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Invariant Descriptors of Motion and Force
Trajectories for Interpreting Object Manipulation

Tasks in Contact
Maxim Vochten , Member, IEEE, Ali Mousavi Mohammadi , Arno Verduyn , Graduate Student Member, IEEE,

Tinne De Laet , Erwin Aertbeliën , and Joris De Schutter , Member, IEEE

Abstract—Invariant descriptors of point and rigid-body motion
trajectories have been proposed in the past as representative task
models for motion recognition and generalization. Currently, no in-
variant descriptor exists for representing force trajectories, which
appear in contact tasks. This article introduces invariant descrip-
tors for force trajectories by exploiting the duality between motion
and force. Two types of invariant descriptors are presented depend-
ing on whether the trajectories consist of screw or vector coordi-
nates. Methods and software are provided for robustly calculating
the invariant descriptors from noisy measurements using optimal
control. Using experimental human demonstrations of 3-D contour
following and peg-on-hole alignment tasks, invariant descriptors
are shown to result in task representations that do not depend on
the calibration of reference frames or sensor locations. The tuning
process for the optimal control problems is shown to be fast and
intuitive. Similar to motions in free space, the proposed invariant
descriptors for motion and force trajectories may prove useful for
the recognition and generalization of constrained motions, such as
during object manipulation in contact.

Index Terms—Contact tasks, invariance, optimal control, screw
theory, trajectory representation.

NOMENCLATURE

Variable Description
{a} Reference frame named “a” attached to a rigid body

or the world
b
aR 3×3 rotation matrix representing the orientation of

frame {b} with respect to frame {a}
b
aT 4×4 homogeneous transformation matrix represent-

ing the orientation and position of frame {b} with
respect to frame {a}
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aω 3×1 rotational velocity vector of the rigid body ex-
pressed in {a}

av
b 3×1 translational velocity vector of the rigid body at

the origin of {b} and expressed in {a}
af 3×1 force vector acting on the rigid body expressed

in {a}
am

b 3×1 moment vector acting on the rigid body at the
origin of {b} and expressed in {a}

at
a 6×1 screw twist of rigid body with the first three

elements the rotational velocity vector aω and the
last three elements the translational velocity vector
av

a

aw
a 6×1 screw wrench acting on the rigid body with the

first three elements the force vector af and the last
three elements the moment vector am

a

b
aS 6×6 screw transformation matrix that, when multi-

plied with a screw twist or wrench, transforms the
screw from {b} to {a}

In this nomenclature a and b are placeholders for two frames of
interest.

I. INTRODUCTION

IN HUMAN–ROBOT interaction (HRI) there is a need for
generalizable task models that allow robots to reactively

adapt the robot’s execution and to robustly recognize human
actions in continuously changing environments. For execution
purposes, these models should be easily adaptable to deal with
obstacles, different starting/ending/via points, robot platform
constraints, and interaction with the human. For recognition pur-
poses, these models should be sufficiently general to recognize
the human’s action at different locations in space, from different
viewpoints, and with different execution styles (e.g., varying
scale and motion profile). The focus of this article is on extracting
task representations that involve the manipulation of objects in
contact, where not only the relative motion between objects but
also interaction forces are relevant as input for the task modeling
process. Typical applications include surface following tasks and
assembly tasks.

Task models in HRI are commonly learned from one or
multiple human demonstrations of the task using learning by
demonstration [1]. The challenge is to achieve a representative
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task model without the need for a high number of demonstra-
tions.

One approach to achieve representative task models from
few demonstrations is to exploit invariance in the task. Here,
invariance refers to properties of the task that remain unchanged
under certain transformations, such as changes in reference
frame. Invariance has proven useful in various fields of robotics.
Typically, the objectives were: 1) to ensure that exactly the
same task execution or behavior of a robot system was obtained
within its workspace, and 2) to ensure that the quantitative
characterization of such robot action using a metric resulted
in exactly the same number(s) regardless of where and how the
robot action was recorded or measured. In the following, some
examples of the importance and use of invariant solutions in
different robotics contexts are briefly reported.

For the control of free-space robot motion, such as mobile
robots and UAVs, invariance was achieved by representing the
trajectory tracking error in such a way that the same closed-loop
behavior for trajectory tracking and disturbance rejection was
obtained regardless of the direction in which the robot was mov-
ing [2]. For constrained motion, i.e., motion in contact, which
is the subject of this article, the risk of obtaining noninvariant
control solutions is more pronounced since both motion (trans-
lation and rotation) and interaction wrenches (i.e., forces and
moments) have to be controlled simultaneously. For example, as
pointed out in [3], it does not make sense to define orthogonality
between two twists (i.e., translational and rotational velocities),
or between two contact wrenches, because of: 1) dimensional
inconsistency; 2) dependence on the choice of units; 3) depen-
dence on the choice of the origin of the coordinates.

In contrast, reciprocity between a twist and a wrench is an
invariant concept. In [4], [5] a firm geometric foundation for
kinestatics and invariant hybrid force/position control was laid
based on screw theory. Taking this into consideration, invariant
solutions were proposed, for example to obtain dynamic models
of redundant and constrained robot manipulators [6], or in
applications of hybrid force/position control [7].

In estimation, invariance refers to obtaining the same values
for the estimated quantities regardless of the reference frame
in which the estimator’s states are represented. For example,
the invariant extended Kalman filter [8] formulated the state
correction term in an invariant way using Lie group theory and
showed a better convergence of the estimation compared to a
standard extended Kalman filter with a linear correction term.
The invariant extended Kalman filter was applied, for instance,
to attitude estimation for UAVs [9].

In motion generation, invariance refers to obtaining exactly
the same physical desired motion trajectory regardless of the
reference frame in which the trajectory coordinates are ex-
pressed. Human reaching motions, represented as point tra-
jectories, were found to correspond well to a minimum-jerk
profile, an invariant property that was shown to be equivalent
to having a constant equiaffine curvature [10]. Based on this
property, new trajectories can be generated or adapted from
reference trajectories in an invariant way [11]. This and other
invariant properties, such as shape preservation, were considered
for the deformation of trajectories using global transforma-
tions [12]. For rigid-body motion, approaches were proposed

where the trajectories are either generated in a left-invariant
way, meaning independent of the world reference frame, or
in a right-invariant way, meaning independent of the body
reference frame [13]. Invariance was also taken into account
for the adaptation of reference or demonstrated rigid-body
trajectories [14], [15].

Invariance in action recognition refers to recognizing actions
regardless of where and how they are recorded. This can be done
by comparing the recorded action instance and its model using
invariant distance metrics. For example, local invariant signa-
tures were proposed for describing and recognizing object out-
lines [16] and trajectories [17]. These invariant representations
were shown to be invariant to occlusion, rotation, translation,
and scaling.

These previous works showed that invariant representations
offer many advantages that are relevant for different robotics
applications. In the rest of this article we focus on invariant
descriptors for trajectories. These descriptors can be used to
build representative invariant models of a demonstrated task
in an HRI context with fewer demonstrations compared to
conventional methods using coordinate-based descriptors. In
addition, thanks to their invariant properties, these models
enable robust action recognition in different recording con-
texts and exhibit good generalization properties in motion
generation.

A. Invariant Trajectory Descriptors for Motion

Invariant trajectory descriptors are features of the trajectory
that remain unchanged under certain transformations of the
original trajectory coordinates, such as changes in reference
frame, scale, and time profile. Invariant descriptors can be cat-
egorized in many types [18] depending on the features that are
extracted from the curve. Many have been proposed, both for
point trajectories [16], [19], [20], [21], [22] and for rigid-body
trajectories [23], [24], [25], [26], [27].

This article focuses on a particular type of invariant de-
scriptor, referred to as differential invariants [16], [18]. These
invariants correspond to differential-geometric properties of the
trajectory and provide a local invariant representation that is
robust to occlusion and segmentation errors. Furthermore, they
allow reconstructing and generating new trajectories from the
invariant descriptor by integrating corresponding differential
equations. The definition of such local differential-geometric
invariants can be seen as an application of Cartan’s method of
moving frames [28], which consists of defining a natural moving
frame in the considered manifold, after which the derivative
of the frame is shown to correspond to a set of geometric
invariants.

For point motion in Euclidean space, the differential invariants
correspond to curvature and torsion defined in a moving frame
referred to as the Frenet–Serret frame (FS frame). Originally
introduced in vision for characterizing and recognizing objects
by their outlines [16], [29], the same concepts of curvature and
torsion were applied for describing and recognizing point motion
trajectories [17], [20].

For rigid-body motion, differential invariants were introduced
based on the concept of the screw axis in screw theory [25].
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A moving frame was defined on the screw axis of which the
motion was described by a set of invariants referred to as screw
invariants. These invariants are bi-invariant, meaning indepen-
dent of both the world reference frame and the reference frame
attached to the body. An alternative invariant descriptor was
proposed by defining two separate FS frames for the position
and orientation of the rigid body [26], [27], resulting in a simpler
set of formulas. However, invariance for the choice of reference
point for translation (the body frame’s origin) was lost.

Invariant trajectory descriptors for motion have, for the large
majority, been applied in motion recognition [20], [26], [27].
Trajectory generation using invariant descriptors has also been
explored. The invariant descriptors are capable of both recon-
structing the original trajectory [25], as well as reproducing the
trajectory at new locations and in different directions by apply-
ing the correct initial values when integrating the differential
equations [30]. Building further on that, trajectory adaptation
methods based on optimal control and invariant descriptors were
proposed [15]. The goal was to adapt a reference trajectory to
comply with new constraints while minimizing deviation from
the invariant descriptor of the reference trajectory. This was
shown to result in excellent extrapolation capabilities [15].

Calculating differential invariants from measurement data
is challenging due to noise-sensitivity and singularities. Sin-
gularities are defined as instances along the trajectory where
components of the descriptor are arbitrarily defined. Near these
singularities, small variations in the trajectory (e.g., due to
measurement noise or irrelevant human variations) will result
in large variations in the ill-defined components of the descrip-
tor. To remedy this, efforts have been spent to develop robust
approaches to calculate invariant descriptors, ranging from dis-
crete approximations of the descriptor [16], [17], [20], [26] to
averaging the descriptor over segments of the curve [31]. More
recently, approaches based on optimal control were introduced
for calculating point trajectory descriptors [32] and rigid-body
trajectory descriptors [33]. Using optimal control, the local
descriptor is calculated in a window of measurements while reg-
ularization terms deal with singularities and noise by smoothing
the invariants in a local neighborhood. A disadvantage of current
optimal control-based approaches is their dependency on many
tuning parameters for weighting the trajectory accuracy cost and
regularization costs, and their long calculation times.

B. Objective and Contributions

Up till now, invariant trajectory descriptors for interaction
forces with similar benefits as the invariant descriptors for
motion have not been proposed. This article’s main objective
is to extend the existing concepts and methodology for motion
invariants toward interaction forces by exploiting duality
between motion and force. The resulting invariant descriptors
can be used to model motion and force trajectories that occur
in motion-in-contact tasks. Table I summarizes this duality for
the two cases where motion and force trajectories are either
represented with vector coordinates or with screw coordinates.

The main contribution of this article is the introduction of
two types of local differential invariant descriptors for force and

TABLE I
OVERVIEW OF TRAJECTORY TYPES OF WHICH INVARIANT DESCRIPTORS CAN

BE CALCULATED

moment trajectories. The first type is referred to as the vector
invariant descriptor for vector trajectories and is applied to force
and moment vectors separately. The second type is referred to as
the screw axis invariant descriptor for screw trajectories and is
applied to a screw wrench, combining force and moment in one
entity. The duality is shown between the new invariant descrip-
tors for force and moment and the existing invariant descriptors
for motion: the screw invariants for motion [25] and the vector
invariants for translation and rotation [26], [27]. Furthermore,
we explain how to calculate the invariant descriptors for motion
and force using numerical optimal control schemes, which filter
out the effects of measurement noise and improve the behavior
of the descriptor near singularities. Triggered by the higher noise
levels of measured force and moment trajectories compared
to measured motion trajectories, we improved the formulation
of these numerical optimal control schemes compared to [33],
resulting in much more intuitive and faster tuning as well as
increased robustness of the calculation. The invariant properties
of the proposed descriptors were experimentally verified using a
human-demonstrated 3-D contour following task and a peg-on-
hole alignment task. All software used in the validation experi-
ment, including data, has been made publicly available [34].

The rest of this article is organized as follows. Section II pro-
vides the necessary background on rigid-body kinematics and
statics. Sections III and IV introduce local invariant descriptors
in a general form, resulting in existing descriptors when applied
to motion trajectories and new descriptors when applied to force
and moment trajectories. Sections III and IV deal with vector and
screw invariant descriptors, respectively. Section V highlights a
practical 3-D contour following task, while Section VI examines
a peg-on-hole alignment task. Section VII provides a discussion
about the benefits and limitations of the proposed concepts and
methodology, it points at future work and presents a conclusion.

II. PRELIMINARIES

This section reviews essential background and introduces
notation, as summarized in Nomenclature.

A. Rigid-Body Kinematics

The motion trajectory of a rigid body is commonly repre-
sented by attaching a reference frame {b} to the body and ex-
pressing the position and orientation of this frame as a function of
time t with respect to a fixed reference frame {w}, also referred
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Fig. 1. Visualization of screw twist t = (ωT vT )T and screw wrench
w = (fT mT )T in the world frame {w} and in the body frame {b}.

to as the world reference frame. For all variables introduced
below, the explicit dependency on time t is omitted to simplify
the expressions.

The position is represented by the 3-D displacement vector
b
wp from the origin of {w} to the origin of {b}. The orientation
is represented by the rotation matrix b

wR, which expresses the
coordinates of the unit vectors of the moving body frame {b}
with respect to the world frame {w}

b
wR = [ex ey ez]. (1)

Position and orientation can be combined into the homoge-
neous transformation matrix or pose matrix b

wT

b
wT =

[
b
wR

b
wp

0 1×3 1

]
(2)

which is part of the SE(3) group according to Lie theory. The
coordinates of the pose matrix b

wT depend on the choice of the
fixed reference frame {w} in the world and the reference frame
{b} on the rigid body.

The velocity of a rigid body can be fully characterized by two
3-D vectors: the rotational velocity vector ω and the translational
velocity vector v of the origin of the considered reference frame.
These vectors are summarized with a 6-D screw [35], the twist

t =
(
ω

v

)
.

To define the time-derivative of the homogeneous transfor-
mation matrix, Ṫ = dT

dt , we first introduce the operator [·]×.
When applied to the vectorω = [ωx ωy ωz]

T , it results in a 3 × 3
skew-symmetric matrix

[ω ]× =

⎡⎢⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎦ (3)

and when applied to a screw t, it results in the following 4 × 4
twist matrix [t]×, which is an element of the Lie algebra se(3):

[t]× =

[
[ω ]× v

0 1×3 0

]
. (4)

The definition of the time-derivative of the homogeneous
transformation matrix Ṫ depends on the choice of reference
frame in which the twist t is expressed. Choosing the body
frame {b}, the body twist bt

b contains the rotational velocity
vector bω expressed in {b} and the translational velocity vector

bv
b of the origin of {b} and expressed in {b} [see Fig. 1(a)]. The

derivative of the pose matrix b
wṪ is then defined as

b
wṪ = b

w T
[
bt

b
]
× , with

[
bt

b
]
× =

[
[bω ]× bv

b

0 1×3 0

]
. (5)

The body twist bt
b has the property of being invariant for a

change of {w} (left-invariance).
Alternatively, choosing the world frame {w}, the spatial twist

wt
w consists of the rotational velocity vector wω expressed in

{w}, and the translational velocity vector wv
w of the point on

the rigid body that instantaneously coincides with the origin of
{w} expressed in {w}. The pose derivative b

wṪ is then defined
as

b
wṪ = [wt

w]×
b
wT , with [wt

w]× =

[
[wω ]× wv

w

0 1×3 0

]
(6)

where [wtw]× is now multiplied on the left of b
wT since the twist

is expressed in {w}. The spatial twist wt
w has the property of

being invariant for a change of {b} (right-invariance).
The relation between twists wt

w and bt
b is provided by the

6 × 6 screw transformation matrix S( b
wT ) (also referred to as

the adjoint matrix [36]), which is constructed from elements of
the pose matrix b

wT

wt
w = S

(
b
wT
)

bt
b =

[
b
wR 0 3×3[

b
wp
]
×

b
wR

b
wR

]
bt

b. (7)

Twists bt
b and wt

w represent first-order kinematics of the
trajectory and are invariant to the choice of world frame and body
frame, respectively. But neither wt

w nor bt
b is invariant for the

choice of both reference frames{w} and{b}. Trajectory descrip-
tors that are invariant to both reference frames (also referred to
as coordinate-invariance) will be discussed in Sections III and
IV.

B. Duality Between Twist and Wrench as General Screws

All forces and moments acting on a rigid body can be reduced
to a single resultant force vector and a single resultant moment
vector. One option is to express these vectors in the body frame:
bf represents the resultant force expressed in {b}, and bm

b

represents the moment with respect to the origin of {b} and with
coordinates expressed in {b} [see Fig. 1(b)]. Similar to the twist,
a compact notation for the resulting force and moment is the 6-D
screw wrench

bw
b =

(
bf

bm
b

)
. (8)

Transforming the wrench from the body frame {b} to the world
frame {w} is done using the same 6 × 6 screw transformation
matrix S( b

wT ) as for the twist

ww
w = S

(
b
wT
)

bw
b. (9)

This analogy between twists and wrenches is also referred to as
the duality between velocity and force. Both twist and wrench
can be interpreted as a 6-D screw [35], meaning they can always
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be represented by a vector lying along a line in space and the
moment of that vector around the line.

C. Time-Invariance Using a Geometric Progress Variable

In the previous sections, motion and force trajectories were
assumed to be a function of time t. To obtain a time-invariant
trajectory representation, i.e., a trajectory representation that is
invariant with respect to the motion profile, a geometric progress
variable ξ must be chosen.

For tasks where translation is dominant, such as in contour
following, the arc length is a natural choice. The arc length is
calculated by integrating the norm of the translational velocity
vector v over time. For tasks where rotation is dominant, such
as in opening a door, a natural progress variable would be
the integral of the norm of the rotational velocity vector ω.
If translation and rotation are both important, then a progress
parameter can be defined combining the translation and rotation,
for example, using a linear combination [25]

ξ(t) =

∫ t

0

w ‖ω‖+ (1− w) ‖v‖ dt (10)

wherew weights the relative contribution. In [25], further details
are provided for obtaining a progress value that is invariant for
the choice of reference point on the body for the translation v.

For the pose T and wrench w, the reparameterization from
time t to progress ξ is straightforward

T (ξ) = T (t(ξ)) and w(ξ) = w(t(ξ)). (11)

In practice, since measurement data are often only available in
a discretely sampled form, the reparameterization is achieved
through numerical interpolation.

For the velocity, the reparameterization from time t to
progress ξ requires an additional step since velocities represent
derivatives of the trajectory. As an example, the reparameteri-
zation of the translational velocity vector v, as the derivative of
the position p, can be worked out as

v(ξ) =
dp(ξ)

dξ
=

dp(t(ξ))
dt(ξ)

· dt(ξ)
dξ

=
v(t(ξ))

ξ̇(t(ξ))
(12)

where the chain rule of differentiation was applied in the second
equality to obtain the relation with time t, and the progress rate
ξ̇ = dξ

dt is the derivative of the progress with respect to time.
Similar derivations can be made for the rotational velocity vector
ω and the twist t

ω(ξ) =
ω(t(ξ))

ξ̇(t(ξ))
and t(ξ) =

t(t(ξ))

ξ̇(t(ξ))
. (13)

Equations (11)–(13) can be used in the other direction to apply
a motion profile ξ(t) and obtain the pose, wrench, translational
velocity, rotational velocity, or twist as a function of time. This
is relevant, for example, when a trajectory was planned in the
progress domain ξ and needs to be executed with a specific
timing ξ(t). A special choice for the progress variable is one
where ξ = 0 at the beginning of the trajectory and ξ = 1 at the
end of the trajectory. This results in a reparameterization that is
independent of the scale of the trajectory [25].

Fig. 2. Invariant descriptor for a vector trajectory. (a) Object invariant c defined
in the moving FS frame given by the unit vectorset,en andeb. (b) Moving frame
invariants ωτ and ωκ. The figure depicts the special case where c corresponds
to a translational velocity vector with respect to reference frame {w} and where,
for visualization purposes, the moving frame is depicted with its origin chosen
at the corresponding position along the point trajectory (indicated in blue).

III. INVARIANT DESCRIPTOR FOR VECTOR TRAJECTORIES

This section derives a local invariant descriptor for a general
vector trajectory c(ξ). The trajectory c(ξ) is assumed to be
time-invariant, i.e., parameterized as a function of a geometric
progress ξ, as discussed in Section II-C. To keep the formulas
concise, the explicit dependency on ξ is omitted in the following
formulas. The derivative of c with respect to the progress ξ is
represented using the prime notation: c′ = dc

dξ .

A. Definition of Invariants

The vector invariants are based on a generalization of the
Frenet–Serret (FS) equations for translation [37], where c cor-
responded to the translational velocity vector. While in [26], [27]
the FS equations were extended to rotational velocity trajecto-
ries, the aim here is to exploit the duality between velocity and
force so that the invariants can be presented in a general form,
applicable to rotational and translational velocity trajectories, as
well as to force and moment trajectories.

The vector invariants are defined and expressed in a local
moving frame, referred to as the FS frame, which is constructed
as follows. Its first axis, the tangent et, corresponds to the unit
vector in the direction of c. The second axis corresponds to the
normal en of the trajectory. The third axis, the binormal eb,
follows directly from the cross-product of et and en. These unit
vectors are defined as follows from c and c′1:

et =
c

‖c‖ , en =
(c× c′)× c

‖(c× c′)× c‖ , eb = et × en. (14)

In differential geometry, the linear span of et and en is referred
to as the osculating plane, i.e., the plane in which the vector c
rotates instantaneously, while eb represents the axis about which
this rotation occurs. The complete orientation of the FS frame
is expressed using a rotation matrix R̃

R̃ = [et en eb] (15)

where the tilde ∼ indicates it is a local moving frame, in this
case the FS frame. See Fig. 2 for a visualization of the frame.

1To be consistent with the common notation of the FS frame and equations,
the authors adapted the order of the columns et, en, and eb of R̃ with respect to
their previous papers, such as [15], [25], [33]. Therefore, this article has a slightly
different notation than the authors’ previous works. This adaptation affects only
the appearance of the equations, not the concept.



VOCHTEN et al.: INVARIANT DESCRIPTORS OF MOTION AND FORCE TRAJECTORIES 4897

The invariants are then defined as follows. The first invariant
c is the magnitude of the vector c along the tangent:

c = c · et. (16)

This invariant is referred to as the object invariant since it relates
to the object. For example, c can represent the magnitude of the
translational or rotational velocity vector of the object, or the
magnitude of the force or moment vector applied to the object.
The vector c can be retrieved from the object invariant c using

c = R̃ c̃, with c̃ = (c 0 0)T. (17)

The second and third invariants ωκ and ωτ govern the first-order
kinematics of the local FS frame2

R̃
′
= R̃

⎡⎢⎣ 0 −ωκ 0

ωκ 0 −ωτ

0 ωτ 0

⎤⎥⎦ (18)

where ωκ is known as the curvature rate and ωτ as the torsion
rate, with the following explicit formulas [37]:

ωκ =
||c× c′||
||c||2 , ωτ =

((c× c′)× (c× c′′)) · c
||c× c′||2||c|| . (19)

For a naturally parameterized point trajectory, with c the point’s
velocity, ωκ and ωτ correspond to the local curvature κ and
torsion τ of the point’s trajectory.

Equation (18) can be written compactly using (3)

R̃
′
= R̃

[
i
]
×
, with i =

⎛⎜⎝ωτ

0

ωκ

⎞⎟⎠ (20)

where i is referred to as the moving frame invariant since it
models the first-order kinematics of the moving frame.

Only the orientation is relevant for the FS frame, not its
position. Therefore, it is sometimes referred to as an orientation
frame [38]. For visualization purposes, its evolution is often
shown by representing it at the point on the motion trajectory
associated with the progress variable ξ. This was done in Fig. 2,
which shows the definition of the moving frame and the corre-
sponding invariants for a point trajectory.

Singularities: Singularities are defined as instances where
axes of the moving frame and the corresponding invariants are
not uniquely defined anymore. A first type of singularity is when
c = 0. The object invariant c is then zero, while the moving
frame invariants ωκ and ωτ are undefined. In other words, the
complete moving frame is arbitrary.

A second type of singularity is when the vector c has an un-
changing orientation at some instance (c× c′ = 0), remaining
parallel to itself. The first moving frame invariant ωκ is then
zero while the second moving frame invariant ωτ is undefined.
In other words, the tangent of the moving frame is well-defined,
but the normal and binormal axes are arbitrary.

Invariant properties: If the trajectory c(ξ) is expressed as
a function of a geometric progress variable ξ as explained in

2The relation between (18) and the FS equation as usually presented in
literature is derived in the appendix.

Section II-C, then the descriptor (c, i) is also time-invariant.
Furthermore, the descriptor is invariant with respect to the choice
of world frame {w} (both origin and orientation) in which the
coordinates of the given vector trajectory c(ξ) are expressed.
It is evident that a change of {w} merely results in the same
change of orientation for the vectors c, c′, and c′′, resulting in
the same object invariant c, the same FS frame for all ξ, and hence
also the same moving frame invariant i. If the coordinates of c
are instead expressed in {b}, the descriptor is still invariant for
changes in orientation of the body frame {b}. However, not all
considered instances of the descriptor are invariant with respect
to the origin of body frame {b}. As pointed out in [27], the
translational velocity vector v depends on the reference point
on the moving object chosen to express its velocity, hence on
the origin of {b}. Similarly, the moment vectorm depends on the
reference point for expressing the moment acting on the object,
hence on the origin of {b}. The dependency of v and m, and
hence also of their invariant descriptors, on the origin of {b} is
a disadvantage compared to the screw invariants discussed in
Section IV, which do not exhibit this dependency on the chosen
reference point on the moving body.

Trajectory reconstruction: Reconstructing the trajectory c(ξ)
from the invariant descriptor (c̃(ξ), i(ξ)) requires integrating
the differential equation (20) from an initial value of the moving
frame R̃. In general, there exists no closed-form solution for the
integration. Instead, the problem is discretized so that R̃k+1 at
sample k + 1 is found from R̃k at sample k as follows:

R̃k+1 = R̃k exp ([ik]×Δξ) (21)

where we assume that ik remains constant over the integra-
tion step Δξ. The matrix exponential operator exp(·) maps
the skew-symmetric matrix [ik]×Δξ, which is part of the Lie
algebra so(3), into the corresponding change in orientation,
which is part of the Lie group SO(3). An explicit expression
of the matrix exponential can be formulated using Rodrigues’
rotation formula [36]. Given the initial value R̃1 at k = 1, the
moving frame can be reconstructed for all remaining samples
k = 2. . .N . From the moving frames R̃k, the corresponding
vector trajectory ck at k = 1. . .N is found using (17)

ck = R̃k c̃k, ∀k ∈ [1, N ]. (22)

Equations (21) and (22) are referred to as the moving frame
equation and object trajectory equation, respectively. Table II
provides an overview of the vector invariants framework with
application to translational velocity v, rotational velocity ω,
force f , and moment m trajectories.

B. Robust Calculation of Invariants Using Optimal Control

Using the analytical formulas to calculate the vector invariants
c and i has three pitfalls as follows.

1) Near singularities, some of the invariants and axes of the
moving frame R̃ are ill-defined, hence the behavior of c
and i is not well-captured in such case.

2) The high-order derivatives cause sensitivity to noise, es-
pecially near singularities.
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TABLE II
OVERVIEW OF EQUATIONS FOR VECTOR INVARIANTS (TOP HALF) AND SCREW INVARIANTS (BOTTOM HALF)

3) The open-loop reconstructed trajectory using (21)–(22)
is not guaranteed to match the original trajectory due to
integration drift.

In addition, the invariants c and ωκ are always positive by
definition from (16)–(19) resulting in frame flipping issues: the
FS frame must flip 180◦ when the direction of c reverses or
when the curve traced by the vector c has an inflection point.
Other definitions of moving frames exist to minimize the frame’s
rotation, such as Bishop frames [39], but these frames are not
locally defined anymore.

To deal with these problems, we formulate an optimal control
problem (OCP) to calculate the vector invariants c and i in a
robust way. An OCP is a type of optimization problem that,
for a given dynamical system, tries to find control inputs that
minimize a specific cost function over a horizon. Here, the
objective of the optimization problem is to find vector invariants
that reconstruct the given measured vector trajectory. The latter
can be quantified by introducing a trajectory reconstruction cost
ΔcMSE containing the mean-squared error (MSE) between the
reconstructed trajectory ck and measured trajectory cmeas

k for
k = 1. . .N

ΔcMSE(c, c
meas) =

1

N

N∑
k=1

‖ck − cmeas
k ‖2. (23)

To deal with measurement noise and the effects of singular-
ities, a regularization cost is introduced. In general, the reg-
ularization cost can be any function of invariants, including
derivatives of invariants. In [33], the terms in the regularization
cost were chosen as the derivatives of all invariants and the

absolute values of the moving frame invariants. In [33], the
trajectory reconstruction cost and regularization cost were added
in the objective function of the OCP, and as a result they had to
be weighted with appropriate weighting factors, requiring an
extensive tuning process.

To reduce tuning efforts and improve interpretability of cho-
sen parameters, this article proposes a new formulation of the
OCP. The trajectory reconstruction cost is moved to the con-
straints of the OCP and is bounded by a chosen tolerance value
ε. For vector trajectories, this is worked out as follows:

ε2c ≥ ΔcMSE(c, c
meas) (24)

in which εc is interpreted as the desired tolerance on the trajec-
tory reconstruction cost over the entire horizon. The subscript
in εc refers to the type of trajectory that is considered. The value
of ε can be set by the user based on the expected accuracy of the
measurement system or the tolerable reconstruction error for the
given application.

For the regularization term in the objective function, we take
the squared norm of the moving frame invariants i. Since i
signifies the rotational change of the moving frame, this will
result in a more stable and smooth evolution of the moving frame
R̃. To avoid frame flipping issues, all invariants are allowed to
become positive or negative, resulting in a smoother evolution
of the FS frame.

The complete OCP to calculate the vector invariants c̃ and i
from a given sequence of N measured vectors cmeas

k is

minimize
c̃[·],i[·],c[·], ˜R[·]

N−1∑
k=1

‖ik‖2 (25)
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subject to

ε2c ≥ ΔcMSE(c, c
meas) (r.24)

R̃k+1 = R̃k exp ([ik]×Δξ) , ∀k ∈ [1, N ] (r.21)

ck = R̃k c̃k, ∀k ∈ [1, N ] (r.22)

R̃
T

1 R̃1 = I3×3. (26)

Besides the trajectory error constraint (24), the constraints con-
sist of the trajectory reconstruction equations (21)–(22), while
constraint (26) imposes orthonormality conditions on the initial
moving frame. The orthonormality of R̃ is preserved throughout
the entire horizon through the matrix exponential integrator
in (21).

Initialization: The OCP (25)–(26) is a nonconvex optimiza-
tion problem and therefore multiple local minima may exist.
The solution will converge toward one of the local minima
depending on the initialization of the unknown variables. To
obtain invariant solutions regardless of the reference frame
in which the variables are represented, the variables must be
initialized in an invariant way. One possibility is to calculate
initial values for the invariants and moving frames using the
analytical formulas (15)–(19), as was done in [33]. However, this
initialization then suffers from the same three pitfalls mentioned
at the beginning of this section.

We propose an alternative initialization approach here based
on calculating an average moving frame, first introduced in [40]
for screw trajectories, but adapted here to vector trajectories in
three steps. First, calculate the covariance matrix Cc associated
with the measured vector trajectory cmeas

k

Cc =
1

N

N∑
k=1

cmeas
k (cmeas

k )T . (27)

Second, the orthogonal matrix of eigenvectors U c is calculated
from Cc. This matrix U c is invariant for changes in reference
frame by definition and can be interpreted as a sort of average
FS frame for the whole trajectory. The signs of the first two
eigenvectors are chosen unambiguously by making the average
value of the measurement vector cmeas

k positive along these
directions. The third axis then follows from the cross product
of the first two axes. All moving frames R̃k are initialized with
the average moving frame U c.

Third, to be consistent with the average moving frame, the
moving frame invariants ωκ and ωτ are initialized with zero val-
ues. The object invariant ck is initialized by projecting the vector
trajectory cmeas

k onto the average moving frame and selecting the
component along the first axis for all samples k.

Application to motion and force data: The calculation of
vector invariants using OCP (25)–(26) can directly be applied to
translational velocity trajectories v(ξ), rotational velocity tra-
jectories ω(ξ), force trajectories f(ξ), and moment trajectories
m(ξ).

However, in many applications involving rigid-body motion,
the measured data corresponds to position and orientation coor-
dinates of the rigid body, instead of translational and rotational
velocity vectors. In this case, one option is to use the following

two-step approach. 1) Estimate the rigid-body velocities from
the measured position and orientation coordinates. 2) Apply
OCP (25)–(26) to the estimated velocity vectors. A downside
of this first option is that integration of the optimized velocity
vectors to reconstruct position and orientation coordinates will
inevitably result in integration drift, such that there will be a
deviation between the measured and reconstructed positions and
orientations.

A second option is to adapt optimization problem (25)–(26) to
include position or orientation measurements. In the following,
this is worked out assuming the measured positions are given
by position vectors and the measured orientations by rotation
matrices. The proposed approach can be adapted to deal with
other orientation representations, such as quaternions.

Including position measurements for case c = v: The recon-
structed position vectors pk at each sample are introduced as ad-
ditional variables in the OCP. The trajectory reconstruction cost
ΔcMSE(c, c

meas) in (23) is now replaced by the mean-squared
error between the reconstructed position pk and the measured
position pmeas

k over k = 1. . .N

ΔpMSE(p,p
meas) =

1

N

N∑
k=1

‖pk − pmeas
k ‖2. (28)

The reconstructed positions are defined by extending the
integrator in (21) with a fourth row and column[
R̃k+1 pk+1

0 1×3 1

]
=

[
R̃k pk

0 1×3 1

]
exp

([
[ik]× c̃k

0 1×3 0

]
Δξ

)
.

(29)
The effect of these additions is that c̃k, which in this case signifies
the translational velocity in the moving frame, is used to update
the position pk.

Including orientation measurements for case c = ω: The
workflow is similar as for position. Variables for the recon-
structed rotation matrices Rk at each sample are introduced.
The trajectory reconstruction cost ΔcMSE(c, c

meas) in (23) is
replaced by a first-order approximation of the mean-squared
rotation angle [41] between the reconstructed rotation matrix
Rk and the measured rotation matrix Rmeas

k over k = 1. . .N

ΔRMSE(R,Rmeas) =
1

N

N∑
k=1

∥∥∥(Rmeas
k )TRk − I3×3

∥∥∥2
Fu

(30)

where ‖ · ‖Fu
corresponds to a Frobenius norm that is applied

to the upper-triangular part of the matrix. The reconstructed
rotation matrices Rk are defined by integrating ck, which now
signifies the rotational velocity, in an additional reconstruction
constraint

Rk+1 = exp ([ck]×Δξ)Rk, ∀k ∈ [1, N ]. (31)

Finally, adding the constraint RT
1 R1 = I3×3 ensures that or-

thonormality is preserved throughout the trajectory.

IV. INVARIANT DESCRIPTOR FOR SCREW TRAJECTORIES

This section derives a local invariant descriptor for a screw
trajectory s(ξ), parameterized with respect to a progress
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variable ξ

s(ξ) =

(
a(ξ)

b(ξ)

)
, with a, b ∈ R3×1 (32)

where a is the direction part of the screw and b the moment
part. Again we omit the explicit dependency on ξ for conciseness
while the derivative of swith respect to the progress ξ is denoted
as: s′ = ds

dξ .

A. Definition of Invariants

The screw invariants are based on a generalization of screw
theory for rigid-body kinematics and statics. In 1900, Ball [35]
published a complete theory of screws based on the theorems
of Chasles and Poinsot. Chasles’ theorem states that any rigid-
body displacement can always be represented as a rotation and
translation along an axis in space. Poinsot’s theorem is the dual
to Chasles’ theorem and it states that all forces and moments
acting upon a rigid body can always be replaced by a single
force and moment along an axis in space. This duality allows us
to calculate the screw invariants of a wrench trajectory similar
to how it was done for a twist trajectory in [25]. Hence, s can
represent either a twist t or a wrench w. In screw theory, the
screw axis refers to the axis along which the twist or wrench
can be expressed [42], but commonly it is also referred to as the
instantaneous screw axis (ISA) to highlight its instantaneous
nature.

The screw invariants are expressed in a local moving frame,
referred to as the ISA frame, which is constructed as follows.
The orientation of the ISA frame is completely determined by
a, the direction part of the screw, i.e., ω for a twist and f for
a wrench. Hence, this orientation, represented by the rotation
matrix R̃, is calculated in a similar way as the FS frame using
(15) after replacing c by a. Now, the tangent et is along the
ISA, while the binormal eb is in the direction in which the ISA
is instantaneously rotating.

On the other hand, the origin of the ISA frame p̃ is defined
as the point on the ISA about which the ISA is instantaneously
rotating. An analytic procedure to derive this origin was pro-
posed in [25]. We summarize it here as a two-step procedure,
illustrate it schematically in Fig. 3(a), and refer to [25] for more
detail. First, the point p̃⊥ on the ISA closest to the origin of the
reference frame is determined

p̃⊥ =
a× b

‖a‖2 . (33)

Second, the parallel displacement p̃‖ along the ISA (from p̃⊥ to
p̃) is defined [25]

p̃‖ =
‖a‖2

‖a× a′‖
(
p̃ ′
⊥ · en

)
(34)

such that the origin of the ISA frame is found by their addition

p̃ = p̃⊥ + p̃‖et. (35)

As opposed to the FS frame, the ISA frame is a complete moving
frame having both a position and orientation, which can be

Fig. 3. Invariant descriptor for a screw trajectory. (a) Object invariants a and
b defined in the moving ISA frame given by the unit vectors et, en, eb, and the
origin p̃ = p̃⊥ + p̃‖et. (b) Moving frame invariants ωκ, ωτ , vb, and vt. The
figure shows the special case where the screw s corresponds to the screw twist
t, representing the motion of the rigid body {b} w.r.t {w}.

expressed using the pose matrix T̃

T̃ =

[
R̃ p̃

03×1 1

]
. (36)

With the ISA frame determined, the screw invariants can be
defined. The first two invariants a and b are defined, respectively,
as the components of a and b along the ISA

a = a · et, b = b · et. (37)

These two invariants are referred to as object invariants since
they relate to the object: for motion, they correspond to the
rotation and translation of the object along the ISA, while for
force, they correspond to the force and moment applied to the
object along the ISA.

The screw trajectory is reconstructed from the object invari-
ants using a screw transformation matrix S(T ) as in (7)

s= S(T̃ ) s̃, with s̃= (a 0 0 b 0 0)T . (38)

The first-order kinematics T̃
′
of the ISA frame T̃ is completely

determined by four invariants

T̃
′
= T̃

⎡⎢⎢⎢⎣
0 −ωκ 0 vt

ωκ 0 −ωτ 0

0 ωτ 0 vb

0 0 0 0

⎤⎥⎥⎥⎦ . (39)

Here,ωκ andωτ correspond to the curvature rate and torsion rate
of the vector a, which is the direction part of the screw s. Hence,
the invariants ωκ and ωτ are calculated using similar formulas
as in (19), with c replaced by a. This is evident because, for all
ξ, the orientation part R̃ in (36) is calculated in exactly the same
way as R̃ in (15) for the FS frame. Hence, also its derivative is
the same. The invariants vb and vt correspond to the translation
of the origin of the ISA frame along eb and et and are defined
as [25]

vb = p̃ ′
⊥ · eb, and vt = p̃ ′

⊥ · et + p̃ ′
‖. (40)

Equation (39) can be written compactly using (4)

T̃
′
= T̃ [i]× , with i = (ωτ 0ωκ vt 0 vb)

T (41)
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where i is referred to as the moving frame invariant since
it models the first-order kinematics of the ISA frame. Fig. 3
visualizes the definition of the moving frame T̃ , the object
invariants a and b, and the moving frame invariant i.

Singularities: The singularities of the screw invariants bear a
strong relationship with the singularities of the vector invariants.
The first type of singularity occurs when the direction vector is
zero (a = 0). The object invariant a is zero while the moving
frame invariants ωκ, ωτ , vt, and vb are undefined. In other
words, the complete moving frame is arbitrary. In this case, the
moment vector b, i.e., v for twist and m for wrench, can still
be used to construct the orientation of the moving frame using
the vector invariants defined in Section III. This singular case is
also referred to as infinite pitch or pure moment for motion and
force, respectively.

The second type of singularity occurs when the screw axis
has an unchanging direction (a× a′ = 0) so that it remains
parallel to itself. As a result, the invariant ωκ is zero, while the
other moving frame invariants ωτ , vt, and vb are undefined. The
perpendicular distance p̃⊥ is still defined. In other words, the
direction of the ISA and perpendicular distance to the ISA are
well-defined in this case, but the parallel distance p̃‖ and normal
and binormal axes are arbitrary. In this case, the derivative of the
perpendicular distance p̃ ′

⊥ can be used instead of a to construct
the normal and binormal axes. Thus, it is possible to determine
the complete orientation and perpendicular distance of the ISA
frame, but not its position along the ISA since p̃‖ is undefined.

Invariant properties: All the invariant properties of the vector
invariants in Section III also hold for the screw invariants. The
key advantage of the screw invariants compared to vector invari-
ants is their additional invariance to the choice of the location of
the reference point on the object. In other words, screw invariants
are invariant to the choices of both the world frame {w} and body
frame {b} in which the screw coordinates s may be expressed.
This property is also referred to as bi-invariance [36].

Trajectory reconstruction: Reconstructing the trajectory s(ξ)
from the invariant descriptor (s̃(ξ),i(ξ)) requires numerical
integration of the differential equation (41). Discretizing the
problem again, the moving frame T̃ k+1 at sample k + 1 can
be found from T̃ k at sample k as follows:

T̃ k+1 = T̃ k exp
(
[ik]× Δξ

)
(42)

where we assume that ik remains constant over the integration
step Δξ. The matrix exponential operator exp(·) maps the
matrix [i]×Δξ, which is part of the Lie algebra se(3) into
the corresponding change in pose, which is part of the Lie
group SE(3), and has a closed-form expression under the given
assumptions [36]. Given the initial value for T̃ 1 at k = 1, the
moving frame T̃ k can be reconstructed for all remaining samples
k = 2. . .N . From the moving frames, the corresponding screw
trajectory sk is retrieved using (38)

sk = S(T̃ k) s̃k, ∀k ∈ [1, N ]. (43)

Table II (bottom half) provides an overview of the screw in-
variants framework with applications to rigid-body twist t and
wrench w trajectories.

B. Robust Calculation of Invariants Using Optimal Control

Calculating screw invariants s̃ and i with the analytical for-
mulas has similar problems related to singularities, sensitivity to
noise, and integration drift during reconstruction, as mentioned
in Section III-B for vector invariants.

To address these problems, we again formulate an OCP, of
which the objective is to find the screw invariants that reconstruct
the given measured screw trajectory in a robust way. This is
reflected by introducing a cost Δsk that contains the difference
between the reconstructed sk and measured screw trajectory
smeas
k at sample k

Δsk = sk − smeas
k =

(
Δak

Δbk

)
. (44)

Similarly as in Section III-B, a mean-squared trajectory recon-
struction error is formulated, but the errors on the directional part
of the screw ΔaMSE and the moment part of the screw ΔbMSE

are considered separately

ε2a ≥ ΔaMSE(s,s
meas) =

1

N

N∑
k=1

‖Δak‖2 (45)

ε2b ≥ ΔbMSE(s,s
meas) =

1

N

N∑
k=1

‖Δbk‖2 (46)

bounded by tolerance εa for the direction part of the screw and
tolerance εb for the moment part of the screw.

A regularization cost is introduced for the moving frame
invariants to achieve a more stable and smooth evolution of
the moving frame T̃ in the presence of measurement noise and
singularities

N−1∑
k=1

‖ik‖2L =
N−1∑
k=1

ω2
κ[k] + ω2

τ [k] +
1

L2

(
v2n[k] + v2b [k]

)
(47)

whereL signifies a chosen length scale with units [m] to properly
compare rotational and translational invariants.

The complete OCP to calculate the screw invariants s̃ and i

from a given sequence of N measured screws smeas
k is

minimize
˜s[·],i[·],s[·], ˜T [·]

N−1∑
k=1

‖ik‖2L (48)

subject to

ε2a ≥ ΔaMSE(s,s
meas) (r.45)

ε2b ≥ ΔbMSE(s,s
meas) (r.46)

T̃ k+1 = T̃ k exp
(
[ik]× Δξ

)
, ∀k ∈ [1, N ] (r.42)

sk = S(T̃ k) s̃k, ∀k ∈ [1, N ] (r.43)

T̃
−1

1 T̃ 1 = I4×4. (49)

Besides the trajectory error constraints (45)–(46), the constraints
consist of the trajectory reconstruction equations (42)–(43),
supplemented with an orthonormality constraint on the initial
moving frame T̃ 1.
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Initialization: Similarly as for vector invariants, an invariant
initialization of the variables in the OCP can be done using either
the analytical formulas or an approach based on an average
moving frame [40]. The latter is summarized as follows. The
orientation of the moving frames T̃ k is initialized using the same
approach as for vector trajectories, based on the directional part
of the measured screw trajectory smeas

k . The origin of the moving
frames T̃ k is initialized using the average intersection point of
all the instantaneous screw axes corresponding to the measured
screw trajectory smeas [40]. The moving frame invariantsωκ,ωτ ,
vb, and vt are initialized with zero values. The object invariants
ak and bk are initialized by transforming the screw trajectory
smeas
k to the average moving frame and selecting the components

along the first axis for each sample k.
Application to motion and force data: The calculation of screw

invariants using OCP (48)–(49) can directly be applied to twist
trajectories t(ξ) and wrench trajectories w(ξ).

Similarly as in Section III-B, if the measured motion data
consists of positions and orientations of the rigid body, instead
of twists, the optimization problem (48)–(49) can be adapted to
include the object’s pose. In the following, this is worked out
assuming the positions and orientations are given by homoge-
neous transformation matrices. The proposed approach can be
adapted to other pose representations, such as dual quaternions.

Including pose measurements for case s= t: Additional
variables are introduced for the reconstructed pose matrices

T k =
[

Rk pk

01×3 1

]
at each sample k. The trajectory reconstruc-

tion costs ΔaMSE and ΔbMSE in (45)–(46) are replaced by the
mean-squared errors between the reconstructed and the mea-
sured rotation matrices and positions

ΔRMSE(R,Rmeas) =
1

N

N∑
k=1

∥∥∥(Rmeas
k )TRk − I3×3

∥∥∥2
Fu

(50)

ΔpMSE(p,p
meas) =

1

N

N∑
k=1

‖pk − pmeas
k ‖2. (51)

The reconstructed pose matrices T k are defined by integrating
sk, in this case signifying the object’s twist, in additional recon-
struction constraints

T k+1 = exp
(
[sk]× Δξ

)
T k, ∀k ∈ [0, N ]. (52)

Finally, adding an orthonormality constraint on the initial pose
T 1, such as in (49), ensures that orthonormality is preserved.

V. APPLICATION TO 3-D CONTOUR FOLLOWING

This section demonstrates the use and benefits of screw and
vector invariant descriptors for both motion and force trajecto-
ries by analyzing a human-demonstrated 3-D contour following
task, shown in Fig. 4. The human operator holds the tool while
following the contour and pressing the tool’s five contact wheels
(diameter 22mm) against the contour.

The contour consists of the edge between two contact surfaces
that form an angle of 90◦ in each point along the contour [see
Fig. 4(c)]. Each of the five contact wheels takes away one degree
of freedom for the motion of the tool relative to the contour, while

Fig. 4. 3-D contour following setup. (a) Demonstration setup showing tool
and contour. (b) 3-D drawing showing the three assigned frames on the tool:
tracker {tr}, force/torque sensor {fs}, and TCP {tcp}. (c) Cross-section of the
contour showing the reference contact force f .

creating one degree of freedom to apply a contact force. Hence,
every point along the contour is characterized by a 1-dof vector
space of possible twists and a 5-dof vector space of possible
contact wrenches. This makes the application interesting, as
we expect to obtain a very good repeatability of the invariant
descriptors for motion among different demonstrations, while
we expect to see the effect of human variation among the demon-
strations in the invariant descriptors for force. Furthermore, the
contour is designed to have a symmetric curvature profile and an
antisymmetric torsion profile, both with respect to its midpoint.
The contour starts and ends with a straight line segment (no
curvature or torsion).

A. Experimental Setup

An HTC VIVE motion capture system, consisting of a tracker
mounted on the tool and a camera (not shown in Fig. 4), records
the pose trajectory of the tool with respect to a reference frame
attached to the camera. This frame is chosen as the world frame
{w}. The system records the pose trajectory with a frequency of
200 Hz and an accuracy in the order of a few millimeters and a
few degrees. The contact force/torque is measured with the same
frequency using a 6-axis JR3 force/torque sensor. The nominal
accuracy of this force/torque sensor is ±1% of its standard
measurement range which is ±800 N along the central axis
(Z-axis) and ±400 N in the horizontal plane (XY-plane) for the
force, and ±24 Nm in all directions for the moment.

Three frames are rigidly attached to the tool: the motion
tracker frame {tr}, the force/torque sensor frame {fs}, and the
tool-center-point (TCP) frame {tcp}. The {tcp} frame is defined
such that, when the tool is tracking a straight-line segment, the
origin of {tcp} corresponds to the intersection of the contour’s
edge and the symmetry axis of the cylindrical part of the tool
[see Fig. 4(c)]. One axis of the {tcp} frame is along the edge
and the remaining two axes are along the two surfaces. (For
completeness: if the edge has curvature and/or torsion, the {tcp}
frame will deviate slightly from this contour-centered definition
due to the complex contact geometry).

To introduce variation in the measurements, the tracker can
be physically attached to the tool at different locations, further
discussed in Section V-C. However, the location of the force
sensor relative to the tool cannot be changed in the current setup.
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Instead, and without loss of generality, we can artificially trans-
form the physically measured wrenches to a different, virtual
frame on the tool using a screw transformation matrix S as in
(9). We can take this one step further and in a similar manner
transform the physically measured wrenches to the world frame
{w}. This way we can, again without loss of generality, simulate
an alternative experimental setup in which the force sensor is
fixed to the world instead of the tool, i.e., representing a situation
where the force sensor is placed underneath the support to which
the contour is fixed.

B. Objectives

A first objective is to show that the invariant descriptors have
a physical interpretation and to obtain evidence that they are
calculated correctly using the OCPs. It is, however, very difficult
to calculate the ground truth invariants given the complex contact
geometry involving five contact wheels with finite radii and
finite mutual distances. Instead, we calculated reference values
to compare the invariants with, for the limit case of an infinitely
small set of contact wheels and a contact wrench, which corre-
sponds to a pure force with constant magnitude ‖f‖ = 25N, as
shown in Fig. 4(c). In this limit case, the pose of {tcp} is easily
derived from the contour’s CAD data. The wrench is then also
uniquely defined and constant in any frame attached to the tool.
From the reference pose and reference wrench we calculate the
corresponding invariant descriptors using the same OCPs as for
the human-demonstrated data.

A second objective is to confirm the invariant properties of
the vector invariants and the screw invariants, as discussed in
Sections III and IV, respectively. Furthermore, we want to point
out the practical benefits of these properties in terms of relaxed
calibration needs. We also want to show the difference between
the invariant descriptors depending on the perspective of the
input data: as the motion and wrench trajectories can be defined
either with respect to the world or with respect to the moving
body, the corresponding moving frame invariants will also model
the motion of the moving frame with respect to the world or the
moving body, and hence they will be different.

A third objective is to confirm that the new formulation
of the OCPs for calculating the invariants, as introduced in
Sections III-B and IV-B, allows for an intuitive and effective
parameter tuning.

A fourth and final objective is to confirm that the trajecto-
ries reconstructed from the calculated invariants are accurate
and driftless, even when the trajectories are reconstructed in a
different region in space.

C. Experiment Design

Twelve demonstrations of the 3-D contour following task
were recorded. According to the experimental protocol, the
operator was asked to repeat the task 12 times by starting
from approximately the same location (at the end of the initial
straight-line segment) and approximately ending at the same
location (at the beginning of the final straight-line segment).
The operator was also asked to try to maintain a constant pure
contact force, as shown in Fig. 4(c), because this can be shown

Fig. 5. Six different configurations of the motion tracker on the tool.

TABLE III
EACH OF THE 12 DEMONSTRATION TRIALS IS LISTED WITH ONE OF THE SIX

CONFIGURATIONS OF THE MOTION TRACKER (SEE FIG. 5) AND WITH THE

ARTIFICIAL TRANSFORMATION THAT WAS APPLIED TO THE MEASURED POSES

TO SIMULATE A LARGE VARIATION IN THE WORLD (I.E., CAMERA) FRAME

to be a very good strategy to ensure that the five wheels remain
in contact with the contour. Both instructions contributed to
limiting human variation in the task execution.

Each of the 12 demonstrations was recorded with the tracker
physically attached to the tool in one of six different locations,
shown in Fig. 5 (i.e., two demonstrations per tracker location),
resulting in significantly different pose trajectories. In addition,
the physically measured contact wrenches were artificially trans-
formed from the force sensor frame {fs} to the tracker frame
{tr} used in the demonstration, simulating a change in location
of the force sensor and resulting in significantly different wrench
trajectories.

The screw invariants are expected to be invariant for the
previous variations, but the vector invariants are not. To verify
the repeatability of the vector invariants, it is necessary to
pick a well-chosen reference point on the tool to express the
position and moment trajectories, the same reference point for
all demonstrations. The obvious choice was the origin of {tcp},
both for the position and moment trajectories. Hence, for this
specific case, the measured pose and wrench trajectories of the
12 demonstrations were additionally transformed to the {tcp}
frame. Note that this requires calibration of the origins of {tr}
and {fs} with respect to {tcp}, but this is required solely for the
vector invariants, not the screw invariants.

The 12 resulting pose trajectories were further modified by
changing the pose of the world reference frame relative to the
contour, simulating a change in camera viewpoint. Table III lists
the different artificial transformations that were applied to each
of the 12 trials together with their corresponding tracker con-
figuration. Changing the world reference frame is not expected
to affect the screw or vector invariants for motion. Obviously,
such change also does not affect the wrench trajectories and the
resulting wrench invariants since the force sensor is attached to
the tool, not to the world.
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To simulate the alternative experimental setup in which the
force sensor is fixed to the world, the 12 measured wrench
trajectories were artificially transformed to a single frame, fixed
to the world underneath the contour, about halfway the contour.
The exact location of this frame relative to the contour is not
known or calibrated, but this does not affect the screw invariants.

Finally, to show that the trajectories reconstructed from the
invariants are accurate and driftless, the motion and force trajec-
tories were reconstructed at a new location and were compared
with the measured trajectories, after they were globally trans-
formed to the same location.

D. Data Processing

This section explains how the screw and vector invariants are
calculated from the measured pose and wrench trajectories and
the reference pose and wrench trajectories.

Preprocessing: There are two preprocessing steps: segmenta-
tion and reparameterization.

The purpose of segmentation is to extract the motion-in-
contact part from a complete demonstration, which also includes
an approach-to-contact motion, a retract motion, and two sta-
tionary parts while in contact, at the start and the end of the
actual contour tracking motion. Segmentation is achieved by
using a threshold for the magnitude of the force (5N) to detect
contact, and a threshold for the magnitude of the translational
velocity of the TCP (0.05m/s) to remove the stationary parts of
the demonstration.

Reparameterization involves changing the time-based input
trajectories to trajectories that are function of an alternative
progress variable. As discussed in Section II-C, for tasks with
dominant translation like contour following, the integral of the
translational velocity is a natural choice. Accordingly, we chose
the progress variable ξ as the integral of the TCP’s velocity,
because it best reflects the arc length along the contour. Finally,
we rescaled the progress variable to a dimensionless variable
ranging from 0 to 1, making it independent of the scale of the
contour.

Calculation of the invariants: The force invariants were
calculated from the wrench measurements using the original
OCPs: (25)–(26) for vector invariants and (48)–(49) for screw
invariants. The motion invariants were calculated from the pose
measurements using the adapted versions of the OCPs using
(28)–(31) for the vector invariants and (50)–(52) for the screw
invariants. All OCPs were specified using the nonlinear opti-
mization framework CasADi [43] and solved using a primal-dual
Newton method with IPOPT [44].

Initialization of the OCP: For initializing the moving frames,
we followed the initialization approaches based on an average
moving frame as explained in Sections III-B and IV-B with
a minor variation. Due to the symmetry and antisymmetry
in the contour, averages calculated over the trajectory might
become approximately zero. To avoid confusion in determining
the signs, we calculated the average over the last two-thirds of
the trajectory. The motion invariants are calculated using pose
measurements as input. However, the initialization routine uses
velocity and twist data as input. Hence, for motion, numerical

differentiation is performed to estimate the velocities and twists
as inputs for the initialization routine.

Tuning of the OCPs: Vector and screw invariants for motion
and force were calculated using measured position, orientation,
force, and moment trajectories as inputs. For every type of
trajectory, a tolerance ε related to the desired accuracy of the
reconstructed trajectory had to be chosen, such as for example in
(24) for the vector trajectories. To maintain an intuitive relation
between the values for these tolerances and the accuracy of
the measurement systems, we expressed these tolerances in the
respective sensor frames. All reported results were obtained
using the following intuitive values. εp = 2 mm for position
and εR = 2◦ for orientation, which corresponded to a rough
estimation of the accuracy of the motion capture system, and
εf = 0.8 N for force and εm = 0.16 Nm for moment, which
corresponded to the estimated noise levels of the force/torque
measurements. To calculate screw invariants, a length scale L
must be chosen to properly compare rotational and translational
invariants. For the application we chose L = 0.5 m, i.e., the
length of the contour’s edge.

Reconstructing trajectories from invariants: The pose trajec-
tory T (ξ) of the tool and the contact wrench trajectory w(ξ)
were reconstructed from the screw invariant descriptors at a new
location in space. This was done by supplying new initial moving
frames T̃ (0) for both motion and wrench, and a new initial
pose of the tool T (0) in the trajectory reconstruction equations
(42), (43), and (52). The frames were specified by globally
transforming the original calculated initial frames to the new
location. Time-based trajectories T (t) and w(t) were obtained
by reapplying the time profile ξ(t) that was extracted from
the demonstration using the inverse of the reparameterization
in (11).

E. Results and Discussion

Figs. 6–11 summarize the experimental results. Figs. 6–8
contain screw and vector invariants: motion invariants with
respect to the world (see Fig. 6), force invariants with respect
to the tool (see Fig. 7), and force invariants with respect to
the world (see Fig. 8). Additional results for other cases can
be generated in the provided software [34]. Each plot contains
12 thin lines corresponding to each of the 12 demonstrations.
The thick dotted blue line represents the reference values for
the limit case. The variation among the demonstrations is given
by the two-sigma band depicted in gray. For all invariants, the
dimensionless arc length ξ defined in Section V-D is chosen
as the progress variable. Fig. 10 visualizes the corresponding
evolution of the different moving frames for one demonstration.
Note that in the subfigures of Fig. 10, the contour is only posi-
tioned approximately3 because its true pose was not recorded.
Fig. 11 visualizes motion and force trajectories reconstructed
from the invariants at a new location. In the following, the results
are discussed in detail.

Motion invariants with respect to world: Fig. 6(a) shows
the screw invariants for motion. The object invariants a and

3This approximation is based on the spatial alignment of the recorded trajec-
tory of {tcp} with the edge of the contour [45].
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Fig. 6. Screw and vector invariants calculated from position and orientation
of tracker or tool point on manipulated tool, measured in the world frame.

b describe the rotation and translation of the object along the
screw axis, while the moving frame invariants ωκ, ωτ , vb, and
vt describe the rotation and translation of the moving frame
attached to the screw axis. Recalling that each demonstration has
different tracker and world frames, the relatively small variations
between demonstrations confirm the invariance properties of
the screw invariants. Even in the presence of human variations,
relatively small variations between the demonstrations and good
correspondence with the reference values from the limit case are
obtained. This is explained by the constrained motion, allowing
variations in only 1-dof. Due to the special design of the contour,
clear symmetric or antisymmetric profiles with respect to the
midpoint were expected and were obtained. The motion of the
moving frames for one trial is visualized in Fig. 10(a).

Fig. 6(b) shows the vector invariants for orientation. Accord-
ing to the analytical formulas, they should correspond to the
invariants for the directional component of the screw for motion
[top row in Fig. 6(a)]. The reason why they are not exactly the
same is explained by the OCP-based calculation approach. In

Fig. 7. Screw and vector invariants calculated from measured force and
moment trajectories, transformed to either the tracker or the tool center frame.

Fig. 8. Screw invariants calculated from measured wrench transformed to the
world frame.

this approach, the calculation for orientation and translation
are coupled into a single OCP for the screw invariants and
hence they are subject to a joint regularization. Nevertheless,
the overall evolution of the vector invariants for orientation and
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Fig. 9. Screw invariants calculated from a simulated wrench in the world frame
to study the reduction in variation with respect to Fig. 8.

Fig. 10. Moving frames calculated from data of trial 5. (a) ISA frames
calculated from the tool’s motion in the world. The red arrows correspond to
the ISA itself, which is the first axis of the moving frame. The green and blue
arrows correspond to the second and third axes, respectively. The two blue circles
indicate the translation of the ISA frames toward the other side of the contour at
the inflection points. (b) ISA frames calculated from interaction wrench, relative
to the tool. (c) ISA frames calculated from wrench w.r.t the world. (d) FS frames
calculated from the position of the TCP. The red arrows correspond to the tangent
along the contour, which is the first axis of the moving frame.

the invariants for the directional component of the screw are still
similar.

Turning to the vector invariants for translation, Fig. 6(c)
confirms that they are not invariant for changes of the tracker
location, serving as the reference point to define the translation
of the tool. This noninvariance can be resolved by picking the
same reference point for all demonstrations, in this case the
origin of {tcp}, as shown in Fig. 6(d). In this figure, c represents
the magnitude of the translational velocity vector, while ωκ

and ωτ represent the dimensionless curvature and torsion of the
point curve tracked by the origin of {tcp}. From all the figures,
Fig. 6(d) exhibits the best correspondence between the reference
limit case and the demonstrations. This is to be expected since

Fig. 11. Reconstruction of the motion and wrench trajectory of trial 7 at a
new location given the screw invariants of the measured trajectory seen from
the world. The motion of the follower is shown using the position of the TCP
and the orientation of the follower. The force on the follower is depicted by the
red arrows at the corresponding position of the TCP. The initial ISA frames for
motion and wrench, necessary for reconstruction, are also depicted.

the limit case models the translation of the {tcp}-frame along
the edge. For this limit case, c is approximately constant (about
0.5 m/-). Its integral (also close to 0.5 m) represents the arc
length of the point curve tracked by the origin of {tcp}. The
small values for the torsion rate indicate that this point curve lies,
at least locally, approximately in a plane. The small differences
between the limit case and the demonstrations are due to the
finite dimensions of the tracking tool and due to measurement
errors. The moving FS frames corresponding to these vector
invariants for one demonstration are visualized in Fig. 10(d).

Given the geometry-based definition of the invariants, they
can be used to segment the trajectory into meaningful parts.
For example, in the screw invariants in Fig. 6(a), we notice two
inflection points at ξ ≈ 0.2 and at ξ ≈ 0.8: while the rotational
velocity a changes sign at these progress values, the peaks in
vb show that the position of the ISA is rapidly shifting from
a center of curvature on one side of the contour to the other
side of the contour. This is confirmed by the visualization of the
corresponding ISAs in Fig. 10(a).

Force invariants with respect to tool: More variation among
demonstrations was expected in the wrench invariants because,
although the operator was instructed to apply a pure force in a
specified direction and through a specific point of the tool, the
operator could at any time apply a wrench in a local 5-dof space.
The higher noise levels associated with force measurements may
cause additional variation compared to the motion invariants.
Note that a pure force that remains parallel to itself corresponds
to the second type of singularity, mentioned in Section IV. This
singularity applies to both vector and screw invariants.

Fig. 7(a) shows the screw invariants. Recalling that each
demonstration has a different transformed force sensor frame,
these plots confirm that the screw invariants are invariant for
such transformation. The plot of invariant a shows that the
operator was able to maintain relatively constant magnitudes
of the force along the contour, although the magnitudes varied
between demonstrations. The plots ofωκ andωτ reveal a limited
change of direction of the force (hence of the ISA), almost in a
single plane (ωτ is very small). This plane is orthogonal to the
edge of the contour. This can be found by analyzing the direction
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of the ISAs and is confirmed in Fig. 10(b), where the first (red)
and second axes (green) of the successive moving frames lie
approximately in a plane that is orthogonal to the tangent of the
contour.

The second row of Fig. 7(a) shows that there is no significant
moment about the ISA (b is very small) and that the origin of
the moving frame does not translate much, both parallel to and
along the ISA (both vb and vt remain very small). The latter can
also be seen in Fig. 10(b).

Fig. 7(b) shows the vector invariants for force, which are
nearly identical to the directional component of the screw in-
variants [top row in Fig. 7(a)]. As for the vector invariants for
moment, Fig. 7(c) confirms that they are not invariant for a
change in position of the force sensor frame, resulting in moment
magnitudes up to 2.5 Nm. Similarly as for translational velocity,
this can be resolved by picking the TCP as the common reference
point for expressing the moments in all demonstrations, as shown
in Fig. 7(d). Since these moment values are relatively close to
zero w.r.t. the specified tolerance εm = 0.16Nm, they can be
perfectly described by a stationary FS frame. Therefore, the
solutions of ωκ and ωτ are below 10−8, the stopping criterion in
the OCP solver.

Force invariants with respect to world: Fig. 8 shows the screw
invariants for the simulated, alternative experimental setup in
which the force sensor is assumed fixed to the world. This
simulation, in particular the transformation of the physical force
measurements to the world, is subject to two additional errors:
the calibration between the force sensor and the motion tracker,
and the camera measurements. Again, the invariants are shown
to be insensitive to this transformation. Fig. 10(c) shows the evo-
lution of the corresponding moving frame. During execution, the
force ISA remains approximately perpendicular to the contour
edge while it approximately intersects the contour edge. To do
this for the entire trajectory, the force axis has to translate along
the contour with a velocity vb, which is approximately equal to
the translation of the TCP per dimensionless arc length (about
0.5 m/-). Integrating this value over the total horizon again results
in the length of the entire contour (∼0.5 m).

To further study the variation in the force invariants with
respect to the world, we replaced the real wrench measurements
in each demonstration with a constant simulated wrench
w = 25[0 cos(π4 ) sin(π4 ) 0 0 0]T expressed in the TCP frame.
By using this simulated wrench, the effects of human variations
and wrench measurement noise were eliminated. Consequently,
the corresponding force invariants with respect to the world are
only influenced by errors in the calibration between the TCP
and the motion tracker, and noise in the motion measurements.
Invariant descriptors of this case are shown in Fig. 9. We observe
greater repeatability in force invariants compared to Fig. 8 as a
result of eliminating the human variation and wrench measure-
ment noise. This analysis confirms that the larger variation in
the force invariants compared to motion invariants is mainly
due to human variation in a 5-dof space, not due to errors in the
computation.

Reconstructed motion and force trajectories: Fig. 11 visu-
alizes a reconstruction of the motion and force trajectory at a
new location starting from the invariants of one of the trials.

TABLE IV
RECONSTRUCTION ERROR FOR THE MOTION AND FORCE TRAJECTORY

OF FIG. 11

Fig. 12. Peg-on-hole setup with defined frames and illustration of the contact.

Table IV compares these reconstructed trajectories with the
measured trajectories on which a global transformation has been
applied so that they are in the same location. The rms-differences
between the trajectories were found to be in agreement with the
chosen tolerances for the trajectory accuracy constraint in the
OCPs. The small difference is due to the convergence tolerance
of the numerical solver of the OCPs, which was set to 10−8.
These results confirm that the trajectories reconstructed from
the calculated invariants have the accuracy specified in the OCPs
and are also driftless. Evidently, these results also hold for the
special case of a reconstruction at the same location as the
measurements.

VI. APPLICATION TO PEG-ON-HOLE ALIGNMENT

This section examines motion and force trajectories result-
ing from a human-demonstrated peg-on-hole task in which the
operator holds a tool to which the peg with diameter 50 mm is
attached, as shown in Fig. 12. The task aims to ensure that peg
and hole are aligned before peg insertion starts, even if the hole
is inaccurately located. To accomplish this, the operator first
establishes a stable three-point contact between the hole and a
purposefully misaligned peg, as shown in Fig. 12(c). This contact
involves two rim-rim contact points and one surface-rim contact
point. We recorded 12 demonstrations of the alignment, each
starting from such initial three-point contact and finishing at full
alignment. The operator was instructed to perform alignment
while maintaining the three-point contact. All demonstrations
were performed by the same operator, but in two batches,
respectively, of seven and of five trials, at different points in
time.

Although this task appears to involve a pure rotation, previous
theoretical studies have shown that, apart from a rotation, the
motion involves a small, but nonzero translation, see e.g., [46].
It is evident that, due to the three-point contact and neglecting
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friction, this task involves two instantaneous 3-dof vector spaces:
one for the wrench and one for the motion. So, the operator can
use different motion and wrench strategies during the demon-
stration.

A. Experimental Setup and Data Processing

The motion capture system is the same as for the contour
following task of Section V. The force/torque sensor is again
a 6-axis JR3 sensor with a nominal accuracy of ±1%, but its
measurement ranges are smaller: ±200 N along Z and ±100 N
along X and Y for force, and ±5 Nm in all directions for
moment. The same three frames as on the contour following
tool were defined on the demonstration tool here [see Fig. 12(b)],
with the TCP frame located at the tip of the peg.

Unlike in the contour following application, we did not use
different tracker positions on the tool and did not artificially
transform the pose measurements by changing the world frame,
because invariance with respect to such variations was suffi-
ciently proven in the contour following experiment. We also did
not transform the wrench measurements to different locations
on the tool, but we did transform them to a frame fixed to the
world to investigate the wrench invariants with respect to the
world.

Data were processed in roughly the same way as in the contour
following application, with the following changes or additions.
The segmentation thresholds were set to 1N and 0.35 rad/s for
force and angular velocity, respectively. Since the task is pre-
dominantly rotational, the integral of the rotational velocity was
chosen as the progress variable to reparameterize the time-based
input trajectories, and it was also rescaled to a dimensionless
variable ranging from 0 to 1. The initialization of the OCPs
based on average moving frames (see Sections III-B and IV-B)
was done on the complete measured trajectories. Furthermore,
since the force/torque sensor was more accurate than the one
used for contour following (same relative accuracy for a smaller
range), we lowered tolerances εf and εm in the OCPs to 0.3 N
and 0.1 Nm, respectively.

Finally, to investigate if the operator used different wrench
strategies in the two batches, we calculated the invariants corre-
sponding to the average of the wrench trajectories for each of the
two batches and compared them to the invariants corresponding
to the average of all demonstrations. This was done both with
respect to the tool and with respect to the world. Three remarks
have to made here as follows.

1) We took the average of the wrench trajectories rather than
the average of the invariants, because averaging is a linear
operation, but the subsequent calculation of the invariants
is not.

2) We can just average the measured wrench trajectories,
because all wrench trajectories were recorded at the same
physical sensor location on the tool and were additionally
transformed to the same virtual location in the world.4

4If the wrench trajectories are recorded at different locations, we can always
calculate the invariants of each wrench trajectory and then reconstruct all wrench
trajectories at a common new location, as explained in Section V-D.

Fig. 13. Screw invariants for motion and force for the peg-on-hole task.

Fig. 14. Moving frames for trials in the peg-on-hole alignment task, all seen
from the world frame. The ISAs are depicted using red arrows. (a) Moving frames
calculated from the tool’s motion for trial 1 (batch 1), showing a stationary ISA.
(b) Moving frames calculated from the wrench for trial 1 (batch 1), showing a
moving ISA. (c) Moving frames of the wrench for trial 12 (batch 2), showing a
stationary ISA.

3) Because averaged wrench trajectories are less noisy, we
could further lower εf to 0.17 N and εm to 0.05 Nm.

B. Results and Discussion

Figs. 13 and 14 summarize the experimental results, focusing
on screw invariants for motion and force. Additional results
for the vector invariants can be generated in the provided soft-
ware [34].

Motion invariants with respect to world: Fig. 13(a) shows the
screw invariants of motion. The object invariant a corresponds
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to the relative rotation of the peg with respect to the hole around
the screw axis. Its value is almost constant because the repa-
rameterization is based on the rotation and it lies around 1 rad/-.
This makes sense since the integral of a corresponds to the initial
misalignment angle, which is about 1 rad. Object invariant b is
small, meaning there is almost no translation along the screw
axis. The moving frame invariants ωκ, ωτ , vb, and vt are zero or
near zero, indicating that the moving frame is stationary. Hence,
with the chosen values of the tolerances in the OCP, the relative
motion between peg and hole can be explained by a pure rotation
about a fixed axis. As a result, the small theoretical translation
mentioned earlier vanishes due to the chosen tolerances. This
conclusion holds for all 12 trials, indicating that the operator
used the same motion strategy in all trials: a pure alignment of
peg and hole achieved by a planar motion, without exciting the
two other relative degrees of freedom, being relative rotations
about peg or hole axes. This is confirmed by Fig. 14(a) where
all the instantaneous screw axes and frames coincide.

Force invariants with respect to world: Fig. 13(b) shows the
screw invariants for the individual demonstration trials. Object
invariant a, which corresponds to the magnitude of the force
vector, is remarkably small, going from less than 4 N to zero
during the alignment. As for the moving frame invariants, only
ωκ is significantly different from zero, at least for six of the 12
trials. This indicates that, for those six trials the instantaneous
screw axis (i.e., the force vector) is rotating with respect to the
world in a plane about a fixed point; for the other six trials
the instantaneous screw axis remains fixed to the world, i.e.,
the force vector does not rotate. This in turn indicates that the
operator used different wrench strategies in the trials.

Force invariants with respect to world and tool for averaged
wrench trajectories: Based on the previous result, we hypothe-
sized that the operator had used different wrench strategies in the
two batches of demonstration trials, because they were executed
at different points in time. Fig. 13(c) therefore shows the screw
invariants for the averaged wrench trajectories of batch 1 (red),
batch 2 (blue), and the whole set of trials (green). We show
both the invariants with respect to the world (solid lines) and to
the tool (dashed lines). Only the first two rotational invariants
are shown, as the other invariants are zero (vb, vt) or almost
zero (ωτ , b), similarly as in Fig. 13(b). Visually, there is an
evident distinction between the trials of batch 1 and batch 2:
while for batch 1 the average of the trials shows a force vector
that rotates with respect to the world and remains fixed with
respect to the peg, the opposite is true for the average of the
trials of batch 2. To illustrate this further, we plot the resulting
moving frames for one trial from batch 1 and one trial from batch
2 in Fig. 14(b) and (c). These figures clearly show that the ISA
is rotating for the trial from batch 1 while the ISA is stationary
for the trial from batch 2. A more in-depth study and statistical
analysis of these wrench strategies go beyond the scope of this
article, but we conclude that different strategies can lead to
successful alignments. This is a valuable result for designing
robot force control strategies. It is also interesting to see that
it could be obtained in an experiment with only small contact
forces.

VII. DISCUSSION AND CONCLUSION

The aim of this work was to introduce local invariant descrip-
tors for force and moment trajectories. Inspired by the invariant
descriptors for motion, we exploited the duality between motion
and force. We extended existing concepts for motion trajectories
to general vector and screw trajectories, and then applied them
to force and moment trajectories.

Two types of descriptors were introduced: vector and screw
invariants. Vector invariants describe 3-D vector trajectories
(translational velocities, rotational velocities, forces, and mo-
ments) while screw invariants describe 6-D screw trajectories
(twists and wrenches). Both types of descriptors are invariant
for the choice of world reference frame, but the screw invariants
are also independent of the reference point on the moving
body that is chosen to represent the translational velocity or
the moment. Hence, for obtaining the screw invariants there is
no need to choose a reference point on the moving body. This is
particularly useful in cases where there is no natural choice for
such reference point, the reference point can change between
executions, or the calibration of the reference point is time con-
suming. The newly proposed descriptors can be applied to both
motion and force trajectories, as opposed to existing invariant
descriptors, which were mainly intended for point curves and/or
motion trajectories [16], [19], [20], [21], [22], [23], [24], [25],
[26], [27].

Invariant properties allow recognizing and modeling tasks
that were demonstrated in different environments, without the
need for accurate calibration. For trajectory reconstruction and
generation however, calibration efforts cannot be avoided since
for these applications we need initial values as pointed out in
the related paragraphs in Sections III and IV. More in detail, we
need initial values for the orientation R̃1 or location T̃ 1 of the
moving frame, and, if we reconstruct the object trajectory up to
position and orientation, we also need respective initial values
p1 andR1. In practical applications, these initial values are to be
derived from environment models or from sensor measurements,
either directly or using model-based state estimators.

Following a similar line of reasoning, the invariants them-
selves cannot be used to describe or check relations between
motion and force, such as reciprocity between a screw twist and a
screw wrench, unless the transformation between the respective
moving frames in which the motion and force invariants are
represented is known. In general, this requires calibration. For
example, to check the reciprocity condition, i.e., the condition
that no power is dissipated in the contact: f · v +m · ω = 0, it
is required that both twist and wrench, t and w, are expressed
in the same reference frame and have the same reference point.
Therefore, we cannot just plug in thea and b object invariants of
the respective screw invariants, because they are defined relative
to their respective moving frames, and, in turn, to the frames
in which the twist and wrench trajectories were measured.
Hence, to study relations between motion and force, we need
a calibration between the respective measurement frames.

The vector and screw invariants can be made independent of
time, and hence independent of the applied time-based motion
profile, by expressing them as a function of a suitable geometric
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progress variable. Again, this additional invariance is useful for
the recognition of a task demonstrated in different situations
and for the generalization of task models to new situations, as
shown in [15] for the case of motion in free space. However,
the way we chose the progress variable in the 3-D contour
following application introduced an important limitation. We did
not follow the approach to choose an invariant progress variable
that is independent of the reference point for translation, as
suggested in [25] and briefly discussed in Section II-C. Instead,
we chose the progress variable as the integral of the translational
velocity of the origin of {tcp}. So, based on our understanding
of the contact geometry, we handpicked this point as a reference
point to define arc length as a representation of task progress, and
used it to represent all invariants. The benefit of this approach is
that we obtained vector and screw invariants for both motion and
force that are interpretable and can be compared with each other
and with the reference values of the limit case (see Figs. 6–8).
Definitely, this progress value is a very good choice and probably
even the best one for this application, but it would be better to
derive a suitable progress value from the measured trajectories
in an invariant data-driven way. This is subject of our future
work.

Besides analytical procedures to derive the invariant descrip-
tors, an approach was presented based on optimal control, where
the main idea is to find the invariant descriptor that reconstructs
the given window of measurements. This provides a way to deal
with singularities and measurement noise and hence enables a
much more robust calculation of the descriptors. Compared to
our previous work on the calculation of motion descriptors [33],
we improved the stability and repeatability of the calculation by
reformulating the OCP. In the reformulated problem, trajectory
reconstruction errors became inequality constraints that were
bounded by a desired tolerance value. This resulted in more
intuitive tuning, as we showed that these tolerance values could
be directly related to the accuracy or noise characteristics of
the used motion and force sensor. The reformulated OCP also
resulted in a more stable behavior of the moving frame. For
example, when the values of the noisy moments are below the
specified tolerance, they can be described by a stationary moving
frame [see Fig. 7(d) and Fig. 10(b)]. Finally, the reformulation
resulted in a smaller number of tuning parameters, further reduc-
ing the tuning effort. Overall, we obtained a good repeatability
of the invariants, as can be seen in Figs. 6–8, even for noisy data.

Continuity of the moving frames is ensured by minimizing
the values of the moving frame invariants in the OCPs. This
also provides some degree of continuity for the reconstructed
trajectories. To enforce a more specific continuity on the recon-
structed trajectory, it is advised to include the time profile as
variables in the OCPs in order to enforce acceleration and/or
jerk limit constraints. These constraints can be either on the
spatial trajectory itself or on the robot joint trajectories in case
a kinematic model of the robot is available, similar to [15].

This article contains a practical experiment involving a
human-demonstrated 3-D contour following task which show-
cases the use, verifies the invariant properties, and validates
the robust calculation of screw and vector invariant descrip-
tors for both motion and force. As expected, this experiment

yielded highly repeatable motion descriptors due to the highly
constrained motion (in a 1-dof instantaneous twist space), and
less repeatable force descriptors due to human variation (in a
5-dof instantaneous wrench space). Evidently, apart from human
variation, other disturbances were present in this experiment,
such as sensor inaccuracy and measurement noise. A second
experiment, involving human demonstration of a peg-on-hole
alignment task, showed how motion and force invariants can
be used to detect and characterize different human strategies in
contact tasks.

The concepts and algorithms presented in this article are
intended as an initial toolbox [34] to support future work on in-
variant representations of motion and force trajectories and their
use in physics-informed machine learning of force-controlled
manipulation skills.

APPENDIX A
RELATION BETWEEN THE KINEMATICS OF THE FS FRAME AND

THE FS EQUATION

In differential geometry, the FS equation is usually written as
follows: ⎡⎢⎣T

′

N ′

B′

⎤⎥⎦ =

⎡⎢⎣ 0 ωκ 0

−ωκ 0 ωτ

0 −ωτ 0

⎤⎥⎦
⎡⎢⎣TN
B

⎤⎥⎦ (53)

with ωκ the curvature, ωτ the torsion, and T , N , B the unit
vectors of the FS frame. This equation can be shown to be equal
to the kinematics of the FS frame as defined in (18)

R̃
′
= R̃

⎡⎢⎣ 0 −ωκ 0

ωκ 0 −ωτ

0 ωτ 0

⎤⎥⎦ . (r.18)

In the previous expression, first expand R̃ into its individual
columns using the unit vectors defined in (15)

[
e′t e′n e′b

]
=
[
et en eb

]⎡⎢⎣ 0 −ωκ 0

ωκ 0 −ωτ

0 ωτ 0

⎤⎥⎦ . (54)

Applying the transpose to both sides of (54) results in⎡⎢⎣e
′T
t

e′Tn
e′Tb

⎤⎥⎦ =

⎡⎢⎣ 0 −ωκ 0

ωκ 0 −ωτ

0 ωτ 0

⎤⎥⎦
T ⎡⎢⎣e

T
t

eTn
eTb

⎤⎥⎦ . (55)

Since the transpose of a skew-symmetric matrix is equal to the
negative of the matrix, (55) corresponds to the FS equation
in (53).
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