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Invariant Smoother for Legged Robot State
Estimation With Dynamic Contact Event Information
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Abstract—This article proposes an invariant smoother for legged
robot state estimation with the measurement of an inertial measure-
ment unit and leg kinematics while assuming static foot contact.
Because the proposed smoother is formulated with the residual
functions with group-affine property, their Jacobians become in-
dependent from current state estimates. These state-independent
Jacobians lead to better convergence properties in optimizing the
cost in the smoother, especially under dynamic contact events. The
proposed slip rejection method increases the uncertainty of static
contact assumption when the robot has dynamic contact events.
The estimated foot velocity, which is utilized to detect the dynamic
contact events, is re-evaluated within the preserving time window.
We also propose the contact loop method, a new measurement
model asserting that foot position remains constant over multiple
timesteps during stable contact. The proposed estimator is tested
through online experiments, including indoor and 160 m-long
outdoor experiments, and compared against state-of-the-art algo-
rithms.

Index Terms—Dynamic contact event, legged robots, localiza-
tion, sensor fusion.

I. INTRODUCTION

L EGGED robots are useful in complex environments since
they can overcome uneven terrain with their legs. In order

to control legged robots to perform dynamic locomotion, robust
estimation of their state is essential, which typically includes
the robot’s orientation, position, and velocity [1], [2]. Therefore,
algorithms have been developed to figure out the states of robots
by exploiting various sensor measurements.

Considering not only the measurements themselves but also
their noise properties, the state-estimation problem can be de-
fined as the maximum a posteriori (MAP) problem, which
maximizes the posterior probability distribution of the state to
be estimated under the measured sensor values [4], [5], [6], [7].
By utilizing the entire history of states and measurements, batch
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smoothers can solve the MAP problem and produce precise esti-
mations, as they can relinearize potentially nonlinear probability
distributions [8], [9], [10], [11], [12]. However, the growing
size of the problem makes this approach unachievable in many
real-world applications. As an alternative, many researchers
use fixed-lag smoothers and filtering as a practical approxi-
mation, which can still provide accurate state estimation. Both
algorithms preserve only a few latest states and measurements
by marginalizing out the oldest, where the fixed-lag smoother
keeps its states as many as its window size [13], [14], [15],
[16], [17], [18], and [19], whereas the filter holds only the
two latest states [20], [21], [22], [23], and [24]. Especially for
filters, linearization of the nonlinear probability distribution is
generally conducted only once, whereas smoothers relinearize
nonlinear distributions multiple times. Furthermore, preserving
more history can have benefits when measurements related to
states at different times exist [14], [25], [26] or when the mea-
surement probability distribution is dependent on the state itself
[18].

Besides how long the history is preserved, selecting sensors
for measurement is another design choice in the state-estimation
problem. Sensors used for state estimation can be classified
by the source from which a sensor obtains the information.
One category is proprioceptive sensors, which collect infor-
mation from the robot itself, including inertial measurement
units (IMU), joint encoders, and torque/force measurements.
Another is exteroceptive sensors, which receive information
from the robot’s surroundings, including the camera, LiDAR,
and GPS signals. Previous works, including visual odometry
algorithms [8], [9], [10], [13], [14], [15] and legged robot state
estimators [11], [16], [17], [19], [20], [22], [23], [24], [27], have
fused both types of sensors to provide a precise estimation of
the state of the robot. Although fusing information from both
proprioceptive and exteroceptive sensors gives the estimator
richer information than using one kind, exteroceptive sensors are
susceptible to suffering due to many unfavorable circumstances.
For example, camera sensor measurement can be corrupted
when the surface of the objects is reflective or transparent, and
furthermore, feature-based odometry algorithms are prone to
failure in featureless environments. Consequently, an estimator
producing sufficiently accurate results without using exterocep-
tive sensors is necessary [12], [18], [21].

In the case of legged robots, IMU and joint encoders
are widely used proprioceptive sensors, where joint encoder
measurements are employed via an assumption that the foot in
contact does not move [1], [16], [20]. However, the fixed contact
assumption is occasionally violated in the real world due to
dynamic contact events, such as slippage of the foot and stepping
on unstable ground [17], [28], [29], where one example scenario
is introduced in Fig. 1. For this reason, Bloesch et al. [28]
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Fig. 1. Example scenario when static contact assumption of the foot is violated.
A strong pulling force is applied to the quadruped robot Hound [3] while walking
on a terrain made with moving wood piles and pebbles.

ignored the kinematic measurements that violate the fixed con-
tact assumption by thresholding the Mahalanobis distance of
the innovation. In our previous work [18], we unfolded the idea
to a fixed-lag smoother to cope with the nonlinear dynamics
of the system. Although the idea accounts for rejecting various
potential violations of the contact foot assumption, we named
it slip rejection (SR) to ease the intuitive understanding of the
algorithm.

Meanwhile, Barrau and Bonnabel, [30], [31] introduced the
invariant extended Kalman filter (InEKF), which shows the
faster convergence of the observable states than the conven-
tional extended Kalman filter [1] when an initial error exists
by using group-affine property. Hartley et al. [32] discovered
that the proprioceptive legged robot state estimation system is
approximately group-affine and, hence, proposed the InEKF.
Furthermore, invariant smoother (IS), a so-called name of the
estimation algorithm that utilizes the properties of the group-
affine property system in a smoother framework, was proposed
by Chauchat et al. [33].

In summary, although there were studies about legged robot
state estimation and group-affine property, an algorithm that
thoroughly considers the profit of the group-affine property
and smoothing framework specialized to legged robots has
not been proposed. Therefore, in this work, we propose an
invariant smoother for legged robot state estimation, which
utilizes the state invariance of the group-affine property and the
history-preserving smoother frameworks together. Moreover,
we propose a new type of temporal displacement cost model
for the legged robot system with the name of contact loop (CL),
which restricts the estimated foot position to be fixed when the
foot is in stable contact for longer than two timesteps. Thanks
to the smoother framework, the proposed algorithm can not
only consider temporal displacement costs but also increase the
merit of the SR method since the state history used for detecting
slippery contact can be re-evaluated, which is unachievable in
filters. The resulting overall structure of our proposed algorithm
is described in Fig. 2.

The main contributions of this article are as follows.
1) We propose an IS for legged robot state estimation, which

is robust to dynamic contact events and external distur-
bances without using exteroceptive sensors.

2) The SR method, which has been developed by Kim
et al. [18], is modified to apply a large uncertainty when
a robot slips, where the previous method rejected the

measurements. Furthermore, the contact event state is
re-evaluated within the history window, which was fixed
as the initial guess in the previous method.

3) We introduce a new measurement model for legged robot
state estimation and name it the CL method, which reflects
our belief that the foot position should be constant over
multiple timesteps if the foot is in stable contact during
that time. Since this method assumes that the foot posi-
tion states of distant timesteps within the history window
are the same, it cannot be utilized in the estimators that
marginalize recent states like InEKF [32].

4) Finally, a quadruped robot KAIST HOUND [3] was con-
trolled in the real world using the real-time feedback
of the developed IS in various environments. With this
experimental data, the benefit of the proposed algorithm
was validated by comparing it against the InEKF [32] and
noninvariant Smoother (NIS) [18].

The rest of this article is organized as follows. Section II
introduces the related works of this article. Section III introduces
the preliminaries for the article. Section IV proposes the IS for
the legged robot system. Section V introduces the SR and CL
methods. Section VI, then, describes the various alternative state
definitions used in this article for comparison. Section VII shows
the real-world experimental results with comparison against the
existing algorithms (InEKF [32], NIS [18]), where the estimated
states are used to control the quadruped robot Hound [3]. Finally,
Section VIII concludes this article and introduces future work.

II. RELATED WORKS

In this section, we introduce some notable works that have
been the base of our work. We first present the literature review
of the previous works related to the group-affine property and
then review how the legged robot state estimation field has been
developed.

A. Group-Affine Property and Invariant Smoothers

The group-affine property, which was proposed by Barrau
et al. [30], is a property that applies to a particular form of state
variables and its related equations. The property has its name
since a system that satisfies this property offers an affine function
(a linear system) for the lie algebra error (usually called as log
invariant error) of the state variables, which live in Lie group.
With this useful property, one can model a linear propagation and
observation equation for the system of this log invariant error,
whereas its original group state variable has a nonlinear system.
Leveraging this linearity, Barrau et al.[30] proposed an InEKF
that shows impressive convergence performance regardless of
the linearization point of the filter. Since the methodology ap-
plies only to the propagation and observation models that satisfy
the group-affine property, many researchers have tried to prove
that the system under consideration is group-affine to exploit the
advantage.

Afterward, Chauchat et al.[33] further developed the In-
EKF to an invariant smoothing framework, which applies the
group-affine property in a smoother framework. The proposed
framework was applied in an exemplary system of 2-D position
estimation of mobile cars equipped with gyroscopes, velocity
odometry, and GNSS measurements. On the other hand, Walsh
et al.[34] tested an IS for attitude and heading reference system
with gyroscope bias in simulation. Also, Huai et al.[35] applied
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Fig. 2. Overall structure of the proposed algorithm. The estimator solves the MAP problem with the aid of the group-affine property in a nonlinear optimization
manner while utilizing IMU, joint encoders, and estimated contact from sensors and contact estimator. Thanks to the group-affine property, the estimator can
mitigate the suffering of different linearization points in nonlinear optimization and increase the estimation accuracy. Meanwhile, the algorithm qualifies the given
sensor measurements by leveraging the special nature of legged robots. The SR method checks the violation of the static foot contact assumption based on the foot
velocity and acceleration calculated by IMU, joint encoders, and the previously estimated state. The CL method restricts the estimated foot position to be fixed
over a long time by formulating a temporal displacement cost between the chosen timesteps.

the group-affine property to the visual-inertial SLAM applica-
tion of micro aerial vehicles and examined the application with
simulation and public datasets.

B. Legged Robot State Estimation

Control of a legged robot requires accurately estimating its
key state variables, such as orientation and velocity. While most
legged robots are equipped with proprioceptive sensors, such as
IMU and joint encoders, these sensors cannot directly measure
orientation and velocity.

Nevertheless, Bloesch et al.[1] proposed an extended Kalman
filter-based state-estimation algorithm by assuming that a
robots’ foot in contact does not move and uses the joint en-
coder measurement as a kinematic odometry provider. Upon
this work, the idea of kinematic odometry has been leveraged
in various estimator frameworks, including unscented Kalman
filter [28], fixed-lag smoother [18], [23], and InEKF [32]. Since
the kinematic odometry originated from the static contact foot
assumption, the contact state of the foot should be detected from
a contact sensor or estimated from the other kinds of sensors. Un-
fortunately, many existing legged robots [3], [36] do not have an
explicit contact-detecting sensor on their feet. Therefore, legged
robot state estimators rely on model-based contact detection
algorithms [37], [38], or learning-based approach [39].

Although these contact detectors are often reliable, estimation
results easily diverge when this static foot contact assumption is
violated. To cope with this drawback, the authors in [18] and
[28], developed the SR method, which denies the kinematic
odometry when the difference between the kinematic odometry
and the IMU odometry exceeds a certain threshold. Since this
method made robots less susceptible to dynamic contact events,
the method has been applied to various estimator frameworks,

such as fixed-lag smoother [18] and InEKF [24]. Unlike the
previously introduced outlier rejection methods, there was also a
constraint Kalman filter-based algorithm that takes into account
the linear complementarity condition for the contact implicit
dynamics relationship to estimate the state of the rigid body
dynamics, including the contact state of the robot [40]. How-
ever, the algorithm assumes that the terrain properties, like
the slope of the ground and friction coefficients, are previ-
ously known, which may be challenging to identify in the real
world.

Other than the estimation frameworks that can deal with the
quality of the contact estimation, there were also estimator
frameworks that deal with the uncertainty of the kinematic
odometry itself, such as kinematic chain uncertainty modeling
of legs [41] and learning-based odometry provider [42].

On the other hand, researchers have recently been using exte-
roceptive sensors for legged robots to provide precise positional
estimation and perform SLAM. The authors in [27] and [19]
used LiDAR or a depth camera with proprioceptive sensors and
conducted long-range estimation tests.

III. PRELIMINARIES

This section explains mathematical preliminaries that are
essential for understanding this article: matrix Lie groups, the
group-affine property, and the smoothing framework.

A. Matrix Lie Groups

Most of the robot state estimation works over the orientation
of the robot body. However, the 3-D rotation matrix, which
represents the orientation of the robot, is difficult to handle
since it does not live in vector spaces but on a manifold.
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Specifically, the rotation matrix forms a matrix Lie group called
special orthogonal group SO(3) [7], [43], [44], [45], [46]. In
addition, dealing with the position and the velocity of the robot
often requires knowledge of a matrix Lie group called special
Euclidean group SEk(3). Therefore, this section covers useful
properties of matrix Lie group SO(3) and SEk(3) to enhance the
understanding of the characteristics of manifold variables.

1) Special Orthogonal Group SO(3): The 3-D rotation ma-
trixR belongs to a 3-D special orthogonal group [SO(3) group],
which is a three-by-three orthogonal real matrix that satisfies the
following relationships:

SO(3) : {R ∈ R3×3 : RTR = I3, det(R) = 1} (1)

where Isx ∈ Rsx×sx is the sx dimensional identity matrix.
SO(3) group is known to have a mapping between the group

elements and its Lie algebra so(3) ∈ R3×3 and a tangential
vector space φ ∈ R3. For SO(3) group, the mapping from the
algebra and the group is the matrix exponential exp(·), and
between the vector space and the algebra is the hat operation
(·)∧, which is a skew-symmetric matrix for an input vector

φ∧ =

[
φx

φy

φz

]∧
=

[
0 −φz φy

φz 0 −φx

−φy φx 0

]
∈ R3×3. (2)

The inverse mapping is the matrix logarithm log(·) and the
vee operation (·)∨ and the resulting overall relationships are
summarized as follows:

Exp(φ) := exp(φ∧) ∈ SO(3)← φ∧ ∈ so(3)← φ ∈ R3 (3)

Log(R) := log(R)∨ ∈ R3 ← log(R) ∈ so(3)← R ∈ SO(3).
(4)

For convenience, we added the capitalized exponential and the
logarithmic mapping, Exp(·) and Log(·), which directly maps
the vector space variable to/from the Lie group variable, respec-
tively. Based on the definition, we introduce useful properties
of these operations from [6], which would abbreviate the rest of
our discussion.

Exp(δφ)Exp(φ1) ≈ Exp(J−1l (φ1)δφ+ φ1) (5)

Log (Exp(δφ)Exp(φ1)) ≈ J−1l (φ1)δφ+ φ1 (6)

Exp(δφ) ≈ I3 + (δφ)∧ (7)

φ∧1φ2 = −φ∧2φ1. (8)

Here, δφ, φ1, and φ2 are arbitrary vectors in R3 and Jl(·) is the
left Jacobian of the SO(3) manifold [6]. Equations (5) and (6)
are called Baker–Campbell–Hausdorff (BCH) formula, which
approximate Lie group operation to vector space operation when
δφ is small. Equation (7) is the first-order approximation of
the Taylor expansion of the exponential map. Finally, (8) is the
property of skew-symmetric matrices. The detailed proofs are
in [6] and are not repeated here.

2) Special Euclidean Group SEk(3): The element of SEk(3)
is a square matrix of size (3 + k) by (3 + k), constituted by a ro-
tation matrix R ∈ SO(3) and k number of vectors 1p, . . . ,k p ∈

R3, as below:

X :=

⎡⎢⎢⎣
R 1p · · · kp
01,3 1 · · · 0

...
...

. . .
...

01,3 0 · · · 1

⎤⎥⎥⎦ ∈ SEk(3) (9)

where 0sx,sy ∈ Rsx×sy is the sx by sy zero matrix. Akin to
SO(3), variable X ∈ SEk(3) is often mapped to a Euclidean
vector space variable ξ := [φT ,1 ξT , . . . ,k ξT ]T ∈ R3+3 k, us-
ing the exponential map and logarithmic map, which directly
maps to/from vector space variable, for iξ ∈ R3

ξ ∈ R3+3 k → Exp(ξ) ∈ SEk(3) (10)

X ∈ SEk(3) → Log(X) ∈ R3+3 k (11)

where,

Exp(ξ) = exp(ξ∧)

=

⎡⎢⎢⎣
exp(φ∧) Jl(φ)(

1ξ) · · · Jl(φ)(
kξ)

01,3 1 · · · 0
...

...
. . .

...
01,3 0 · · · 1

⎤⎥⎥⎦ . (12)

Similar to the SO(3) manifold, the logarithmic map is the
inversion of the exponential map. Note that when k = 0, the
mapping functions are identical with the SO(3) case. In addition,
the hat operation on ξ is

ξ∧ =

⎡⎢⎢⎣
φ∧ 1ξ · · · kξ
01,3 0 · · · 0

01,3

...
. . .

...
01,3 0 · · · 0

⎤⎥⎥⎦ ∈ R(3+k)×(3+k). (13)

In addition, we introduce the matrix adjoint AdX ∈
R(3+3 k)×(3+3 k) of SEk(3), which carries a considerable part
in our discussion.

AdX =

⎡⎢⎢⎣
R 03,3 · · · 03,3

1p∧R R · · · 03,3

...
...

. . .
...

kp∧R 03,3 · · · R

⎤⎥⎥⎦ . (14)

Parallel to SO(3), useful approximations for SEk(3) are given
from [6]

Exp(δξ)Exp(ξ1) ≈ Exp(J−1l (ξ1)δφ+ ξ1) (15)

Log (Exp(δξ)Exp(ξ1)) ≈ J−1l (ξ1)δφ+ ξ1 (16)

Exp(δξ) ≈ I(3+k) + (δξ)∧ (17)

where, (15) and (16) are the BCH formula of the SEk(3) group.
Finally, a similar equation with (8) for hat operation in SEk(3)
is presented

ξ∧1 ξ2 = ξ�2 ξ1 (18)
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where ξ1 and ξ2 are arbitrary vectors in R3+k and ξ� ∈
R(3+k)×(3+3 k) is defined as

ξ� :=

⎡⎢⎢⎣
−φ∧ 1ξ · I3 · · · kξ · I3
01,3 01,3 · · · 01,3

...
...

. . .
...

01,3 01,3 · · · 01,3

⎤⎥⎥⎦ . (19)

B. Group-Affine Property

In this section, we will briefly introduce the group-affine prop-
erty, which contains useful properties that make the observer
state-independent [30], [33]. The group-affine property comes
from a particular type of propagation and observation model
defined on the matrix Lie group.

First, in the case of the propagation model, for arbitrary
variables Xt and X̄t living on the same Lie group G, the
left-invariant error ηlt at time t and the right-invariant error ηrt at
time t can be defined between the two variables as follows:

ηlt := X−1t X̄t (left-invariant)

ηrt := X̄tX
−1
t (right-invariant) (20)

where the terminology of the left and right invariant er-
rors originate from the invariance of the left multiplica-
tion (Xt, X̄t)→ (YXt,YX̄t) and the right multiplication
(Xt, X̄t)→ (XtY, X̄tY), respectively, about an arbitrary vari-
able Y on the group G. Furthermore, the left log-invariant error
ξlt and the right log-invariant error ξrt at time t are defined by
taking the logarithmic mapping of the left and right invariant
errors, respectively.

ξlt := Log(ηlt) = Log(X−1t X̄t) (left-invariant)

ξrt := Log(ηrt ) = Log(X̄tX
−1
t ) (right-invariant). (21)

Now, for a system whose propagation function f(·) satisfies the
following condition, the system is called to be group-affine [30].

d

dt
Xt = f(Xt), f(XY)

= Xf(Y) + f(X)Y −Xf(Idim(Y))Y.

for ∀t ≥ 0 ∀X,Y ∈ G. (22)

Assuming that two trajectories X0:t and X̄0:t are proceeded by
the same group-affine propagation f(·), it is proved in [30] that
there is a function g(·) that can describe the propagation of the
invariant error defined between the trajectories

d

dt
ηt = g(ηt)

g (ηt) = f(ηt)− f(Idim(Y))ηt (left-invariant)

f(ηt)− ηtf(Idim(Y)) (right-invariant). (23)

Moreover, in [30], it is proven that there is a constant matrix G,
which describes the linear propagation of the log-invariant error
in vector spaces as follows:

g (ηt) = (Gξt)
∧ +O

(‖ξt‖2) , d

dt
ξt = Gξt. (24)

As the above equations hold for both left- and right-invariant
errors, we drop out the superscript and only cover the right-
invariant case without loss of generality. Since the matrix G

Fig. 3. Graphical illustration of the propagation model, which satisfies the
group-affinity. The tangential space around the state X is denoted as T(X).
Employing the identical noise vector wt, the uncertainty distribution (visually
depicted as a color-gradating ellipse) preserves its shape across distinct operating
points 1X̄t [subfigure (a)] and 2X̄t [subfigure (b)] within the perturbed vector
space. Notably, their sole distinction is the coordinate transformation from the
adjoint matrix.

is constant, the evolution of the error is autonomous (state-
independent), regardless of the two trajectories X0:t and X̄0:t.
This is called log-linear property of the error [30]. In addition,
we bring the noise corrupted version of (22) and (24) from [30]

d

dt
Xt = f(Xt) +Xt(w

Prop
t )∧

d

dt
ξt = Gξt − AdX̄t

wProp
t (25)

where AdX̄t
is the adjoint matrix of X̄t and wProp

t is the uncer-
tainty of the propagation model. The graphical illustration of the
right-invariant propagation model is given in Fig. 3. Note that
the propagation model, which satisfies the group-affinity, makes
the original nonlinear distribution to the Gaussian distribution
at the perturbed vector space about ξt. Furthermore, the shape
of the distribution is state-independent even when the current
operating point changes from 1X̄t to 2X̄t and only the coordinate
transformation through the adjoint matrix appears differently.
This state-independent distribution shape resulting from the
group-affine property can be beneficial for state-estimation prob-
lems compared with the state-dependent distributions, which can
suffer problems when the current estimated state becomes far
from the true state.

Although the prior discussions focus on the continuous do-
main, it is necessary to derive discrete equations for formulating
the optimization method since it is fundamentally defined in dis-
crete terms. As a result, we introduce the following propagation
equation in the discrete domain:

Xi+1 = Exp(−ξi+1)X̄i+1 ≈ Exp(−gd(ξi,Δt))fd(X̄i,Δt)
(26)

where i is the discretized timestep. In this equation, the error
dynamics tainted by noise and the deterministic dynamics of the
state propagation are separated and then discretized individually
using gd(·) and fd(·). This approach approximates the exact
log-linearity directly derived from the discrete domain, which
has been exploited in [31] and [33]. However, it provides a useful



198 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

way to get discrete-domain equations rooted in the continuous-
domain group-affine property when it is challenging to obtain
the discrete-domain group-affine propagation equation.

Second, in the case of the observation model, compared
with the propagation model, it is straightforward that when the
observation yi at timestep i takes the following form, the model
satisfies group-affinity:

yi = Xis+wObs
i (left-invariant) (27)

yi = Xi
−1s+wObs

i (right-invariant) (28)

where s is a constant vector and wObs
i is Gaussian noise vector

associated with the observation model [30]. Left-multiplying X̄i

on both sides of the right-invariant observation model (28), the
model becomes

X̄iyi = Exp(ξi)s+ X̄iw
Obs
i . (29)

Assuming that ξi is small, we can linearize the equation with the
first-order approximation of the exponential map (17)

X̄iyi = s+ ξ∧i s+ X̄iw
Obs
i . (30)

This linearized model can be reorganized to explicitly show the
Jacobian of ξi by using (18).

X̄iyi = s+ s�ξi + X̄iw
Obs
i . (31)

Although the above derivation takes place for the right-invariant
observation, the same process is available for the left-invariant
observation by multiplying X̄−1i on the model (27). Similarly
to the propagation model (25), the observation model satisfying
the group-affine property gives a constant Jacobian s�, as (31)
shows.

C. Smoothing Framework

A state-estimation problem can be regarded as estimating the
states that maximize the posterior probability between the states
and measurements. This is also called a MAP problem and is
defined as follows:

χ∗0:n = argmaxχ0:n
p (χ0:n | Z0:n)

= argmaxχ0:n
p(χ0)p(Z0:n|χ0:n)

: = argmaxχ0:n

⎛⎝ ∏
j∈Pn

pj(·)
⎞⎠ (32)

where p(χ0) is the prior probability distribution about the initial
state χ0, Z0:n is the set of sensor measurements from the initial
timestep 0 to the current timestep n, χ0:n is the state from
timestep 0 to n, P n is a set of probability distributions related to
the posterior probability from timestep 0 to n, and pj(·) is the ac-
cording jth distribution, which is assumed to be a Gaussian mea-
surement model [47], [48], [49] as pj(·) = N (rj ;0m,1,Σj).
Here, rj ∈ Rm is the residual function associated with the
measurements and states, m is the size of the residual function,
andΣj is the corresponding covariance matrix. The multivariate
Gaussian distribution N (x;μ,Σ) above is defined as follows:

N (x;µ,Σ) =
exp(− 1

2 (‖x− µ‖2Σ))√
(2π)mdet(Σ)

(33)

where ‖x− µ‖2Σ := (x− µ)TΣ−1(x− µ) is the squared Ma-
halanobis distance with x,µ ∈ Rm and Σ ∈ Rm×m. Now, the

maximization problem can be further transformed into a negative
log minimization problem as follows:

χ∗0:n = argmax
χ0:n

⎛⎝ ∏
j∈Pn

pj(·)
⎞⎠ = argmin

χ0:n

− log

⎛⎝ ∏
j∈Pn

pj(·)
⎞⎠

= argmin
χ0:n

⎛⎝∑
j∈Pn

‖rj‖2Σj

⎞⎠ . (34)

Note that the residual function rj represents the difference be-
tween the observed value of the sensor model (with the measured
sensor value as an input and the model’s predicted values). In
the case of the according covariance matrix Σj , it represents
the noise property of the residual function within the Gaussian
distribution model.

Then, the Gauss–Newton algorithm is usually applied to this
nonlinear least-square optimization problem, which optimizes
the objective function about the perturbed states δχ0:n with the
iterative linearization at the current operating point χ̄0:n [6], [7],
[50], [51].

δχ∗0:n = argminδχ0:n

⎛⎝∑
j∈Pn

‖r̄j − J̄jΔχj‖2Σj

⎞⎠ := −H−1z

(35)

where r̄j , J̄j , andΔχj are the residual, Jacobian at the operating
points, and concatenation of perturbed states related to the jth
distribution, respectively.H and z are the large matrix and vector
obtained by summing Hessian matrices J̄T

j Σ
−1
j J̄j and gradient

vectors J̄T
j Σ

−1
j r̄j of all the consisting cost models [7]. δχi is

defined to be the local perturbation of the current operating point
χ̄i at each timestep i, and the optimal state χ∗i is calculated
based on the obtained Gauss–Newton perturbation δχ∗0:n as
follows [18], [50], [51]:

χ∗i ← χ̄i + δχ∗i . (36)

This procedure is repeated until the optimization problem con-
verge. However, the evaluated change is often excessive due to
the erroneous linearization of the model. One of the possible
methods to cope with this problem is Armijo’s backtracking
line search [52], which adjusts the step size by multiplying the
tunable step size parameter α in front of the transition to prevent
the failure of the Gauss–Newton method as follows:

χ∗i ← χ̄i + αδχ∗i . (37)

Although the backtracking approach prevents potential diver-
gence, finding proper α generally requires iterative cost calcu-
lation and may entail additional computation time, which could
impair real-time applicability. For offline experiments, decent α
is found iteratively by gradually decreasing it from one, checking
whether the state change with current α predicts the lower cost.
If the predicted cost is higher than the current cost, current α de-
creases by γα and then is retested. The decreasing rate γ and the
number of iterations spent to find α are called the backtracking
rate and backtracking number nback, respectively [52].

The previously described Gauss–Newton algorithm cannot be
directly applied when the incorporated optimization variables
are defined on the manifold. However, by approximating the
manifold operations locally to its tangent vector spaces of the
current operation point, it is possible to approximate the MAP
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problem to a nonlinear least-square problem in vector spaces as
follows [10], [18]:

δX∗0:n = argminδX0:n

⎛⎝∑
j∈Pn

‖r̄j − J̄jΔXj‖2Σj

⎞⎠
X∗i ← Exp(δX∗i )X̄i (38)

where δXi is defined to be the local perturbation on the tan-
gential space of the current operating state X̄i on the manifold
at each timestep i, and ΔXj to be the concatenation of the
perturbed local states related to the jth distribution. That is, we
can locally parameterize manifold variables to vector space [2],
[10], [27], [53], [54]. After solving the nonlinear optimization
problem in vector space, the evaluated perturbation is retracted
on the manifold to update the operating point.

In the following sections, these preliminaries are further ex-
panded to an invariant fixed-lag smoothing framework while
mediating between the accuracy and computation time by ad-
justing the window size.

IV. INVARIANT SMOOTHING FOR LEGGED ROBOT SYSTEM

In this section, we describe the invariant smoothing frame-
work for the legged robot system, which leverages the group-
affine property in a smoother framework. Since describing both
left-invariant and right-invariant cases is redundant, our dis-
cussion will only cover the right-invariant case without loss of
generality.

A. State and Measurement Definition

For legged robot state estimation, we focus on estimating the
base orientationR, velocity v, and positionp of the robot. Also,
ilegd, the position of the ilegth foot in contact with the ground,
and bω and ba, which are IMU biases, are included in the state
definition to consider the N -legged robot state estimation

Xi : =

[
Ri vi pi

1di . . . Ndi

0(N+2)×3 I(N+2)

]
,

xi : =

[
bω
i

ba
i

]
. (39)

Inspired from [32], we define the states in the Lie group to take
care of the group-affine property, whereas the IMU biases remain
in vector spaces since their related equations are not group-
affine. Detailed reasons for defining the state in this form will
be discussed in the following sections. Now the perturbation of
the system is defined as the concatenation of the right-invariant
perturbation at X̄ and the vector space perturbation at x̄.

ξi = −Log(X̄X−1), ζi = xi − x̄i,

ei = [ξTi , ζ
T
i ]

T ∈ R15+3 N . (40)

The minus sign in front of the invariant error is attached to match
the sign of the perturbation as same as in (38). For the sake of the
readability, cost models will be derived assuming Xi ∈ SE3(3)
with a single contact di. Since the dynamics act identically for
all feet in contact, the developed cost models would be easily
augmented to multicontact states without yielding any loss of
generality. Now, we consider the sensor measurements Zi of the
system

Zi := [ω̃T
i , ã

T
i , q̃

T
i ]

T (41)

where ω̃i ∈ R3, ãi ∈ R3, q̃i := [(1q̃i)
T , . . . , (N q̃i)

T ]T ∈
R3 N is the gyroscope, accelerometer, and joint encoder mea-
surements, respectively, for N -legged robots, and ileg q̃i ∈ R3 is
the ilegth leg’s encoder measurement. Following Section III-C
with the given state definitions and the sensor measurements, a
MAP problem representing the state-estimation problem can be
defined as follows:

X∗0:n,x
∗
0:n = argmax

X0:n,x0:n

p (X0:n,x0:n | Z0:n)

= argmax
X0:n,x0:n

p(X0:n,x0:n)p(Z0:n|X0:n,x0:n). (42)

In this article, we assume that the above posterior probability
distribution is decomposed into prior distribution, propagation
distribution, observation distribution, and loop distribution (in-
cluded for the CL method, which will be further explained in
Section V) as follows:

X∗0:n,x
∗
0:n

= argmax
X0:n,x0:n

p (X0,x0)︸ ︷︷ ︸
Prior

n−1∏
i=0

p (Xi+1,xi+1 | Xi,xi,Zi)︸ ︷︷ ︸
Propagation

n∏
i=0

p (Zi | Xi,xi)︸ ︷︷ ︸
Observation

∏
a,b∈L

p (Za:b | Xa,xa,Xb,xb)︸ ︷︷ ︸
Loop

(43)

where Zi is the sensor observation at ith timestep, and L stands
for the set of the long-term observations whereasa and b stand for
the start timestep and the end timestep of the long-term observa-
tion, respectively. Similarly as (34), (43) is further transformed
into a nonlinear least-square problem

X∗0:n,x
∗
0:n = argmin

X0:n,x0:n

(
||rPri||2ΣPri

+

n−1∑
i=0

||rPropi ||2ΣPropi

+
n∑

i=0

||rObsi ||2ΣObsi
+
∑
a,b∈L

||rLoopa,b
||2ΣLoopa,b

⎞⎠
(44)

where rPri and ΣPri is the corresponding residual function and
covariance matrix of the prior distribution, rPropi and ΣPropi is
the corresponding residual function and covariance matrix of the
propagation distribution, rObsi and ΣObsi is the corresponding
residual function and covariance matrix of the observation dis-
tribution, and rLoopa,b

and ΣLoopa,b
is the corresponding residual

function and covariance matrix of the loop distribution. Now, the
above problem can be rewritten by giving the perturbation e0:n
defined in (40) at the current operating point

e∗0:n = argmin
e0:n

(||̄rPri − JPrie0:n||2ΣPri

+
n−1∑
i=0

||̄rPropi − JPropie0:n||2ΣPropi

+

n∑
i=0

||̄rObsi − JObsie0:n||2ΣObsi

+
∑
a,b∈L

||̄rLoopa,b
− JLoopa,b

e0:n||2ΣLoopa,b
) (45)
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whereas the update at each iteration is done as follows:

X∗i ← Exp(ξ∗i )X̄i, x
∗
i ← x̄i + ζ∗i . (46)

In the next section, we will precisely describe the cost functions
that compose the given problem.

B. Detailed Derivation of Cost Functions

1) Prior Cost: The prior cost model sets the prior belief of
the state-estimation system when the estimator is initialized.
We assume that the initial state is perturbed by the zero-mean
Gaussian noise wPri,M = [(wPriφ)T , (wPriv)T , (wPrip)T ]T on
the lifted tangential space of the manifold variable X0, and
wPri,v = [(wPribω )T , (wPriba )T ]T of the variable x0 in vector
spaces

[ I5 05,1 ]︸ ︷︷ ︸
MPri

X0M
T
Pri =

⎡⎣ R0 v0 p0

01×3 1 0

01×3 0 1

⎤⎦
= Exp(wPri,M )XPri

x0 = xPri +wPri,v. (47)

XPri ∈ R5×5 is the prior belief of R0, v0, and p0, and MPri
is the auxiliary block operator matrix to convert X0 ∈ R6×6 to
R5×5 without d0. xPri ∈ R6 is the prior belief of bias. We do
not set prior belief on d0, because d0 is initialized later by the
observation factor at the initial timestep through the forward
kinematics relationship. The left-hand side of the prior cost
model for the manifold variable can be further expanded by
replacing X0 with Exp(ξ0)X̄0 as follows:

MPri(Exp(ξ0)X̄0)M
T
Pri = Exp(wPri,M )XPri. (48)

Note that by multiplying MPri twice, the left-hand side of the
equation does not contain any information of d0 and ξd0 . This
means that the left-hand side of the equation is equivalent to

Exp(M0ξ0)(MPriX̄0M
T
Pri) = Exp(wPri,M )XPri.

where M0 = [ I9 09,3 ] . (49)

Next, moving XPri to the left-hand side and introducing ξPri ≡
Log(XPri(MPriX̄0M

T
Pri)
−1) which stands for the distance be-

tween the prior belief and the current operating point, makes the
equation as

Exp(M0ξ0) Exp(−ξPri) = Exp(wPri,M ). (50)

Finally, taking logarithmic mapping on both sides of the equation
while using the BCH formula (16), the resultant equation for the
prior of the manifold variable becomes

wPri,M = M0ξ0 − ξPri. (51)

We neglect the Jacobian term in the BCH formula since both
M0ξ0 and ξPri are infinitesimal. Similarly, we can express the
prior belief equation of the vector space variable x0 with ζ0 by
introducing a new variable ζPri ≡ xPri − x̄0

wPri,v = ζ0 − ζPri. (52)

Concatenating this with (51) makes the prior cost model
of the concatenated perturbation e and noise wPri ≡

[(wPri,M )T , (wPri,v)T ]T

wPri =

[
M0 09,6

06,9 I6

]
e0 − ePri. (53)

Finally, the residual function rPri, Jacobian JPri, and its corre-
sponding covariance matrix ΣPri can now be summarized as
follows:

rPri = −
[
Log(XPri(MPriX̄0M

T
Pri)
−1)T , (xPri − x̄0)

T
]T

JPri =

[
M0 09,6

06,9 I6

]
, ΣPri = Cov(wPri). (54)

2) Propagation Cost: Propagation cost is derived from the
system dynamics equation of the states in the continuous do-
main. The modeling incorporates the IMU measurements by
integrating acceleration to velocity, velocity to position, and an-
gular velocity to rotation. Simultaneously, the stable foot contact
assumption ensures that the contact foot position remains stable
over time, leading to the assumption that the foot’s velocity is
zero [32]. It is also important to consider the potential noise of
the system. Specifically, the IMU measurements are assumed
to be corrupted by slowly changing bias and zero-mean white
Gaussian sensor noise

ω̃t = ωt + bω
t +wω, wω ∼ N (03,1,Σ

ω)

ãt = at + ba
t +wa, wa ∼ N (03,1,Σ

a). (55)

where ω̃t, ãt is the gyroscope and the accelerometer measure-
ment, and ωt, at is the true angular velocity and acceleration,
respectively, both in local-coordinate. In the case of the stable
contact foot assumption, the velocity of the foot is assumed to be
zero, whereas additional Gaussian noise wc is added to handle
the possible violation of the assumption. Now, based on the IMU
modeling and the stable contact foot assumption, we can model
the propagation of the states as follows:

d

dt
Rt = Rt (ω̃t − bω

t −wω)∧ ,
d

dt
pt = vt

d

dt
vt = Rt (ãt − ba

t −wa) + g,
d

dt
dt = Rtw

c

d

dt
bω
t = wbω ,

d

dt
ba
t = wba (56)

where g is the gravity vector. wω,wa,wc,wbω
, and wba

are
the zero-mean Gaussian noises associated with each process. We
will denote the noise-free propagation functions of the manifold
state variable and vector space state variable as fM (·) and fv(·),
respectively, where the subscript M denotes the dynamics of the
SE3(3)manifold space variables and v denotes for the dynamics
of the R6 vector space variables. Writing explicitly, fM (·) and
fv(·) are

fM (Xt) =

[
Rt (ω̃t − bω

t )
∧ Rt (ãt − ba

t ) + g vt 03×1
03×3 I3

]

fv(xt) =

[
03×1
03×1

]
. (57)

For these propagation functions, Hartley et al. [32] came up
with the nearly log-linear error propagation equation in the
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continuous domain by utilizing (25)

d

dt

[
ξt
ζt

]
= At

[
ξt
ζt

]
+

[
AdX̄t

012,6

06,12 I6

]
cwProp, (58)

where cwProp = [(wω)T , (wa)T , 01,3, (w
c)T , (wbω

)T ,
(wba

)T ]T ∈ R18 and At is:

At =

⎡⎢⎢⎢⎢⎢⎢⎣
03,3 03,3 03,3 03,3 −Rt 03,3

(g)∧ 03,3 03,3 03,3 − (vt)
∧Rt −Rt

03,3 I3 03,3 03,3 − (pt)
∧Rt 03,3

03,3 03,3 03,3 03,3 − (dt

)∧
Rt 03,3

03,3 03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

⎤⎥⎥⎥⎥⎥⎥⎦ .

(59)

To formulate the smoother, we discretize (58) and rearrange it
to the form of residual function. First, we make discrete domain
propagation functions fd

M (·) and fd
v (·) by discretizing fM (·)

and fv(·). Whereas various discretization methods could take
place, we adopted the following discretization:

fd
M (Xi) =

⎡⎢⎢⎣
RiExp((ω̃i − bω

i )Δt) vd
i pd

i di

01,3 1 0 0

01,3 0 1 0

01,3 0 0 1

⎤⎥⎥⎦
fd
v (xi) =

[
bω
i

ba
i

]
(60)

where vd
i = vi +Ri(ãi − ba

i )Δt+ gΔt and pd
i = pi + viΔt

+ 1
2Ri(ãi − ba

i )(Δt)2 + 1
2g(Δt)2. Then, we introduce new

auxiliary error variables ξfi+1 and ζfi+1

ξfi+1 = Log(Xi+1f
d
M (X̄i)

−1), ζfi+1 = xi+1 − fd
v (x̄i). (61)

The auxiliary variables are needed for the discretization of (58)
since the equation uses the log-linear property. As illustrated in
Fig. 4, the log-linear property is applicable only to the errors
defined by two trajectories propagated by the same propagation
function. Therefore, the discretized log-linear property of ξi is
satisfied only with ξfi+1 but not ξi+1, which represents the error
of the current operating point X̄i+1. With this nature of the
log-linear property, we can discretize (58) using the forward
Euler method[

ξfi+1

ζfi+1

]
= (I18 +AiΔt)

[
ξi
ζi

] [
+AdX̄i

012,6

06,12 I6

]
Δt dwProp

(62)

where Δt is the discretizing time interval. Inspired by [10],
we use the second-order IMU discretization model pi+1 =
pi + viΔt+ 0.5aiΔt2 for position propagation instead of ex-
ploiting only the first derivative, as the second derivative a is
available. As a result, we use an uncertainty model dwProp =
[(wω)T , (wa)T , (waΔt)T , (wc)T , (wbω

)T , (wba
)T ]T , where

we add waΔt on cwProp to deal with the noise of accelerometer
intervening to the discrete position propagation. Now, we further
decompose the left-hand side of the discretized (62), so that it
comprises the perturbation variable [ξTi+1, ζ

T
i+1]

T :[
ξfi+1

ζfi+1

]
=

[
Log(Xi+1f

d
M (X̄i)

−1)

xi+1 − fd
v (x̄i)

]

Fig. 4. Graphical illustration of discretization of continuous log-linear prop-
erty of a manifold variable. A vector space variable is not presented for read-
ability. Propagation processes of manifold variables are presented by bold-lined
arrows, where the system propagation fd

M (·) is colored especially by red. Log
invariant errors between manifold variables are expressed by dotted lines, where
the log invariant errors that satisfy the log-linear property are colored blue. Note
that where the log-linear property of the errors is applied is consistent with where
fd
M (·) is applied on the manifold.

=

[
Log(Xi+1X̄

−1
i+1X̄i+1f

d
M (X̄i)

−1)

xi+1 − x̄i+1 + x̄i+1 − fd
v (x̄i)

]

=

[
Log(Exp(ξi+1) Exp(−ΛM ))

ζi+1 − Λv

]
≈
[
ξi+1

ζi+1

]
−Λ (63)

where ΛM , Λv are Log(fd
M (X̄i)X̄

−1
i+1), (f

d
v (x̄i)− x̄i+1), re-

spectively, and Λ is [ΛT
M ,ΛT

v ]
T . In the last operation of (63), we

applied the BCH formula (16) and assumed that theΛM is small,
neglecting the Jacobian of ΛM . Now, the propagation residual
function rPropi , Jacobians JPropi+1

, JPropi , and corresponding
covariance matrix ΣPropi can be derived

rPropi = −
[
Log(fd

M (X̄i)X̄
−1
i+1)

fd
v (x̄i)− x̄i+1

]
JPropi = −(I18 +AiΔt), JPropi+1

= I18

ΣPropi = APropi Cov(
dwProp)AT

Propi

APropi =

[
AdX̄i

012,6

06,12 I6

]
Δt. (64)

3) Observation Cost: The observation cost function is es-
tablished by the encoder measurements that relate body pose
and foot position. Encoder measurements are assumed to be
corrupted by zero-mean white Gaussian

q̃i = qi +wq, wq ∼ N (03,1,Σ
q) (65)

where qi are the true joint positions and wq is the encoder
sensor noise. The encoder measurements are then exploited to
formulate a forward kinematics relationship.

di = Ri(fk(q̃i)− Jfk(q̃i)w
q) + pi (66)

where fk(q̃i) and Jfk(q̃i) are the forward kinematics of the
robot and the Jacobian of the forward kinematics function.
Expressing the relationship analogous to (28), the observation



202 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

cost model becomes⎡⎢⎣ fk(q̃i)
0
1
−1

⎤⎥⎦
︸ ︷︷ ︸

yi

=

⎡⎢⎣ R�i −R�i vi −R�i pi −R�i di

01,3 1 0 0
01,3 0 1 0
01,3 0 0 1

⎤⎥⎦
︸ ︷︷ ︸

X−1i

⎡⎢⎣ 03,1

0
1
−1

⎤⎥⎦
︸ ︷︷ ︸

s

+

⎡⎢⎣ Jfk(q̃i)w
q

0
0
0

⎤⎥⎦
︸ ︷︷ ︸

wobs
i

. (67)

Now left-multiplying X̄i on both sides, the equation becomes

X̄iyi = Exp(−ξi)s+ X̄iw
Obs
i . (68)

Presuming that ξi is small, we can linearize the observation
model by applying the first-order approximation of the expo-
nential map (17)

X̄iw
Obs
i = X̄iyi − s+ s�ξi (69)

where the linearized model is reorganized by using (18). Now,
residual function rObsi , Jacobian JObsi , and its corresponding
covariance matrix ΣObsi can be derived

rObsi = X̄iyi − s, JObsi = [s� 06,6 ]

ΣObsi = X̄i Cov(w
Obs
i )X̄T

i . (70)

4) Marginalized Prior Cost: While the cost models for batch
estimation are summarized above, restricting the growing size
of the problem is necessary for practical implementation. We
alleviate this problem by adopting a commonly used marginal-
ization method from [55]

wMarg
i = r∗ + (eOld − eMarg)

where wMarg
i ∼ N (03,1, (H

∗)−1), r∗ = (H∗)−1z∗. (71)

Here, H∗ and z∗ are the Schur complement of the Hessian and
gradient constructed right before the marginalization. The de-
tailed derivation is explained in [55] and not repeated here. eOld
denotes the perturbation at the oldest timestep in the current win-

dow, and eMarg =
[
Log(XMargX̄

−1
Old)

T , (xMarg − x̄Old)
T
]T

de-
notes the difference between the operating points at the oldest
timestep in the window X̄Old, x̄Old and the marginalized prior
statesXMarg,xMarg, which are initialized right after the marginal-
ization. Finally, residual function rMarg, Jacobian JOld, and its
corresponding covariance matrix ΣMarg can be derived

rMarg = r∗ − [Log(XMargX̄
−1
Old)

T , (xMarg − x̄Old)
T
]T

JOld = I18, ΣMarg = (H∗)−1. (72)

In summary, the Jacobians of the cost functions described in the
previous section are state-independent, except for the Jacobian

about IMU biases in the propagation cost. The state-independent
Jacobians can relieve the iterative optimization process and
improve the estimation results, as we will see in Section VII.
On the other hand, if the cost functions for optimization are
dependent on the state, significant variations in the states result-
ing from dynamic contact events would distort the convergence
characteristics of the optimization and, therefore, the estimation
outcomes. While the cost functions required to implement the
proposed IS are described in the previous sections, additional
methods that can further exploit the static contact assumption
can be considered. For this reason, the following section will
describe the SR method and CL method, which handle the
situations when the static contact assumption is violated and
applied with a temporal displacement cost, respectively.

V. LEGGED ROBOT SPECIFIC METHODS

In the case of proprioceptive sensor-only legged robot state
estimation, kinematic measurements are utilized on the assump-
tion of the static contact of the foot. For this perspective, the
following sections describe the methods to discreetly leverage
the static contact foot assumption based on the advantage of
smoothing structures.

A. Slip Rejection Method

The static contact assumption of the foot is the key assumption
used for utilizing the kinematic measurements of the legged
robot. However, this assumption is frequently violated in the
real world for various reasons, including slippage of the foot,
unstable ground, and late or early contact detection. For this rea-
son, we adopt a method called SR from our previous work [18],
which is triggered by thresholding the estimated foot velocity
v̄footi = v̄i + R̄iJfk(q̃i)˜̇qi + R̄i(ω̃i − b̄ω

i )
∧fk(q̃i), where

˜̇qi ∈ R3 is the joint velocity obtained by numerical differentia-
tion of q̃i. The original implementation of the SR method in [18]
denies the kinematic measurement if the calculated foot velocity
is larger than the preset threshold αv. However, in this work,
instead of completely denying the measurement, we increase
the uncertainty of the static contact foot assumption as a secure
way to implement it in practical applications. The covariance
matrix of the large uncertainty is now going to be called slip
covariance (Σs), whereas the original covariance matrix will
be called contact covariance (Σc). These slip covariance and
contact covariance are both tuning parameters that users can
adjust.

As stated in [18], SR is a useful strategy for both filter-based
and smoother-based algorithms to overcome hostile terrains that
could significantly degenerate the estimation quality due to the
violation of the static contact foot assumption. However, in the
case of smoother-based algorithms, there still exists room for
additional improvement. Since the foot velocity in the past can
be recalculated within its window, the stability of the contact
and, hence, the magnitude of the covariance matrix, could be
re-evaluated, which would reform the entire estimation results.
A graphical illustration of the re-evaluation of the SR method
is provided in Fig. 5, where it is possible to identify that the
recalculated foot velocity and contact stability can change the
formulation of the cost function.
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Fig. 5. Graphical explanation of the SR method and the CL method, along
with the re-evaluation of the foot velocity and acceleration. (a) States and
the cost functions evaluated at an exemplary timestep i are represented. (b)
Evaluation at timestep i+ 1 is represented. In (a), the propagation cost functions
are constructed with the contact covariance (blue) or the slip covariance (red),
depending on whether the robot is in a static contact time span (blue-colored
span) or a dynamic contact time span (red-colored span). The dynamic contact
is assumed when the calculated foot velocity (red stars) exceeds the threshold
valueαv , whereas the static contact is presumed when the foot velocity is within
the threshold. In addition to this SR method, the CL cost (yellow) is formulated
between the leftmost and rightmost boundaries of the successive contact time
span (yellow-colored span), which is applied when it keeps both foot velocity and
acceleration continuously under the threshold values αv and αa, respectively,
at least over two timesteps. In (b), instead of the obsolete foot velocity and
acceleration (translucent lines), which were calculated before, the foot velocity
and acceleration are recalculated (opaque lines) leveraging the newly given state
information at timestep i+ 1 and used to re-evaluate the past contact of the robot.
As a result, although the robot was assumed to be in dynamic contact at timestep
i− 1 in (a), now in (b), it is inferred to be in static contact at the same timestep
i− 1.

B. Contact Loop Method

One of the advantages of the smoother framework is that
the states within the history window are accessible. Therefore,
a measurement model that relates states over distant timestep
can be considered for smoothing frameworks, whereas filtering
frameworks only deal with the adjacent states. In this point of
view, we propose the CL method, which restricts that the foot
positions should not be changed over multiple timesteps when
there is no slip as follows:

rLoopa,b
= [ I3 03,3 ]︸ ︷︷ ︸

MLoop

(X̄a − X̄b)

⎡⎢⎣ 03,1

0
0
1

⎤⎥⎦
︸ ︷︷ ︸

s

= d̄a − d̄b

JLoopa = MLoop([ s
� 06,6 ])

JLoopb = −MLoop([ s
� 06,6 ]), ΣLoopa,b

= ΣclΔt (73)

where Σcl is the covariance matrix denoting the user-defined
assurance of the CL. Subscript a and b stand for the start and the
end of the restricted contact and are determined by the criteria
based on the estimated foot motion. The detailed graphical
interpretation of this model is given in Fig. 5. A loop is connected
over two distant timesteps when none of the absolute values of
the estimated foot velocity between the time span is over the
threshold αv, and none of the absolute value of the numerically

differentiated foot acceleration āfooti =
(v̄footi−v̄footi−1 )

Δt is over the
threshold αa. The foot acceleration thresholding condition is
added to reject the impact situations, such as the sudden vibration
of the foot, which might not be captured by the foot velocity
criteria.

VI. DIFFERENT STATE DEFINITIONS FOR THE SYSTEM

In addition to the state definition described in the previous
section, which includes the position of the foot inside the SE3(3)
manifold, other kinds of state definitions can be used for legged
robot state estimation. In this section, we overview alternative
state definitions and their effect on the nonlinearity of the cost
function. The state estimators derived from these different state
definitions will be compared with our IS later in Section VII.

A. Foot Position in a Vector State

In the previous section, we defined a manifold state variable
encompassing the whole state except for bias, which produces
state independence. However, we will see in this section that
the state definition of foot position outside of the manifold state
variable yields the cost models with a partial loss of state inde-
pendence, as its observation cost function becomes noninvariant.
State definition of this system would handle foot position in a
vector space variable in R6+3 with the IMU biases, instead of a
manifold variable

Xi :=

⎡⎣Ri vi pi

01,3 1 0

01,3 0 1

⎤⎦ , xi :=
[
(di)

T (bω
i )

T (ba
i )

T
]T

.

(74)

Similar to Section IV-A, we assume a single contact for the
readability and define the error of the system as the concatenation
of the right-invariant error of X̄ and the vector space error of x̄

ξi = −Log(XiX̄
−1
i ), ζi = xi − x̄i, ei = [ξTi , ζ

T
i ]

T ∈ R18.
(75)

This state definition results in exactly the same prior cost model
as the previously developed model, but the propagation model
would be slightly different. We can exploit the log-linear prop-
erty of the error similar to the continuous propagation model of
the proposed IS (58)

d

dt

[
ξi
ζi

]
= Api

[
ξi
ζi

]
+

⎡⎣AdX̄i
09,3 09,6

03,9 R̄i 03,6

06,9 06,3 I6

⎤⎦ cwProp (76)
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with a modified Api
matrix:

Api
=

⎡⎢⎢⎢⎢⎢⎣
03,3 03,3 03,3 03,3 −Ri 03,3

(g)∧ 03,3 03,3 03,3 − (vi)
∧Ri −Ri

03,3 I3 03,3 03,3 − (pi)
∧Ri 03,3

03,3 03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

⎤⎥⎥⎥⎥⎥⎦ .

(77)

Note that the modified Api
is state-independent, as much as

the Ai in the previous section, whereas the rotation matrix in
the noise term will be canceled out later in the case of diagonal
noise covariance. On the other hand, constructing an observation
equation using the given state definition is not trivial. Based on
the given state definition, the forward kinematics relationship
(66) is revisited while modifying the equation based on the
SE2(3) manifold variable Xi and R6+3 vector space variable
xi. This yields the following encoder observation equation:[

I3 03,3 03,3

01,3 01,3 01,3

01,3 01,3 01,3

]
︸ ︷︷ ︸

Mp

[
di

bω
i

ba
i

]
︸ ︷︷ ︸

xi

+

[
03,1

0
1

]
︸ ︷︷ ︸

sp

=

[
Ri vi pi

01,3 1 0
01,3 0 1

]
︸ ︷︷ ︸

Xi

[
fk(q̃i)

0
1

]
︸ ︷︷ ︸

ypi

+

[
Ri vi pi

01,3 1 0
01,3 0 1

]
︸ ︷︷ ︸

Xi

[
Jfk(q̃i)w

q

0
0

]
︸ ︷︷ ︸

wObs
pi

(78)

which can not take a form of either the left-invariant (27) or
the right-invariant (28) observation model since the state di

is out of the manifold variable Xi. Applying the first-order
approximation and rewriting it with error finally results in the
observation cost model

rObsi = −X̄iypi
+Mpx̄i + sp

JObsi =

⎡⎣R̄ifk(q̃i) + p̄i 03,3 −I3 I3 03,3 03,3

01,3 01,3 01,3 01,3 01,3 01,3

01,3 01,3 01,3 01,3 01,3 01,3

⎤⎦
ΣMeasi = X̄i Cov(w

Obs
pi

)X̄T
i (79)

where the detailed derivation is shortened here. We can see
that the Jacobian about orientation perturbation is now state-
dependent. The smoothing algorithm using this state definition
and the cost function is going to be called pseudo invariant
smoother (PIS).

B. State Without Foot Position, While Only Rotation is in the
Manifold

Most of the smoothing algorithms for legged robot state
estimation usually define states in vector spaces. A commonly
used state definition of fixed-lag smoothers for legged robots
defines rotation matrix on the manifold, and others in vector
space [16], [17], [18], [23], [27]. In this formulation, the foot

Fig. 6. Histogram of the computation time of the estimation algorithm during
the experiments. The red dotted line indicates the computational limit for running
the estimator at 200 Hz.

position is not explicitly tracked as a state. According to the
definition, the states take the form below:

Xi := Ri, xi :=
[
(vi)

T (pi)
T (bω

i )
T (ba

i )
T
]T

. (80)

Since only the rotation matrix is defined on the manifold,
it is hard to derive state-independent formulations using the
group-affine property. The smoothing algorithm for this type
of state definition was implemented in [18]. Without loss of
generality, comparison against the smoothing algorithm with
the orientation state defined as Quaternion is neglected since the
local perturbation mapping has a similar hypothesis with NIS.

VII. EXPERIMENTAL RESULTS

In this section, the proposed estimator is verified in real-time
experiments and by offline comparison of the performance of
the introduced algorithms: IS (proposed), PIS, NIS [18], and
InEKF [32]. For a fair comparison, NIS was adopted with-
out kinematics velocity cost. Moreover, to be consistent with
(62), we used dwProp as the propagation uncertainty of InEKF,
whereas the original InEKF [32] uses cwProp.

At first, we conducted experiments with the quadruped robot
Hound [3] by controlling the robot based on online feedback
of the estimated states from the developed IS. The robot is
controlled by the nonlinear model predictive controller based
on [2], which runs at 80 Hz. The window of the estimator is set
as 15, with a single iteration limit, and turning OFF backtracking
to run the estimator online at 200 Hz. The controller and the
estimator are run simultaneously on an Intel i7-11700 T 4.6 GHz
CPU embedded in the robot. We have recorded the computation
time during the running and counted it in histogram Fig. 6, where
all logs were reported under the computation time limit of 5 ms.
Moreover, thanks to the advantage of invariant frameworks, we
could see that the single iterated estimator’s performance was
retained with less degradation compared with the fully iterated
smoother in Table I. This result defends the concern of the
single iteration limit and turning OFF the backtracking algorithm
for real-time implementation. Consistent with the estimator fre-
quency, IMU and joint encoder measurements were received at
200 Hz. The motion capture device (nine Vicon Vero V2.2 cam-
eras) was used to obtain the ground truth position and orientation
at 200 Hz, which could be trusted within 0.5 mm. Also, in order
to obtain the ground truth velocity, numerical differentiation
of the motion capture data is utilized. The experimental data
were obtained from five 120-s-long experiments for the robot
walking on unfavorable floor conditions and disturbance. During
the experiment, the robot was commanded to walk through the
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TABLE I
COMPARISON OF ATE AND 0.6 S RE (MEAN, THE EXCESS OVER THE

SMALLEST MEAN VALUE AMONG THE ESTIMATORS, AND STANDARD

DEVIATION) BETWEEN IS OF FULL ITERATION AND SINGLE ITERATION

TABLE II
NOISE PARAMETERS AND THRESHOLDS OF THE ESTIMATOR

slippery floor, deformable mattress, and piled wood plates with
pebble stones. Finally, a strong pulling force was applied to the
robot walking on piled wood plates with pebble stones. The
detailed environmental setup and the graphical explanation of
the experimental procedure are given in Fig. 7. Considering
the experimental environment and the noise of the sensors, the
tunable noise parameters of the estimator and the thresholds
of legged robot-specific methods were empirically chosen as
described in Table II. The scalar noise parameters in this table are
squared and multiplied by the 3× 3 identity matrix to formulate
the corresponding covariance matrices.

The ground truth trajectory and the estimation result from
one experiment are displayed in Fig. 8, where InEKF was run
simultaneously and plotted together for comparison. Note that
NIS is removed for comparison in the online experiment since
the computation time constraint is not satisfied. The complex
trajectory and the large deviation of estimation results are due to
the precarious terrains and the disturbance. Featured moments
of the scenario are 15–30 s when the robot is on the slippery
board and 80–120 s when the robot is on the piled wood plates
with pebble stones and disturbed by the strong pulling force.
Especially in the 85–95 s, we can identify in the zoomed graph
that not only the planar motion but also the orientation and

the velocity of the robot body underwent severe circumstances.
Although the estimation was quite noisy in the z-direction, x-
and y-directional estimation and orientation estimation tracked
the true motion with sufficient reliability. Especially with the
proposed estimator, which resulted in a reduced order of estima-
tion bias in velocity, the robot successfully finished the scenario
without failure in an extreme environment.

We repeated this experiment five times, and with these five ex-
perimental data, we further investigated the proposed estimator’s
accuracy by the other estimators’ various offline evaluations.
We allowed smoothing algorithms to take multiple iterations
until convergence and turned ON the backtracking line search
algorithm for each iteration. Note that the backtracking line
search helps the smoother algorithm to find a decent step size and
prevent divergence. Smoothers are iterated until convergence
within the criteria Δcost

cost ≤ 0.001 under the maximal limit of ten
iterations, and backtracking was turned ON with the decreas-
ing rate γ = 0.3 under the maximal backtracking number of
nback ≤ 3.

The estimation performance is evaluated using absolute tra-
jectory error (ATE) and relative error (RE) from [56] to de-
liver various properties of the estimators. Within them, RE is
adopted with a slight modification in its definition. The new
definition addresses the RE not only at the end of the trajectory
segment but also during the whole segment. Orientational RE

for example, the original definition is
√

1
ntraj

∑ntraj

i=0 ||errorφi
||2

where ntraj is the number of subtrajectories and errorφi
is the

aligned orientational error at the end of the ith subtrajectory. On
the contrary, the newly adopted definition for the orientational

RE is

√
1

ntraj

∑ntraj

i=0 ||
√

1
dtraj

∑dtraj

j=0 ||errorφj
||2||2 where dtraj is the

length of a subtrajectory and errorφj
is the aligned orientational

error at the jth timestep in the subtrajectory. This modification
is introduced to capture the sudden peaks of errors that fre-
quently occur in legged robot state estimation compared with
visual–inertial navigation. In addition, ATEpos is not used, and
ATEori captures only roll and pitch error (without yaw angle
error) since global position and yaw angle are not observable in
our sensor configuration. Instead, REpos is calculated, and REori
captures orientation deviation that includes yaw angle deviation
to examine the local tracking performance of these unobservable
states. Note that this choice of error metrics reflects the role
of proprioceptive estimators properly, which is responsible for
providing reliable velocity, orientation estimation, and local
position estimation to enable stable control of the robot. Since
we collected five different experimental data, all metrics used in
this section implicitly stand for the average over these five ex-
perimental data and its corresponding standard deviation. From
these metrics and experimental data, the estimation performance
is mainly investigated from two viewpoints: the merit of the
invariant framework compared with the noninvariant framework
in Section VII-A and the benefit of smoothing framework in in-
variant frameworks in Section VII-B. We then review the offline
estimation performance of the estimators in Section VII-C, and
finally, in VII-D, estimation performances in the environments
with static contact events are presented for the ablation study.

A. Effect of the Group-Affine Property in Smoothing
Framework

In this section, we test the advantage of the group-affine prop-
erty for smoothing algorithms. Smoothing algorithms model
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Fig. 7. Sequential illustration of the experiment procedure, where the procedure sequence is left to right, top to bottom, denoted as the alphabet order. (a) Robot
starts at the initial position. (b) Robot moves to the slippery board and moves around the area to encounter slipping situations. (c) Robot moves to the deformable
mattress environment and walks on it to face the z-directional movement of the ground. (d) Robot moves to the unstable terrain and passes the area. (e) Robot comes
back to the initial position. (f) Robot moves to the unsteady terrain again. (g) Strong pulling forces are applied several times to the robot to check the robustness
of the estimator. (h) Robot comes back to the initial position. Overall experiment time is about two minutes, and the experiment is held five times for statistical
credibility.

probability distribution as nonlinear cost functions and resolve
it by leveraging nonlinear optimization. Consequently, the lin-
earization of the nonlinearity provokes the threat of falling into a
suboptimum or even divergence of the solution. In our algorithm,
the observation cost function is one of the factors that could
induce nonlinearity in the optimization. Reviewing the state
definition of PIS and NIS, they cannot formulate the group-affine
observation (28) since they handle only a part of their states on a
manifold. As a result, the Jacobian of the residual function about
the orientation perturbation φ becomes state-dependent for both
PIS and NIS formulation. In the case of PIS, we have already
seen in (79) that the Jacobian about φ is state-dependent. For
NIS, the residual and the Jacobian of the residual about φ are as

follows, which are dependent on the current estimated state:

rObs = (R̄i+1fk(q̃i+1) + p̄i+1)− (R̄ifk(q̃i) + p̄i)

Jφi+1
= −(R̄i+1fk(q̃i+1))

∧, Jφi
= (R̄ifk(q̃i))

∧. (81)

However, in the case of IS, manifold state definition, which
satisfies invariant observation form (28) results in the state-
independent Jacobian about φ for the observation residual func-
tion (70). The state-dependent Jacobians of noninvariant formu-
lations may cause an estimation result to fall in a suboptimal
point, resulting in distortion of estimated states when the obser-
vation cost model is linearized at the operating point far from
the ground truth. Note that the legged robot state estimation is
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Fig. 8. Online estimation result comparison of IS and InEKF for the experiment described in Fig. 7 along with the ground truth. Figures depict the x, y, and
z-directional position, orientation, and body frame velocity, respectively. During the experiment, a strong pulling force is applied multiple times. The grey-dotted
box indicates the estimation results of observable states under the first two disturbances during 85–95 s and magnified in the bottom part of the figure.

affected by the observation cost model combined with the static
foot contact assumption, and one caveat for the system is that the
static foot contact assumption is often violated. When a robot
slips, the static foot contact assumption can set the operating
point far from the true state. We plotted the orientation estimation
results of the smoothers in Fig. 10, especially when the robot is
slipping in the situation described in Fig. 7(g). To exclusively
test the effect of different state definitions, SR and CL strategies
are turned OFF for all algorithms. In Fig. 10, we can see that
the estimators equipped with noninvariant observation deviate
larger than IS from the ground truth as the robot slips. As a
result, IS produced a lower average level of orientation ATE in
the whole five experimental data than the others.

To elaborate on the effect of the state-dependent Jacobian, we
compare not only the estimation results but also the optimization

processes of the estimators in Fig. 9. For a fair comparison,
we run the estimators as a full batch without backtracking.
The estimators are run during the same time span in Fig. 10
since the estimators frequently confront the violation of the
static foot contact assumption in this period. Furthermore, the
convergence condition and the maximum iteration number are
modified to 10−5 and 100 times to guarantee full convergence.
The estimators are initialized with the ground truth at the start
of the given time span, whereas the prior covariance is set as
the diagonal components of the covariance matrix (inverse of
the marginalized Hessian) of the fixed-lag IS at that time to
reproduce the similar prior distribution to Fig. 10. To examine
the effect of the state-independency of the Jacobians during
optimization processes, we plotted the cost ratio and iteration
number that compares the final cost after the convergence of
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Fig. 9. Comparison of the cost ratio, iteration numbers, and roll estimation results of IS, PIS, and NIS when the robot slips. The red-shaded area represents the
time span of the ground truth slip when the velocity of the foot exceeds 0.5 m/s. The time period in the graphs is the same as that in Fig. 10. The estimators are run
in a full batch setting without backtracking and are warranted to converge. The left, middle, and right figures are the cost, iteration number, and roll estimation,
respectively. In the case of the cost, only PIS and IS are compared due to the difference in cost definitions between them and NIS. In the legend of the figures,
except for the estimation result plot, the mean value of the measure over the given period is described.

Fig. 10. Zoomed-in estimation result of the roll angle of IS, PIS, and NIS when
the robot slips. The red-shaded area represents the time span of the ground truth
slip when the velocity of the foot exceeds 0.5 m/s. In order to exclusively test
the effect of different state definitions, SR and CL strategies are turned OFFfor
all algorithms. Also, each estimator’s orientation ATE over five experimental
data is written in the legend.

each estimator and the iteration required for convergence. In the
case of the cost ratio, only PIS and IS are compared since they
have similar cost definitions, as we have seen in Section VI.
In Fig. 9, the left figure shows the ratio of the cost of PIS to
IS after the convergence at each timestep. Note that the cost of
PIS and IS after convergence has been almost the same until
the first slip at the time near 90.2 s since their cost definitions
are comparable. Nevertheless, the ratio increases when the static
contact foot assumption is damaged, marked by the red region.
We can also see that the iteration number of PIS in the middle
graph increases up to 25 times larger than that of IS when the
robot slips. Consistently, in the right plot for the roll orientation
estimation results, the estimation result of PIS deviates more
than IS when the robot slips. These results allow us to infer that
the state-dependent Jacobians of PIS damage the optimization
process and make a larger error. Although we can not directly
compare the cost of NIS with that of IS due to the different cost
definitions, we can identify that NIS also shows an immense
number of iterations and a much larger estimation error in the
figures.

B. Advantages of Smoothing in Invariant Frameworks

In this section, we will examine the merit of the smoothing
framework introduced by the SR and CL strategies for invariant
frameworks. Since invariant frameworks’ Jacobian do not de-
pend on the current linearization point, the smoothing approach
has less chance to wield its advantage over filtering in terms

TABLE III
COMPARISON OF ATE AND 0.6 S RE (MEAN, THE EXCESS OVER THE MEAN

VALUE OF THE PROPOSED ESTIMATOR, AND STANDARD DEVIATION) BETWEEN

ESTIMATORS WITH VARIOUS STRATEGIES

of relinearization. However, when we leverage the SR and CL
methods, the smoothing methodology has a chance to bring
additional benefits by re-evaluating the past sliding information
and including more CLs as the window extends. To demonstrate
this merit, we investigated the estimation error of IS in Fig. 11
by increasing the window size from 1 to 15, whereas the InEKF
inherently retains the window size of 1. The SR method is
applied to both, but the CL method is applied only to the
smoother since the past states are marginalized in the InEKF. The
estimation error of the IS gradually decreases as the window size
increases compared with the filter, where the velocity and the
positional error decrease notably. Another aspect of the result be-
comes more noticeable when the static contact assumption does
not hold. In Fig. 12, part of the body frame velocity error result is
shown. The estimators face increasing estimation errors during
the slippage of the feet. Nevertheless, the larger the window of
the estimator is, the faster the error decreases. This is because IS
with a larger window could detect SR status more accurately by
re-estimating the previous trajectory in its window. The effect
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Fig. 11. Comparison between the estimation results of smoothing and filtering for invariant frameworks, varying the window size from 1 to 15. The top line
illustrates ATE, and the bottom line depicts RE. Generally, the errors of IS decrease in the entire error plots as the window size becomes larger, thanks to the SR
and CL methods. Still, the errors sometimes can increase even when the window size increases since the methods rely on the estimation results and, hence, can be
affected by the erroneous estimation results in the past.

Fig. 12. Part of the body frame velocity error results from the estimators with
different windows. The estimation results of InEKF are plotted by circle dotted
lines. The grey, red, and blue-shaded areas represent the time span of ground
truth slip, slip estimated by IS with SR + CL (Window 15), and slip estimated
by InEKF, respectively. Each shaded region is illustrated with different y-axis
values to ease the distinguishment.

of re-evaluation can be seen more straightforwardly through
Fig. 13, where the proposed SR method, which re-evaluates the
foot velocity, can utilize richer information than the previous
method, which does not re-evaluate. Also, in Fig. 12, we could
identify that the grey-shaded area (true slip) is more matched
with the red-shaded region (slip estimated by IS with window 15)
than the blue-shaded area (slip estimated by InEKF). Another
interesting result is presented in Fig. 14, which shows that the
estimator output becomes similar to the straight integration of
the IMU signal when all the feet are slipping. This result shows
that the estimator mainly utilizes IMU measurements when the
kinematic measurements are undesirable. In addition, we attest
to the profit of the CL in Table III, by comparing smoothers
equipped with and without CL. The window size of smoothers
is fixed as 15. We can see in this table that IS with SR and
CL shows better performance than IS equipped only with SR,
especially in REpos. On the contrary, in the case of NIS, the
CL method affects the estimation results adversely. We attribute
this negative effect to the state-dependence of NIS, which could
distort the estimation result when the robot is sliding with a

Fig. 13. Foot velocity error along the accumulating time window. The foot
velocity errors within the window of the estimator at a certain timestep are
“screenshotted” and listed along the y-axis. Therefore, the foot velocity error of
a fixed timestep is tracked diagonally, from the bottom left to the top right. The
red parallelogram highlights the slip events of the experiment. The top figure is
for the proposed SR method, which re-evaluates the foot velocity. In contrast,
the bottom figure is for the SR method in [18], which does not re-evaluate the
foot velocity. Note that the brighter color on the figures represents a higher error
against the true foot velocity calculated from the motion capture device and the
encoder.

strong contact belief, as we have seen in the previous section.
The CL method assumes lower covariance when the calculated
foot speed and acceleration are lower than thresholds. It means
that there could be erroneous CLs that presume lower contact
uncertainty for a sliding foot. In such conditions, NIS is likely
to produce estimation results with large errors.

C. Off-Line Comparison to the Existing Algorithms

In this section, we testify the profit of the suggestion in this
article by comparing the estimation performance of the proposed
algorithm, the existing invariant filter, and the NIS in Table III.
The proposed algorithm in the top row shows the lowest error
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TABLE IV
COMPARISON OF ATE AND 0.6 S RE (MEAN, THE EXCESS OVER THE MEAN VALUE OF THE PROPOSED ESTIMATOR, AND STANDARD DEVIATION) BETWEEN IS,

INEKF, AND NIS WITH LEGGED ROBOT-SPECIFIC METHODS

Fig. 14. Body frame x-directional velocity plots of the ground truth, IMU
integrations, and the estimation results of the proposed IS. The four yellow
IMU integration plots are produced by choosing four starting times and then
integrating the IMU measurements from the estimated state values at each
starting time. The blue region denotes the ground truth slip period with more
than one leg slipping, whereas the red region marks the ground truth slip period
with all feet slipping.

for every metric, especially in velocity and position estimation.
We can identify that the legged robot-specific methods are
best exploited in the proposed algorithm, which captures the
advantage of both the group-affine property and the smoother
framework at once.

D. Comparison Against Contact Conditions and Estimation in
Outdoor Experiment

In this last section, we test the profit of the proposed IS while
comparing against contact conditions and show the result for the
outdoor experiment. To identify the degree of the benefit claimed
in this article in different environments, we perform the error
analysis to the trajectory segments extracted from the indoor
experiment described in Fig. 7. In Table IV, the performance
of the estimators in different contact conditions is displayed.
The estimation performance of trajectory where static contact
event occurs mostly, which corresponds to the experimental
procedure Fig. 7(a) and the beginning part of (b), is in the left
side of the table and that for trajectory where dynamic contact
event occurs mostly, which is featured by Fig. 7(g), is in the
right side of the table. Unsurprisingly, the error is much smaller

Fig. 15. Estimation result in the 160 m-long outdoor experiments. The robot
walks along an ∞-shaped path with the same starting and end point at the
yellow-circled point. The proposed algorithm estimates the trajectory of the
robot, which is overlapped on the bird-eye view map as a red line.

under the static contact condition than under the dynamic contact
condition. A noteworthy point in this table is that the differences
between the proposed IS and the other algorithms become larger
under the dynamic contact condition. This result agrees with
the nature of the benefit of invariant smoother that we have
covered; invariant smoother is more robust than its noninvariant
counterpart when it handles dynamic contact events, and it can
leverage the SR method better than its filtering counterpart. Since
both advantages appear when the robot is under dynamic contact,
it is understandable that the proposed algorithm shows a larger
difference from the others, especially when the robot is slipping.

In the outdoor experiment, the robot is commanded to make
a 160 m-long ∞-shaped loop trajectory and return to where it
started. The robot is controlled by the online feedback of the
proposed invariant smoother. The estimation performance of
our proposed estimator in the experiment is drawn in Fig. 15,
where the estimated trajectory of the proposed estimator is well
overlapped with the bird-eye view map. Since the ground truth
data of this experiment is unavailable, we do not perform a
detailed analysis on velocity, but it is worth noting that the
proposed estimator can give a precise position estimation result
when there are no dynamic contact events.



YOON et al.: INVARIANT SMOOTHER FOR LEGGED ROBOT STATE ESTIMATION WITH DYNAMIC CONTACT EVENT INFORMATION 211

VIII. CONCLUSION

In this article, a new algorithm for legged robot state esti-
mation was proposed by combining the group-affine property
and smoothing framework. The proposed algorithm was im-
plemented in the quadruped robot KAIST HOUND, and using
the online estimation of the proposed algorithm, the robot was
controlled to overcome the environment with unstable contacts.
Further exploiting the data collected from the experiments,
we have discovered that the state-independent Jacobian of the
group-affine property is beneficial in the nonlinear optimiza-
tion process by reducing the required iteration number. As a
result, IS showed lower orientation estimation error than PIS
and NIS. Meanwhile, we leveraged the static contact foot as-
sumption of the legged robot state estimator by introducing
SR and CL methodologies, which also take advantage of the
smoother frameworks. Thanks to the advantages induced by the
group-affine property and smoothing frameworks, our proposed
IS recorded the lowest error among the baseline legged robot
state estimators proposed in [32] and [18] for the collected data.

Future works may include adding exteroceptive sensor mea-
surements, visual loop-closure, and nonlinear constraints [57] to
enjoy the further benefit of the smoothing framework with the
group-affine property. In addition, the frequency of the estimator
can be further increased by leveraging the state-independent
sparsity characteristic of the Hessian matrix, where the fre-
quency was restricted to 200 Hz due to the limit of our robot’s
computation resources in this work. On the other hand, the
uncertainty modeling of the contact dynamics for legged robots
can be described precisely by introducing terrain information
or the neural network-based representation. Finally, the overall
derivation of the propagation cost model can be calculated using
the discrete-time domain dynamics equations, which can be
mathematically more thorough than the discretization from the
continuous dynamics.
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