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Safe Reinforcement Learning in Uncertain Contexts
Dominik Baumann and Thomas B. Schön , Senior Member, IEEE

Abstract—When deploying machine learning algorithms in the
real world, guaranteeing safety is an essential asset. Existing safe
learning approaches typically consider continuous variables, i.e.,
regression tasks. However, in practice, robotic systems are also
subject to discrete, external environmental changes, e.g., having
to carry objects of certain weights or operating on frozen, wet,
or dry surfaces. Such influences can be modeled as discrete context
variables. In the existing literature, such contexts are, if considered,
mostly assumed to be known. In this work, we drop this assumption
and show how we can perform safe learning when we cannot
directly measure the context variables. To achieve this, we derive
frequentist guarantees for multiclass classification, allowing us to
estimate the current context from measurements. Furthermore, we
propose an approach for identifying contexts through experiments.
We discuss under which conditions we can retain theoretical guar-
antees and demonstrate the applicability of our algorithm on a
Furuta pendulum with camera measurements of different weights
that serve as contexts.

Index Terms—Frequentist bounds, multiclass classification, safe
reinforcement learning.

I. INTRODUCTION

WHEN learning on real and potentially expensive robotics
hardware, respecting safety constraints is instrumental.

In response to this need, safe learning algorithms have been
developed that provide different forms of safety certificates [1].
One such algorithm is SAFEOPT [2], which guarantees to find
an optimal policy while never violating any safety constraints
during the search with high probability.

Most safe learning algorithms consider only the internal dy-
namics of a robot (and possibly external constraints). However,
when learning in the real world, robotic systems are subject to
changes in their environment that influence their dynamics. Con-
sider the illustrative example shown in Fig. 1. We have a Furuta

Manuscript received 26 June 2023; revised 29 October 2023; accepted 22
December 2023. Date of publication 15 January 2024; date of current version
22 February 2024. This paper was recommended for publication by Associate
Editor M. Walter and Editor S. Behnke upon evaluation of the reviewers’
comments. This work was supported in part by the Federal Ministry of Education
and Research (BMBF) and the Ministry of Culture and Science of the German
State of North Rhine-Westphalia (MKW) under the Excellence Strategy of the
Federal Government and the Länder, in part by the project New LEADS -
New Directions in Learning Dynamical Systems under Grant 621-2016-06079
funded by the Swedish Research Council, in part by the Kjell och Märta
Beijer Foundation, and in part by the Mitsubishi Electric Research Laboratories
(MERL) to purchase the equipment used for the experiments. (Corresponding
author: Dominik Baumann.)

Dominik Baumann is with the Department of Electrical Engineering and
Automation, Aalto University, 00076 Espoo, Finland, and also with the Depart-
ment of Information Technology, Uppsala University, 75105 Uppsala, Sweden
(e-mail: dominik.baumann@aalto.fi).

Thomas B. Schön is with the Department of Information Technology, Uppsala
University, 75105 Uppsala, Sweden (e-mail: thomas.schon@it.uu.se).

Digital Object Identifier 10.1109/TRO.2024.3354176

Fig. 1. Our experimental setup. We aim at optimizing a balancing controller
for a Furuta pendulum whose dynamics can be altered by adding (removing)
weights to (from) its pole. Our algorithm tries to infer the current weight from
image data and resorts to identifying it through dedicated experiments if the
image data is not sufficiently informative.

pendulum and aim to learn a balancing policy. Different kinds
of weights can be added to the top of the pole. These weights
clearly influence the dynamics of the pendulum. However, the
pendulum cannot control, which weight is added. Including the
weight as an external parameter in the policy optimization is
then challenging for two reasons. First, as the pendulum cannot
control, which weight is added, it cannot actively generate in-
formative data. Furthermore, we may have only a few examples
(e.g., only three different weights in Fig. 1). This makes it hard
to perform a regression. Second, directly including the weights
in the policy optimization increases the dimensionality of the
parameter space, which can be computationally demanding
for safe learning algorithms. To account for that, Berkenkamp
et al. [2] proposed to include such parameters as discrete context
variables and showed that SAFEOPT can successfully deal with
a mixed continuous and discrete parameter space. Nevertheless,
they assumed that the context variable, e.g., the weight, is known.
In Fig. 1, we only have a camera that can capture the current
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weight. This is a typical industrial setting, where cameras are
often used to track work pieces. Yet, inferring the weight of an
object from image data is not possible in general [3].

An alternative to inferring the weight from data would be
identifying the context through experiments. Such an algorithm
is proposed in [4]. The downside of this approach is that it
requires additional experimentation and cannot provide formal
guarantees on identifying the correct context. Thus, it cannot
straightforwardly be combined with a safe learning algorithm.
Suppose we instead understand trajectories as samples from
different probability distributions. In that case, we can inves-
tigate whether the distribution generating the current sample is
identical to the distribution of a sample we saw in the past. One
measure for comparing distributions is the maximum mean dis-
crepancy (MMD) [5], whose applicability to dynamical systems
has been discussed in [6]. In this article, we show how we can
extend the formal guarantees the MMD provides for context
identification in a safe learning algorithm.

Still, the problem of additional experimentation remains.
Thus, over time, we would like to learn a classifier that can,
at least in some cases, infer the current weight from image data.
In particular, the classifier should output a probability that the
camera image corresponds to a certain weight. This is a standard
multiclass classification setting, for which various approaches
exist, e.g., support vector machines [7], neural networks [8], or
conditional mean embeddings (CMEs) [9]. However, if we want
to combine them with a safe learning algorithm, we again require
theoretical guarantees, which typical classification approaches
cannot provide in the required form. Thus, we derive frequentist
uncertainty bounds for multiclass classification based on CMEs
and show how they can be used within a safe learning algorithm.

In summary, we propose an algorithm that mainly consists of
two parts. We propose to train a classifier that yields a proba-
bilistic score to relate, for instance, camera images to weights.
For this classifier, we derive frequentist uncertainty bounds to
use its output in an existing safe exploration algorithm, such
as SAFEOPT, and provide safety guarantees. If the uncertainty
of our classifier is too high, we propose to identify the current
context. Also here, we provide guarantees that can be used in safe
exploration. Furthermore, we update our classifier to sharpen
the uncertainty bounds whenever the current context has been
identified.

The contributions of this article are as follows:
1) we derive frequentist uncertainty intervals for multiclass

classification;
2) we develop a context identification method with statistical

guarantees;
3) we combine multiclass classification with frequentist un-

certainty intervals and context identification in an algo-
rithm that allows for safe learning in uncertain contexts;

4) we evaluate the algorithm on a Furuta pendulum [10] with
camera images of weights serving as contexts.

II. RELATED WORK

This article proposes an algorithm for learning safe optimal
policies in context-dependent dynamical systems with uncertain
contexts. Here, we relate our contribution to the literature.

Safe learning: For a general overview of safe learning, we
refer the reader to [1]. Most of these works focus on pure re-
gression tasks without discrete parameters. Introducing discrete
parameters as context variables initially emerged in the bandit
setting [11], [12], [13], [14]. In [2], it was shown that the concept
of discrete contexts could also benefit safe policy optimization
for dynamical systems. In [2] and in the works on bandit settings,
it is typically assumed that the current context is known to
the learning agent. In reality, this may not always be the case.
Thus, we here consider a setting where the agent receives some
sensor information that it can use to infer the context, but it
cannot directly measure the current context. Another approach
that considers unknown contexts in a Bayesian framework is
presented in [15]. However, the authors assume no information
about the context, which differs from our setting, and they
implicitly model the context. In contrast, we explicitly account
for it in the learning problem.

Learning with unobserved context: Some works consider
optimizing policies for context-dependent dynamical systems
with unobserved contexts [15], [16]. The setting we consider
is different in that we assume some information about the
context to be available even though it cannot be unambiguously
determined through the measurements. Other approaches, such
as [17], assume access to some low-dimensional task parameter
that is directly correlated with the context. This allows them to
integrate the task parameter directly into the learning algorithm.
In [17], the authors further assume that they can observe the
task parameter over a range of values. Neither of these as-
sumptions are satisfied in our setting. We assume access to a
high-dimensional observation, such as image data, that is related
to the context. Thus, we cannot directly include the observation
in the learning algorithm due to the scalability properties of
Gaussian process regression. Moreover, we consider a setting in
which we receive discrete observations, such as images of traffic
signs, where learning a classifier is more efficient than trying to
learn a continuous model over all possible pixel values. In control
theory, discrete contexts that alter the dynamics of a system
may be interpreted as disturbances. Assuming knowledge of
worst-case bounds for those disturbances, we can design robust
controllers that provide stability guarantees while sacrificing
performance [18]. We do not assume knowledge of worst-case
bounds. Instead, we assume that there are measurements that
can be used to estimate the current context. This idea is similar
to disturbance observers that try to reconstruct the disturbance
given the measurements and then compensate for them [19].
Both robust control techniques and disturbance observers re-
quire access to a mathematical model of the underlying system,
while the approach we present herein is model-free.

Context identification: A dedicated context identification al-
gorithm is proposed in [4]. Nevertheless, it lacks theoretical
guarantees. Thus, we use the MMD initially introduced in [5]
and extended in [6] to dynamical systems. Our main idea is that
contexts change the dynamics of the system. Thus, by comparing
the current trajectory with trajectories collected in the past, we
can infer the current value of the context variable. This boils
down to comparing the probability distributions generating the
trajectories. For this, also other measures than the MMD are of
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course possible; see [20] for an overview. We here choose the
MMD since it allows us to compare probability distributions
without actually estimating them, provides theoretical guaran-
tees, and can be computed efficiently.

Classification: While various algorithms for classification
exist, we here require one that provides input-dependent fre-
quentist uncertainty intervals. This is especially important since
classifiers tend to be overconfident [21], [22]. In the literature,
we find general bounds for multiclass classification [9], [23],
probably approximately correct bounds for Gaussian process
classification [24], bounds for distribution-free calibration in
binary classification [25], for general CMEs [26], [27], as well
as their application to classification [9]. Nevertheless, all these
bounds have in common that they are uniform. While uniform
bounds are strong mathematical statements, they are not the
most suitable objects for our problem setting. In particular, they
typically only hold for the misclassification risk averaged over
the entire input space. Instead, we require concrete statements
about the misclassification risk at a particular input location.
Intuitively, we should be more confident about our estimates in
regions of the input space where we have already seen many
data points. This is also pointed out as a potential extension in
[9, Appendix]. Furthermore, existing learning theoretic bounds
often aim to provide convergence rates, and actually applying
those bounds to practical settings with finitely many data points
is nontrivial. A main contribution of our work is the derivation of
finite-sample frequentist bounds for classification with CMEs.
Another approach that considers input-dependent convergence
bounds is presented in [28]. In that work, the authors provide
deterministic uncertainty intervals for kernel ridge and support
vector regression, although not aiming at classification settings.
In Section VI-D, we discuss how their bounds can be applied to
classification and why they are noninformative in that setting.

III. PROBLEM SETTING AND BACKGROUND

We consider a setting in which a reinforcement learning (RL)
agent seeks to optimize a policy but needs to guarantee that it
satisfies safety guarantees throughout exploration. Furthermore,
the dynamics are influenced by an unobserved context variable.
Our main contributions are a context identification method with
statistical guarantees and frequentist uncertainty intervals for
multiclass classification that together allow the context to be
inferred from external measurements. We propose to combine
these two contributions with a safe learning algorithm. The
concrete safe learning algorithm that is actually in charge of
optimizing the policy is, thus, independent of our contributions,
and basically, any RL algorithm that provides safety guarantees
could be used. Nevertheless, to make the problem setting more
concrete, we will here consider the algorithm from [2] and
introduce this setting in Section III-A. The problem that we
address in this article is formulated in Section III-B.

A. Background

We consider a dynamic system

x(k + 1) = z(x(k), u(k), c) (1)

with discrete time index k ∈ N, state x(k) ∈ X ⊆ R
�, and in-

put u(k) ∈ R
m, whose dynamics depend on a context param-

eter c ∈ C ⊆ N. For this system, we want to learn a policy
u(k) = π(x(k), c, a), parametrized by parameters a ∈ A ⊆ R

d

that maximizes an unknown reward function f : A× C → R

while guaranteeing safety. Safety is encoded through (unknown)
constraint functions gi : A× C → R, i ∈ {1, . . . , q}.

We assume that the reward and constraint functions are un-
known. However, we can receive (noisy) measurements of both
by doing experiments: we select a parameterization a, perform
an experiment, and afterward receive measurements of f and
gi for all i ∈ {1, . . . , q}. That way, we can, over time, find the
optimum of f . Importantly, we seek to provide safety guarantees
for each exploration experiment. Thus, the overall optimization
problem is

max
a∈A

f(a, c) s.t. gi(a, c) ≥ 0 for all i ∈ {1, . . . , q}. (2)

We need a few assumptions to enable safe exploration despite
unknown dynamics and constraints [2].

Assumption 1: The reward function f and the constraint
functions gi, with i ∈ {1, . . . , q}, have bounded norm in a
reproducing kernel Hilbert space (RKHS).

Assumption 2: After each exploration experiment, we receive
noisy measurements of the reward and constraint functions.
Those measurements are perturbed by σ-sub Gaussian measure-
ment noise.

Assumption 3: We are given at least one safe parameter
vector a, for which we have, for all contexts c ∈ C and for
all i ∈ {1, . . . , q} that gi(a, c) > 0 with probability at least
1− δsafe.

Assumption 3 may seem relatively strong as it requires pa-
rameter vectors that are safe under all contexts. It is required
since we need some policy to start with, and at least during the
first experiment, we cannot estimate the context without prior
knowledge. In practice, such an initial safe parameter can have
arbitrarily bad performance. For instance, when considering a
mobile robot supposed to reach some target while not colliding
with obstacles where the contexts are different surfaces, an initial
safe policy could barely move the robot. Such a policy would
be safe but have a close to minimum reward. Still, it would be
enough as a starting point for our algorithm.

B. Problem Setting

In this work, we drop the often-adopted assumption that
the discrete context parameter c is known or can be precisely
measured. Instead, we assume that we receive measurements
y ∈ Y ⊆ R

s that reveal information about the context. These
could be temperature measurements that induce a probability
of whether or not the road is frozen for an autonomous car or
camera images that allow us to reason about the weight of an
object that a robot is supposed to manipulate. To automate this
reasoning while still guaranteeing safety as above, we need an
efficient way to estimate the probability of being in a particular
context that itself also provides guarantees.

We define the underlying probability space as (Ω,F, P ) with
random variablesY : Ω → Y andC : Ω → C that take values in
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Y and C, respectively, and whose respective probability distribu-
tions we denote byPY andPC . In this work, we aim at estimating
the probability pc(y) := P(C = c | Y = y), i.e., the probability
of context c ∈ C ⊂ N given the current measurements y ∈ Y ⊆
R

s. Furthermore, we aim at deriving high probability uncertainty
bounds for the estimate p̂c. Suppose we are given n tuples (y, c)
with n > 0. For each context c, we generate a vector c ∈ R

n,
where entry cj is 1 if in the corresponding tuple of sample j the
context was cj and 0 otherwise. We aim at finding upper bounds
εc(y, δ, n) such that for each c we have with probability at least
1− δclass, where δclass ∈ (0, 1)

|pc(y)− p̂c(y)| ≤ εc(y, δ, n) (3)

at the current input y.
However, in the beginning, when we have not gathered any

data, the bounds (3) may be arbitrarily large and not enable
confident classification decisions and, hence, meaningful safety
guarantees. Thus, we additionally require a possibility to identify
the current context. As with any identification procedure based
on finitely many data points, this identification will come with
some uncertainty. Suppose the current context is c∗. We then seek
to guarantee that with probability at least 1− δMMD, we have ĉ =
c∗, where ĉ is the identified or estimated context. By enhancing
the dataset of (y, c) tuples with these estimated contexts ĉ, we
can then, over time, create a dataset that we can use to train
a classifier. Nevertheless, this classifier must acknowledge that
each ĉ is only correct with probability at least 1− δMMD. Thus,
we are tackling the following two problems.

1) Show that we can guarantee safety when we need to
identify the context.

2) Incorporate uncertainty about identified contexts into the
classifier and show that we can guarantee safety when
our classification algorithm is confident enough about its
decision.

IV. PRELIMINARIES

Having introduced the problem setting, we now present the
required mathematical foundations to develop the safe learning
algorithm.

A. Context Identification

We need to identify the context whenever the probability
estimate (5) for the current context is too low or too uncertain.
For this, we collect trajectory data for each context that we
encounter. Then, if we need to identify the current context, we
use the safe policy from Assumption 3 to excite the system and
compare the generated data with all collected trajectories. To
compare trajectory data, we use the MMD [5]. Given a stored
dataset Xc of context c and trajectory data X of the current
context, we can calculate a finite-sample approximation of the
squared MMD as

MMD2(X,Xc) =
1

r2

r∑
i,j=1

kmmd(Xi, Xj)

+
1

r2

r∑
i,j=1

kmmd(Xci , Xcj )−
2

r2

r∑
i=1

r∑
j=1

kmmd(Xi, Xcj )

with kmmd(·, ·) a characteristic kernel and r the length of the two
datasets. For r → ∞ and if the trajectory data were independent
and identically distributed (i.i.d.), we could now guarantee that
MMD2(X,Xc) = 0 if, and only if, data samplesX andXc were
generated in the same context [5]. However, data generated by
dynamical systems are naturally non-i.i.d. To arrive at similar
statements for our setting, we require an assumption on the
trajectories created in each context.

Assumption 4: For any context c ∈ C, Xc is stationary and
there exists a time shift a∗ and a threshold κ(ε, r) such that for
Xc = (xc(a

∗), xc(2a
∗), . . . , xc(na

∗)), we have

P[MMD2(Xc, X̄c) ≥ κ] < ε

where X̄c is data from an independent trajectory.
The intuition behind this assumption is that if we subsample

from the trajectory, we end up with approximately i.i.d. data. For
a more detailed discussion on estimating a∗ from data, we refer
the reader to [6]. In there, the authors also show empirically that
Assumption 4 seems to be satisfied for human walking.

B. Classification

For classification, we leverage the concept of CMEs. We first
define positive definite kernel functions k : Y × Y → R and
� : C × C → {0, 1} for the input space (the measurements y) and
the output space (the contexts c), respectively. In our setting, it
is natural to choose � as the Kronecker delta kernel. That is, we
assume equal contexts have unit similarity while different con-
texts have no similarity. The Kronecker delta kernel is integrally
strictly positive definite on C and, therefore, characteristic [29,
Th. 7]. For the input space, we choose the Gaussian kernel, which
is also characteristic, and then have that both k and � uniquely
define the RKHSs Hk and H�.

Following [30], the conditional kernel mean embedding
operator UC|Y=y is the operator U : Hk → H� and the
CME is μC|Y=y = Uk(y, ·) := E[�(C, ·) | Y = y]. We fur-
ther define the cross-covariance operators RCY := E[�(C, ·)⊗
k(Y, ·)] : Hk → H� and RY Y := E[k(Y, ·)⊗ k(Y, ·)] : Hk →
Hk. Given that k(y, ·) is in the image of RY Y , we now have
that UC|Y = RCY R

−1
Y Y . However, since this assumption is not

necessarily satisfied for continuous input spaces Y [31], with
which we generally deal in our problem setting, we instead use
the regularized version UC|Y = RCY (RY Y + λI)−1 with reg-
ularization parameter λ and I the identity matrix of appropriate
dimensions.

Ultimately, we seek to infer the classification probabilities
pc(y), i.e., the probability of context c given specific measure-
ments y. We can write this probability in terms of the indicator
function 1(·) as

pc(y) := P(C = c | Y = y) = E[1c(C) | Y = y]. (4)

For the Kronecker delta kernel, we have 1c(y) = �(c, y). Thus,
the indicator function 1c = �(c, ·) is the canonical feature map
of H� and we can estimate it using the CME [9]

E[1c(C) | Y = y] ≈ 〈μ̂C|Y=y,1〉k
= 1T(K + nλI)−1Ky := p̂c(y) (5)
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with n being the number of data points, Ky :=
(k(y, y1), . . . , k(y, yn)), 1 := 1c(cj)

n
j=1, and the entry (a, b)

in the matrix K ∈ R
n×n is k(ya, yb). It then also follows that

we can essentially estimate the probabilities for all contexts
using kernel ridge regression [9].

Theorem 1 (see [9, Th. 1]): The classifier (5) is consistent if
k(y, ·) is in the image of RY Y .

Remark 1: For finite sample sizes, (5) may yield context
probabilities above one or below zero, which can be avoided
by applying a normalization [9].

To obtain practically useful bounds, we make an assumption
about the regularity of the true context probability functions
pc(y) that is similar to Assumption 1 and generally common in
the safe learning literature [2], [32], [33].

Assumption 5: The true probability functions pc(y) are all in
the Hilbert spaceHk and have bounded norm, ‖pc(y)‖2k ≤ Γ for
all c ∈ C with known bound Γ.

V. SAFE REINFORCEMENT LEARNING IN

UNCERTAIN CONTEXTS

We now present our safe reinforcement learning algorithm.
We start by deriving high-probability guarantees for context
identification. Then, we develop frequentist uncertainty intervals
for multiclass classification based on CMEs. Lastly, we integrate
both ingredients into the safe learning algorithm. Before starting,
we make the notion of a context more precise.

Definition 1: For any two contexts ca �= cb, we have that
MMD2(Xa, Xb) > η in the large sample limit (i.e., when the
number of data points r → ∞).

That is, we define contexts as external environmental changes
that cause a significant change in the system dynamics. Since
the definition via the MMD might seem abstract, we make the
notion explicit in Appendix B for the Furuta pendulum with
weights used in the evaluation in Section VI.

A. Context Identification With Guarantees

The MMD, as presented in Section IV-A, provides guarantees
in the infinite sample limit. For finitely many data samples,
Gretton et al. [5] presented various test statistics that can be
used for hypothesis testing. Those hypothesis tests come with
two challenges for our setting. First, they assume data to be i.i.d.
Data drawn from dynamical systems are naturally correlated
and, thus, not i.i.d. Second, the hypothesis test can only reject
the null hypothesis ca = cb based on a chosen significance level
but cannot provide guarantees for detecting that ca �= cb. In fact,
Gretton et al. [5] showed through an example that providing
such guarantees for distinguishing probability distributions is
generally impossible, independent of the distance measure.

We address the first challenge by employing the subsam-
pling strategy from [6]. That is, from every collected trajectory,
we subsample data such that the time shift equals a∗ from
Assumption 4. For the second challenge, we leverage Defini-
tion 1. Then, we arrive at the following statement.

Proposition 1: Under Assumption 4 and given r data samples
X and Xc, subsampled from the whole trajectory such that the

time shift is a∗. Set

η = 4

√
2K
r

(
1 +

√
2 ln

2

δMMD

)

in Definition 1. Assuming a characteristic kernel kMMD with 0 ≤
kMMD(x, y) ≤ K, we have, with probability at least 1− δMMD

MMD2(X,Xc) < 2

√
2K
r

(
1 +

√
2 ln

2

δ′MMD

)

where δMMD = 1
3 (δ

′
MMD + 2ε)with ε from Assumption 4, if, and

only if, the probability distribution that generated the data of the
current context is the same that generated the trajectory data of
context c.

Proof: Follows from combining [6, Th. 3] with Definition 1.�
That is, the guarantee for context identification we provide is

essentially the same as in [6], except that we can also guarantee to
detect ca �= cb. This is possible because of Definition 1. Since
different contexts, by definition, change the dynamics signifi-
cantly, we can guarantee to detect this change with the proposed
hypothesis test. In practice, we might also have external changes
in the environment that only cause minor changes in the system
dynamics. Then, learning a new policy would be inefficient, and
it is more sensible to consider this still the same context. The
design parameter η in Definition 1 quantifies when we consider
an environmental change as significant, and we provide some
intuition for it in Appendix B.

B. Classifier With Frequentist Bounds

Our goal is to develop a safe learning algorithm in uncer-
tain contexts where we perform context identification only if
necessary since it consumes time and causes wear and tear
to the hardware. If we assume no prior knowledge about how
measurements relate to contexts, we have, in the beginning, no
other choice than to identify contexts. Over time, we can then
learn a model that relates those identified contexts to received
measurements. This is a standard classification setting. If we
want to include the classification in the safe learning algorithm,
it has to provide frequentist guarantees.

For classification, we need to consider the following three
types of uncertainties:

i) uncertainty from estimating a function with limited
amount of data;

ii) uncertainty from not obtaining samples of the true prob-
ability function pc(y) but only discrete labels;

iii) uncertainty that stems from context identification, which
provides us with the correct context with probability 1−
δMMD (see Proposition 1).

In the following, we show how we can bound all three types
of uncertainties and then combine them to obtain the required
overall frequentist guarantees.

First, we define a variant of the power function [28], which
will occur at several stages during the derivations.

Definition 2: The power function is defined as 	(y) :=√
k(y, y)−KT

y (K + nλI)−1Ky .
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We now first address uncertainty (i) by introducing a virtual
estimate p̄c of p̂c. This virtual estimate is the estimate we would
get if we could use measurements of the true context probability
function pc(y) in (5) instead of discrete labels.

Lemma 1: Under Assumption 5, and given perfect measure-
ments py ∈ R

n of pc(y), for any n > 0, we have for all y ∈ Y
and c ∈ C

|pc(y)− p̄c(y)| ≤
√
Γ	(y)

where p̄c is estimated usingpy and with	(y), the power function
from Definition 2.

Proof: Similar in nature to that of [33, Th. 2]. Details are
provided in Appendix A2. �

However, in practice, we only receive discrete labels. Thus,
we next analyze the uncertainty from not measuring pc(y). We
first establish that centered Bernoulli random variables are σ-
sub-Gaussian.

Lemma 2: Let c be a Bernoulli random variable with success
probability pc. We have that the random variable c− pc is σ-sub
Gaussian with σ ≤ 1

4 .
Proof: Follows from [34, Theorem 2.1 and Lemma 2.1]. �
For bounding the measurement uncertainty, we similarly in-

troduce a virtual estimate p̌c, which is the estimate we would get
if the context identification always returned the actual context.

Lemma 3: We have for any n > 0 and all y ∈ Y, with prob-
ability at least 1− δ

|p̄c(y)− p̌c(y)| ≤ 	(y)

4
√
nλ

√
log(det(K + λ̄I))− 2 log(δ)

with p̄c(y) as in Lemma 1, 	(y) from Definition 2, and λ̄ :=
max{1, nλ}.

Proof: The proof idea is similar to that of [32, Th. 1], which
is possible since the measurement uncertainty is σ-sub Gaussian
withσ ≤ 1

4 by Lemma 2. Details are provided in Appendix A3.�
Lastly, we address the uncertainty (iii) inherited through

context identification.
Lemma 4: Given the setting in Proposition 1, we have, with

probability at least 1− δMMD

|p̌c(y)− p̂c(y)|

≤ 	(y)(1− 2δMMD)
√

log(det(K + λ̄I))− 2 log(δMMD)

2(ln(1− δMMD)− ln(δMMD))
√
nλ

+ (1− δMMD)1(K + nλI)−1Ky

with p̌c(y) as in Lemma 3, 	(y) from Definition 2, and λ̄ =
max{1, nλ}.

Proof: The two quantities are identical except for a
potential mismatch of actual context c and estimated
context ĉ. We, thus, analyze the error |c− ĉ|, which
we can rewrite as |c− ĉ− (1− δMMD) + (1− δMMD)| ≤
|(c− ĉ− (1− δMMD)|+ |1− δMMD|. Following [34, Lem. 2.1],
the first term is a sub-Gaussian random variable with σ =

1−2δMMD
2(ln(1−δMMD)−ln(δMMD))

. Thus, we can bound the error term in
the same way as shown in Lemma 3. �

Algorithm 1: Pseudocode of the Safe Reinforcement
Learner.

1: Input: Measurements y, safety threshold psafe

2: for c ∈ C do
3: Compute p̂c(y) using (5)
4: Estimate Δpc(y) = |p̂c(y)− pc(y)| with Cor. 1
5: if p̂c(y)−Δpc(y) > psafe then
6: Return: Context c
7: else
8: Perform experiment, measure X trajectory
9: for c ∈ C do

10: if MMD2(X,Xc) below threshold from Prop. 1
then

11: Return: Context c
12: Return: Context c /∈ C

Combining the lemmas, we arrive at the desired statement.
Corollary 1: Under Assumption 5 and given the setting in

Proposition 1, we have, with probability at least (1− δMMD)
(1− δclass)

|pc(y)− p̂c(y)|

≤ 	(y)

(√
Γ +

1

4
√
nλ

√
log(det(K + λ̄I))− 2 log(δclass)

+
(1− 2δMMD)

√
log(det(K + λ̄I))− 2 log(δMMD)

2(ln(1− δMMD)− ln(δMMD))
√
nλ

)

+ (1− δMMD)1(K + nλI)−1Ky

with 	(y) from Definition 2 and λ̄ = max{1, nλ}, holds for any
n > 0 and all y ∈ Y.

Remark 2: So far, we assumed that the number of contexts
|C| = m is given a priori. Accounting for potential unknown
contexts is straightforward. In that case, we consider the number
of contexts mn as a variable that can change as we gather more
data (more (y, c) tuples). Whenever we receive a previously
unseen context, we increase mn+1 = mn + 1. Since we have
not seen this context before, we can create its measurement
vector as a vector of all zeros except for a one in the last entry.

C. Safe Learning

Finally, we show how all previous results can be merged into
a safe learning algorithm (see Algorithm 1).

We need one more assumption before analyzing the safety of
Algorithm 1. We assume that all relevant safety information that
y can provide is encoded in the context.

Assumption 6: Let P (safe) denote the probability of an ex-
periment being safe. We have P (safe | c, y) = P (safe | c).
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Then, the safety of Algorithm 1 can be formalized as
follows.

Theorem 2: Given Assumptions 1–6. Then, following
Algorithm 1, for any n ≥ 0, the experiment is safe with proba-
bility at least (1− δsafe)(psafe)(1− δclass)(1− δMMD).

Proof: We distinguish two cases. In the first case, we need to
identify the context. Then, we have

P (safe | c) = P (safe | ĉ = c)P (ĉ = c)

≥ (1− δsafe)(1− δMMD)

by [2, Th. 1] and Proposition 1. In the second case, we are certain
enough about the current context to choose a policy directly.
By Corollary 1, we can bound the uncertainty of our context
inference. Thus, we have

P (safe | c) = P (safe | ĉ = c)P (c = ĉ | y)
≥ (1− δsafe)P (c = ĉ | y)
≥ (1− δsafe)psafe(1− δclass)(1− δMMD).

�

VI. EVALUATION

We evaluate our algorithm using the scenario shown in Fig. 1.
After evaluating the algorithm as a whole, we provide a com-
parison with the standard SAFEOPT algorithm without our con-
tributions and then specifically investigate the performance of
the classification bounds.

A. Safe Reinforcement Learning in Uncertain Contexts

In Fig. 1, we have a Furuta pendulum [10] to whose pole we
can add weights. We also have a camera that can take a picture of
the current weight, allowing us to infer which weight was added
before an experiment. We consider learning a balancing con-
troller for the Furuta pendulum using the SAFEOPT [2] algorithm.
In particular, we consider linear state-feedback control, i.e., we
multiply the four-dimensional state, consisting of angle α and
angular velocity α̇ of the rotatory arm, and angle θ and angular
velocity θ̇ of the pole, with a feedback matrixF ∈ R

1×4. We then
focus on letting SAFEOPT find an optimal value for the feedback
gain multiplied by the pole angle while keeping the other entries
of F fixed. During the search, SAFEOPT shall avoid failures with
high probability. Here, we define failure as the pole dropping.
For interfacing the pendulum system, we leverage code provided
with [35].

For SAFEOPT, we use a Matern kernel for the parameter opti-
mization with a length scale of 0.1 and a Gaussian kernel with a
length scale of 1 for the contexts. Apart from that, we leave the
hyperparameters provided in the official code [2] untouched. For
classification, we choose, inspired by the classification example
in [36, Ch. 3], a Gaussian kernel with a log length scale of
7.5 and log magnitude of 1.5. We further set λ = 1× 10−4 and
Γ = 2. We keep those two parameters for all experiments. In the
following section, we discuss and numerically estimate the value
of Γ for a different setting. From this discussion, we conclude
that Γ = 2 is a sensible choice for making sure to stay safe

and not allow for failures while at the same time not being too
conservative. For the context identification, we also choose a
Gaussian kernel and compute the length scale based on the data
samples as suggested in [5].

At the beginning of each experiment, we let a random number
generator determine the current context and, accordingly, add
one of the two weights or no weight to the tip of the pole. We
then take an image of the weight using a standard smartphone
camera as is shown in Fig. 1. We convert each image to grayscale
and scale it to a size of 32 × 32 pixels. For this rescaled image,
we then compute the classification bounds from Corollary 1.
Nevertheless, as we assume no prior knowledge, the uncertainty
bounds are high during the first iterations. Thus, we must always
identify the current context in the first iterations. In these cases,
we use the initially given safe controller and excite the system
by adding a chirp signal. We show example trajectories for the
two weights and one without any weight in Fig. 2.

In case we need to identify the context, we seek to compute the
MMD between the current trajectory and all stored trajectories.
As trajectory data is naturally correlated through time, we follow
the approach from [6] and subsample the data such that the
subsampled trajectories satisfy Assumption 4. Therefore, we
collect two independent trajectories per context and compute
the MMD for increasing values of a, which we show in Fig. 3.
We see that for a > 50, the MMD is reliably kept at a low level.
Thus, during context identification experiments, we subsample
by choosing only every 50th sample and then compute the
MMD between the current trajectory and all stored trajectories
to identify the context. During our experiments, we identified
the context correctly in every iteration in which context identi-
fication was required.

Over time, we build a dataset of weight images and contexts
that allows us to make more confident classification decisions.
In Fig. 4, we show the classification probability estimates and
uncertainty bounds of ten randomly selected images given a
dataset consisting of the following:

1) the first ten images in our dataset (top row);
2) the first half of the dataset (middle row);
3) the entire dataset (312 images, bottom row).
We can see that the uncertainty steadily decreases. After

accessing the entire dataset, we can make classification deci-
sions with confidence above 70% in the case of weight two.
We consider this to be a relatively small dataset for image
classification. We further see a few misclassifications, marked by
red crosses in Fig. 4, especially for the small datasets. Those are
accompanied by large uncertainty intervals, i.e., our algorithm
correctly identifies that the output of the classifier should not be
trusted in those cases.

During all experiments, the pole of the Furuta pendulum never
dropped, i.e., we successfully retained safety.

B. Comparison

Having shown the general applicability of our algorithm, we
next compare the resulting algorithm to SAFEOPT without our
bounds and context identification. On the one hand, identifying
the context in cases where the classifier is too uncertain comes



BAUMANN AND SCHÖN: SAFE REINFORCEMENT LEARNING IN UNCERTAIN CONTEXTS 1835

Fig. 2. Trajectories of context identification experiments.

Fig. 3. MMD of context identification experiments for different weights for varying a. For a > 50, we see that the MMD is at a low level, i.e., trajectories are
approximately independent.

Fig. 4. Prediction of weights based on camera images. We show the prediction p̂c and uncertainty intervals from Corollary 1 for ten images without weight (left),
ten with weight one (middle), and ten with weight two (right). Wrong predictions are marked with red crosses. From top to bottom, we see how the uncertainty
intervals decrease from a dataset of ten images, over one with around 150 images (middle), to the full dataset of 312 images.
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Fig. 5. Training time and number of failures for pure SAFEOPT, SAFEOPT with
context identification and classification (our), and SAFEOPT with context iden-
tification before the start of every experiment (ContID). While our extensions
require more samples for the additional context identification and, therefore,
more training time, we do not incur any failures while we have several when
only using SAFEOPT.

at the expense of requiring additional experimentation. On the
other hand, considering contexts may improve performance and
even be necessary to ensure safety.

For the comparison, we again consider the Furuta pendulum,
but this time in simulation, again based on the code from [35],
and change pole mass and length in the simulation code. We then
let SAFEOPT optimize the feedback gain multiplied by the pole
angle while not providing any information about the current
context. After, we run the algorithm proposed in this work.
Instead of camera images, in the simulated case, we assume
that we receive noisy measurements, where the noise variance
is normally distributed with a standard deviation of 0.1, of the
height of the weight at the beginning of an experiment. Given
the noisy height measurement, we evaluate the classifier and
classification bounds and accept the outcome if the lower bound
is above psafe = 0.8. Otherwise, we perform an identification
experiment as before. The parameter psafe is a tuning parameter
and mainly depends on the task at hand, i.e., the consequences
of misclassification and, hence, a potential violation of a safety
constraint. We discuss the choice of psafe in more detail in
Section VI-C. Having certainty about the context, we perform
a SAFEOPT experiment. We adopt the kernel parameters for
SAFEOPT, but reduce the length scales of the kernel for clas-
sification to 0.1.

We report results in Fig. 5. The left plot shows the experi-
mentation time required for pure SAFEOPT, SAFEOPT with both
context identification and classification, and SAFEOPT where we
run a context identification at the beginning of each experiment
without attempting any classification. Each context identifica-
tion and also each SAFEOPT experiment lasts 2500 samples with
an underlying sampling frequency of 200Hz, and we run the
entire loop for 1 000 iterations. Clearly, when identifying the
context at each time step, the overall required experimentation
time is double the time the pure SAFEOPT algorithm needs.
Nevertheless, we see that when leveraging the classification,
we can already, at this stage, save some time. Considering that
it initially requires some training time until the classification
starts to be effective, we can expect even more significant
relative savings when running the algorithm for a longer time.
But, certainly, running SAFEOPT while ignoring the unknown
contexts will require the least time. However, in the right plot of
Fig. 5, we also see the downside of this approach: while both our
scheme and the one that identifies the context at the beginning

Fig. 6. Correct and incorrect classifications for the simulated Furuta pendulum
with noisy measurements and different values of psafe. For each context, we see
the number of correct classifications in blue and misclassifications in red, from
left to right, for increasing psafe. The lower psafe, the more contexts we can
classify, but the larger also our errors, especially for the two contexts that are
close together.

of each experiment have zero failures after 1 000 iterations,
SAFEOPT without considering contexts accumulated 55. While
this is uncritical in a simulation experiment, in real experiments
with costly and fragile hardware, this can be problematic. The
other extreme case would be to consider SAFEOPT with contexts,
assuming contexts to be known. In essence, that would result in
equivalent performance in terms of failures as the runs we did
with context identification and the runs we did with both context
identification and classification, as both always recovered the
true context. However, it would also result in the same training
time as SAFEOPT, as we would assume that the context is
known, rendering both context identification and classification
unnecessary. Thus, under this assumption, the contributions of
this article would not be required, and pure SAFEOPT, or a more
advanced version of the algorithm, would be the more suitable
choice.

C. Sensitivity Analysis and Limitations

The two examples have shown the benefit of the classification
bounds proposed in this article. Nevertheless, when to accept
a classified context without context identification depends on
psafe, which is a tuning parameter that we set to 0.8 in the
previous examples. In this section, we show how the choice of
this parameter influences the classification results. Furthermore,
we discuss a case with more and gradually changing contexts.

We still consider the same setup as before, with the simulated
Furuta pendulum and noisy height measurements providing
information about the current contexts. This time, we consider
five contexts, where the heights are h ∈ {1, 2, 2.5, 2.75, 2.875},
disturbed with normally distributed noise with a standard de-
viation of 0.1. Thus, in this case, at least the last two contexts
are hard to distinguish for the classifier. We then run five times
2000 experiments picking one of psafe ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
for each of the five runs, and report in Fig. 6, which contexts
were classified correctly (in blue) and incorrectly (in red) for
the different psafe values. Clearly, as we increase the safety
threshold, the classifier less often exceeds it. On the other hand,
also the number of misclassifications decreases as we increase
psafe. We can further see that for the contexts that are much
farther apart from each other than the noise level, there are no
classification errors even for psafe = 0.5. However, especially for



BAUMANN AND SCHÖN: SAFE REINFORCEMENT LEARNING IN UNCERTAIN CONTEXTS 1837

h = 2.75, we have relatively many misclassifications and, even
for psafe = 0.5, overall only few cases in which the classifier
exceeds the threshold. Thus, when contexts are hard to distin-
guish, our classifier will often report low certainty and render
the context classification necessary.

D. Classification Bounds

Next, we evaluate the performance of the classification
bounds. We first qualitatively compare the nature of our uncer-
tainty bounds with more standard, expected risk bounds from [9]
and the recently proposed deterministic bounds from [28] in a
simple, synthetic example. Then, we demonstrate the applica-
bility of our bounds in two standard classification benchmarks:
the modified National Institute of Standards and Technology
(MNIST) dataset [37] and the German traffic sign recognition
benchmark (GTSRB) [38]. In this part of the evaluation, we dis-
regard the uncertainty from context identification but investigate
directly the error |pc(y)− p̌c(y)|.

Qualitative comparison: For a qualitative comparison, we
choose a probability function p0(y) = (1 + exp(−y + 1))−1

and p1(y) = 1− p0(y), where y is a scalar parameter. The
training set consists of 50 y values in the range −6 to −4.7,
50 y values between 0.5 and 1.78, and 50 x values between 5.7
and 7. We sample a context for eachx value. The context is either
zero or one with probability p0(y) and p1(y), respectively.

For all three approaches, we then compute the estimate p̂c
using CMEs as presented in Section IV-B, and their respective
bounds for 1 00 y values sampled uniformly in the interval
[−6, 7]. For all approaches, we use a Gaussian kernel with length
scale 1. In [39, Appendix], the authors present a method to
empirically estimate a bound on the RKHS norm of a given
function. For the function p0, we get Γ = 2 as a conservative
estimate in the region where we evaluate the function. Thus, we
choose Γ = 2.

The bounds in [9, Th. 4] are expected risk bounds. As such,
they do not directly allow us to bound the error |pc(y)− p̌c(y)|.
Instead, we can infer the likelihood of misclassifying a sample
for any input y. The bounds are extremely conservative if used in
such a way and report a misclassification risk above 99% for the
chosen hyperparameters. However, making such predictions is
not the purpose for which these bounds were developed. In [9],
they were used to tune the hyperparameters of a CME-based
classifier. The authors showed that the bounds are very useful in
providing a tradeoff between accuracy on the training data and
model complexity that leads to good generalization properties.
Nevertheless, even with the optimized hyperparameters in [9],
the bounds are too conservative to apply to our problem setting.

The bounds from [28] are closer to the ones proposed in
this article. Similar to ours, they are input-dependent and, thus,
give, for any specific input x, an upper bound on the deviation
|pc(y)− p̌c(y)|. However, while our bound is a high probabil-
ity bound, the bound from [28] is deterministic. Their central
assumption is that training data is corrupted by bounded noise
with a known bound. In our setting, we aim at estimating pc(y)
while only receiving binary labels. We can interpret this as
measuring pc(y) with a maximum error of one. Then, we can

Fig. 7. Our bounds compared with those of [28]. The bounds are illustrated
through the blue shaded areas. Compared to our bounds (top), the bounds
from [28] (bottom) are, due to their deterministic nature, way more conservative
and, therefore,noninformative for classification.

use the bounds from [28]. In particular, we use the simplified
version of the bounds provided in [28, Th. 1] that do not require
computing the RKHS norm of p̄c.

In Fig. 7, we compare our bounds (bottom) with those
from [28] (top). We show the true probability function p0(y),
the estimates p̌0(y), and the bounds in both plots. The data-
dependent nature can be seen in both figures. However, the
bounds from [28] are way more conservative than ours. This
is natural since the bounds from [28] are deterministic, i.e., they
need to hold for any ground truth function compatible with the
data and noise model, while ours are high probability statements.
Thus, while the bounds from [28] are essential results for general
function estimation and applications in, for instance, robust
control, the bounds are noninformative for classification.

This comparison shows that state-of-the-art bounds for multi-
class classification do not meet the requirements for our problem
setting. We require bounds that are both input-dependent and
probabilistic such that they yield practically usable worst-case
bounds. In contrast to existing bounds, the bounds we derived
in Section V-B meet both requirements.

MNIST: To challenge the scalability of the bounds, we next
consider the popular MNIST dataset. The MNIST dataset con-
sists of images of handwritten digits. Thus, the task for our
classifier is to predict, which digit can be seen in a specific
image. At the same time, we seek to infer how certain we are
about the classification through our bounds.1

For image classification, we again choose a Gaussian kernel
with a log length scale of 7.5 and log magnitude of 2.6. We
normalize the images such that the pixels take values in [−1, 1].

1The code for this example is available at https://github.com/
baumanndominik/cme_based_classification_bounds.

https://github.com/baumanndominik/cme_based_classification_bounds
https://github.com/baumanndominik/cme_based_classification_bounds
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Fig. 8. Our classifier and bounds applied to the MNIST dataset. After having
seen 10 000 training images, we can already make confident decisions for some
digits.

The MNIST dataset is split into a training and test set. We
use the first 10 000 training images to train our algorithm and
then evaluate it on the first occurrence of each digit in the test
dataset. For the test examples, we show both the probability of
the most likely digit and the uncertainty bounds in Fig. 8. After
having seen 10 000 training examples, the uncertainty in many
test cases is still very high and would not enable us to make
confident predictions. While this represents a limitation, it is a
natural one. A single observed outcome for a specific parameter
setting can already yield significant insights in a regression task.
This is not the case in classification. If we throw a coin once and
it comes up tails, we cannot infer whether or not the coin is
likely to be fair. Especially in this light, the bounds developed
herein are an essential asset in the classification setting. Popular
classifiers have been reported to be overconfident [21]. Hence,
it is crucial to add reliable bounds, particularly if the classifier’s
output is used in safety-critical environments.

However, Fig. 8 also shows that in some instances, e.g.,
for zero, one, and seven, we are confident that our estimator
classifies correctly. For comparison, we computed the expected
risk bounds from [9, Th. 4]. Those reveal a significant misclas-
sification risk over the entire input domain. Thus, they would
not let us make any confident classification decision, rendering
the entire classification useless. This underlines the importance
of input-dependent uncertainty bounds for safe learning. If we
either accept all or none of the predictions, it may take us too long
until we are confident enough. With the input-dependent bounds
developed in this article, we judge the prediction uncertainty
locally at the current input and can make confident classification
decisions in specific parts of the input space even if, overall, the
uncertainty is still high.

German traffic sign recognition benchmark: While the
MNIST dataset is widely used, it may not be obvious how
misclassifying a digit could be fatal. Therefore, we next consider
the GTSRB [38]. The GTSRB contains images of different
traffic signs that should be classified. Suppose an algorithm that
classifies traffic signs is used, for instance, within a self-driving
car that chooses its driving policy based on this classification.
In that case, we must be sure about our predictions.

Also here, we consider a Gaussian kernel, this time with a log
length scale of 7 and log magnitude of 1.5. Besides normalizing
the pixel values, we rescale the images, which a priori have
varying sizes, to 32× 32 pixels and convert them to grayscale
images.

Fig. 9. Results of the GTSRB dataset. Also in this case, we can return
practically useful bounds on classification probabilities.

Similar to MNIST, the GTSRB is divided into training and
test set. We randomly select ten traffic signs. Then, we train
the classifier on the first 1 000 images that contain those signs
and use the first occurrence of those signs in the test set for
evaluation. As shown in Fig. 9 (top), the uncertainty is still very
high. In particular, since the lower bound of the classification
probability barely reaches 50%, at this stage, the classifier
should, if at all, only be trusted to recognize sign number
nine. We then re-evaluate the same signs after providing 10 000
images for training. This significantly reduces the uncertainty
(see Fig. 9, bottom). This shows that the bounds can easily
be used in online learning settings and tightened as we receive
more data. After having seen 10 000 training examples, we can
also confidently (and correctly) identify signs three and eight.
Meanwhile, for sign two, for instance, the bounds tell us that the
algorithm cannot provide a reliable classification probability.
Since misclassification in this example may cause accidents,
knowing for which signs we cannot rely on the classifier is
precious information. This shows that the classification bounds
are informative in cases with relatively few training data, as they
can clearly indicate when we can start to trust the classifier.

VII. CONCLUSION

This article presents a safe learning algorithm for context-
conditional dynamical systems with unknown contexts. We
show how contexts can be identified from data or classified
using CMEs, providing high-probability guarantees in both
cases. Subsequently, we show how they can be combined with
a popular safe learning algorithm. We demonstrate that given
measurements that allow us to distinguish contexts clearly, the
classification bounds can save training time. Otherwise, if the
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measurements do not allow us to distinguish contexts clearly,
we need to identify the contexts through experiments, which
increases training time.

A further contribution of this work is the derivation of frequen-
tist uncertainty intervals for a multiclass classifier. This result has
applications beyond the area of safe learning. Clearly, a limiting
factor of the bounds is that we require an upper bound on the
RKHS norm. The bounds share this problem with SAFEOPT and
related safe learning approaches, which also require an upper
bound on this norm. Thus, estimating this norm from data is
subject to ongoing research.

APPENDIX

A. Proofs

Here, we present extended proofs for Lemmas 1 and 3. Before
stating the proofs, we introduce some useful derivations used
throughout.

1) Useful Derivations: In this section, we restate and adapt
some derivations from [33, Proof of Theorem 2], which we
will use in the proofs of our main results. We first define the
feature map ϕ(y) := k(y, ·) that maps any point from Y to
the RKHS Hk. Since we define the inputs y to take values
in the real numbers, we can further define the inner product
in the RKHS as 〈g, h〉k = gTh and the RKHS norm ‖g‖k =√
gTg for any two functions f and g in Hk. Defining Φ :=

(ϕ(y1)
T, . . . , ϕ(yn)

T)
T, we can write K = ΦΦT, Ky = Φϕ(y),

and (pc(y1), . . . , pc(yn)) = Φpc.
The matrix (ΦTΦ+ nλI) is strictly positive definite. Thus,

we have

ΦT(ΦΦT + nλI)−1 = (ΦTΦ+ nλI)−1ΦT. (6)

Using (6), we can further conclude

ϕ(x) = ΦT(ΦΦT + nλI)−1 + nλ(ΦTΦ+ nλI)−1ϕ(y) (7)

which leads us to

ϕ(y)Tϕ(x) = KT
y (ΦΦ

T + nλI)−1Ky

+ nλϕ(y)T(ΦTΦ+ nλI)−1ϕ(y). (8)

Finally, we have

nλϕ(y)T(ΦTΦ+ nλI)−1ϕ(x)

= k(y, y)−KT
y (K + nλI)−1Ky. (9)

2) Proof of Lemma 1: We have for all c ∈ Y
|pc(y)− p̄c(y)| =

∣∣pc(y)−KT
y (K + nλI)−1py

∣∣
=
∣∣ϕ(y)Tpc − ϕ(y)TΦT(ΦΦT + nλI)−1Φpc

∣∣
Definitions in Section A1

=
∣∣ϕ(y)Tpc − ϕ(y)T(ΦTΦ+ nλI)−1ΦTΦpc

∣∣ (6)

=
∣∣nλϕ(x)T(ΦTΦ+ nλI)−1pc

∣∣ (7)

≤ ∥∥nλϕ(y)T(ΦTΦ+ nλI)−1
∥∥
k
‖pc‖k Cauchy–Schwarz

≤
√
Γ
∥∥nλϕ(y)T(ΦTΦ+ nλI)−1

∥∥
k

Assumption 5

=
√
Γ
√
nλϕ(x)T(ΦTΦ+ nλI)−1nλ(ΦTΦ+ nλI)−1ϕ(y)

Definitions in Section A1

≤
√
Γ(nλϕ(x)T(ΦTΦ+ nλI)−1(ΦTΦ+ nλI)

(ΦTΦ+ nλI)−1ϕ(y))
1
2 K is pos. def.

=
√
Γ
√
k(y, y)−KT

y (K + nλI)−1Ky (9)

from which the claim follows through Definition 2.
3) Proof of Lemma 3: We have for all c ∈ Y
|p̄c(y)− p̌c(y)| =

∣∣KT
y (K + nλI)−1(py − c)

∣∣
=
∣∣ϕ(y)TΦ(K + nλI)−1(py − c)

∣∣ Definitions in Section A1

=
∣∣ϕ(y)T(K + nλI)−1ΦT(py − c)

∣∣ (6)

≤
∥∥∥ϕ(x)T(K + nλI)−

1
2

∥∥∥
k

∥∥∥(K + nλI)−
1
2ΦT(py − c)

∥∥∥
k

Cauchy–Schwarz

=
√
ϕ(x)T(K + nλI)−1ϕ(y)√
(ΦT(py − c))T(K + nλI)−1ΦT(py − c)

=

√
1

nλ
	(y)

√
(ΦT(py − c))T(K + nλI)−1ΦT(py − c)

(9),Def.2

=

√
1

nλ
	(y)

√
(py − c)TK(K + nλI)−1(py − c)

Definitions in Section A1.

The claim then follows from [32, Th. 1] since the random
variables are σ-sub Gaussian with σ ≤ 1

4 following Lemma 2.

B. Example for Definition 1

Defining contexts based on η might seem to be an abstract
choice at first. Therefore, let us here make it more intuitive by
calculating it for the Furuta pendulum example from Section VI.
When considering the balancing of the Furuta pendulum, the
system can be approximated as a linear, time-invariant system.
If we further assume that the state measurements we receive are
perturbed by Gaussian noise, the resulting trajectory data also
follows a Gaussian distribution. Given that we subsample the
data such that it is approximately i.i.d., we can now analytically
compute the MMD. For ease of presentation, we consider a
scalar state, e.g., the angular velocity of the pole that we also
used in Section VI. Then, for two contexts ca and cb that generate
Gaussian data distributions N(μa, σ

2
a) and N(μb, σ

2
b) with a

Gaussian kernel kmmd we have in the infinite sample limit

MMD(Xa, Xb) =
exp

(
2|μa|2

2(2σ2
a+γ2)

)
√

2π(2σ2
a + γ2)

+
exp

(
2|μb|2

2(2σ2
b+γ2)

)
√

2π(2σ2
b + γ2)

−
2 exp

(
|μa+μb|2

2(σ2
a+σ2

b+γ2)

)
√
2π(σ2

a + σ2
b + γ2)
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with γ the length scale of the Gaussian kernel. This result is
based on the derivations from [40].

With the experimental data that we have, we can now approx-
imate both mean and standard deviation for both contexts and
compute the MMD. We can also compute the corresponding
η from Proposition 1. When comparing both, we see that for
differentiating the context “no weight” from “weight 2” and
“weight 1” from “weight 2,” the 2500 data samples we collected
are sufficient to have an η that is below the threshold given in
Proposition 1. To be able to guarantee that we can differentiate
context “no weight” from context “weight 1,” we would have
needed around 350 000 data points. However, we see in the
evaluation that also with 2500 data samples, we can reliably
identify the context.
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