540

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Enabling Kubernetes Orchestration of
Mixed-Criticality Software for
Autonomous Mobile Robots

Francesco Lumpp ““, Franco Fummi

and Nicola Bombieri

Abstract—Containerization and orchestration have become two
key requirements in software development best practices. Con-
tainerization allows for better resource utilization, platform-
independent development, and secure deployment of software.
Orchestration automates the deployment, networking, scaling, and
availability of containerized workloads and services. While con-
tainerization is increasingly being adopted in the robotic commu-
nity, the use of task orchestration platforms (e.g., Kubernetes) is
still an open challenge. The biggest limitation is due to the fact
that state-of-the-art orchestrators do not support real-time (RT)
containers, while advanced robotic software often consists of a mix
of heterogeneous tasks (i.e., ROS nodes) with different levels of
temporal constraints (i.e., mixed-criticality systems). This work
addresses this challenge by presenting RT-Kube, a platform that ex-
tends the de-facto reference standard for container orchestration,
Kubernetes, to schedule tasks with mixed-criticality requirements.
It implements monitoring of tasks and detects missed deadlines
for those with RT constraints. It selects low-priority tasks to be
migrated at runtime to different units of the computing cluster
to free resources and recover from temporal violations. We present
quantitative experimental results on the software implementing the
mission of a Robotnik RB-Kairos mobile robot to demonstrate the
effectiveness of the proposed approach. The source code is publicly
available on GitHub.

Index Terms—Autonomous mobile robots, containers, edge
cloud, Kubernetes, mixed-criticality systems (MCSs), orche-
stration, real time (RT).

I. INTRODUCTION

NSURING the correctness of robotic software is crucial,
especially considering the involvement of robots in safety-
critical tasks [1]. In addition to functional requirements, these

Manuscript received 8 July 2023; revised 24 October 2023; accepted 8
November 2023. Date of publication 20 November 2023; date of current version
15 December 2023. This paper was recommended for publication by Associate
Editor J. Le Ny and Editor N. Amato upon evaluation of the reviewers’ com-
ments. This work was supported by the European Union Next-GenerationEU
(Piano Nazionale di Ripresa e Resilienza (PNRR) — Missione 4 Componente
2, Investimento 1.5 — D.D. 1058 23/06/2022 and was carried out within the
PNRR research activities of the consortium iNEST (Interconnected North-Est
Innovation Ecosystem), ECS_00000043). (Corresponding author: Francesco
Lumpp.)

Francesco Lumpp, Franco Fummi, and Nicola Bombieri are with the
Department of Engineering for Innovation Medicine, University of Verona,
37129 Verona, Italy (e-mail: francesco.lumpp @univr.it; franco.fummi @univr.it;
nicola.bombieri @univr.it).

Hiren D. Patel is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3Gl, Canada (e-mail:
hiren.patel @uwaterloo.ca).

Digital Object Identifier 10.1109/TRO.2023.3334642

, Member, IEEE, Hiren D. Patel

, Member, IEEE,
, Member, IEEE

standards encompass various nonfunctional constraints, such as
real time (RT), quality of service (QoS), reliability, scalability,
and energy efficiency [2]. Meeting these constraints requires
configuring robotic application software to operate effectively
across diverse computing architectures, including edge-cloud
computing clusters [3].

In this context, containerization has emerged as a viable
solution [4]. It offers advantages, such as improved resource
utilization, platform-independent development, and secure soft-
ware deployment. However, as software for autonomous and
intelligent robots becomes more complex, traditional container-
ization approaches may no longer suffice as they lack the means
to scale to the more complex computing architectures. To address
this complexity, it becomes necessary to partition services and
tasks into distinct containers. This approach helps manage the
increasing size of container images, adapt container mapping to
different cluster nodes, and enhance system resilience against
node failures [5].

Within the context of multicontainer deployments, a signifi-
cant challenge is ensuring continuous robot functionality even
in the face of disruptions. As a result, many robotics companies
are exploring platforms like Kubernetes, which is the de-facto
standard for container orchestration, for automatic software
deployment to address this issue [6], [7].

However, there is also a growing need for software standards
that support mixed-criticality applications, which can be found
in various domains, such as industrial automation [8], automo-
tive [9], and avionics [10]. A mixed-criticality system (MCS)
combines software components (e.g., ROS nodes) with different
levels of criticality within a shared computing platform [11].
One of the primary research challenges in MCSs is ensuring
the correct execution of high-criticality tasks while sharing
computing resources with lower- or noncritical tasks [12] in a
user-transparent manner.! Within this context, the introduction
of software components and layers through containerization
can complicate meeting R7 requirements [13]. Although some
research efforts have explored integrating RT properties into
container-based virtualization [14], [15], [16], [17], supporting

IFor the sake of clarity, we will refer to ROS nodes as “software tasks”
(or simply “tasks”), and real-time ROS nodes as “RT tasks.” We will use
“computing nodes” or “nodes” to refer to the physical devices within the
edge-cloud computing cluster.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5876-2487
https://orcid.org/0000-0002-4404-5791
https://orcid.org/0000-0003-2750-4471
https://orcid.org/0000-0003-3256-5885
mailto:francesco.lumpp@univr.it
mailto:franco.fummi@univr.it
mailto:nicola.bombieri@univr.it
mailto:hiren.patel@uwaterloo.ca

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS 541

Edge-server Jetson Xavier NX

« Octa-core ARMv8.2 @ 2.3 GHz
« 16GB LPDDR4x 137GB/s
« Linux v5.10 RT kernel

« Hexa-core ARMv8.2 @ 1.9 GHz
« 16GB LPDDR4x 60GB/s
« Linux v5.10 RT kernel

« Intel Core i7-9700 @ 3.00GHz
+ 8 GiB SODIMM 2400 MHz
+ Ubuntu 18.04

Fig. 1. RB-Kairos compute architecture.

tasks with mixed-criticality requirements remains an open chal-
lenge.

Another emerging challenge for MCSs is integrating RT
containers with orchestration. Orchestration has demonstrated
its effectiveness in automating the deployment, networking,
scaling, and availability of containerized workloads and services
in cloud-native applications [18]. Nevertheless, current state-of-
the-art orchestrators do not yet support mixed-criticality con-
tainers, limiting their widespread adoption for robotic software.

Our work addresses the challenges posed by software con-
tainerization and orchestration in the context of autonomous
mobile robots with mixed-criticality tasks deployed across an
edge-cloud computing architecture (see Fig. 1). Our prior effort
in [19] presented an analysis where we verified, theoretically and
through a large set of experimental results, whether the overhead
introduced by containerization can influence RT tasks. This work
extends and completes such preliminary analysis by present-
ing RT-Kube, an ROS and Kubernetes compliant orchestration
platform for MCS. RT-Kube includes a new RT scheduler that
does not require modifications to the Kubernetes source code.
It also incorporates a monitoring plugin consisting of multiple
software layers designed to detect worst-case execution time
(WCET) overruns, temporal violations, and missed deadlines
for RT tasks.

Furthermore, RT-Kube implements a customizable algorithm
for selecting eviction victims (lower-priority ROS tasks) and
migrating them in RT to different computing nodes within the
cluster, thereby freeing up resources when too many temporal
violations occur. Building on our preliminary work, RT-Kube
can be deployed in various environments without the need for
custom-compiled executables. This includes provisioned en-
vironments, which are commonly encountered in cloud-based
computing (i.e., automatically managed and installed from offi-
cial sources). The main novel contributions of this work are as
follows.

1) An orchestration platform for MCS, that extends the stan-
dard Kubernetes scheduling with container sorting, node
filtering, scoring, and container-node binding through
criticality-aware algorithms and policies.

2) A monitoring mechanism that checks the status of each RT
container across the edge-cloud platform and efficiently

notifies violations of temporal constraints (e.g., missed
deadlines).

3) An RT scheduler that implements runtime migration of
state-less RT containers across the cluster nodes to avoid
system performance degradation.

4) RT-Kube, which is released as an ROS-compliant Kuber-
netes plugin that extends the standard release with the
RT support (available at https://github.com/UNIVR-RT-
Kube).

The rest of this article is organized as follows. It first presents

a performance model and the corresponding experimental re-
sults to measure the upperbound latency spikes introduced by
RT-Kube. It presents a quantitative analysis of the orchestrator
efficiency, by applying RT-Kube to orchestrate containerized
mixed-criticality software benchmarks. It evaluates a real case
study implementing the mission of a Robotnik RB-Kairos mo-
bile robot for navigation and transportation of goods. Section II
presents the background necessary to easily understand the
solution, while Section III presents the related works. Section IV
describes RT-Kube, while Section V presents the experimental
results. Finally, Section VI concludes this article.

II. BACKGROUND

This section provides background information on various
topics related to RT software, Linux scheduling, and container
orchestration.

A. Real-Time Software

RT software applications are often crucial for mission-critical
tasks, and their timing requirements must be precise and reliable.
These applications can have varying degrees of requirements on
their timing, typically falling into two categories: 1) soft real
time and 2) hard real time.

In the case of a soft RT application, consider a scenario like
simultaneous localization and mapping (SLAM) software. This
software periodically processes sensor data to create a map.
While it is essential that this computation is timely, some degree
of delay may be tolerable. In this context, a delayed result could
lead to a temporarily less accurate map, which might result in
navigation errors. However, such errors are acceptable as long
as they are within certain limits.

In contrast, a hard RT application has no tolerance for delayed
results. For example, in an antilock braking system in cars, any
delay in applying the braking correction can be detrimental. A
late correction could adversely affect the handling of the car,
rather than improving it. In such cases, a task is considered late
if it surpasses its deadline, which represents the absolute time
by which its execution must be completed.

Both hard and soft RT tasks typically consist of repetitive com-
putation phases that are triggered periodically or sporadically. In
periodic tasks, these computation phases are activated at fixed
and regular intervals. Conversely, sporadic tasks are activated
with a minimum time interval between each activation, but the
actual intervals may vary, allowing for more flexibility in their
timing.

https://github.com/UNIVR-RT-Kube
https://github.com/UNIVR-RT-Kube

542

During execution, tasks can vary in the amount of time they
take to complete, but this variation must have an upper limit. This
upper limit is known as the WCET, which represents the maxi-
mum amount of time a task can take to finish under any possible
system condition. These conditions are influenced by the state
of the system, including factors, such as resource availability
(e.g., CPU, memory, network) and resource characteristics (e.g.,
CPU/memory clock frequency, network bandwidth).

A RT task is defined as follows:

RT_task = (P, D, WCET) (1)

where P represents the task’s period, indicating how often new
instances of the task arrive. D is the deadline, specifying the time
by which the task must be completed. WCET is the worst-case
execution time. These times need to abide the following:

WCET < D < P.)

Determining deadlines and periods is a crucial aspect of
system design and involves specifying system requirements
and task characteristics during the design phase. Estimating
the WCET is accomplished through various techniques. These
methods include static analysis, where the code is carefully
examined to identify the longest possible execution path, and
measurement-based approaches, where RT tasks are executed
on the target platform to measure their actual execution times.
There are advanced tools available for conducting this static
analysis, which are considered state of the art in the field.

B. Linux Scheduling

The Linux kernel has several scheduling policies avail-
able, some for RT tasks and other for standard processes.
RT sporadic and periodic tasks can be scheduled using the
SCHED_DEADLINE policy. This policy is an implementation
of the earliest deadline first (EDF) scheduling algorithm, aug-
mented with a constant bandwidth server to allow for better
timing control (see [20] to dive deeper into the topic).

The SCHED_DEADLINE policy requires an admission test
to check if there is room to guarantee the task WCET within
the deadline, every period. This means that the task (Z,ey) has
to pass the multiprocessor global EDF task admission test to be
placed in the scheduling pool of RT tasks

RTUX{E"CW} WCET; <M sched_rt_runtime_us 3)
- *
P; - sched_rt_period_us

%

where RT is the set of running RT tasks, WCET; and P; are the
WCET and period of the tasks, respectively, M is the number of
CPU cores, and sched_rt_runtime_us/sched_rt_period_us rep-
resents the maximum allowed utilization of the CPU for RT tasks
(user-defined Linux kernel variable equal to 95% by default).?

2In (3), runtime is used instead of WCET due to Linux documentation
terminology.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

C. Container Orchestration

Kubernetes is an open-source container orchestration plat-
form that simplifies the management of containerized applica-
tions. It works by coordinating and distributing workloads across
a cluster of devices, i.e., the computing nodes, ensuring efficient
resource utilization and high availability.

The standard Kubernetes architecture is composed of a single
master and one kubelet unit per cluster node. Each kubelet
contains one or more containers of ROS tasks. The master
serves as the central control plane, overseeing the state of the
cluster through a controller manager, a database of the cluster
information (ETCD), and a scheduler unit. The scheduler man-
ages the container deployments across the cluster nodes. The
functional units (i.e., master and kubelets) communicate through
the HTTP REST protocol. The master manages the kubelets
requests through an API server [21].

III. RELATED WORK

Container-based edge-fog-cloud systems have been investi-
gated in several works (e.g., [22], [23], [24], [25]). The ex-
perimental findings demonstrate that the edge-cloud computing
continuum and container-based virtualization, when combined
together, improve scalability, resource usage, and performance.
Containers have minimal to no performance overhead, but
caution is required when many containers access the same
shared resources [26]. Recently, various architectures for cyber-
physical systems (CPSs) based on containers (e.g., Docker)
and using ROS as middleware have been investigated [27].
These works have shown the potential to improve informa-
tion flow among various network levels and increase software
modularity.

Containerization combined with orchestration has been inves-
tigated in fog and edge computing [28], [29], [30], [31]. Different
strategies of microservice deployment can be adopted to improve
the performance, energy efficiency, and carbon footprint ([28],
[32]), as well as the QoS ([29], [31]).

Several research works have been done to improve the perfor-
mance of robotic applications. In this direction, SeART [33] is a
framework that can intelligently schedule RT tasks by taking into
account the current context to activate the minimum-cost tasks.
Other RT robotic applications also show the need for improving
performance to guarantee RT constraints [34]. The issues tied to
containerization in a fog-based system for robotic applications
have also been explored. In [6], the authors highlight the lack
of fog-based frameworks to satisfy the RT demands of robotic
applications.

Containers with RT constraints (i.e., RT containers) have
been the focus of several recent studies due to the increasing
adoption of container-based virtualization. The review in [35]
explores existing solutions that guarantee RT constraints when
working with containerized applications. The authors underline
the lack of tools for RT container management and analysis
on communication between RT containers. Legacy applications
with RT constraints have been successfully emulated using
containers [13] and the performance overhead is low enough

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS 543

to run containerized RT applications for industrial automation
applications [8]. RT technologies (RT OS ResinOs, Ubuntu
Core, Co-kernel Xenomai 3, and Ubuntu with Preempt_rt soft-
ware patch) have been tested together with containerization
to demonstrate that container isolation is a new, competitive
paradigm that allows for better resource usage when com-
bined with RT [36]. The Linux scheduler SCHED_DEADLINE
was compared to the cgroups policy (i.e., the main technol-
ogy used to enable containers) to analyze which technology
better handles RT application resources [16]. The scheduler
is consistently more reliable and achieves better results than
cgroups. This is also true in resource-constrained situations
caused by high system load. Extensions of the Linux kernel
have been proposed to improve the efficiency of RT scheduling
of cgroups [15]. The same authors also proposed a modi-
fication of the Kubernetes source code to include some RT
constraints [37].

High-performance computing (HPC) makes wide use of con-
tainers. A framework has been proposed to efficiently schedule
RT containers in many-CPU systems [38], but additional re-
search is needed to determine the effects of the operating system
and I/O on deadlines. The feasibility of migrating RT applica-
tions from bare-metal servers to virtualized IaaS configurations
for Industry 4.0 has also been explored [17].

A framework for applications in MCSs has been proposed
in [14] to reduce interference between tasks when an application
exceeds its WCET. The framework shows low efficiency due to
the adopted static priority scheduler and it supports only one
computing node. In subsequent work [39], it has been extended
to use dynamic priority scheduling with a bandwidth server to
improve performance.

To fulfill the need of safety-critical RT systems and stream-
line the certification process, the authors in [40] examined the
benefits of utilizing both SGX isolation and unikernel features.
Another proposed framework for RT orchestration introduces
extensive modifications of the Kubernetes code-base and uses a
unique patch for the Linux kernel to deploy best-effort and RT
tasks [41].

Several works [42], [43], [44] show how, in edge-cloud com-
puting architectures, live container migration can improve per-
formance when resource usage can be monitored and utilization
spikes mitigated by migrating services to a different computing
node.

Unlike previous research, such as [37] and [41], this work
proposes a platform for container orchestration onto edge-cloud
architectures for MCSs based on off-the-shelf technologies (i.e.,
Linux OS + Preempt-RT, Kubernetes-K3S). The platform is
ROS- and Kubernetes-compliant and does not require any cus-
tom software patch to be used; thus, it is supported in provisioned
installation of Kubernetes, as well as normal environments. It
supports per-node WCET, different levels of criticality (e.g., A,
B, and C for RT containers), RT monitoring of all resources
and overrun deadlines, and stateless migration of ROS tasks
based on customizable policies. This framework allows to better
meet the functional and extra-functional constraints of advanced
multidomain software which are typical of autonomous mobile
robots.

IV. RT-KUBE PLATFORM

The standard Kubernetes architecture does not support any
notion of RT containers, as it does not have the data structures
or the modules required to handle the additional requirements of
such containerized RT tasks. This means that these RT tasks will
be treated equally, even though their requirements are different.

Fig. 2 presents an overview of the proposed extended architec-
ture. RT-Kube evolves the standard platform with the following
components (highlighted in bold in Fig. 2).

1) Custom Resource Definition Module for RT Containers
(RT CRD).It allows for the specification of RT parameters,
such as deadline, period, WCET, and criticality level of
containers (Section IV-A).

2) Secondary RT Scheduler. It implements a scheduler with
RT plugins that uses the additional data (RT CRD) to
perform the schedulability test of RT containers (Sec-
tion IV-B).

3) Container-Level and Cluster-Level Monitors of RT Tasks.
These implement the monitoring of RT containers at two
levels. At the container-level, the monitors collect infor-
mation at runtime about temporal violations (i.e., overrun
WCET and missed deadlines). At the cluster-level, one
main monitor combines such information to the cluster
status to implement container migration and recover from
temporal violations (Section IV-C).

We implemented the nonisolation of containers to support
communication among containerized ROS tasks. In standard
ROS environments, nodes communicate through IP addresses
and port numbers, where the IP corresponds to the device IP
in the network and ports are assigned randomly. This allows
communication and synchronization of ROS tasks to be easily
implemented also when they are distributed on different devices
of the computing cluster. In contrast, standard containers require
the association to private (isolated) subnet IPs [45]. To tackle
such a communication issue among containerized ROS tasks
distributed across different cluster devices, the proposed solution
implements the nonisolation of containers. All containers are
launched with access to the networking interfaces of the host
(through the option “hostNetwork: true” under Kubernetes).
This eliminates any network overhead introduced by the contain-
ers [46]. It also removes the network address translation (NAT),
which is not required in our target applications.

A. CRD Module for RT Containers

In standard orchestration platforms, the user provides a set of
specifications for each container (e.g., memory, CPU, storage
requirements). To schedule RT-containers, we consider four ad-
ditional specifications: 1) criticality level, 2) deadline, 3) period,
and 4) the WCET of the corresponding containerized RT task.
The platform takes advantage of this information to calculate the
utilization of all containers in each node, and assesses the impact
of a new RT container deployment on the system performance.

Fig. 3 shows an example of CRD module (lines 1-13) with
the extended specifications for the deployment of the Kubernetes
nginz use case [47]. The first 13 lines create the CRD object
“example-realtime-data,” where lines 6 to 13 contain

544

Master

APl server

- - e

Controller
manager
APl initiated |

/ eviction :
1

m

_‘

(@]

o
?
1
1
1
1
1
1
1

Scheduler

Secondary
RT
scheduler

Cluster-level
Monitor

Fig. 2. RT-Kube overview.

the RT CRD with the four additional values. Criticality (A,
B, C, and D) is used for the new sort and score phases, as
well as in the monitoring (see Fig. 4 and Section IV-C). We
borrowed such a criticality classification from the automotive
safety integrity levels (ASIL) standard, with C being the highest
the platform supports as of now. Note that it would be possible to
support ASIL-D tasks, but it would require a compute platform
that honors ASIL-D requirements as well. Further, criticality
standards from other domains could also be adopted in a similar
way.

The platform uses the deadline, period, and WCET in-
formation for the sorting, filtering, and scoring phases (see
Section IV-B).

The CRD object is linked to the deployment object (Kind
fields, lines 2 and 16) through a label that matches the RT
specification at lines 4 and 30. These labels are compared at
scheduling time for each deployment to find the matching RT
CRD.

B. Secondary RT Scheduler

Fig. 4 shows an overview of the secondary RT-scheduler. The
orchestration begins with the queue of containers (i.e., standard
and RT), and the list of nodes representing the compute platforms
(i.e., the cluster of computing devices).

We assume that each RT ROS task is mapped to one RT-
container. Our evaluation shows that this one-to-one configu-
ration, when compared to other solutions, is the most flexible
as it incurs negligible overhead, and it experiences minimal
performance penalties for RT tasks (see Section V-A). The
scheduler implements the following four steps. First, sorting of
containers using a hierarchical scheduling policy to generate a
priority queue ordered by criticality. Then, for each container in
the queue, the filtering phase selects the nodes of the cluster that
satisfy the container specifications (Section IV-B1). The scoring
phase creates a node ranking by considering user-defined poli-
cies, and schedules the container on the highest ranking node

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Kubelet(s)
Container(s) -
HTTP -
REST API Container-level —
— I Monitor
Monitoring
data 7
1
I A
#include
“monitoring.h"
RT task
(ROS nOde) container,
[container;|
| container,
kubelet,|
| kubelet
| kub'é'letj

(Section IV-B2). Finally, the binding phase maps the container
to the cluster node by allocating resources on the identified node
for the container. To deploy RT-containers, the platform relies on
the taint and tolerations features of Kubernetes [47] to identify
which nodes of the cluster run an RT operating system (Fig. 3,
line 38). Nodes with no RT operating system or RT capabilities
are automatically excluded from the pool of schedulable nodes
for RT tasks.

1) Filtering of Nodes: The platform applies (3) extended to
the containerized version of tasks to implement the container
admission test. Algorithm 1 depicts the filtering phase, which
relies on such a container admission test. The algorithm takes as
input the list of nodes IV of the cluster, and the container of task
thew that has to be scheduled, x. For each node of the cluster
(line 3), the algorithm considers all the containers currently
running (i.e., already deployed) in the node and sums up the
utilization of each container (line 4). The result (currentUT),,)
represents the left-hand side of (3) extended to containers. The
algorithm calculates the projected total utilization of the node
(newUT,,) by considering the additional resources of container
2 under deployment (line 5). If the resulting projected utilization
is greater than the threshold n.thresholdUT [which represents
the right-hand side of (3) extended for containers], the algorithm
filters the current node from the pool of schedulable nodes. The
algorithm also uses an XOR operator (line 8) to check whether
both the node and task criticality are C'. If only one of the two
is C, the node n is marked as not schedulable.?

2) Scoring of Nodes: To implement the scoring phase, the
platform relies on the following equation to obtain a normalized
ranking (nRank) for each node:

1 — nthresholdITonewUTn —jf crit, = A
Vn € N: nRank = ‘
n.thresholdUT —newUT,, if crit. = C
n.thresholdUT T
4)

3In the Kubernetes terminology, a nonschedulable node is a cluster node that
does not satisfy the requirements of the container that has to be scheduled.

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS 545

1 apiVersion: rt.scheduling/vl

2 kind: RealTime

3 metadata:

4 name: example-realtime-data

5 spec:

6 criticality: C

7 rtPeriod: 100

8 rtDeadline: 100

9 rtWecets:

10 - node: nodeA

11 rtWcet: 50

12 - node: nodeB

13 rtWcet: 60

14 -

15 apivVersion: apps/vl

16 kind: Deployment

17 metadata:

18 name: nginx-deployment

19 labels:

20 app: nginx

21 spec:

22 replicas: 1

23 selector:

24 matchLabels:

25 app: nginx

26 template:

27 metadata:

28 labels:

29 app: nginx

30 rt-scheduling: example-realtime-data

31 spec:

32 schedulerName: RT-scheduler

33 containers:

34 - name: nginx

35 image: nginx:1.14.2

36 ports:

37 - containerPort: 80

38 tolerations:

39 - key: "RealTime"

40 operator: "Equal"

41 value: "RT"

42 effect: "NoSchedule"
Fig. 3. Example of RT CRD (lines 1-13) and the corresponding Kubernetes

configuration module for the container deployment configured with the real-time
parameters.

Algorithm 1: Real-Time Filtering Extension for the Kuber-
netes Scheduler.

input : A list of nodes N, an RT-container x
output: A list of schedulable nodes M

1 Function RealTimeFilterPlugin (N, x):

2 M < N

3 for Vn € N do

4 currentUT,, « 3., Y&te

s newUT,, « currentUT,, + “CFte
6 if newUT,, > n.thresholdUT then
7 | M« M-—{n}

8 else if (z.criticality = “C” @ n.criticality = “C”) then
9 | M« M-—{n}

10 end

1 end
12 return M

where n.thresholdUT represents the threshold RT utilization
(Msxsched_rt_runtime_us/sched_rt_period_us), and newUT,,
represents the projected RT utilization after the deployment of
T inn.

With a normalized utilization value [0,1] for each node, inde-
pendent of the total runtime and CPU cores available on the node,
the platform applies a custom policy for scoring based on the

Container queue

Real-Time containers
specifications:

Container C,
« Criticality (A, B, C)

J

Container C2
Container C1

Sorted
container

o
c
@
c
@
LS

VC;inQ
« List of nodes N

* Filtering policies

Real-Time containers
specifications:

+ RealTimeFilterPlugin Deadline

Period
WCET
+
Criticality (A, B, C)

« List of nodes N
* Scoring policies

+ RealTimeScorePlugin

Q0

g W

Fig. 4. Secondary RT-scheduler.

value of the criticality field in the RT specification extension (see
Algorithm 2). If a task has a criticality level of A, the algorithm
assigns the task to the node with the highest RT load (i.e., the
node with the highest normalized utilization), line 3. In contrast,
for level C, the algorithm gives the highest rank to the node with
the lowest normalized utilization (line 11). For the criticality
level B (line 5), the algorithm maps the utilization to a function
that gives the highest rank to the nodes with a utilization level
closest to 1/ K, as follows:

Vn € N : nRank

n.thresholdUT—newUT,, < 1
— K

n.thresholdUT n.thresholdUT

(n.thresholdUT—newUT,,

n (nihresholdUT—newUTn)

n.thresholdUT) otherwise.

(&)

Scoring with this function allows us to modify the deployment
behavior to best fit the needs and requirements of the tasks. For
example, we can make a criticality B task resemble the behavior
of a criticality A task with K’ — 1~ and a linearly increasing
h(-), or closer to C with K — 0T and a linearly decreasing
g(+). In our experiments, we applied (5) with K = 2, a linear
function h(-) = a(-) + b, and a quadratic function for g(-) =
a'(+)? +V/(+) + . This allows us to linearly increase rank for
nodes that have newUT,, lower than 1/2, but greater than 0, and
then a sharp decrease once that the threshold utilization value
is reached. Fig. 5 shows the corresponding mapping, whereby
the nodes with average RT load are classified as nodes with the
highest ranking.

C. Container-Level and Cluster-Level Monitoring of
RT-Containers

RT-Kube implements the monitoring of RT containers at two
levels. At container-level, one monitor per container collects
temporal information of the corresponding RT task and re-
ports, at runtime, any temporal violation (i.e., overrun WCET

546

0.9 FrARank

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 01 02 03 04 05 06 07 08 09 1

Fig.5. Mapping results with (5) for the criticality level B with the coefficients
ald70pted in the experimental results (a = %, b= %, a = %, v = 7%, d =
)

Algorithm 2: Real-Time Scoring Extension for the Kuber-
netes Scheduler.

input : A node n, the RT container z, the projected
utilization newUT,,
output: The score s for RT container = on node n

1 Function RealTimeScorePlugin (n, z, newUT,,):

| nRank . Rt
3 if x.criticality = “A” then

4 | s+ 1—nRank

5 else if x.criticality = “B” then
6 if nRank < % then

7 | s« h(nRank)

8 else

9 | s« g(nRank)

10 end

1 else if x.criticality = “C” then
12 | s« nRank

13 end
14 return s

or missed deadline) to the cluster-level monitor. This last im-
plements the reconcile phase, which consists of checking the
temporal constraints (i.e., threshold of missed deadlines) and
eventually migrating containers to free resource and recover the
system. To guarantee portability, each container-level monitor
takes advantage of the SIGXCPU signal [48] that any Linux
operating system can raise when a temporal violation occurs.
Once the monitor receives such a signal, it communicates the
updated counter of missed deadlines to the cluster-level monitor,
which in turn implements the corresponding orchestration coun-
termeasures. The injection of monitors in the SW application
does not require any modification to the source code. Fig. 6

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Container-Level API Cluster-Level
Monitor server Monitor

| |
SIGXCPU | !
|

|

|

JSON \
Object |

|

|

|

|

|

|

|

signal |
HTTP-REST
Syntactic

|

|

|

H

|

|

|

|

|

| JSON
| Object
|

|

|

: validation
|

|

|

|

|

|

|

|

Controller
Manager

Syntactic
validation

|
I
|
I
| request
|
|
I
|
| result

JSON Object
Store/Update

request

JSON Object and
Container info request
|
Objectand !
Container info

I

|

|

|

|

.

at [Missed deadlines |
> threshold 1

Victim Selection |
|

|

|

|

|

p—

Init Eviction

Eviction
result

Reconcile
result

Fig. 6. Sequence diagram of the whole dynamic SW orchestration, starting
from the container-level monitoring units.

depicts the sequence diagram of the whole SW orchestration,
starting from the container-level monitoring units. The figure
reports the components of the standard Kubernetes release and
the extension. The extension components are highlighted in bold.
To implement a continuous runtime monitoring while saving
computational resources, we implemented each container-level
monitor unit through two threads. The first receives the STGX -
CPU signal and updates the counters for the missed deadlines.
The second communicates the RT container status (i.e., the
updated number of missed deadlines) to the API server periodi-
cally through the HTTP-REST protocol. The container status is
encoded into a Kubernetes compliant JSON object (see Fig. 7)
to guarantee modularity and scalability of the system. The API
server validates the object syntactically (validation request in
Fig. 6) and updates the RT container status in the ETCD database.
It then requests for the system-level check to the cluster-level
monitor (i.e., reconcile request).

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS 547

apiVersion: rt.monitoring/vlalphal
kind: Monitoring
metadata:
name: monitoring-test
spec:
node: nodeA
containerName: nginx
missedDeadlinesPeriod: 0
missedDeadlinesTotal: 0

O 001NN W —

Fig. 7. Example of monitoring object created by the container-level monitor
of RT-tasks.

Kubelet \

Container-level Network Cluster-level Monitor

Monitor [HTTP_trans(JSON,)] | Rec-phase:

* [updating * [obtaining, validating
frequenc i] : analyzing data]

Vi || HTTP_trans(KilD] ||+ [gviction_phase]
RT task
Fig. 8. RT-Kube architecture considered for the analysis and formalization of

the response time.

The cluster-level monitor implements the reconcile phase.
It collects the updated status of missed deadlines from each
container-level monitor of the cluster. The updated status con-
sists of the number of deadlines missed since the last update
and the total number of missed deadlines in the RT container
lifetime. If the number of missed deadlines, either in the period or
total, is higher than the user-defined threshold (obtained from the
centralized ETCD database), the cluster-level monitor selects a
container to be immediately evicted and killed. The choice relies
on the policy statically defined by the user. In our implementa-
tion, aside from RT containers with criticality C, any container
with a lower criticality than the one with temporal violations and
that has a stateless task can be selected. The cluster-level monitor
notifies the eviction target to the controller manager (initialize
eviction in Fig. 6), which implements the container eviction
and automatic redeployment as for the standard protocol of
Kubernetes’ controllers. The monitor also implements tainting
of the node that hosted the evicted container, which consists of
marking the node as not available to host new containers for a
period of time. This allows us to avoid immediate deployments
of new containers in the node where the missed deadlines were
observed. As a consequence, the evicted container is redeployed
on a different cluster node, thus implementing a de-facto state-
less migration.

D. Response Time and Predictability of the System Recovery
From Temporal Violations

We define response time (RTY) of the system recovery from
temporal violations of the RT container c on the cluster node
1, as the time elapsed from the first deadline missed by c that
leads c to exceed the threshold of missed deadlines to a container
eviction on ¢. It is characterized by three components (see Fig. 8)

1
RTf < 7 + HTTP_trans(JSON.) + Rec_phase (6)
c

where f. is the frequency the monitor in container ¢ up-
dates the master with the total number of missed deadlines,
HTTP_trans(JSON_,.) is the time spent for transferring the JSON
object containing the counter information from node ¢ to the
master; Rec_phase is the time spent by the master for the
reconcile phase.

Each cluster-level monitor updates the counter of missed
deadlines at every SIGXCPU signal locally, while it updates
the master periodically to save system resources. The period
between two counter updating defines the worst-case delay [i.e.,
first component of (6)].

We assume that the cluster-level monitor and the Kubernetes
master are hosted on the same cluster node. As a consequence,
we consider the communication latency between monitor and
master being negligible. In contrast, we consider the time spent
for transferring the updated data from the container-level moni-
tor to the master over the network. This latency strongly depends
on the static and dynamic characteristics of the communication
network (i.e., bandwidth, traffic, etc.). Predictable networks for
RT applications have been extensively studied in literature [49],
and could be considered to increase the predictability of such a
response time component. Nevertheless, we generalize the defi-
nition and consider HTTP_trans(JSON..) as the worst-case time
spent for transferring the JSON object containing the counter
information (e.g., =~ 180 B in our case study) to the master over
HTTP.

The third component represents the time spent by the master
for the reconcile phase. The master accesses the ETCD database
for the semantic validation of the updating message (i.e., the
JSON object), the request for specifications of each container
(i.e., memory, CPU, storage requirements) and the additional
specifications for RT containers (i.e., CRD module with dead-
line, period, WCET, criticality). Using this information, the
master implements the victim selection and eviction through
a message (i.e., standard killing Kubernetes message) over the
network. We model the latency of the reconcile phase as follows:

Rec_phase < 2 - n - tspec + nRT - tcRD
+ Eviction_phase
+ HTTP_trans(Kill) (7)

where n is the total number of containers, n g7 is the number of
RT containers (npr < n), tspec and tcrp are the latencies spent
for retrieving the container and RT container specifications from
the database. HTTP_trans(Kill) represents the latency spent
for notifying a killing procedure by the master to the cluster
node operating system. For this component, the considerations
formulated before on the transfer time of a Kubernetes mes-
sage over HTTP apply. The time for the eviction phase strictly
depends on the complexity of the algorithm implementing the
victim selection. We implemented three policies with different
complexity. The first relies on an iterative linear search over the
list of containers deployed on node ¢ to find the container with
the highest use of a single system resource (i.e., either CPU or
memory). It starts from the lowest priority class of containers
(i.e., nonreal-time) and, in case none of them is deployed in ¢, it
iterates on the lists of the higher priority containers.

548

The second policy implements a similar search, by consider-
ing the combination of two system resources. Being based on
reordering and search phases, its complexity is linearithmic on
the number of containers (i.e., n - log(n), with n the number
of containers). The third policy considers intercontainer com-
munication dependencies and task semantic, and has quadratic
complexity (n?). We present a comparison among the three
policies in terms of response time in Section V-D.

V. RESULTS

We evaluated the RT-Kube efficiency on the software that
implements the mission of a Robotnik RB-Kairos, which is a
skid-steering mobile platform equipped with a Universal Robots
URS and a Schunk WSGS50 gripper. The software is distributed
on computing cluster that consists of three nodes (see Fig. 1):
two on-board programmable devices, i.e., an NVIDIA Jetson
Xavier with the RT operating system (Linux kernel v.5.10,
and the preempt_rt patch) and a desktop with an i7 9700
locked at 3.0 GHz with 8 GB RAM and a standard nonreal-time
Linux-based operating system. The onboard nodes communicate
through a Gigabit Ethernet switch (802.3ab). The third node
consists of an off-board desktop with an octa-core CPU and
16 GB of RAM, with Linux kernel v.5.10, and the preempt_rt
patch. It communicates with the other (on-board) cluster nodes
through WiFi (802.11ac).

We first evaluated empirically the impact of containerization
on RT tasks in terms of WCET overruns and missed deadlines
(Section V-A). We then compared the efficiency of the proposed
Kubernetes extension to support RT-containers in terms of task
rejections and missed deadlines with a synthetic software bench-
mark (Section V-B) and with the real software implementing the
robot mission (Section V-C). Then, we analyzed the response
time of the system recovery from temporal violations achieved
by RT-Kube (Sections V-D and V-E).

A. Impact of Containerization on RT-Tasks

Workload Configuration: We evaluated the impact of con-
tainerization on RT tasks by using a large set of standard
software benchmarks for RT tasks. For brevity, we only report
the results obtained with the cyclicdeadline benchmark from
rt-tests [50] (the results with the other benchmarks show similar
behavior). The benchmark is configured to run with either 1,
2, 4, or 8 identical tasks, maximum utilization of 95% per
task, WCET of 3.8 ms, period of 4.0 ms, and deadline equal
to the period. Note that we set these parameters to experience
a full workload capacity on the system, which allows us to
assess the performance impact of containerization. We evaluated
three scenarios: 1) all RT tasks running natively on the edge
platform to establish a baseline performance metric; 2) all RT
tasks running in one container to analyze whether an application
composed of multiple RT tasks is affected by the overhead; 3)
all RT tasks running, where each RT task is mapped into its
own container to evaluate how the overhead of containerization
scales with multiple isolated tasks and if the overhead caused by
a high number of containers can interfere with RT deadlines. We
also run these three scenarios with additional tasks that overload

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

the system with memory accesses to assess the behavior of the
RT tasks under stress.

Key Results: Table I shows the average actual runtime among
n tasks, observed WCET among all the n tasks, total WCET
overruns, and total of missed deadlines for all n tasks. Columns
with “stress” identify those scenarios where the system was
overloaded with memory accesses.

Our results indicate that containerization does introduce over-
head on observed WCET, and that such an overhead is evident
only in the higher CPU-load configurations, i.e., four or more
tasks on the 8-core CPU. However, containerization does not
impact the average-case runtime of tasks with or without stress.
When compared to tasks running natively on the device, con-
tainerization impacts the WCET overruns and missed deadlines
only when the RT utilization is close to 100% (last two rows of
the table). This is due to the fact that when the task overruns the
deadline and all CPU cores are allocated to RT tasks, the system
cannot remap the task to a different available core. Interestingly,
the number of containers created to group the RT tasks does
not influence the observed WCET as, both when using one
container and n containers, the observed times are similar. This is
highlighted by the increased value of observed WCET (both with
or without stress) by around 9.5% when the tasks are grouped
into one container w.r.t. the native configuration, while the value
is comparable between 1 container and n containers with any
number of tasks. We observed the same behavior for the WCET
overruns and missed deadlines. The task WCET was overrun 28
times with eight tasks in one Docker container, and this led to 24
missed deadlines over 8 millions (i.e., 0.00035%). The values
do not increase by increasing the number of containers.

Summary: We noticed a negligible overhead when container-
izing applications in general. Only at maximum utilization (e.g.,
eight tasks over 8-CPU cores with 95% utilization) does the over-
head lead to missed deadlines. With appropriate provisioning,
we contend that containerization with the proposed off-the-shelf
technology can support RT applications. In our experimental
analysis, we obtained no missed deadlines for the containerized
configurations also with eight tasks by slightly relaxing the
deadline w.r.t. to the period (e.g., increasing the period from
4.0 to 4.5 ms, and the WCET from 3.8 to 4.3 ms, still with 95%
maximum utilization per task).

B. Benchmarking the Orchestration With RT Support

Orchestration Platform Configurations: We used the follow-
ing three configurations for the orchestration platform.
1) Native K3S-Standard: The standard Kubernetes configu-
ration for orchestration.
2) Native K3S-Best Configuration: The best configuration
for orchestration with the native Kubernetes scheduler.
We statically and manually assign an optimal task-to-node
orchestration solution.
3) RT-Kube: Our proposed orchestration platform with the
extended RT specifications and secondary RT scheduler.
Workload and Deployment Setups: The workload consists
of 73 tasks. 72 of them have been containerized into 72 RT-
containers. The remaining task has been containerized into a

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS

TABLE I

COMPARISON OF RT-TASKS RUNNING NATIVELY, CONTAINERIZED IN A SINGLE AND MULTIPLE DOCKER CONTAINERS

549

average average Observed Observed WCET WCET missed miss.ed to@
7# . runtime WCET overruns . deadlines deadlines
config. runtime . WCET . overruns . deadlines .
tasks (ms) with stress (ms) with stress (#) with stress) with stress per config
(ms) (ms) #) #) #)
1 native 1.219 1.256 3.143 3.655 0 0 0 0 30k
1 container 1.164 1.172 3.055 3.119 0 0 0 0
native 1.234 1.251 3.118 3.755 0 0 0 0
2 1 container 1.154 1.169 3.092 3.052 0 0 0 0 60k
2 containers 1.144 1.162 3.091 3.090 0 0 0 0
native 1.225 1.262 3.100 3.845 0 0 0 0
4 1 container 1.155 1.160 3.522 4.014 0 1 0 1 120k
4 containers 1.134 1.154 3.783 3.704 0 0 0 0
native 1.187 1.204 3.565 4.120 0 9 0 5
8 1 container 1.155 1.146 4.337 4.511 28 23 24 21 M
8 containers 1.140 1.141 4.405 4.322 26 18 10 14
TABLE II TABLE III

RT CONTAINERS DISTRIBUTION FOR THE RT ORCHESTRATION

[15" deployment (#) 279 deployment (#)

Criticality A 32 16
Criticality B 24 24
Criticality C' 16 32

Stress 1 1

non-RT container and implements stress activity through mem-
ory accesses on the platform.

All containers have one instance of “cyclicdeadline,” the
WCET has been set to 2.9 ms for all tasks, and the deadlines
at 24.2, 18.1, and 14.5 ms for levels A, B, and C, respectively.
The resulting RT utilizations are: 12% for A, 16% for B, and
20% for C. We tested two deployment setups, shown in Table
II. With these configurations and deployments, an improper
orchestration would result in higher than 100% RT utilization
on a single cluster node, and, thus, rejected tasks.

Key Results: Table III summarizes the workload and de-
ployment setup in the first three columns. The fourth column
shows the number of RT tasks that have been mapped into
the corresponding RT nodes by the orchestrator, but that have
been rejected by the Linux kernel admission test [see (3)].
The last column shows, for all criticality levels, the number of
missed deadlines. This column reports the deadlines missed by
the running tasks (not rejected) and the total missed deadlines
(those missed by the running + those missed because of the task
rejection).

We found that the orchestration of the standard Kubernetes
produces a task-to-node mapping that is inadequate for RT tasks.
This is underlined by the amount of RT tasks that, after mapping,
have been rejected by the Linux Kernel RT admission test and
by the number of missed deadlines w.r.t. the best (manually
configured) orchestration configuration.

Table IV reports the efficiency comparison between the pro-
posed solution when compared with the native Kubernetes, with
a dynamic workload. The benchmark implements a sequential
number of RT container deployments. We set up a first scenario

COMPARISON AMONG KUBERNETES STANDARD ORCHESTRATION, BEST
ORCHESTRATION, AND THE PROPOSED RT-KUBE

De-

Critical

Deadlines missed

ploy- Config. tasks/ rgzscl:ef d (running tasks -
ment Nodes J running+rejected)
Native A: J(32) A: 8 A: 3.3% - 27.5%
K3S- B: J(24) B: 7 B: 9.1% - 35.6%
standard C: J(16) C: 6 C: 6.5% - 41.5%
oth.: J(1)
Native A: 1(32) A: 0 A: 0.0% - 0.0%
15t K3S-best B: 1(24) B: 0 B: 0.0% - 0.0%
confi C: J(16) C:0 C: 0.0% - 0.0%
& | oth: R(1)
A: 1(32) A: 0 A:0.0% - 0.0%
B: 1(24) B: 0 B: 0.0% - 0.0%
RTRube | ¢ 516y C:o C:0.0% - 0.0%
oth.: R(1)
Native A: J(16) A: 8 A: 0.0% - 50.0%
K3S- B: J(24) B: 10 B: 2.9% - 44.6%
standard C: J(32) C: 10 C: 4.3% - 34.2%
oth.: J(1)
Native A: 1(16) A: 0 A: 0.0% - 0.0%
ond K3S-best B: 1(24) B: 0 B: 0.0% - 0.0%
confi C: J(32) C:0 C: 0.0% - 0.0%
& | oth: R(1)
A: 1(16) A: 0 A:0.0% - 0.0%
B: 1(24) B: 0 B: 0.0% - 0.0%
RTKube | y30) cio C:0.0% - 0.0%
oth.: R(1)
TABLE IV
EXPERIMENTAL RESULTS FOR DYNAMIC ORCHESTRATION
TO T0 + ta
Configuration Deployed Fl’{e:j(ei:lclig d> Deployed Pl‘{e:ji]c?g d>
Native- Ni: 8 Ni: 9
K3S Na: 8 1-0 Na: 8 0-1
Ni: 8 Ni: 8
RT-Kube No: 8 1-0 No: 8 1-0
Native- Ni: 8 Ni: 9
K3S Na: 0 -0 Na: 0 0-1
Ni: 8 Ni: 8
RT-Kube Na: 0 1-0 Nyt 1 0-0

550

(first two rows of Table IV) in which 16 RT containers are de-
ployed and run correctly onto the cluster for 100% RT utilization.
In this context, there is CPU available for the (standard) orches-
trator, while the CPU is fully loaded for the RT admission test
[see (3)]. When a new RT container has to be deployed (instant
Ty + to), the orchestrator of the native Kubernetes immediately
deploys the container on the cluster. This leads to an overload
of the cluster RT utilization (i.e., more than 100%) and, as a
consequence, to a failed admission test by the Linux kernel. This
failing deployment keeps getting restarted by Kubernetes. The
admission test succeeds and the container is deployed only when
RT resources of the same node become available and the new RT
utilization is within 100%. Nevertheless, if any other different
RT node becomes available, the issue persists as Kubernetes has
no way of knowing the cause of the failure. In contrast, with
the proposed solution, the new container remains pending at
orchestration level until any RT resources in the cluster become
available.

We set up a second scenario (last two rows of Table IV),
in which the first RT node has 100% utilization, with eight
containers, while the second RT node has 0% utilization. When a
new RT container has to be deployed, with the native Kubernetes,
there is only a 50% chance for the correct node to be picked,
as the orchestrator has no knowledge of the RT utilization. In
contrast, the proposed orchestration platform guarantees that the
correct node (one with 0% RT utilization) is always selected.

C. Orchestration With RT Support of the Robot’s Mission
Software

Software Configuration: The robot’s mission is implemented
through an SW application composed of 80 ROS tasks. It
performs pick and place operations, delivering goods from a
conveyor belt to a storage area and vice-versa. The most critical
part of the software is the driver controlling the arm operations.
This task needs to maintain a control loop that communicates
directly with the arm hardware at 120 Hz (8-ms deadline, 7.6-ms
WCET, 90% utilization). Exceeding the deadline and delaying
such a communication beyond a certain threshold causes the
arm to go into safe mode and halting operations. This translates
into a measured maximum lateness of 0.7 ms, after which the
connection is dropped.

Key Results: As expected, we found that, with the native
K3S orchestration, all tasks were mapped onto the three de-
vices randomly. This resulted in missed deadlines to exceed the
threshold and to the safety stop of the robot. We then evaluated
two alternative scenarios with the proposed RT orchestrator. The
first supports multiple criticality levels (i.e., non RT tasks with A,
B, and C RT tasks), while the second only supports non RT with
RT tasks (e.g., [37] and [41]). In the first solution, we classified
three tasks implementing the robot localization and mapping
(SLAM) as RT criticality B. Then, the arm driver as an RT task
with criticality C. We defined the edge server as an RT node for
criticalities A and B, while the on-board Jetson for criticality
C. In the second scenario, we classified the SLAM, as well as
the arm driver, as RT. Both are deployed on the RT-capable
Jetson onboard. In both scenarios the rest of the software was

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

TABLE V
EXPERIMENTAL RESULTS WITH THE RB-KAIROS

Missed deadlines
Ob-
Confi At\fg Std. served 1 tMax. arm
ontig. Tntme - gey. WCET MY driver SLAM
(ms) . (ms)
(ms)
Native 7.15 3.58 32.32 - 24.50% -
non-RT +
RT [37], 0.20 0.11 5.72 0.95 1.28% ~0%
[41]
non-RT +
A+B+C 0.15 0.07 2.06 0.49 0.17% ~0%

configured as non RT. These two test cases allow us to evaluate
the improvement for the automatic separation of different classes
of criticality as well as the benefits of RT orchestration.

Table V shows the results. Our solution based on multilevel
criticality (third row in the table) manages to take advantage of
criticality-aware load distribution, which allows the arm driver
to perform substantially better than native and other alternatives,
with lower observed WCET and reduced deadline misses. The
much less restrictive control loop of the SLAM nodes allows for
performance improvement in both solutions.

Summary: Unlike other alternatives, the proposed solution
did not suffer from any safety-related stop as the maximum
lateness bound was never exceeded. This is due to the isolation
of the highest criticality tasks from the lower criticality ones
implemented by the orchestrator. We also observed very dif-
ferent average runtime and WCET when comparing the native
Kubernetes approach and RT-Kube. With the native Kubernetes,
our case study caused an order of magnitude more missed dead-
lines w.r.t. RT-Kube, which make the native solution practically
unusable.

D. Analysis of Response Time for Container Migration

Software Configuration: We first measured the response time
of the system recovery from temporal violations implemented by
RT-Kube [(6) in Section [V-D] through alarge set of benchmarks,
which consist of different numbers and distributions of non-
and RT-containers on the cluster. We deployed the container-
level monitors on each device of the cluster and, the cluster-level
monitor on the K3S master node (i.e., the external server). In
all tests, we set the updating frequency of the container-level
monitors to 10 Hz. We measured, on average, 53 ms as the time
elapsed from the missed deadline to the update instant [the first
component of (6)].

Network Impact: We analyzed the time taken to trans-
fer the updating messages from the container-level monitors
to the master across the Ethernet+WiFi network, with and
without network congestion. Without network congestion, we
measured an average latency of ~3 ms for both transmis-
sions (HTTP_trans(JSON.) and HTTP_trans(Kill)). With a
congested network, we measured, on average, a communica-
tion latency of 9.9 ms for the two transmissions. We mea-
sured the worst-case transfer time to send each update mes-
sage to the server as 115.2 ms (i.e., HTTP_trans(JSON..)) and
84.99 ms to send the HTT P_trans(Kill) message to the node.

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS 551

TABLE VI
CLUSTER-LEVEL MONITOR RECONCILE RESPONSE TIMES FOR VARIOUS
COMBINATIONS OF RT SCHEDULING OBJECTS AND CONTAINERS

TABLE VII
CLUSTER-LEVEL MONITOR RESPONSE TIME ON THE AUTONOMOUS MOBILE
ROBOT CASE STUDY

Contain- Cont. Distribution Reconcile phase (ms)

ers (#) | non-RT — RT | Linear | Linearithmic | Quadratic
1 1 - 0 41.07 40.81 40.83

1 0o - 1 41.75 41.49 41.51

8 8 - 0 40.26 39.27 57.27

8 4 - 4 42.98 41.99 59.99

8 [8 45.70 44.71 62.71

16 16 - 0 51.32 51.62 157.94

16 8 - 8 56.76 57.06 163.38

16 0o - 16 62.20 62.50 168.82

32 32 - 0 65.43 106.07 173.57

32 16 - 16 70.87 111.51 179.01

32 [32 76.31 116.95 184.45

64 64 — 0 | 115.23 152.39 687.02

64 32 - 32 | 126.11 163.27 697.90

64 0 — 64| 136.99 174.15 708.08

The congestion was obtained through 1 Gb/s of traffic from the
master to the container-level monitor, and vice versa (obtained
with the netcat and pv emulation software).

Key Results: Table VI reports the average time spent for the
reconcile phase in the tested configurations. The first column
indicates the total number of containers deployed in the cluster
node. The second column reports the distribution of standard
and RT containers. The last three columns report the time spent
in the reconcile phase with the linear, linearithmic, and quadratic
policies.

We found that the time required by the three policies is
comparable with a low number of containers deployed in the
cluster node (i.e., eight in our experimental setup). Linear and
linearithmic still achieve comparable performance for up to
16 containers. With more containers, the different impacts of
the three policies on the response time become evident. When
analyzing how each policy is affected by the number of standard
and RT container, we observed that, when moving from 1 to 32
standard containers, the latency of the reconcile phase increases
by 59.3%, 159.9%, and 325.1% with the linear, linearithmic, and
quadratic policies, respectively. When moving from 1 to 32 RT
containers, the time increases by 82.3%, 181.9%, and 344.5%.

Summary: In general, the response time with both linear and
linearithimc policies is less than 200 ms, in which, as expected,
there is a negligible contribution of the transfer latency. The
contribution of the monitor updating to the overall latency could
become negligible at higher updating frequencies. The trade-
off comes at the cost of more computational resources spent
on operations, particularly on the master node. The smarter
quadratic policy leads to a response time of around 750 ms.
In general, RT containers impact the reconcile time slightly
more than standard containers. Such an additional overhead is
negligible and becomes even less relevant as the complexity of
the algorithm grows. This is due to the fact that the overhead for
each container is constant.

E. Analysis of Response Time for System Recovery With the
Robot’s Mission Software

Software Configuration: We measured the response time of
the system recovery with the robot’s mission software. The 80

Container AVG
Cont. Distribution 6 Time WCET
#) non-RT — RT (# element) (ms) (ms)
(1) updating freq. 50.00 100.00
18 14 — 4 (2) trans (JSON.) 9.89 115.21
(3) Rec_phase 23.47 108.09
(3.1) trans (Kill) 8.67 84.99
Total 92.03 408.29

ROS tasks implementing the robot’s mission were organized into
13 containers, for a total of 18 containers by including the RT
containers of the SLAM software and ARM drivers. The first two
columns of Table VII show the configuration and distribution.
We deployed all the non-RT containers on the robot’s on-board
17 and all the RT containers on the on-board Jetson.

Key Results: Table VII shows the results. The fourth column
reports the average time and the last column reports the worst-
case time for each component, with the total time in the last
row. On average, the delay caused by the updating frequency
is 50 ms, the communication both ways takes ~20 ms, and
the computation is ~20 ms, with a total time of ~90 ms. In
the worst-case scenario, communication consumes half of the
total response time, with one fourth being computation for the
reconcile phase. The last one fourth is the configurable updating
frequency, where the same considerations of Section V-D ap-
ply. Nonetheless, the observed worst-case response time, from
detecting a missed deadline to the Kubelet on the target node
receiving a command is below half a second (=408 ms).

We also analyzed the CPU usage and the number of missed
deadlines through Prometheus and Grafana (i.e., two popu-
lar monitoring and visualizing tools for Kubernetes). Fig. 9
shows the collected data. To showcase the cluster-level monitor
eviction, we deployed an RT container with a CPU-intensive
task to stress the system, bypassing the schedulability check
on the Jetson and forcing the system into a particularly un-
sustainable scenario. At instant 36, Fig. 9(a) underlines the
start of a sequence of CPU overload, while Fig. 9(b) reports
the corresponding increase of missed deadlines. At instant 71,
the missed deadlines cross the threshold and the cluster-level
monitor starts the eviction process. The RT container of the
CPU-intensive task was selected for eviction as it had the highest
CPU utilization. In the following time instants, Fig. 9(a) and (b),
depict the decrease of both CPU usage and missed deadlines.
Meanwhile, the RT container of the CPU-intensive task was
sent back to the scheduling queue and restarted on the server, as
it is the only other node of the cluster with RT support.

During the eviction phase, the victim container is immediately
killed and restarted on a different node. This results in the evicted
task experiencing downtime due to the required cold-starting on
the new node. RT-Kube migrates noncritical or less-critical tasks
that steal resources to higher criticality tasks in devices where
temporal violations are observed. In our system, all container
images are already downloaded onto permanent storage for all
nodes to avoid unpredictable network latency. This is possible
thanks to the proposed multi, smaller, and modular container

552

100,00%
90,00%
80,00%
70,00%

X
o 60,00%
%
T 50,00%
=)
S 40,00%
o
G 30,00%
20,00%
10,00%
0,00%
OO OO0V OOV O~ OO
HEANANOOSETETNNOONNOONONDONOOO =N N
22322998
Time
(a)
14
12
=
« 10
[
£
5 8
©
[
S 6
el
[
2 4
=
2 ‘
. AT
T O - VWO d OO dOdO0ed OVt OO O~ O -0
HEH AN ANONO S NN O ONNOOOWWOODOO OO = = &N N
SIS Jpuhn A g
Time
(b)
Fig.9. Real-time monitoring on the Robotnik RB-Kairos. (a) CPU usage with

the RT tasks for the Jetson Xavier on the Robotnik RB-Kairos. (b) Missed
deadlines for the RT tasks for the Jetson Xavier on the Robotnik RB-Kairos.

organization of the software. With this configuration, the down-
time is in average less than one second (less than 3 s in the worst
case). Since it involves only “less-critical tasks,” it is acceptable
and does not involve any disruption.

VI. CONCLUSION

In recent years, the adoption of containerization and Ku-
bernetes orchestration in resource-constrained edge computing
environments has gained significant attention. This trend is not
limited to RT computing systems but extends to domains, such as
robotics and CPSs, where the complexity of Al-based software
on modern autonomous platforms continues to grow. This article
delved into this subject within the context of autonomous mobile
robots, characterized by the deployment of mixed-criticality
tasks across an edge-cloud computing architecture. It intro-
duced an orchestration platform called RT-Kube designed for
MCSs, which extends the capabilities of standard Kubernetes to
seamlessly support RT containers. Through experimental results
on synthetic benchmarks and a real case of study, the article
shows that the container overhead, when deploying RT tasks on
off-the-shelf embedded systems, is negligible. It also showed
that RT-Kube can reduce the number of missed deadlines when
deploying RT tasks by upto 50% compared to the standard
Kubernetes scheduler, achieving improved reliability. It imple-
ments monitoring of potential deadline overruns with a 90-ms
response time on average (400-ms worst case) and reduces the
total number of missed deadlines by an order of magnitude,

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

ensuring robust RT performance within Kubernetes-based edge-
cloud environments.

ACKNOWLEDGMENT

This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can
be considered responsible for them.

REFERENCES
[1

—

T.Igbal, S. Rack, and L. D. Riek, “Movement coordination in human-robot
teams: A dynamical systems approach,” IEEE Trans. Robot., vol. 32, no. 4,
pp- 909-919, Aug. 2016.

M. Piaggio, A. Sgorbissa, and R. Zaccaria, “A programming environment

for real-time control of distributed multiple robotic systems,” Adv. Robot.,

vol. 14, no. 1, pp. 75-86, 2000.

[3] P. Thakur and V. Kumar Sehgal, “Emerging architecture for heteroge-

neous smart cyber-physical systems for industry 5.0,” Comput. Ind. Eng.,

vol. 162, 2021, Art. no. 107750.

D Merkel et al., “Docker: Lightweight Linux containers for consistent de-

velopment and deployment,” Linux J., vol. 2014, no. 239, 2014, Art. no. 2.

P. Melo, R. Arrais, and G. Veiga, “Development and deployment of

complex robotic applications using containerized infrastructures,” in Proc.

IEEE 19th Int. Conf. Ind. Inform., 2021, pp. 1-8.

[6] M. Shaik et al., “Enabling fog-based industrial robotics systems,” in Proc.

IEEE Symp. Emerg. Technol. Factory Automat., 2020, pp. 61-68.

[7] N. Nikolakis, R. Senington, K. Sipsas, A. Syberfeldt, and S. Makris,

“On a containerized approach for the dynamic planning and control

of a cyber-physical production system,” Robot. Comput.-Integr. Manuf.,

vol. 64, 2020, Art. no. 101919.

M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating

docker for lightweight virtualization of distributed and time-sensitive

applications in industrial automation,” IEEE Trans. Ind. Inform., vol. 17,

no. 5, pp. 3566-3576, May 2021.

AUTOSAR: AUTomotive Open System ARchitecture, Horgertshausen,

Germany, “The standardized software framework for intelligent mobility,”

2021. [Online]. Available: www.autosar.org

[10] Collins Aerospace, “Connectivity and network services.” Accessed: Oct.
1, 2023. [Online]. Available: www.arinc.com

[11] A.Burns and R. Davis, “Mixed criticality systems-a review,” Dept. Com-
put. Sci., Univ. York, Tech. Rep. 2013, 2013, pp. 1-69.

[12] A. Burns and R. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surveys, vol. 50, no. 6, pp. 1-37, 2017.

[13] T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for real-
time control applications,” in Proc. IEEE Int. Conf. Eng., Technol. Innov.,
2018, pp. 1-9.

[14] M. Cinque, R. Corte, A. Eliso, and A. Pecchia, “Rt-cases: Container-based
virtualization for temporally separated mixed-criticality task sets,” in Proc.
Leibniz Int. Proc. Inform., 2019, Art. no. 5.

[15] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the Linux kernel,” SIGBED Rev., vol. 16, no. 3, pp. 33-38,
Nov. 2019.

[16] M. Thiyyakat, S. Kalambur, and D. Sitaram, “Improving resource isolation
of critical tasks in a workload,” in Proc. 23rd Int. Workshop Job Scheduling
Strategies Parallel Process., vol. 12326, 2020, pp. 45-67.

[17] F. Hofer, M. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, “Industrial
control via application containers: Maintaining determinism in [aaS,” Syst.
Eng., vol. 24, no. 5, pp. 352-368, 2021.

[18] D. Bernstein, “Containers and cloud: From LXC to docker to Kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.

[19] F. Lumpp, F. Fummi, H. Patel, and N. Bombieri, “Containerization and
orchestration of software for autonomous mobile robots: A case study of
mixed-criticality tasks across edge-cloud computing platforms,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022, pp. 1-6.

[20] “Linux scheduler.” Accessed: Oct. 1, 2023. [Online]. Available: docs.
kernel.org/scheduler/index.html

[21] “Architecture.” Accessed: Oct. 1, 2023. [Online]. Available: kubernetes.
io/docs/concepts/architecture/cloud-controller/

[22] F. Carpio, M. Delgado, and A. Jukan, “Engineering and experimentally

benchmarking a container-based edge computing system,” in Proc. IEEE

Int. Conf. Commun., 2020, pp. 1-6.

[2

—

[4

=

[5

—_

[8

—_

[9

—

www.autosar.org
www.arinc.com
docs.kernel.org/scheduler/index.html
docs.kernel.org/scheduler/index.html
kubernetes.io/docs/concepts/architecture/cloud-controller/
kubernetes.io/docs/concepts/architecture/cloud-controller/

LUMPP et al.: ENABLING KUBERNETES ORCHESTRATION OF MIXED-CRITICALITY SOFTWARE FOR AUTONOMOUS MOBILE ROBOTS

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

V. Ibarra-Junquera, A. Gonzdlez, C. M. Paredes, D. Martinez-Castro,
and R. A. Nuilez-Vizcaino, “Component-based microservices for flexible
and scalable automation of industrial bioprocesses,” IEEE Access, vol. 9,
pp. 58192-58207, 2021.

S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli,
“A containerized ROS-compliant verification environment for robotic
systems,” in Proc. Des., Automat. Test Europe Conf. Exhibit., 2021,
pp. 222-225.

G. Kurtzer, V. Sochat, and M. Bauer, “Singularity: Scientific containers
for mobility of compute,” PLoS One, vol. 12, 2017, Art. no. e0177459.
A.Moga, T. Sivanthi, and C. Franke, “Os-level virtualization for industrial
automation systems: Are we there yet?,” in Proc. ACM Symp. Appl.
Comput., 2016, pp. 1838-1843.

P. Gonzdlez-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. Otero, “A
modular CPS architecture design based on ROS and docker,” Int. J.
Interactive Des. Manuf., vol. 11, no. 4, pp. 949-955, 2017.

K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“KEIDS: Kubernetes-based energy and interference driven scheduler for
industrial IoT in edge-cloud ecosystem,” IEEE Internet Things J., vol. 7,
no. 5, pp. 42284237, May 2020.

H. Sami and A. Mourad, “Dynamic on-demand fog formation offering
on-the-fly IoT service deployment,” IEEE Trans. Netw. Service Manag.,
vol. 17, no. 2, pp. 1026—1039, Jun. 2020.

F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, “A container-based
design methodology for robotic applications on Kubernetes edge-cloud
architectures,” in Proc. Forum Specification Des. Lang., 2021, pp. 01-08.
H.A.Ozmen, S.Isik, and C. Ersoy, “A hardware and environment-agnostic
smart home architecture with containerized on-the-fly service offloading,”
Comput. Elect. Eng., vol. 92,2021, Art. no. 107090.

S. Aldegheri, N. Bombieri, F. Fummi, S. Girardi, R. Muradore, and N.
Piccinelli, “Late breaking results: Enabling containerized computing and
orchestration of ROS-based robotic sw applications on cloud-server-edge
architectures,” in Proc. 57th ACM/IEEE Des. Automat. Conf., 2020,
pp.- 1-2.

F. Mastrogiovanni, A. Paikan, and A. Sgorbissa, “Semantic-aware real-
time scheduling in robotics,” IEEE Trans. Robot., vol. 29, no. 1,
pp. 118-135, Feb. 2013.

L. Han, L. Xu, D. Bobkov, E. Steinbach, and L. Fang, “Real-time global
registration for globally consistent RGB-D SLAM,” IEEE Trans. Robot.,
vol. 35, no. 2, pp. 498-508, Apr. 2019.

V. Struhér, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-time
containers: A survey,” in Proc. Workshop Fog Comput. loT, 2020, pp. 7:1—
7:9.

F. Hofer, M. A. Sehr, A. Tannopollo, I. Ugalde, A. Sangiovanni-Vincentelli,
and B. Russo, “Industrial control via application containers: Migrating
from bare-metal to IAAS,” in Proc. IEEE Int. Conf. Cloud Comput.
Technol. Sci., 2019, pp. 62-69.

S. Fiori, L. Abeni, and T. Cucinotta, “Rt-Kubernetes: Containerized real-
time cloud computing,” in Proc. 37th ACM/SIGAPP Symp. Appl. Comput.,
2022, pp. 36-39.

F. Hofer, M. A. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, “ODRE
workshop: Probabilistic dynamic hard real-time scheduling in HPC,”
in Proc. IEEE 23rd Int. Symp. Real-Time Distrib. Comput., 2020,
pp- 207-212.

M. Cinque, R. Della Corte, and R. Ruggiero, “Preventing timing failures
in mixed-criticality clouds with dynamic real-time containers,” in Proc.
17th Eur. Dependable Comput. Conf., 2021, pp. 17-24.

L. De Simone and G. Mazzeo, “Isolating real-time safety-critical embed-
ded systems via SGX-based lightweight virtualization,” in Proc. Int. Symp.
Softw. Rel. Eng. Workshops, 2019, pp. 308-313.

V. Struhdr, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V. Papadopou-
los, “React: Enabling real-time container orchestration,” in Proc. 26th
IEEE Int. Conf. Emerg. Technol. Factory Automat., 2021, pp. 1-8.

S. Choudhury, S. Maheshwari, I. Seskar, and D. Raychaudhuri, “Shareon:
Shared resource dynamic container migration framework for real-time
support in mobile edge clouds,” IEEE Access, vol. 10, pp. 66045-66060,
2022.

A.E. Gonzilez and E. Arzuaga, “Herdmonitor: Monitoring live migrating
containers in cloud environments,” in Proc. IEEE Int. Conf. Big Data,
2020, pp. 2180-2189.

S. Zheng, F. Huang, C. Li, and H. Wang, “A cloud resource prediction
and migration method for container scheduling,” in Proc. IEEE Conf.
Telecommun., Opt. Comput. Sci., 2021, pp. 76-80.

Docker, “Configure networking.” Accessed: Oct. 1, 2023. [Online]. Avail-
able: docs.docker.com/network

[46]

[47]

(48]

[49]

[50]

553

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., 2015, pp. 171-172.
“Deployments.” Accessed: Oct. 1, 2023. [Online]. Available: kubernetes.
io/docs/concepts/workloads/controllers/deployment

L. Torvalds, “sched_deadline: Implement runtime overrun signal support.”
Accessed: Oct. 1, 2023. [Online]. Available: git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/commit/7id=34be39305a77b8blec
9f279163c7cdbbec719b91

M. Felser, “Real-time ethernet - industry prospective,” Proc. IEEE, vol. 93,
no. 6, pp. 1118-1129, Jun. 2005.

“RT-tests.” Accessed: Oct. 1, 2023. [Online]. Available: git.kernel.org/
pub/scm/utils/rt-tests/rt-tests. git

Francesco Lumpp received the bachelor’s and mas-
ter’s degrees in computer science and engineering
from the University of Verona, Verona, Italy, where
he is currently working toward the Ph.D. degree in
computer science with the Department of Engineer-
ing for Innovation Medicine.

His research focuses on the development and op-
timization of software for the edge-cloud computing
continuum and mixed-criticality systems.

Franco Fummi (Member, IEEE) received the Laurea
degree in electronic engineering and the Ph.D. degree
in electronic and communication engineering at the
Polytechnic of Milan, Milan, Italy, in 1990 and 1994,
respectively.

Since 2001, he has been a Full Professor in com-
puter architecture with the University of Verona,
Verona, Italy, where he is leading the Cyber-physical
and IoT Systems Design (CISD) group, currently
composed of more than 20 people, and working on
hardware description languages and electronic design

automation methodologies for modeling, verification, testing, and optimization
of cyber-physical systems. He is also a Co-Founder of two spin-off companies:
EDALab, focused on networked embedded systems design, and the automation
control software company FACTORYAL.

Hiren D Patel (Member, IEEE) received the bache-
lor’s and Ph.D. degrees in computer engineering from
Blacksburg, VA, USA, in 2001 and 2017, respec-
tively.

He is currently a Professor with Electrical and
Computer Engineering Department, University of
Waterloo, ON, Canada. His research interests include
the design, analysis, and implementation of computer
hardware and software systems, real-time embedded
systems, computer architecture, hardware architec-
tures for machine learning and artificial intelligence,

and security.

Nicola Bombieri (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Verona, Verona, Italy, in 2008.

He is currently a Professor with the Department
of Engineering for Innovation Medicine, University
of Verona. His research interests include parallel and
heterogeneous architectures, artificial intelligence at
the edge, and parallel programming languages. He de-
velops embedded and efficient Software applications,
with a particular emphasis on addressing multi- and
extra-functional constraints, such as performance,

power, and energy efficiency.

docs.docker.com/network
kubernetes.io/docs/concepts/workloads/controllers/deployment
kubernetes.io/docs/concepts/workloads/controllers/deployment
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34be39305a77b8b1ec9f279163c7cdb6cc719b91
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34be39305a77b8b1ec9f279163c7cdb6cc719b91
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34be39305a77b8b1ec9f279163c7cdb6cc719b91
git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git
git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

