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General-Purpose Sim2Real Protocol for Learning
Contact-Rich Manipulation With Marker-Based
Visuotactile Sensors

Weihang Chen ", Jing Xu

and Rui Chen

Abstract—Visuotactile sensors can provide rich contact informa-
tion, having great potential in contact-rich manipulation tasks with
reinforcement learning (RL) policies. Sim2Real technique tackles
the challenge of RL’s reliance on a large amount of interaction data.
However, most Sim2Real methods for manipulation tasks with
visuotactile sensors rely on rigid-body physics simulation, which
fails to simulate the real elastic deformation precisely. Moreover,
these methods do not exploit the characteristic of tactile signals
for designing the network architecture. In this article, we build a
general-purpose Sim2Real protocol for manipulation policy learn-
ing with marker-based visuotactile sensors. To improve the simula-
tion fidelity, we employ an FEM-based physics simulator that can
simulate the sensor deformation accurately and stably for arbitrary
geometries. We further propose a novel tactile feature extraction
network that directly processes the set of pixel coordinates of
tactile sensor markers and a self-supervised pretraining strategy
to improve the efficiency and generalizability of RL policies. We
conduct extensive Sim2Real experiments on the peg-in-hole task to
validate the effectiveness of our method. And we further show its
generalizability on additional tasks including plug adjustment and
lock opening. The protocol, including the simulator and the policy
learning framework, will be open-sourced for community usage.

Index Terms—Contact-rich manipulation, robot simulation,
sim-to-real, tactile sensing.

1. INTRODUCTION

ACTILE sensing can provide rich information about con-
T tacts between the robot and the environment, including
local geometry and force. This information is crucial for contact-
rich robot tasks, and cannot be obtained from visual signals [1].
Therefore, tactile sensing is drawing increasing attention in robot
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applications, such as object manipulation and assembly [2],
[3], [4]. However, tactile sensor signals, particularly those from
visuotactile sensors, are high-dimensional, which poses a sig-
nificant challenge to manually designing rules for robust and
generalizable control policies.

To develop control policies that can utilize high-dimensional
input data, robotics researchers have employed deep reinforce-
ment learning (RL) to autonomously extract features and learn
complex control policies without manual design [5], [6]. How-
ever, the integration of tactile sensing into RL policies remains
underexplored currently. A major obstacle is the high demand
for massive amounts of interaction data, which are costly and
time-consuming to collect in reality. Sim2Real addresses this
problem by enabling robots to be trained in simulation and
transferring the learned policies to real robots with minimal or
zero real-world data [7], [8], [9]. Furthermore, the access to
ground-truth environment states in simulation accelerates the
policy learning process.

Most existing tactile sensor simulation methods are based on
rigid-bod physics simulation [10], [11], [12], [13], [14]. While
the penalty-based contact model can approximate the deforma-
tion of the tactile sensor, it cannot capture the elastic dynamics
of the tactile sensor accurately. These methods tradeoff realism
for computational efficiency, resulting in a large Sim2Real gap
that hinders the transferability of manipulation policies learned
in simulation.

In this work, we explore how to build an efficient, general,
and effective tactile Sim2Real protocol for robot manipulation
with marker-based visuotactile sensors. The protocol comprises
four essential components, each of which significantly con-
tributes to the final Sim2Real performance. First, we employ
a state-of-the-art finite-element-method (FEM) based physics
simulation to model the elastic dynamics of the tactile sensor
and the contacts between sensors and objects more precisely
than rigid-body-based physics simulation. Second, through ex-
periments, we discover that it is better to use a point-based
representation for tactile feature extraction and policy learning,
where the input points come from the set of pixel coordinates of
tactile sensor markers. Compared with CNNs that process the
tactile sensor image, our proposed network can achieve higher
learning efficiency and better generalizability to unseen objects.
Third, while the raw signal from the marker-based tactile sensor
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Fig. 1. In this work, we build a general-purpose Sim2Real protocol for
marker-based visuotactile sensors, which includes FEM-based physics simu-
lation, policy learning architectures, self-supervised representation learning,
and domain randomization techniques. We demonstrate its effectiveness for
zero-shot Sim2Real for three high-precision contact-rich manipulation tasks.

is high dimensional, the feature related to the manipulation tasks
is usually low dimensional. Therefore, to further improve learn-
ing efficiency, we propose to leverage self-supervised represen-
tation learning to obtain general tactile representation that can be
applied to various manipulation tasks. Finally, after systemically
analyzing the sources of Sim2Real discrepancy, we employ
domain randomization techniques in the physical, optical, and
task domains to improve the Sim2Real transferrability of the
learned policy.

While our method is designed for general contact-rich tasks,
we take peg-in-hole insertion as an example task and test our
system extensively on it, because this task is ubiquitous and
fundamental for many advanced tasks. In this task, our sim-
ulation achieves a speed two orders of magnitude faster than
reality on a desktop CPU. We conduct extensive Sim2Real
experiments on the peg-in-hole task and compare our method
against state-of-the-art tactile simulation and feature extraction
methods. We also propose an arbitrary-shape training scheme for
generalizable peg-in-hole policy learning. We further validate
the generalizability of our Sim2Real pipeline on two challenging
real-life tasks: plug adjustment and lock opening (see Fig. 1).

In summary, the contributions of this work are as follows:

1) We present a general-purpose Sim2Real protocol for
marker-based visuotactile sensor that has been validated
effective for various real-world high-precision contact-
rich manipulation tasks and will be open-sourced for
community usage.

2) We introduce point cloud learning architecture for tactile
feature extraction that directly processes the set of pixel
coordinates of tactile sensor markers.
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3) We introduce a self-supervised pretraining framework
to improve the sample efficiency of tactile-based robot
learning.

4) We demonstrate the effectiveness of our method on various
real robot manipulation tasks through extensive quantita-
tive experiments.

The rest of this article is structured as follows. Section II
provides a summary of related works. Section III outlines the
proposed methodology, including the simulation method, tactile
feature extraction, and policy training scheme. The subsequent
three sections present the experiments. Section IV focuses on
the self-supervised tactile representation learning. Section V
discusses the Sim2Real experiments for the peg-in-hole task.
Section VI examines the proposed method on two additional
contact-rich manipulation tasks that closely resemble real-life
scenarios. Finally, Section VII presents the conclusion.

II. RELATED WORKS
A. Tactile Sensing

According to working principles, existing tactile sensing ap-
proaches can be divided into resistive, capacitive, piezoresistive,
piezoelectric, triboelectric, optical and others. We refer to [15]
for a systematic survey on tactile sensing techniques. Marker-
based visuotactile sensors transform the contact information into
marker flow in the captured image by embedding markers in the
surface or interior of the sensor’s flexible elastomer [16]. It has
the following advantages: simple hardware configuration, low
cost, simultaneous measurement of normal and shear forces,
and it has been successfully applied to various robot tasks, in-
cluding peg-in-hole insertion, cable manipulation [4], [17], [18].
Therefore, marker-based visuotactile sensors are widely stud-
ied, and many type of sensors have been developed, including
GelForce [19], TacTip [20], [21], GelStereo [22], Tac3D [23],
and the sensor by ETH [24]. In this work, we mainly verified
our proposed protocol on our marker-based visuotactile sensors
based on GelSight [25]. We note that our approach can be
adapted to other types of marker-based visuotactile sensors.

B. Tactile Sensor Simulation

The simulation process of tactile sensors is typically divided
into two phases. The first phase involves simulation of the sen-
sor’s deformation caused by contact. The second phase involves
simulation of the transduction of physical quantities from the
deformation. For marker-based visuotactile sensors, the first
phase is a fundamental step for the second phase. This section
primarily summarizes methods related to the first phase. Tactile
sensors that operate on other principles, such as BioTac [26],
share a similar first phase as marker-based visuotactile sensors
and are also included in this section.

In [10] and [11], a Gazebo-based GelSight simulator was
proposed, where the deformation was simulated from the contact
geometry using Gaussian filtering followed by difference of
Gaussian. In [12], [13], and [27], PyBullet was used to sim-
ulate the contact between the object and the sensor, and the
deformation was approximated by calculating the penetration
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of the object into the sensor. A similar method is also reported
in [28]. The focus of these works is the simulation of sensors’
optical properties. Despite their computational efficiency, these
geometry-based methods cannot model the sensor’s tangential
deformation, which is crucial for many robot applications such
as slip detection and peg-in-hole insertion. Xu et al. [14] pro-
posed a penalty-based tactile model upon rigid body dynamics,
which is able to simulate both normal and shear tactile force
fields at high speed. While the penalty-based simulation can
approximate the sensor deformation in manipulation, it cannot
simulate the elastic behavior of the elastomer accurately, espe-
cially the contact force caused by the tangential deformation.
Therefore, its Sim2Real transferrability is limited, which has
been demonstrated by our experimental results.

Compared with rigid-body-based simulation, finite element
methods (FEM) can model the deformation of the sensor’s
elastomer more accurately. Bi et al. [29] developed a FEM-
based tactile sensor simulator and achieved zero-shot Sim2Real
transfer of RL policies for aggressive swing-up manipulation.
However, they utilized the cylindrical geometry of the poles to
simplify the simulation, and constrained the motion of the pole
in the x-y plane, rendering it inapplicable to objects with various
geometries. Si and Yuan [30] proposed a superposition method
to approximate the FEM dynamics and successfully simulate
the sensor’s tangential deformation, but no manipulation tasks
were demonstrated. Narang et al. built a linear-FEM-based
tactile simulator for BioTac with Isaac Gym [31], achieving
faster speeds than the commercial FEM software (ANSYS) [32].
Recently, Lu et al. employed SOFA [33] to build a simula-
tor for large-scale marker-cum-vision-based-tactile sensor [34].
However, both [31] and [34] primarily used their simulators
to collect supervised datasets for interpreting tactile signals,
leaving the potential of using simulation to train manipulation
policies unexplored. In this work, we build a Sim2Real protocol
for learning contact-rich manipulation with marker-based tactile
sensors that, to the best of our knowledge, is the first one that
models the sensor deformation in a physics-grounded manner
and has been validated as successful in multiple Sim2Real
manipulation tasks. We demonstrate that our protocol is efficient
enough to train robust and generalizable manipulation policies
for deployment in reality.

C. Sim2Real for Robots

Deep RL has shown great success in robotics, enabling the
learning of complex control policies that are beyond manual
design [5], [6]. However, deep RL requires a large amount of
interaction data, which is costly and time-consuming to collect
in reality.

Due to the inherent discrepancy between simulation and
reality caused by the imperfect modeling of real-world dy-
namics, the policies learned in simulation often suffer from
poor transferrability to reality. Sim2Real approaches can be
broadly classified into two categories: domain randomization
and domain adaptation [35]. In [13] and [27], a domain adap-
tation method based on generative adversarial networks was
proposed to translate the real tactile images into the simulation
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domain. A similar method for a large-scale tactile sensor was
adopted in [34]. In these works, the translation was trained
in a supervised-learning fashion, which required a dataset of
precisely aligned real and simulated image pairs. The general-
izability to different sensor instances (of the same type) was not
discussed. Some works proposed domain adaptation methods
that does not require paired datasets [10], [36], [37], but they
mainly focus on the optical properties of the GelSight sensor,
which cannot be applied to Sim2Real of manipulation tasks
directly. In this work, focusing on dynamic manipulation, we
propose a different tactile representation instead of images,
and employ domain randomization techniques to enhance the
Sim2Real transferrability and generalizability across different
real tactile sensor instances.

D. Pretraining for Robot Learning

The FEM-based simulation is more realistic than rigid-body-
based simulation, but suffers from slow simulation speed that
hinders the Sim2Real learning efficiency. Self-supervised pre-
training has been demonstrated to be able to enhance data effi-
ciency for robot learning by recent works [38], [39], [40], [41].
However, most existing methods focus on visual and language
inputs and employ transformer-based networks to extract feature
representations. Pretraining for tactile signals is still underex-
plored. For marker-based visuotactile sensors used in our work,
the tactile signals only contain local contact information within
a relatively small area. The information content is considerably
lower compared to that in common visual signals. Therefore,
we propose a light-weight autoencoder to pretrain task-agnostic
latent representations from tactile signals.

III. METHODOLOGY

This section presents the simulation and policy learning
pipeline for marker-based visuotactile sensors. The tactile sens-
ing principle is first introduced in Section III-A. The FEM-based
physics simulation of the tactile sensor’s elastomer is described
in Section III-B. The pixel coordinates of markers are used
as the tactile signal and the synthesis method is shown in
Section III-C. To efficiently process raw tactile observations in
policy training, we propose a tactile feature extractor network
and the corresponding pretraining method in Section III-D. The
tactile feature extractor is further utilized in RL policies as
introduced in Section III-E. Finally, Section III-F summarizes
the domain randomization techniques that facilitate Sim2Real
transfer.

A. Tactile Sensing Principle

Fig. 2(a) shows the schematic of the marker-based visuotactile
sensor used in our work, which consists of an RGB camera,
LEDs, an acrylic support, and a transparent elastomer covered
with a reflective surface. A 2-D array of markers is distributed
on the elastomer surface. When the elastomer deforms due to
contacts, the normal deformation can be computed from the
image captured by the camera using photometric stereo, and the
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Fig.2. (a) Schematic of the marker-based visuotactile sensor used in our work,

which is based on GelSight [25]. (b) One example of real tactile image with
marker tracking. The marker flow in contact area is shown by yellow arrows.

tangential deformation can be measured by tracking the markers
as shown in Fig. 2(b).

For most contact-rich manipulation tasks, the tangential de-
formation of the elastomer is more informative than the normal
deformation as it corresponds to the object displacement during
manipulation and can indicate the contact force and torque.
It is pointed out in [25] that using marker flow, a sensor can
achieve equal or better performance in terms of force sensing,
compared with surface map measurement. Therefore, the marker
flow is usually used as the tactile signal in manipulation tasks
and we aim to simulate the marker flow accurately in this work.
We believe that the proposed pipeline can be applied to other
marker-based visuotactile sensors, as introduced in Section II-A.

B. General-Purpose FEM-Based Physics Simulation

Marker-based visuotactile sensors typically employ silicone
rubber as the elastomer, which exhibits hyperelasticity and al-
lows for large deformation. In order to achieve successful trans-
fer of RL policies trained in simulation for versatile manipulation
skills, the physics simulation needs to satisfy the following three
requirements:

1) it can support physics simulation of arbitrary 3-D geome-

tries;

2) itcan accurately capture the dynamic and elastic properties

of the elastomer;

3) it can simulate the large deformation of the elastomer

during RL training stably.

Therefore, we use incremental potential contact (IPC) [42] as
the physics simulation in this work. IPC is based on FEM and
supports elastomers with hyperelastic material models such as
the widely adopted Neo—Hookean model. The major difference
between IPC and other FEM simulators such as SOFA [33]
is the contact solver. Traditional contact solvers can introduce
intersections and put the simulator into an invalid state. Such
artifact is typically mitigated by using very small time steps,
which significantly degrades the simulation speed. On the other
hand, TPC models contact with barrier energy and integrates
continuous collision detection into its solver to guarantee that
the simulation is intersection free and inversion free. Thus,
IPC enables robust FEM simulation at large time steps and
improves the simulation speed, which is desired for the RL
training process.
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Fig. 3. (a) In our tactile sensor, the markers are distributed on the top surface.
The surfaces in purple are constrained by the shell. The elastomer frame is fixed
on the constrained surfaces of the elastomer. After transforming the marker point
into the camera frame, one can calculate its pixel coordinate using the pinhole
model. (b) Iustration of interpolation using adjacent FEM vertices. p; denotes
the ith marker, and the facet it belongs to has three vertices: xs,, , s,,, and
T,

For tactile-based manipulation tasks, the motion of the elas-
tomer is induced by the action executed on the robot end effector.
We model the robot action as Dirichlet boundary conditions
on the elastomer mesh by setting the position and velocity of
boundary vertices. The shape of the tactile sensor’s elastomer is
shown in Fig. 3(a). The markers are distributed on the top surface
of the elastomer, which can deform freely due to contact with
the object during manipulation, while the surfaces in purple are
constrained by the sensor’s shell. In robotic manipulation tasks,
the constrained surfaces of the sensor’s elastomer are actuated
by the robot which the sensor is attached to.

In IPC, the sensor’s elastomer is discretized as a tetrahedral
mesh. We denote the vertices of the mesh as {a; }; for vertex co-
ordinates in the world frame, we add a superscript to distinguish,
i.e., {z!V}. The vertices on the aforementioned constrained
surfaces form a set S. In the simulation, we enforce the positions
and velocities of the vertices in S as the boundary constraint.

For one step in the simulation, suppose the rigid shell to which
the sensor is attached is moving at a linear velocity v and an
angular speed w around an instantaneous axis, defined by its
direction d and a point &y, then the position at the next step
2, and the velocity v; of each boundary point is given by

T, = vAt + R(d, WAt) (wi - wpivot) + Tpivot

x, —x;
At
i€ {ilz; € S} (1)

where At is the timestep of the simulation and R(d, wAt) is the
rotation matrix defined by axis d and rotation angle wA¢.

At each step, the simulated robot motion is converted to
the boundary condition given in (1). Then, IPC’s FEM solver

V; =
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will solve all the vertex positions at the next step. In this way,
the deformation of the sensor’s elastomer and the interactions
between the sensor and objects are obtained.

C. Synthesis of Tactile Sensor Signals

In this work, we use the marker flow as the tactile sensor
signals. Given the vertices of the elastomer mesh in the elastomer
frame {z’} and the marker coordinates in the elastomer frame
{pf }, we first determine the facet that each marker belongs to,
and compute the weight of each vertex

pY =kanxl +kipxl +kiszl, (2)

where k;1, ki, and k;3 are the triangular barycentric
weights, which satisfy ki, ko, ks > 0, k1 + ko + k3 = 1. Note
that {(k;1, ki2, ki3)} and {(s;1, Si2, 8i3)} are computed before
the physics simulation.

The transformation from the elastomer frame to the world
frame is set at the initialization of the simulation according to
the sensor positions. For each time step in the simulation of
manipulation, the vertices of the deformed elastomer in the
world frame {x"V'} are computed by the solver, and then the
displaced marker coordinates {p’!V'} in the world frame can
be computed using {xM}, {(ki1,ki2, kiz)}, and
{(Sn, Si2, 5i3)}~

In order to generate the marker flow in the image, we first
compute the marker coordinate in the camera frame p/C =
[, 5, 2]" as

P =Ryp)" +ty (3)
where R%{, and t% are the rotation matrix and the translation
vector of the world frame relative to the camera frame. Then,

the corresponding pixel coordinate (u},v}) is computed using
the camera pinhole model as

u) 1 |fe 0 ca z
vi | = o 0 fy ol |ui 4)
1 ilo o 1]z

where f., fy, ¢, and ¢, are the camera intrinsic parameters. The
marker’s initial pixel coordinate before contact (u;,v;) can be
computed similarly.

To ensure that the 3-D vertex positions { p’ic} and projected
pixel coordinates {(u},v;)} are within certain bounds, we im-
pose constraints in both the simulation and the reality:

1) In simulation, the episode terminates immediately and is
considered failure if either the pose error exceeds the limit
or the simulation step fails to converge due to excessive
contact force.

2) In reality, the episode terminates immediately and is con-
sidered failure if either the pose error exceeds the limit
or the average marker displacement in the contact area is
larger than the threshold.

D. Tactile Feature Extraction and Pretraining

For real tactile sensors, the correspondence between the initial
and displaced markers is computed by detecting and tracking
the markers in the camera stream, which may fail when the
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sensor’s elastomer undergoes large or rapid deformation. It poses
difficulties in designing the tactile feature extractor, which the
network should be able to deal with a marker displacement set
that is orderless and has a variable cardinality. Moreover, the
marker displacements are high dimensional, which limits the
RL sampling efficiency. Therefore, we propose an autoencoder
structure as the tactile feature extractor based on PointNet [43],
and pretrain the network on a large amount of simulated data
to extract a low-dimensional and task-agnostic feature from the
marker displacements.

1) Tactile Feature Extraction: The structure of the proposed
tactile feature extractor is shown in Fig. 4. The input of the
network is the concatenation of the original marker positions
and the displaced ones. If the number of detected and tracked
markers is less than n, padding by replicating will be used. Then,
a shared multilayer perceptron (MLP) and a max-pooling layer
will function as an approximation of a symmetrical function over
the input, to deal with the orderless input. The extracted 512-dim
global feature is further encoded by another MLP to be a k-dim
encoded tactile feature.

It should be noted that we do not use the difference between
the original and displaced marker positions as the network input,
because the raw marker positions contain spatial information
of the tactile signals, which is crucial for inferring the contact
status.

2) Autoencoder Pretraining: To pretrain the encoder for use
in various tactile manipulation tasks, we design a corresponding
decoder to reconstruct the marker positions. Since the ideal
extracted feature should be an overall feature extracted from
all marker points and independent of the specific marker dis-
tribution, we design the proposed decoder to reconstruct all
the marker positions from the original marker positions and
the latent feature. As shown in Fig. 4, the encoded k-dim
feature is repeated and concatenated with the original marker
positions, and then fed into a shared MLP to reconstruct the
displaced marker positions. We use L2 loss between the recon-
structed marker positions and the ground truth for training.

E. Reinforcement Learning Policy

Training a one-step manipulation policy with supervised
learning is feasible in simulation, where the ground truth state
is accessible. However, we find that it suffers from inferior gen-
eralizability and Sim2Real transferrability, which is consistent
as the finding in [4]. A possible explanation is that the tactile
observations are insufficient to capture the full manipulation
state. In contrast, RL can optimize the action policy based on
the estimated long-term reward and learn better decisions with
partial tactile observations. Therefore in this work, we utilize
RL to train the contact-rich manipulation policy. We adopt an
off-policy RL method, Twin-Delayed-DDPG (TD3) [44], as the
RL algorithm due to its sample efficiency.

1) RL Network Structure: The actor network in TD3 maps
the observation to the action, and the critic network evaluates
the Q value of the action. Fig. 5 illustrates the structure of the
actor network. We use two tactile sensors in all the manipulation
experiments in this article, so the observation consists of left and
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Overview of the autoencoder structure. To deal with marker permutations and loss of tracking, the PointNet [43] structure is utilized. The encoder takes

in concatenated marker positions as input and extracts the k-dim marker flow feature. To reconstruct the deformed marker position, the decoder concatenates the
original marker positions with the k-dim feature, and outputs the reconstructed marker positions.

Shared MLP
Tactile Policy Action
. collee - Encoder left right network
left sensor  right sensor
nx4 nx4
Observation

Fig. 5. Structure of the actor network in the reinforcement learning policy.
Considering two-finger manipulation, the actor network takes in both sensor’s
tactile signals. After the shared encoder, the two k-dim features are concatenated
and put into the MLP policy network.

right marker displacements. The shared feature extractor trans-
forms the two marker displacements into two latent k-dim fea-
tures. Then, the MLP policy network concatenates and processes
the two features to predict actions. The critic network, on the
other hand, uses privileged ground-truth states from simulation
instead of raw tactile observations to accelerate training [45].

The definition of actions and ground-truth states may vary
for different tasks, while the structures of the actor and critic
network remain the same. The task-specified parameters will be
introduced in the experiment section.

2) Feature Extractor Fine-Tuning: In Section III-D, we pro-
pose to pretrain the tactile feature extractor before training the
RL policy to improve the sample efficiency and training stabil-
ity. However, because the tactile interactions in the pretraining
dataset may differ from those in the specific task, we introduce
a short self-supervised fine-tune stage of the tactile feature
extractor when training the RL policy.

We modify the TD3 algorithm, such that after sampling
from the replay buffer, we first compute the reconstruc-
tion loss in Section III-D, and then update the feature
extractor and the decoder parameters. Next, we freeze the tactile
feature extractor and update the critic network and the MLP part
in the actor network following the TD3 algorithm. The feature
extractor fine-tuning stage continues until a maximum number
of updates are reached, or until the reconstruction loss is smaller
than a preset threshold.

F. Domain Randomization

Marker-based visuotactile sensors have inherent challenges
for Sim2Real transfer due to the discrepancy between simulation
and reality. The discrepancy arises from three main sources: 1)
the large deformation and aging effects of the elastomer that
serves as the sensing surface, which make it difficult to model
its physics and identify its material parameters accurately; 2)
the camera-imaging process that converts tactile interactions to
tactile signals, which depends on various factors such as marker
distributions and camera parameters; and 3) the motion errors,
uncertainties, or latencies that may occur for real robots, such as
the mismatch between commanded and actual robot velocities.
To address these challenges, we employ domain randomization
techniques in the Sim2Real learning process. We categorize the
domain randomization into three subdomains: physical domain,
optical domain, and task domain.

1) Physical Domain: The behavior of the tactile sensor,
including sensitivity, contact forces, and deformation states,
depends on the elastic modulus, Poisson’s ratio and friction
coefficient. However, due to the age-dependent properties of
the elastomer, the actual elastic modulus of the real sensor
can hardly be obtained. Moreover, friction in the real world
is a complex interaction between the object and the sensor
that is difficult to model accurately. Therefore, to improve the
Sim2Real transferrability, we randomize the elastic modulus,
Poisson’s ratio, and friction coefficient within an heuristically
determined range.

2) Optical Domain: Due to the low elastic modulus of the
tactile sensor elastomer, fabrication-induced deformations may
result in variations in the marker distribution. However, since
the markers merely serve as a medium to transform the tactile
interaction into image features, the exact marker distribution
should not influence the underlying tactile perception. To this
end, we introduce random perturbations to marker positions.

We assume that the markers form a uniform grid and the
randomization includes grid spacing, global translation, global
rotation, local perturbation, random noise, and loss of tracking.
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Grid spacing changes the distance between adjacent markers
that forms a uniform grid. Global translation and global rotation
are applied to the whole marker grid. Local perturbation allows
a marker to deviate from its ideal position as a grid point. These
aforementioned four parameters can emulate the fabrication
variances of the sensor elastomer. On the contrary, random noise
and loss of tracking are related to the postprocessing process
using computer-vision algorithms, which random noise affects
the extracted marker positions in each frame and loss of tracking
allows a marker to disappear at a given probability. The combina-
tion of these parameters provides enough degrees of freedom to
cover all possible cases for real sensors, promoting the Sim2Real
transfer. For camera parameters, we do not apply randomization
because camera parameters will have small variation range if
mass production is realized; the randomization on markers is
sufficient to deal with small camera parameter variations.

3) Task Domain: This domain mainly includes motion er-
rors, uncertainties, or latencies that may occur for real robots.
For example, when tactile feedback serves as a stopping signal,
the actual position where the robot stops is affected by the robot’s
speed, acceleration, and latencies, etc.; when a gripper grasps an
object, the object may deviate from the ideal grasping position.
We randomize the parameters in this domain according to the
specific task settings, which will be introduced in the experiment
section.

IV. EXPERIMENT: DATA COLLECTION, TRAINING, AND
PERFORMANCE OF AUTOENCODER

In Section III-D, we have proposed a tactile feature autoen-
coder to extract low-dimensional and task-agnostic features
for tasks. In this section, the data collection, training of the
autoencoder are presented in detail. The performance of the
autoencoder is validated on several datasets from simulated
manipulation tasks.

A. Autoencoder Data Collection

To make the tactile encoder more generalizable, a diverse
dataset for pretraining should be collected. We design an in-
dependent simulation scene to collect the possible interactions
between the sensor and objects. As shown in Fig. 6(a), a simple
scene is created where a cuboid object is interacting with the
sensor elastomer. Despite the scene’s simplicity, there are a
number of parameters to be randomized. First, the size, position,
and orientation of the cuboid object are randomized. Second, in
the first stage of interaction, the indentation depth is randomized.
Third, after the indentation is finished, the sensor will make
a relative movement to the object and the translational and
rotational component of the movement are randomized. For
parameters in physics domain and optical domain, the random-
ization techniques in Section III-F are used.

From each run of the aforementioned simulation, we extract
three keyframes: the initial tactile reading, the one after inden-
tation and the final one. From these three keyframes, six pairs
of tactile readings can be combined as the training data for the
autoencoder. Some samples of the collected training data are
shown in Fig. 6(b). In total, 400 K pairs of original-displaced
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Fig. 6. Data collection of the proposed tactile autoencoder. (a) Simulation
scene for collecting autoencoder pretraining data. (b) Some samples of the
collected marker flow training data. Markers in red are the displaced ones.

markers are collected, among which 70% are used for training,
15% for validation, and 15% for testing.

B. Autoencoder Training

1) Training Details: We use L2 loss between the ground-
truth displaced marker positions and the reconstructed ones to
train the tactile encoder and decoder simultaneously

1 —
L=—
o (5)

1
[(w; — )% + (v — 0})°]
1=0
where @, 0, are the reconstructed marker positions. For our
sensor, in the region of interest there are approximately 100
markers so we select n = 128 as the input size of points. We
use Adam optimizer and set the learning rate as 2e—4, with a
batch size of 128. The training lasts for 2000 epochs to ensure
convergence.

2) Determination of Latent Feature Dimension: The dimen-
sion k of the extracted latent feature is a hyperparameter that
needs to be determined in advance. We compare different latent
dimensions k from 4 to 256, to find an appropriate value that
has both sufficient representative capability and compactness.
In Fig. 7, we present the smoothed validation loss over training
epochs. It shows that when the latent dimension k is low, i.e.,
k = 4,8, 16, the reconstruction loss is obviously higher than
other cases, which means the encoder does not have enough rep-
resentative capability. When & = 32, the reconstruction loss is
also higher than those when k = 64, 128, 256, but the difference
is minor. Therefore, we choose k = 32 to balance representative
capability and compactness.

C. Autoencoder Performance on Unseen Data

We test the pretrained autoencoder on the datasets collected
in the specific manipulation tasks, namely peg-in-hole insertion,
plug adjustment, and lock opening, which will be introduced in
the following sections. The datasets are from the replay buffer
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Fig. 7. Reconstruction loss in validation during autoencoder training, where
the latent feature has different dimensions. The loss is in log scale and is
smoothed using 10-element moving average. k = 32 is chosen as the latent
feature dimension because it has both compactness and sufficient representative
capability.

TABLE I
RECONSTRUCTION LOSS OF THE AUTOENCODER ON SEEN AND UNSEEN

DATASETS

Dataset Reconstruction loss

pre-training dataset (seen) 0.410

dataset from peg-in-hole task 0.597

dataset from plug adjustment task 0.837

dataset from lock opening task 0.975

Peg in Hole Dataset Plug Adjustment Dataset Lock Opening Dataset
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Fig. 8. Visual comparison between the ground-truth and reconstructed marker
displacements in different datasets. The datasets are collected from the replay
buffers in RL training. The arrows representing the displacements are 2 x scaled.

collected during the RL training process and each contains 400 K
test samples.

Table I summarizes the average reconstruction loss of the
autoencoder on seen and unseen datasets. In the pretraining
dataset, the reconstruction loss is 0.410, which means the re-
constructed marker positions have a root-mean-squared distance
ofv/2 x 0.410 ~ 0.9 pixel from the ground-truth ones [see (5)].
Considering that the markers have random noises in simulation,
this proves that the trained autoencoder has sufficient capability
of extracting compact and representative tactile features. Table I
also shows that in unseen datasets, the reconstruction losses are
less than 1, proving that the trained autoencoder is generalizable.
Comparison between the ground-truth and reconstructed marker
displacements is visualized in Fig. 8.
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Fig. 9. (a) Our simulation environment of the peg-in-hole insertion task.
Visualization is realized by SAPIEN [46]. (b) Top view of the task. The initial
pose error has three degrees of freedom.

V. EXPERIMENT: PEG-IN-HOLE TASK
A. Definition of Monotone Insertion

The original version of the tactile-RL insertion task is pro-
posed in [4]. In this task, a gripper with tactile sensors is
controlled to insert an object into a rectangle-shaped hole with
a random initial pose misalignment (see Fig. 9). The random
pose misalignment is 3-DoF, consisting of the 2-DoF = —y plane
translation and the rotation around z-axis [see Fig. 9(b)]. Each
insertion attempt is a downward motion along the —z direction.
If getting blocked, the gripper will retreat to the initial height
and adjust the pose according to the trained policy, followed
by another insertion attempt. This task is later completed in a
Sim2Real way in [14].

As discussed in [4], [14], this task is difficult in that the hole
is unchamfered, and thus the robot must recognize nuances in
the tactile readings to decide the insertion pose adjustment, in
the case where the object hits the hole at four corners.

We introduce a novel variant of the tactile insertion task,
which we call monotone insertion. Unlike the original task, our
variant does not allow the gripper to retract during the insertion
process. Instead, the gripper descends by a fixed distance at
each step. Thus, the gripper motion is monotone along the
z-axis. This modification makes the task more realistic, intuitive,
and efficient. However, it also poses higher demands on the
simulator, which has to capture the continuous deformation of
the elastomer under insertion. We evaluate our method on the
monotone insertion task variant in Sections V-D, V-G, V-H, V-1,
and V-K. For a fair comparison, we also report our method’s
performance on the original version of the task in Section V-J.

B. Experimental Setup

In [4], there are cuboid, hexagonal, cylindrical, elliptical
objects, while the holes are all rectangular. In this work, the task
is stricter, that the holes have the same shape as the objects (pegs).
Three representative shapes we choose to test in reality are
shown in Fig. 10(b). The object to insert is grasped by a parallel
gripper (Robotiq Hand-E), and the object width is unified to
be 30 mm. The clearance between the object and the hole is
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Fig. 10. Devices for the peg-in-hole experiment. (a) Our self-made GelSight-
type tactile sensor. (b) These three shapes, namely Cuboid, Concave, and
Trapezoid, are used to test the trained policy in reality. The magnets are used
for pose resetting. (c) We use a combined motorized stage and a parallel gripper
to execute the tasks. (d) Mechanism for autoresetting the pose. The garage has
large chamfers to tolerate possible peg pose errors. There are also magnets at
the bottom of the garage for pose resetting.

2 mm, which is about 6.7% of the object width, similar to [4],
[14]. Correspondingly, the initial error range is set to [+5 mm,
+5 mm, +10°]. In our monotone insertion task, the gripper will
move down 0.125 mm at each step; the maximum number of
allowed pose corrections is 8. Note that the maximum attempt
number in [4] and [14] is 15, showing that our monotone task
is more difficult and efficient. The four-axis motion (three-axis
translation, one-axis rotation) is provided by a translation stage
with orthogonal axes and a rotary stage [see Fig. 10(c)].

To better facilitate evaluation of the trained RL policies in
reality, we design an autoresetting mechanism as shown in
Fig. 10(d). When insertion fails, the pose of the peg may change
largely because of the large contact force caused by incorrect
actions, which will impair the performance of the following
episodes. Therefore, to autonomously reset the pose, we use
a “garage” with large chamfers for the peg. We glue Nd-Fe-B
magnets at the bottom of the garage and the peg to provide
enough attractive forces for resetting the peg’s pose. It should
be noted that the magnets will not interfere with the peg-in-hole
insertion process because the screws to fasten the hole are
made of 304 stainless steel and thus will not be attracted by
the magnets. Whether to do pose resetting is determined by
the average marker displacements in both sensors’ contact area.

Each test in reality contains 57 episodes starting with a series
of predefined initial errors. The predefined initial errors are
uniformly sampled within the range [+5 mm, £5 mm, £10°],
ensuring fair comparison across different tests. The metrics
summarized after each test are the success rate and the average
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number of pose correction attempts in all successful episodes.
Note that when success rate is high, the average number of
attempts may be also large because more challenging cases are
taken into calculation. So the success rate should be the first
to compare; when the success rates of two policies are similar,
the average number of attempts can be compared to reveal their
optimality.

C. Details of RL Policy Training

At the beginning of each episode, the original marker po-
sitions of each tactile sensor are stored before any insertion
attempt. At each step, the sensor’s displaced marker positions
corresponding to the original ones are recorded through a
marker-tracking algorithm. Then the original marker positions
and displaced ones are concatenated to form the observation.
Observations from the two sensors are fed into the actor network.
The output action is a 3-dim vector [a,, a,, ag_|. Note that the
action is defined relative to the peg (or equivalently the gripper),
not to the hole. The state input for the critic network is the peg’s
ground-truth offset [e,, e, eg_].

One episode terminates under three conditions: 1) the inser-
tion succeeds, 2) the pose error is larger than a threshold in any
axis, or 3) the number of insertion attempts is over a limit. We
set the max error in  and y axis to be 12 mm, and 15° in 6. The
maximum number of attempts is 8 for our monotone insertion
task and 15 for the original version of the task.

The reward function at each step is shown in (6). It consists of
four parts: the decrease in error e;_1 — e;, the constant penalty at
each step P = 1, the final success reward Rgy,.1, and the penalty
for too large error Ry,;. e; is calculated from the error in each
axis, where e, and e, are in mm and eg_ is in degrees. To prevent
the policy from quick failure, the penalty for large error is used
where tyax 1s the maximum allowed number of attempts

Ry =e; 1 — e — P+ Rgnal + Rean

et:wei—&—eg—&—ezz

R ] 10, if success
final = 1 0, otherwise
~tmax — )P, i |exy| > 12
Reain = or leg,| > 15 (6)
0, otherwise.

The domain randomization method is mainly introduced in
Section III-F. For randomization in the task domain, the indenta-
tion depth into each sensor’s surface varies from 0.5 to 1.25 mm,
and the peg’s relative position to the sensors varies from —1 to
1 mm in 2 direction and from —5 to 5 mm in z direction.

As mentioned in Section III-E, we adopt TD3 as the RL al-
gorithm. For unmodified TD3, we use Stable-Baselines3 [47] as
a default implementation. For the proposed fine-tuning method
of tactile feature extractor, we make some modifications on it as
introduced in Section III-E. To efficiently train the RL policy,
we use 20 parallel environments with 500 K environment steps
in total. We note here for comparison that Dong et al. [4] used
startup bootstrap and a carefully designed curriculum learning
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scheme to efficiently train the policy in reality (therefore no
randomization) with 3K steps; Xu et al. [14] used PPO algorithm
in simulation and the policy is trained for SM steps. Considering
that zero-shot Sim2Real policies usually have large variance, in
the following experiments we train and test the policy several
times to provide more reliable results.

D. Advantage of FEM Simulation Over Rigid-Body Simulation

We first compare our FEM-based simulator with the state-
of-the-art work [14] on tactile Sim2Real in the monotone peg-
in-hole insertion task. Based on their open-source code,! we
implement the monotone insertion task using our experimental
settings. We modify the object size, the hole size, the tactile
readings according to our real devices. The domain random-
ization parameters are unchanged. The level of noise added
to tactile readings is adjusted to be of a similar ratio to the
noiseless value as in the original code. To keep most of Xu
et al.’s [14] implementation, we do not change the RL algorithm
PPO, the convolutional RNN policy, and the reward function. For
Sim2Real transfer, we also apply the normalization technique
proposed in [14].

It should be noted that the open-source simulator Diff-
Hand [48] used in [14] currently only supports the collisions
where one object must be a primitive shape? (e.g., cube, sphere,
etc.). Therefore, only the cuboid object is considered in this
comparison.

For comparison, we train our proposed method using the
proposed RL scheme (without pretraining, for fairness) in
Section III-E. With the tactile encoder and the randomization
in optical domain, the trained policy can be directly transferred
to reality without any normalization. This advantage can be at-
tributed to the following two reasons. First, in our simulation, the
synthesized marker displacement is the same as the real tactile
readings, so there is no need to do conversion or normalization
as Xu et al. [14] did. Second, with the domain randomization
technique, the proposed tactile encoder can extract features
from raw tactile readings, regardless of the specific marker
distribution.

We train Xu et al.’s [14] policy and our method ten times
with different random seeds and evaluate the trained policy in
our real environment. The success rate and number of pose
correction attempts in each test are presented in Fig. 11, while
each group’s average number and standard deviation are sum-
marized in Table II. To compare the Sim2Real gap of the two
simulators, we also show the evaluation results in simulation
in Fig. 11. Although the two methods have similar success rate
in simulation, our method performs significantly better in the
real environment. The difference between our simulation and
reality is small, in terms of both success rate (94.5% in Sim,
95.1% in Real) and attempt number (3.63 in Sim, 3.55 in Real).
This proves our method has a smaller Sim2Real gap in the
monotone peg-in-hole insertion task. The reason is that, in the
monotone insertion task, the peg and the hole keep contacting

![Online]. Available: https://github.com/eanswer/TactileSimulation
2[Online]. Available: https:/github.com/eanswer/TactileSimulation/issues/3
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Fig. 11.  Distribution of all the Sim2Sim and Sim2Real results of our method
and Xu et al.’s [14] method on the monotone peg-in-hole insertion task. The
metrics are the success rate (higher is better) and the number of attempts (lower
is better). Our method has a higher success rate and a smaller Sim2Real gap.

TABLE I
SIM2SIM AND SIM2REAL COMPARISON BETWEEN OUR METHOD AND [14] ON
THE MONOTONE PEG-IN-HOLE INSERTION TASK

Success Rate (%) T  Number of Attempts |

Sim2Sim, [14] 92.50 £ 4.09 326 £0.11
Sim2Sim, ours 94.50 + 3.20 3.63 £ 0.10
Sim2Real, [14] 46.33 + 4.96 4.09 £ 0.26
Sim2Real, ours 95.08 + 2.70 3.55 £ 0.19

until a successful insertion, so the tangential deformation and the
relative displacement of the peg to the sensors always exist in the
elastomer during insertion. Our FEM-based simulation method
is able to capture the complex and continuous deformation, thus
achieving a smaller Sim2Real gap. In rigid-body-based simu-
lation proposed by Xu et al. [14], however, the penalty-based
tactile model cannot account for the tangential deformation
because their tangential forces are approximated by friction.
Therefore, during the sequence of movements in the monotone
insertion task, the tactile forces, especially the tangential restora-
tion forces by the elastomer, cannot maintain, which differs
largely from the reality. In conclusion, Xu et al.’s [14] method
sacrifices physical accuracy for efficiency, which is the reason
why our method performs better in this task.

E. Simulation Speed

We conduct a comparison of the simulation speed of our
method and that of Xu et al. [14] on the monotone peg-in-hole
insertion task. For our method, the tetrahedral mesh of the
sensor elastomer comprises 129 vertices and 412 elements. In
the simulation scene, there are 878 elements in total. We set
the simulation timestep At as 0.1 s and each environment step
typically contains approximately five timesteps. The simulation
is run on a PC with Intel Core i7-13700 K CPU? and 64 GB mem-
ory using eight parallel environments, achieving a speed of 43
environment steps per second. For comparison, Xu et al.’s [14]

3The actual frequency when running simulation is about 5 GHz.
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TABLE III
SIMULATION PARAMETERS WITH AND WITHOUT DOMAIN
RANDOMIZATION (DR)

Sub-domain  Parameter Name w/ DR w/o DR
elastic modulus (MPa) [0.3, 1] 0.65
Physical Poisson’s ratio [0.3, 0.47] 0.4
friction coefficient [0.5, 1] 0.75
erid spacing (mm) [1.95, 2.05] 2
global translation” (mm) [0, 1] 0
global rotation (rad) [-0.1, 0.1] 0
Optical local pertufba*t‘ioni* (mm) [0, 0.1] 0
random noise  (pixel) 0.5 0
lose-tracking probability 0.01 0
indentation depth (mm) [0.5 1.25] 0.8
Task peg offset = (mm) [-1 1] 0
peg offset z (mm) [-5 5] 0

* global translation and local perturbation are applied in both
directions
** random noise is Gaussian, in both directions

TABLE IV
ABLATION STUDY RESULTS FOR DOMAIN RANDOMIZATION

Success Rate (%) T Number of Attempts |

w/ all domains 95.08 + 2.70 3.55 + 0.19
w/o physical domain 80.70 + 10.44 3.90 + 0.67
w/o optical domain* 10.01 + 4.71 3.34 + 0.87
w/o optical domain** 56.84 + 12.87 3.61 +0.38
w/o task domain 61.57 + 13.64 4.35 £ 045

* the simulated marker positions are NOT aligned with real sensors
** the simulated marker positions ARE aligned with real sensors

rigid-body-based method reaches 151 steps per second in the
same conditions. Our single real experimental device can reach
approximately 0.23 steps per second. The speed of the real-world
pipeline is mainly limited by the acceleration and deceleration of
the stage because we implemented a conservative acceleration
strategy to ensure operational stability. These results demon-
strate that while our FEM-based simulation is less efficient than
rigid-body-based simulation, the difference between the two
methods does not reach an order of magnitude. More impor-
tantly, our simulation method is two orders of magnitude faster
than reality, which can greatly accelerate the policy training.

F. Ablation Study for Domain Randomization

In this section, an ablation study is conducted to validate
the domain randomization techniques. In Section III-F, the pa-
rameters are classified into three subdomains: physical domain,
optical domain, and task domain. We therefore design three
experiments, each of which has nonrandomized parameters in
one subdomain, respectively. The randomization range of the
parameters, and the nonrandomized values for ablation study,
are summarized in Table III. Other conditions of training are
kept the same as in Section V-D. In the experiments, training
and test are repeated ten times for each condition, and the results
are summarized in Table I'V.

Table IV shows that the randomization in the optical domain
has the largest influence. This is because without optical domain
randomization, the tactile feature extractor is unable to correctly
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Fig. 12.  Three examples of randomly generated shapes. We do not necessarily
assume symmetry or convexity of the shape. These arbitrary shapes used in
simulation result in a generalizable peg-in-hole insertion policy.

interpret the tactile readings from a different marker distribution.
We note here that, the default marker distributions used in
the simulation are different from those in reality, which leads
to a significant performance degradation. Once the simulated
markers are aligned with the real two sensors used in test, the
Sim2Real success rate rises to 56.84%, which is better than [14]
(46.33%). Furthermore, the Sim2Real performance deteriorates
in the absence of the randomization in the other two domains,
as indicated by the decline in success rate and the increase
in the number of attempts. This proves that the randomization
in the physical and task domain plays a crucial role in enhancing
the robustness and optimality of the trained policy.

G. Generalizable Peg-in-Hole Policy for Arbitrary Shapes

For real peg-in-hole applications, the shapes of pegs and holes
are widely distributed and the precise geometry information is
usually unavailable. Therefore, we aim to train a peg-in-hole
policy that is generalizable to arbitrary shapes. In order to
achieve this goal, we randomize the shapes of pegs and holes
during RL training, which is costly in the real world but requires
minimal effort in simulation.

We randomly generate 10 000 polygons as the shape of the
peg and the hole, as shown in Fig. 12. Note that we do not
assume the shape’s symmetry or convexity. In training of the RL
policy, a shape will be randomly selected when the environment
resets. To validate the generalizability of the trained policy, we
test the policy in reality using three predefined shapes, namely
Cuboid, Concave, and Trapezoid [see Fig. 10(b)]. These three
shapes are chosen because the cuboid shape is more difficult
to insert compared with hexagonal or circular shapes [4]; the
concave shape and the trapezoid shape represent the objects with
concavity and nonsymmetry, respectively.

We evaluate the arbitrary-shape training scheme through an
ablation study. RL policies are trained in three training condi-
tions: 1) train on cuboid shape only, 2) train on the exact three test
shapes, and 3) train on the proposed arbitrary shapes. The trained
policies are tested on the three selected shapes in Fig. 10(b). The
training and test in each condition are repeated ten times to get
more reliable results. The experimental results are summarized
in Fig. 13. From the results, we draw the following conclusions:

1) By training on cuboid only, we obtain a “specialist” policy

that performs best and most stably on the cuboid shape
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Fig. 13. Ablation study of the proposed arbitrary-shape training scheme.

Comparison is done among training with arbitrary shapes, training with the exact
three shapes and training with only one shape. The policy trained with arbitrary
shapes has the best overall performance. This proves that a “generalist” policy
performs better in unknown environments and in Sim2Real.

among the three groups. It reaches the highest success
rate and the lowest standard deviation in Sim2Real test of
the cuboid shape. It can also generalize to the concave and
trapezoid shape, but the success rates are lower than the
two counterparts.

2) A “‘generalist” policy is advantageous in unknown envi-
ronments and is beneficial for Sim2Real. We notice that
the policy trained with arbitrary shapes can reach similar
success rates as the “specialist” policy on the cuboid
shape; on the concave and trapezoid shape, it performs
better than the “specialist” policy. We surprisedly find
that the “generalist” policy performs better than the policy
trained on the exact three shapes. It may be because the
real environment exhibits unavoidable deviations from
the ideal simulation and therefore the policy trained with
the exact three shapes has inferior performance.

H. Advantage of the Proposed Tactile Representation

In this section, we design an ablation study to compare the
proposed marker-based tactile representation with image-based
tactile representation. In [4], the researchers have found that
binary marker images perform better than raw RGB images
captured with the sensor. Therefore, in this section, we adopt the
binary marker image as the image-based tactile representation.
In simulation, the marker image is generated using OpenCV
from the calculated marker pixel coordinates. The image res-
olution is 320 x 320 and then binarized and downsampled to
256 x 256 before being fed into CNNs. Like the marker-based
representation, the image-based representation also contains two
frames, and they are stacked to be a 2-channel binary image.
The corresponding actor network contains a shared CNN feature
extractor for both left and right sensor images. The dimension of
the extracted latent feature and the following MLP network is 32,
the same as the marker-based one. Other conditions, such as the
randomization parameters, remain the same in this comparison.
To implement the randomization of the marker images, the
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Fig. 14. Ablation study of the proposed tactile representation. Comparison
is done between the proposed marker-based tactile representation and the
image-based presentation. The success rates are compared over three test shapes.
The average success rate and standard deviation are calculated from ten inde-
pendently trained weights for each representation.

marker positions are randomized first, and then the marker image
is generated based on the randomized markers. The pre-training
uses the reconstructed displaced markers for self-supervision,
and different representations require different decoder networks
and different loss functions. In order to eliminate the potential
influence of the pretraining, we do not apply it for both repre-
sentations. Both policies are trained with the proposed arbitrary
shapes for 500 K environment steps and the best weights are
used for testing in reality.

Fig. 14 shows the comparison result of the tactile represen-
tations. It shows that although the randomization parameters
are the same, using the proposed marker-based representation
is advantageous over the image-based representation. The pos-
sible reason is that the convolutional operator in CNN has a
translation-invariant property, which makes it difficult for CNN
to globally extract spatial features from the tactile observations.
Moreover, the randomization in marker distributions impedes
the CNN’s convergence. On the contrary, with the design of
the symmetrical function approximation, the marker-based tac-
tile representation and point cloud learning architecture can
inherently deal with the marker position input and extract both
global and local tactile features. The randomization enhances its
generalizability and further improves Sim2Real performance.

1. Advantage of the Pretrained Tactile Encoder

We follow Section III-E to validate the effectiveness of the
proposed pretraining and fine-tuning method. In this experiment,
we show that with the pretrained tactile encoder, the policy can
achieve considerably high Sim2Real success rate even at very
early steps. We test the real success rate on the aforementioned
three preset shapes using the trained weight at different RL steps,
from 4 to 500 K. The experiments with and without pretraining
are repeated three times using different random seeds. The
Sim2Real results are presented in Fig. 15. As shown in the figure,
at very early steps (i.e., before 10K), the policy with pretraining
shows a large advantage over the one without pretraining. At 8K
steps, the policies with pretraining can achieve the success rates
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Fig. 15. Comparison between the policy with pretraining and without pre-
training. Sim2Real success rates at different RL steps on three preset peg shapes
are reported and each line is averaged over three weights trained with different
random seeds. The horizontal axes are in log scale.

of 77.2%, 64.3%, and 85.4% for the three shapes, respectively,
comparable to those of the policies without pretraining at 40K
steps.

J. Comparison in the Original Version of the Insertion Task

In the original version of the peg-in-hole insertion task pro-
posed by [4], [14], if an insertion attempt fails, the gripper will
retreat to the initial height, cancelling the contact between the
peg and the hole. Although we conduct most of the zero-shot
Sim2Real experiments on the proposed monotone insertion task,
we also provide our method’s results on the original version of
the task. We repeat the training and testing process ten times
to get more reliable results, as shown in Fig. 16. The average
success rate and number of attempts are summarized in Table V.

Despite the fact that our sensors, robot, and objects are dif-
ferent from [4], and [14] we have tried our best to reproduce
their results on our own hardware. The success rate of [14] that
we reproduce is 85.95 £ 14.97%, slightly higher than what [14]
reported (83%). The average attempt number (3.98 + 0.49) is
also smaller than what [14] reported (4.81). From these statistics,
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Fig. 16. Comparison of the Sim2Sim and Sim2Real results of our method
and Xu et al.’s [14] method on the original peg-in-hole insertion task. The
metrics are the success rate (higher is better) and the number of attempts (lower
is better).

TABLE V
SIM2STM AND SIM2REAL COMPARISON BETWEEN OUR METHOD AND [14] ON
THE ORIGINAL PEG-IN-HOLE INSERTION TASK

Success Rate (%) T Number of Attempts |

Sim2Sim, [14] 98.10 + 0.88 2.29 + 0.20
Sim2Sim, ours 9340 + 2.84 4.05 £ 0.26
Sim2Real, [14] 85.95 + 14.97 398 +0.49
Sim2Real, ours 86.48 + 9.09 3.56 + 0.55

we believe that our reproduction is reasonable and reliable. The
difference may be attributed to the hardware differences, e.g., our
tactile sensor, the object width, and peg-hole clearance are dif-
ferent; our motion stage may have higher positioning accuracy;
our objects and holes are 3D-printed using stereolithography,
instead of fused deposition modeling.

For our method, we achieve a similar Sim2Real success rate
as [14] (86.48% compared to 85.95%). While the success rates
are similar, our average attempt number is significantly smaller
(3.56 compared to 3.98). What is more, as can be noticed,
Xu et al.’s [14] method has very few attempts in simulation
(2.29) while having more attempts in reality (3.98). On the
contrary, our method has fewer attempts in reality (3.56) than in
simulation (4.05), which is reasonable because the success rate
in simulation is also higher, leading to more challenging cases to
be counted when calculating the average attempt number. These
results prove that with FEM as the physics simulation method,
our simulator has a smaller Sim2Real gap and thus the optimal
actions in simulation are closer to those in reality than [14].

K. Generalizability to Different Sensor Instances

The modulus of the sensor’s elastomer varies over time due to
degradation of its molecular structure [49]. As a result, sensors
produced using the same manufacturing process yet at differ-
ent dates will have different properties. Additionally, it should
be noted that there are slight variations in the marker spatial
arrangement and camera parameters among different sensor
instances. Therefore, the policy’s generalizability to different
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TABLE VI
SIM2REAL COMPARISON BETWEEN DIFFERENT SENSOR INSTANCES

Sim2Real Condition  Success Rate (%) T  Number of Attempts |

Sensor Pair 1 91.75 + 7.48 3.75 £ 0.17
Sensor Pair 2 87.37 £ 11.81 3.66 + 0.28
TABLE VII

SiM2SIM COMPARISON IN CASE OF ELASTIC MODULUS MISMATCH

Sim2Sim Condition  Success Rate (%) T  Number of Attempts |

90.20 + 3.46
87.60 + 4.57

3.84 £ 0.10
395 +0.15

no mismatch in E*
Eleft = 0.7 Exign

* F stands for elastic modulus

sensor instances is critical for real applications. However, it
will be highly costly, if possible, to train a generalizable policy
using real sensors with different properties. In this section, we
demonstrate that the policy learned by our Sim2Real method
has good generalizability to different real sensor instances.

Table VI shows the results on two sensor pairs. The policies
are trained on arbitrary shapes as described in Section V-G.
Ten policies trained with different random seeds are tested on
the two pairs. Only the cuboid shape is tested in reality. The
Sensor Pair 1 consists of two sensors that are manufactured in
a same batch and have similar properties. The Sensor Pair 2
consists of two sensors, where the elastic modulus of the left
sensor is different from that of the right sensor. The mismatch
violates the common assumption that both sensors in a pair have
similar properties and poses additional challenge for control
policies, which is again validated by Sim2Sim experiments at
the end of this section.

The experimental results show that the learned policies have
good performance on the two pairs, demonstrating the effective
generalizability of our approach to different sensor instances.
This achievement can be attributed to the physics, optical domain
randomization, which effectively captures the variations among
different sensor instances.

We further replicate the performance decline phenomenon
caused by the mismatch in simulation. As shown in Table VII,
the success rate decreases from 90.2% to 87.6% when the elastic
modulus of the left sensor is 70% of the right sensor. The result
demonstrates that our simulation method has a small Sim2Real

&ap.

VI. OTHER EXPERIMENTS

The previous peg-in-hole insertion task requires accurate
tactile simulation and provides quantitative metrics for evalu-
ating Sim2Real performance. In this section, we introduce two
additional tasks that more closely resemble real-life scenarios:
the plug adjustment task and the lock opening task.

A. Plug Adjustment Task

1) Task Description: The purpose of this task is to adjust
a plug’s pose and insert it into the corresponding socket from
the initial offsets. Because the hole-searching problem is not

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024
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Gripper

Fig. 17.  Simulation setup and real setup of the plug adjustment task.

the focus in our work, the end of the plug’s blades is initial-
ized aligned with the holes of the socket. Fig. 17(a) shows
the simulation setup of the task. The two-axis initial offset is
defined in the plane parallel to the socket hole surface. The
offset range is —8 to 8§ mm in z direction and —3 to 3 mm in y
direction.

2) Details of RL Policy Training: Similar to the peg-in-hole
task, the tactile observation is formed by stacking the original
marker positions at the beginning of each episode and the
displaced marker positions. Different from the peg-in-hole task,
the action is defined as a 2-dim vector [a,;, a,,]. The state input for
the critic network is a 9-dim vector consisting of the ground-truth
plug-socket offset (2-dim), the position (3-dim) and orientation
(in the form of quaternions, 4-dim) of the plug.

The terminal state is either that the task succeeds, or that
the number of steps is larger than the maximum, or that the
offset is larger than a threshold. The task succeeds if the
insertion depth is larger than 9 mm and the rotation angle
of the peg is smaller than 2° around z-axis and 5° around
y-axis.

The reward function shown in (7) consists of four parts: the
decreaseinerror e;_1 — e, the constant penalty ateach step P =
1, the final success reward Rgya1, and the penalty for too large
error Ry,;. e; is calculated from the error in each axis, where
e, and e, are in mm. To prevent the policy from quick failure,
the penalty for large error is used where ¢, is the maximum
allowed number of attempts.

Rt =€t-1 — €t — P+ Rﬁnal + Rfail

) 2
e = ex—i-ey

R B 10, if success
final = 30, otherwise
_ _2(tmax - t)Pﬂ if ‘ex,y| > 12
Ry = { 0, otherwise. ™

The domain randomization method is mainly introduced in
Section III-F. For randomization in the task domain, the plug’s
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Fig. 18. Lock opening task. (a) Structure of the lock. With the protrusions on
the key, it can lift the pins up and thus unlock the lock core. (b) In the simulation
scene, the lock core is simplified.

indentation depth into each sensor’s surface varies from 0.5 to
1.25 mm, and the plug’s relative position to the sensors varies
from —1 to 1 mm in 2 direction and from —5 to 5 mm in 2
direction.

To efficiently train the RL policy, we use 20 parallel envi-
ronments with 100K environment steps in total. The proposed
pretraining and fine-tuning of the tactile feature extractor are
used.

3) Results of Sim2Real Experiments: AsshowninFig. 17(b),
in the real plug adjustment task, if the plug is successfully
inserted, the smart phone will be charged to indicate the result.
We train the RL policy in simulation with three different random
seeds and test the policies in reality. Each test has 20 episodes.
In all tests, the smart phone is successfully charged. However, in
some cases, the plug still has a pose error large than the threshold
in Section VI-A2, resulting in a loose contact. So the residual
pose error when each episode finishes is manually measured
from the captured images to determine whether the episode is
successful. As a result, the three tests have the success rates
of 95%, 85%, and 90%, respectively, which demonstrates the
effectiveness of our Sim2Real method.

B. Lock Opening Task

1) Task Description: Fig. 18(a) shows the structure of the
lock assembly. In this task, the rotation of the lock core is
constrained to the lock shell by two pins because of gravity.
The key has two protrusions at the corresponding position of
the pins. The purpose of the task is to use a parallel griper to
manipulate the key to lift up the two pins and therefore unlock
the core from the shell. Because the initial position of the key
to the lock is unknown, a feasible policy must utilize tactile
feedback to localize the position of the pins and then fulfill the
task.

In simulation [see Fig. 18(b)], the shape of lock core is
simplified and the pins are neglected to increase the simulation
speed. The real setting of the task is shown in the first column
of Fig. 19. The lock core is supported by two ball bearings.
When the two pins are successfully lifted by the key, a manually
designed rotating motion will be executed by the gripper to turn
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the lock, and the LEDs will be turned ON by a Hall sensor to
indicate the result.

2) Details of RL Policy Training: Similar to the peg-in-hole
and plug adjustment tasks, the tactile observation is formed by
stacking the original marker positions and the displaced marker
positions. The action is defined as a 2-dim vector [a,;, a. ], whose
axis is defined as shown in Fig. 18(a). The state input for the
critic network is the position of the protrusions on the key
[xprotrusionfla Zprotrusi0n717 xprotrusionf?a Zprotrusioan} .

The terminal state is either that the task succeeds or that the
number of steps is larger than the maximum. The task succeeds
if both protrusions of the key are lifted up to a certain height, i.e.,
Lprotrusion_1 > hthreshold and Tprotrusion_2 > hthreshold~ The
maximum number of attempts is set to 10.

The reward function shown in (8) consists of three terms: the
constant penalty P = 1 at each step, the term related to key
position Ryey, and the final reward Rapna. ey is calculated
from the = and z coordinates of the key’s two protrusions, which
encourages the RL agent to move the key to align the protrusions
with the holes (the positions of the holes are 201 1 and 2zpe1e_2)
and lift the pins (the upward direction is along the —x axis). In
Ryey, the constant C'is to make Ry be zero when reaching the
success state.

Rt = —-P+ Rkey + Rﬁnal
Rkey - |Zprotrusion_1 - Zhole_l‘
+ ‘Zprotrusion72 - zholef2|
- xprotrusion_l - xprotrusion_Q + C
10, if success
Rﬁnal = 0 h . (8)
, otherwise.

The domain randomization method is mainly introduced in
Section III-F. For randomization in the task domain, the key’s
indentation depth into each sensor’s surface varies from 0.5 to
1.25 mm and the key’s relative position to the sensors varies
from —5 to 5 mm in x direction and from —8 to 5 mm in 2
direction.

To efficiently train the RL policy, we use 20 parallel envi-
ronments with 100 K environment steps in total. The proposed
pretraining and fine-tuning of the tactile feature extractor are
used.

3) Results of Sim2Real Experiments: To better analyze the
trained policy, we present several consecutive frames of the lock
opening task in Fig. 19. We divide the lock opening procedure
into four stages:

1) Start stage: The gripper will grasp the key and make a
random movement in x and z direction. This makes the
relative position between the start state and the target pin
holes unknown to the policy. Thus, the policy need to
exploit the tactile feedback to reach the pin hole.

2) Search stage: The key maintains contact with the lock
core and gradually moves toward the +z direction, until
the key’s protrusions are inside the target pin holes and the
contact disappears.

3) Lift stage: The gripper will lift the key to unlock the lock.
However, errors in z direction will lead to contacts on the
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Random
start state

Use contact as guidance
to the pin hole

Fig. 19.

Succeed in
Opening the lock

Lift the pins
and avoid large forces

Execution of lock opening task in reality. Real experimental setup and the definition of axial directions are shown in the first column. Tactile images from

the sensors are shown in the bottom row. The actions are plotted in the top row as red arrows. The procedure can be divided into four stages: Start stage, Search
stage, Lift stage, and Finish stage. In Start stage, the start position is randomized. In Search stage, the key maintains contact with the lock core until the contact
disappears. In Lift stage, the key is lifted and large contact forces should be avoided. Finally, in Finish stage, a manually designed rotating motion is executed to

turn the lock.

side of the protrusions, hindering the key from moving up.
So the policy will avoid contacts in this stage.

4) Finish stage: When the key is lifted up to a certain height
and tactile forces are small, we assume that the pins
have been lifted up and the lock core can rotate freely.
So, a sequence of manually designed rotating motion is
executed to turn the lock.

We train the RL policy with three different random seeds and
test the policies in reality. Each test has 20 episodes. The three
tests have the success rates of 90%, 95%, and 90%, respectively.
Therefore, we believe the Sim2Real performance in this task is
considerably good and stable.

C. Generation of Depth and RGB Signals

In this work, we mainly focus on the simulation of marker flow
for manipulation policy learning. In this section, we show that
the simulation can be extended with modest effort to generate
depth and RGB signals for GelSight-type visuotactile sensors.
Since the deformed vertices can be acquired from the simulator,
we can simulate the signals by 1) generating a depth map from
the deformed surface, 2) rendering an RGB image from the depth
map. Fig. 20 shows the sequence of simulated depth maps and
RGB images.

VII. CONCLUSION

In this article, we present a general-purpose Sim2Real proto-
col for learning contact-rich manipulation with marker-based vi-
suotactile sensors. Our FEM-based simulation method generates
high-fidelity tactile observations and exhibits sufficient robust-
ness for long-term RL training. We propose the use of marker
flow as the tactile representation and introduce a point cloud
learning architecture for tactile feature extraction. A tailored

Fig.20. Sequence of simulated depth maps and RGB images by our simulator.
In the simulation, an object contacts with the tactile sensor and then moves along
the sensor’s surface. The RGB images are blended with the background image
captured from a real sensor.

pretraining and fine-tuning method is employed to achieve high
sample efficiency in tactile-based robot learning. Additionally,
we summarize a reasonable and diverse domain randomization
technique that has been validated for use with our proposed
simulation and learning pipeline. The combination of these tech-
niques enables the successful completion of three contact-rich
manipulation tasks in a zero-shot Sim2Real manner. The small
Sim2Real gap observed in our experiments demonstrates the
effectiveness of our method.

Despite the promising results, several limitations remain to
be addressed. First, the simulation engine currently employed
only supports deformable bodies, resulting in slow performance
when complex rigid bodies are present. In addition, the process
of adding constraints in our FEM-based simulation is less con-
venient than in other popular robot simulation environments.
Second, while our pipeline can theoretically generalize to other
marker-based visuotactile sensors, this has not been validated
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due to the limited availability of such sensors. Third, the effec-
tiveness of our proposed learning scheme in more complex tasks
remains unknown.

These limitations also reveal some opportunities for further
investigation. The simulation efficiency issue regarding rigid
bodies could be addressed by incorporating affine-body dynam-
ics [50]. Efforts will be made to integrate our tactile simulation
into a general robot simulation environment. We also plan
to apply our proposed pipeline to different sensors and more
complex manipulation tasks with full robot arms. An intriguing
direction for future work is the optimization of tactile sensor
design based on the expected application scenarios through
simulation. Rapid iterations of sensor design become feasible
if a reliable simulation has been built.
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