta or multitask
policy) or an additional state- or action-exploration-based policy
search algorithm may be required.

VII. CONCLUSION

In this article, we have highlighted the challenges in
controlling soft robots arising from their inherent stochastic
behavior, which is influenced by different elements, such as
elastic material properties, flexible shape, variable initial con-
ditions, and manufacturing inaccuracies. RL-based algorithms
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enable training intrinsically stable control policies, making them
a strong candidate for soft robots’ control problem. However,
despite their adaptive nature, stochasticity hinders their direct
application to soft robots, reducing the task-precision achievable
in deploying them. This issue is exacerbated in applications that
require high precision. We, thus, developed two strategies, built
on top of the trained RL-policy that leverage the data-efficient
nature of the BO and critical problem-solving capability of the
PPO algorithm. We successfully demonstrated that our schemes
achieve the desired accuracy while bridging the training-to-
reality gap. Notably, they effectively overcome stochasticity
despite encountering a range of behavior-altering situations
unaccounted for during policy training, including intentional
damage incidents and external loads, all without needing to
retrain the RL-policy from scratch. The results were compiled
for additional goal-points in the 3-D space against all damage
scenarios. We plan to expand this work to adapt to changes in the
soft robot’s behavior caused by temporally dependent material
properties (wear and tear, aging, etc.) and various external
conditions (temperature, pressure, humidity, etc.). We believe
that this research will help contribute to making the field of soft
robotics more approachable, reliable, and adaptable.
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