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Abstract—With the improvements in their computational and
physical intelligence, robots are now capable of operating in real-
world environments. However, manipulation and grasping capa-
bilities are still areas that require significant improvements. To
address this, we introduce a new data-driven grasp planning al-
gorithm called Grasp it Like a Pro 2.0. This algorithm utilizes a
small number of human demonstrations to teach a robot how to
grasp arbitrary objects. By decomposing objects into basic shapes,
our algorithm generates candidate grasps that can generalize to
different object’s geometry. The algorithm selects the grasp to
execute based on a selection policy that maximizes a novel grasp
quality metric introduced in this article. This metric considers the
complex interdependencies between the predicted grasp, the local
approximation produced by the basic shape decomposition, and the
gripper used. We evaluate our approach against multiple baselines
using different grippers and objects. The results demonstrate the
effectiveness of our method in generating and selecting high-quality

Manuscript received 14 March 2023; accepted 1 June 2023. Date of pub-
lication 30 June 2023; date of current version 4 October 2023. This work
was supported in part by the European Union’s Horizon 2020 Research and
Innovation Program under Grant 871237 (Sophia), Grant 101017274 (DARKO),
and Grant 101016970 (NI), in part by the Ministry of University and Re-
search (MUR) as a part of the PON 2014-2021 “Research and Innovation”
resources–Green/Innovation Action–DM MUR 1062/2021, and in part by the
Italian Ministry of Education and Research in the framework of the CrossLab
and FoReLab projects (Departments of Excellence). This paper was recom-
mended for publication by Associate Editor R. Ozawa and Editor P. Robuffo
Giordano upon evaluation of the reviewers’ comments. (Corresponding author:
Alessandro Palleschi.)

Alessandro Palleschi, Lucia Pallottino, and Manolo Garabini are with the
Centro di Ricerca “Enrico Piaggio,” Università di Pisa, 56126 Pisa, Italy, and
also with the Dipartimento di Ingegneria dell’Informazione, Università di Pisa,
56126 Pisa, Italy (e-mail: alessandro.palleschi@phd.unipi.it; lucia.pallottino@
unipi.it; manolo.garabini@gmail.com).

Franco Angelini is with the Dipartimento di Ingegneria dell’Informazione,
Università di Pisa, 56126 Pisa, Italy, and also with the Centro di Ricerca
“Enrico Piaggio,” Università di Pisa, 56126 Pisa, Italy (e-mail: frncan-
gelini@gmail.com).

Chiara Gabellieri is with the Robotics and Mechatronics Group, Faculty
of Electrical Engineering, Mathematics and Computer Science, University of
Twente, 7500, AE Enschede, Netherlands (e-mail: c.gabellieri@utwente.nl).

Do Won Park is with the Centro di Ricerca “Enrico Piaggio,” Università di
Pisa, 56126 Pisa, Italy (e-mail: dowon93@gmail.com).

Antonio Bicchi is with the Centro di Ricerca “Enrico Piaggio,” Univer-
sità di Pisa, 56126 Pisa, Italy, also with the Dipartimento di Ingegneria
dell’Informazione, Università di Pisa, 56126 Pisa, Italy, and also with the
Soft Robotics for Human Cooperation and Rehabilitation, Fondazione Istituto
Italiano di Tecnologia, 16163 Genova, Italy (e-mail: antonio.bicchi@iit.it).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TRO.2023.3286115.

Digital Object Identifier 10.1109/TRO.2023.3286115

and reliable grasps. With a soft underactuated robotic hand, our
algorithm achieves a 94.0% success rate in 150 grasps across 30
different objects. Similarly, with a rigid gripper, it achieves an
85.0% success rate in 80 grasps across 16 different objects.

Index Terms—Grasping, human-driven grasping, multifingered
hands, perception for grasping and manipulation.

I. INTRODUCTION

GRASPING objects is a fundamental skill that humans
acquire easily, allowing them to manipulate a wide range

of objects effortlessly. However, current robotic manipulation
and grasping capabilities still lag behind human abilities [1],
hindering the development of general-purpose robots capable
of operating in unstructured and dynamic environments [2], [3].
Because of this, much effort has been, and is currently being,
devoted by the robotics community in studying the theory of
grasping with a focus on grasp planning for unknown objects [4].

Grasp planning methods are classically divided into two cat-
egories [5]: analytical and data-driven approaches. Analytical
methods rely on well-established force and form closure theory
to plan contact points for a stable grasp assuming complete
knowledge of the object’s geometry and physics [6], [7], [8],
[9] and, thus, lack in flexibility and robustness when the robot
does not have access to a model of the object to grasp. For this
reason, data-driven approaches have become more and more
popular within the last 20 years [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], as they show greater flexibility
and performance in uncertain settings.

These methods rely on the generation of a set of candidate
grasps using, e.g., heuristics or learning from data, and on the
consequent ranking of the grasps within this set [22]. Typically
based on deep learning approaches, such methods exploit large
datasets of objects and labeled grasps (generally designed for
parallel rigid grippers) to train neural networks for grasp detec-
tion [23] or grasp evaluation [15]. Other approaches perform the
training using synthetic datasets [17], [24] relying on a model
of the gripper used or exploit human-grasp demonstrations [18],
[19] to generate human-like grasps. While deep-learning-based
approaches are promising tools for grasp planning, they might
require a large amount of training data and time [25], [26] to
be robust and adaptable to novel objects and to more complex
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Fig. 1. Ability to grasp previously unseen objects with different grippers;
adapting to imperfectly known, highly dynamic, and unstructured situations is
crucial to enable general-purpose robots to be effective in a large field of use
cases.

grippers with many degrees of freedom (DoFs) or provided
with compliant elements. Indeed, for these cases, datasets of
labeled grasps might not be available or reliable models for use
in simulators could be difficult to obtain. The development of
lightweight and data-efficient algorithms that can be adapted to
different grippers and that can synthesize valid grasps for a wide
variety of objects is still an open problem.

In this article, leveraging on the framework proposed by
Gabellieri et al. [19], we present Grasp it Like a Pro 2.0 (GLP
2.0), a data-driven grasp planning algorithm that is able to
generate grasps for unknown objects with different grippers
(see Fig. 1). The method only requires human demonstrations of
grasps, composed of six-DoF hand poses and interaction forces,
of basic shapes. The collected demonstrations are used to learn
a model used for grasp synthesis.

Given the point cloud of an unknown object as input, GLP
2.0 decomposes it into the same basic shapes used for training.
It then uses the learned model to generate candidate grasps for
these basic shapes. A global analytical grasp quality score is
introduced to evaluate and select the grasps. The score takes
into consideration the characteristics of the gripper used by the
robot, the acquired point cloud, possible collisions with the
environment, and an estimate of the grasp interaction forces
obtained through the learned model.

The main contributions of this article are as follows:
1) the design and implementation of the data-driven method,

GLP 2.0, to generate six-DoF grasp poses for unknown
objects;

2) the design of a novel grasp selection policy based on
an analytical grasp quality score to rank and select the
generated grasps;

3) the extensive experimental validation of GLP 2.0 on a
compliant underactuated robotic hand, the Pisa/IIT Soft-
Hand [27], with a direct comparison with our previous
approach [19]. The method achieves relevant performance
in terms of grasping success rate on a total of 30 objects and
150 grasps (5 per object), showing a 25% improvement;

4) an experimental comparison, using the Pisa/IIT SoftHand,
of GLP 2.0 with two state-of-the-art algorithms [15], [28]

on 16 objects and 80 grasps. Results show that our ap-
proach outperforms the two baselines in terms of grasping
success rate;

5) an implementation of GLP 2.0 with a more standard, rigid,
gripper, showing that the framework can be transferred and
applied to different robotic hands;

6) an experimental comparison of GLP 2.0 applied to a
two-finger rigid gripper, the Franka Emika Hand [29],
on 16 objects and 80 grasps. The results show that GLP
2.0 achieves good performance, comparable with the ones
obtained with the compliant hand for the same set of
objects, and it outperforms the two baselines [15], [24]
in terms of grasping success rate;

7) a detailed and critical discussion of the limitations of GLP
2.0.

The rest of this article is organized as follows. In Section II,
we review the relevant literature, Section III describes the main
component of the algorithm, while in Sections IV and V, we
describe the experimental setup and protocol used to validate the
method with both compliant and rigid grippers, discussing the
results obtained. We discuss limitations in Section VI. Finally,
Section VII concludes this article.

II. RELATED WORKS

Grasping is one of the most popular research topics in the
robotics community, and over the years, many approaches and
solutions have been proposed for grasp synthesis. Besides the
distinction between analytical and data-driven methods, they are
classified in [12] according to: the information they assume to
have about the target object (known, familiar, unknown), the
features used for the synthesis (2-D, 3-D, or multimodal), the
object-grasp representation (local or global object attributes),
and the specific hand used (standard grippers, multifingered
hands, or underactuated/soft end-effectors).

A. Known Objects

Grasp synthesis for known objects relies on a complete knowl-
edge of the target object. This knowledge is used to generate
offline a set of grasps from which to select a feasible candidate.
Then, once an object belonging to the database is encountered,
the problem is to select a feasible grasp given the environmental
conditions [10], [30], [31], [32].

However, human environments are characterized by a large
variety of objects, with different shapes, sizes, and materials.
This high variability makes it problematic to use techniques
that require a complete knowledge of the object. Indeed, this
would lead to the long-lasting and time-consuming process of
providing the robot with a model for each possible object it might
encounter.

B. Familiar Objects

The limitations of the grasping methods based on the full
knowledge of the object can be overcome by approaches that ex-
ploit the fact that many every-day objects share similar/familiar
and common characteristics [18], [33], [34], [35], [36], [37],
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[38]. By exploiting this familiarity, it is possible to train on a set
of objects and generalize to novel objects that fall within one of
the categories in the training set. This relaxes the necessity of
having an exact model for every object to be grasped.

Grasp synthesis for familiar objects can help increasing the
generality of the grasp creation process. Nonetheless, their
performance depends on the quality and variety of the data
used for training. An erroneous categorization of a novel object
could produce unreliable grasps [4], but acquisitions of large
datasets is a time-consuming and nontrivial operation [26]. The
use of synthetic datasets [24] generated through simulations
with reliable simulators like Graspit! [39] could ease the data
generation phase, but relying on a model of the hand used for
grasping their applicability to more complex hands other than
rigid ones is still an open problem [40], [41].

Therefore, a great effort has been put by the scientific com-
munity in developing grasping algorithms for unknown objects,
i.e., not relying on any prior information on the object, but only
data acquired from perception. The method we propose falls into
this category.

C. Unknown Objects

Given an unknown object, grasp candidates can be generated
from acquired partial and not-complete point clouds. The ap-
proach proposed in [4] uses an approximation of the gripper
shape (using a two-layer C-shape cylinder) and then searching
for this shape on the partial point cloud. This is conceptually
similar to the method proposed in [42], which, however, did not
exploit depth measures. Other approaches exploit the inherent
symmetry of many commonly used objects to generate a full
model from a partial point cloud using geometric considera-
tions [43], [44] or deep learning [45]. The shape is then used
to generate a set of grasp candidates. In [46], starting from a
noisy point cloud, grasps for a multifingered hand are generated
based on a shape complementarity metric between the cloud of
the object and the shape of the hand, whose kinematic model is
assumed to be known.

A different approach that relies only on 2-D images is pre-
sented in [47]. They use curvature information obtained from the
silhouette, combined with a visual-servoing control to maximize
the curvature at the grasping points, to achieve a correct grasping
pose. The work proposed in [15] generates grasp hypotheses for
a two-fingered gripper on any visible surface of the input point
cloud. It also proposes a new grasp descriptor that takes into
account local surface normals and different viewpoints. Shao
et al. [48] propose a new grasp planning algorithm that takes
into account both object geometry and gripper characteristics as
inputs. A deep neural network is used to predict a set of contact
points from the point cloud of the target object that are in force
closure and reachable by the hand. The use contact points as
output allows to transfer between different multifingered hands,
assuming that a kinematic model is available.

Besides, there exists a class of methods that attempt to resolve
the problem of grasping unknown and potentially irregularly
shaped objects using soft and compliant grippers [49], [50].
The planning and control of the grasp is simplified, using, e.g.,

simple top-down grasps [50], and the embodied intelligence
and adaptability of the soft gripper is exploited to increase the
robustness.

The approaches presented so far use either global informa-
tion about the shape or low-level local features to generate
the grasp hypothesis. A different solution, like the one pro-
posed in this article, is instead to use approximations of the
object using basic primitive shapes. Approaches of this type
mainly differ based on the type and number of primitive shapes
employed.

A single quadric, estimated from multiple views, is used
in [51] to approximate the object shape and plan grasp poses
for a multifingered hand. The approach presented in [52] uses a
single superquadric model to approximate both the shape of the
unknown object and the volume graspable by an anthropomor-
phic hand. The grasping pose is then obtained as the solution of
an optimization problem. In [53], a partial view of the object is
used to generate a superquadric model. They assume symmetry
to complete the object model to fit for the superquadric repre-
sentation. The grasp is then designed to maximize the stability
and force balance, using the fitted parameters to determine the
best contact points for a two-fingered gripper.

However, decomposition via a single primitive shape often
fails to provide an accurate approximation of the object [11],
[30]. Goldfeder et al. [11] decompose the object into a mul-
tilevel tree of superquadrics used to select subspaces likely to
contain good grasps. Sampling of these subspaces and evaluation
using Graspit! are then used to find stable grasps. Multiple
superquadrics are also used in [54] to estimate the surface of
an object from 2.5 D data.

The approach we propose does not use superquadrics to
approximate the object shape, but, as well as other methods [19],
[55], [56], uses the minimum volume bounding box (MVBB)
decomposition. This choice represents an effective tradeoff
between computational effort and quality of the approxima-
tion [30] and have been widely applied as supportive method
for grasp synthesis. The MVBB decomposition has been used
in [55] to generate a grasping pose for a given box based on a
user-defined geometric heuristic. Random local variations of the
selected pose are then tested in simulation on a set of synthetic
point clouds of unknown objects.

Based on this work, in [19], we proposed a data-driven method
for grasping unknown objects. In [19], the grasping pose of the
robotic hand associated with a box was no longer based on
a geometric heuristic, but used a small set of demonstrations
provided by a human operator operating the same hand to
generate human-like poses. The quality of a grasp was then
evaluated, considering the relative box-hand alignment and the
possible collisions with the environment. The algorithm showed
good performance, being able to generate valid grasps for an
underactuated compliant robotic hand with 19 degrees of free-
dom without needing any information about the object other
than those acquired with its perception, or to model the robotic
hand, but using only a limited set (648) of demonstrations.
Nonetheless, it was validated only for the Pisa/IIT SoftHand.

In this article, building upon this framework, we propose
a data-driven grasp planning algorithm for grasping unknown
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Fig. 2. Pipeline of the proposed method GLP 2.0. GLP 2.0 starts with the acquisition of a point cloud of the target object. The cloud is decomposed into a generic
number N of minimum volume bounding boxes. A model learned from human demonstrations of grasps for exemplary boxes is used to generate a set of six-DoF
grasp poses for the obtained decomposition. A novel grasp quality score, Sg, is introduced based on information about the robotic gripper, the point cloud of the
object and the environment, and of the grasp interaction forces estimated using a learned model to rank and select the best grasp among the candidate set.

objects that can be adapted to different grippers. In the follow-
ing section, a detailed description of the proposed method is
reported.

III. GRASP PLANNING ALGORITHM

In this section, we describe the main components of the
proposed grasp planning algorithm, GLP 2.0. Fig. 2 reports a
schematic visualization of the proposed pipeline.

The approach starts with the acquisition of a point cloud
of the target object. The cloud is decomposed into a generic
numberN of MVBBs. Then, exploiting a decision tree regressor
(DTR) trained on recorded data of a skilled human grasping
sample boxes with the same gripper, a set of candidate grasps
is generated from the obtained box decomposition. These poses
are then ranked according to a specific metric, which takes into
consideration the geometry and properties of the robotic gripper
and an estimate of the interaction forces, and the best grasp is
selected for execution.

The approach proposed in this article is inspired by the method
we presented in [19], but differs from it in three key aspects: the
approximation of the object shape with the box decomposition
algorithm, the grasp generation policy, i.e., the definition of the
set of candidate grasps, and finally, the grasp selection policy,
i.e., the metric used to select the best grasp.

In the following, we present a detailed description of all the
components of the proposed algorithm.

A. Object Acquisition and Shape Approximation

The first step of the planning algorithm is the acquisition of
the object point cloud through the use of RGB-D sensors. Fol-
lowing [19], the point cloud is processed in order to decompose
the object into a number N of bounding boxes. We decided to
use a box decomposition method for approximating the shape
of the acquired point cloud because we found out that cuboids

represent a good tradeoff between computational effort for ob-
taining a decomposition and capability of approximating the
object shape for grasp planning purposes. Indeed, decomposition
based on MVBBs have been already successfully used in the
literature [19], [30], [55] for this kind of problem. In addition,
as we will highlight in the next section, this solution allows us
to increase the data efficiency of the proposed approach that can
use a small set of human demonstrations. The decomposition
is performed using a modified C++ implementation1 of the
algorithm proposed in [30] that was already used in our previous
work [19]. A description of the decomposition procedure is
reported in the Appendix. The final output of the algorithm is a
set B of bounding boxes. Each elementb ∈ B is a pair formally
defined as

b � 〈Tb,λb〉 (1)

whereλb � [λb,1, λb,2, λb,3]
� ∈ R3 represents the vector of the

box dimensions, while

Tb �
[
r̂b,1 r̂b,2 r̂b,3 yb

0 0 0 1

]
(2)

is the transformation matrix expressing the pose of the box in the
world frame. Specifically, yb is the position in world frame of a
reference frame like the one depicted in Fig. 3, while r̂b,j , j ∈
{1, 2, 3}, are the versors aligned with the box sides.

The box decomposition is a crucial step in the entire process of
the algorithm. A poor decomposition, which does not adequately
approximate the object, can potentially lead to the generation and
then selection of inefficient and nonrobust grasps.

The decomposition algorithm has three user-selectable pa-
rameters: the minimum volume admissible for a box, the gain
threshold used to evaluate if a split has to be enforced, and
the minimum number of points μb of the point cloud each box

1[Online]. Available: https://github.com/manuelbonilla/pacman_bbox

https://github.com/manuelbonilla/pacman_bbox


4020 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 5, OCTOBER 2023

Fig. 3. (Left) Box-related reference frame. (Right) Gripper-related reference
frame.

Fig. 4. Collected data and fitted curve used to select μ.

should contain. In [19], the minimum volume was set to a fixed
low value, while the minimum number of points of the point
cloud was set proportional to the total number of points (constant
of proportionality set to 0.1). This latter choice carries with it
some problems and limitations when decomposing both small
objects (associated with point clouds composed of few points)
and large objects (with a higher number of points). Small objects
are approximated with numerous boxes of small size. Larger
objects are instead approximated by a single bounding box, with
dimensions that can be potentially out of the graspable range for
the chosen gripper.

To overcome these issues and achieve an approximation of
the shape of the object more suited for generating high-quality
grasps, we propose in this article a different law for selecting the
minimum number of points. Instead of a linear trend, we opted
for a logarithmic curve described by the following equation:

μb � a1 log (a2X + 1) (3)

where μb is the minimum number of points contained by a
bounding box b, X is the total number of points, while a1
and a2 are design parameters, regressed from experimental data.
Indeed, we collected a set of 120 point clouds, and for each cloud,
we saved the pair 〈|cloud|, μb〉 containing the number of points
of the cloud, |cloud|, and the value of μb leading to a good box
decomposition. We used these pairs to fit the logarithmic curve
(3) and compute the two parameters. The collected data and the
fitted curve are shown in Fig. 4.

Using this function, small objects are approximated with a
reduced number of boxes (or even a single one), while larger
objects are decomposed in such a way that better approximation
of their shape is obtained, as shown in Fig. 5.

B. Grasp Prediction From Human Data

One of the main features of the approach is the exploitation
of human grasping skills to let the robot learn human-like
poses for the specific gripper used. Here, we used the Pisa/IIT
SoftHand [27] as gripper, but the considerations reported in the
following can be adapted to different gripper choices.

1) Robotic Gripper: First, we present the information about
the robotic gripper needed by the proposed method. Indeed, we
only need a few information of the specific gripper. In particular,
we define the object hand as

h � 〈Oh,O,C , δ〉 . (4)

The first element of h is the reference frameOh = (r̂h,p, r̂h,t, r̂h,f)
attached to the hand, which is the one depicted on the right
in Fig. 3. Then, we have a representation of both the gripper
shape, O ⊂ R3, and a model of the closing region of the grip-
per, C ⊂ R3. The definition of C is inspired by Ten Pas and
Platt [57], where they define the closing region of a gripper
as “the volumetric region swept out by the fingers when they
close.” Finally, the vector δ ∈ R5 is used to encompass a series
of gripper-related thresholds on the maximum graspable dimen-
sions, the relative gripper–box alignment, and the collisions
thresholds.

These elements will be described and used in Section III-C
to define the grasp quality score and for the selection of the best
grasp.

2) Learning Human Grasping Skills: First, we collected a
small set of grasp demonstrations from a human operator. With
the setup depicted in Fig. 6, a commercial Phase Space Motion
Capture2 system is used to track the position of eight markers
placed on the robotic gripper (a manually operated Pisa/IIT
SoftHand in our case) w.r.t. other eight world-fixed markers.
This system allows for the registration of the correct hand
pose when grasping a set of 56 cuboid sample boxes, whose
dimensions have been chosen to cover the feasible grasp range
of the gripper.3

We also recorded the interaction wrenches exerted during the
grasp. Indeed, during the demonstrations, the sample boxes were
rigidly fixed and aligned to a sensorized platform. The platform
was equipped with a force torque sensor ATI mini45. The sensor,
zeroed and calibrated properly before each trial, is used to record
the interaction wrenches (forces and torques) during the grasping
phase.

For each attempt, the operator was asked to exert for 3 s a
force along the three spatial directions and a torque along all the
axes of the box. The force/torque measurements for the specific
axis on which the operator was asked to act were extracted
from the recorded data and then used to define a metric for
the total interaction wrench of the grasp as w = [f, τ ]� ∈ R2.
Specifically, the recorded data have been processed extracting
the maximum value for each component of both the force and
the torque, and the elements f and τ have been computed as the

2[Online]. Available: http://phasespace.com/
3[Online]. Available: https://qbrobotics.com/wp-content/uploads/2021/07/

qb-SoftHand-Research-datasheet-r200.pdf

http://phasespace.com/
https://qbrobotics.com/wp-content/uploads/2021/07/qb-SoftHand-Research-datasheet-r200.pdf
https://qbrobotics.com/wp-content/uploads/2021/07/qb-SoftHand-Research-datasheet-r200.pdf
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Fig. 5. Effects of the two different methods to define the minimum number of points of the point cloud contained within a single bounding box. (a) μb(X) =
X/10: Using a linear function, small objects are decomposed into a larger number of boxes, whereas large objects might be approximated with a single box.
(b) μb(X) = a1 log (a2X + 1): Using a log function, small objects are decomposed into a single box, whereas large objects might be approximated by a larger
number of boxes. (c) Examples of box decomposition for different objects. Top: [19]; bottom: our approach.

Fig. 6. Experimental setup used to record the set of human demonstrations.
The PhaseSpace cameras (1) are used to track the pose of the hand using eight
hand-fixed markers (5) and eight box-fixed markers (7). A human operator (4)
grasps a set of boxes (2) with the Pisa/IIT SoftHand (6). A force torque sensor
(8) is used to record the interaction wrenches. The recorded data are saved
on a PC (3) and later used to train a DTR model. Training on a small set of
recorded demonstrations of a skilled operator grasping cuboids, the robot is able
to generate a grasp pose for a generic object.

norm of the vectors composed of these maximum values for the
force and torque, respectively.

Following [19], the recorded set of 648 grasping attempts
is used to let the robot learn a model p = ψ(λb) to predict a
human-like pose p = [p1, . . . , p6]

� ∈ R6 (relative to the box),

given the box dimensions λb. In [19], this was made possible
through the use of a DTR.

Applying this learned model ψ(λb) to the boxes generated by
the MVBB decomposition algorithm, we are able to generate a
set of human-like candidate grasp poses for the gripper. Indeed,
using a small set of human demonstrations, we are potentially
able to grasp any object, regardless of shape or size, without any
prior information or knowledge about it apart from an acquired
point cloud.

a) Inclusion of interaction wrenches: In [19], we only use
the pose of the hand and box dimensions from the demonstrated
data to train the DTR and infer a grasp pose given a vector
of box dimensions. However, as pointed out, these were not
the only data recorded during the demonstrations that could be
exploited for planning purposes. The recorded demonstrations
also provide information on the interaction forces generated
during the grasp, that we decided to actively include into the
planning pipeline. The choice to include these interaction forces
in the grasp planning algorithm is dictated by the considerations
made in [19], where it is pointed out as the grasping success rate
was quite low for heavy objects. Our insight is that the inclusion
of interaction forces can help to select more robust grasps.

In order to include this information into the grasp planning
algorithm, we propose to let the robot learn an augmented model
ψ̃(λb) that is able to infer from the vector of box dimensions
λb not only the hand pose p, but also a model ν(λb) for the
interaction wrenches metric w. Therefore, the complete model
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learned by the robot is[
p
w

]
= ψ̃(λb) =

[
ψ(λb)
ν(λb)

]
. (5)

b) Global grasp generation policy: In [19], a set of 48 candi-
date poses is generated for a specific box, selected according to a
hand-designed heuristic. The best feasible grasp in this set is then
selected and executed, without considering the grasps generated
from other boxes in B. The original method is inherently locally
optimal because of the greediness introduced by evaluating
grasps for only one box, and it could result in suboptimal choices.

We now take a step toward building a global method by re-
moving the box selection step. The prediction of the grasp poses
is, thus, made over all the boxes generated by the decomposition
algorithm. Hence, we increase the set of candidate grasps from
which to select the best one (see Fig. 2). We can also guarantee to
select the optimal grasp, according to the specific metric and the
feasibility constraints, among all the possible grasps originated
from the given box decomposition.

3) Generation of the Candidate Set

We now present how the set of candidate grasps G is gener-
ated. As explained in the previous section, given a decomposition
of a point cloud into a set of cuboid bounding boxes B, we are
able to predict a set of grasp poses p and interaction wrenches
w. Each of these pairs 〈p,w〉 is associated with the specific
box b ∈ B from which it was generated. We, therefore, define
a grasp g as a tuple composed of the specific gripper h used for
the demonstrations, a predicted grasp pose p, the box b used for
prediction, and eventually the predicted interaction wrench w,
i.e., as

g � 〈h, p, b,w〉. (6)

All the grasps predicted for a given box b ∈ B are collected
into a set Gb. Finally, the complete set of candidate grasps G is
simply built as the union of the grasps set for each box in B

G =
⋃
b∈B

Gb. (7)

C. GRASP EVALUATION

As typical for data-driven approaches, the grasp to execute
among the candidate set is chosen so as to maximize a properly
defined metric [22], [58]. In this article, we propose a metric
embedded into a global quality score (Sg). This score maps each
grasp to a real number between zero and one, i.e., Sg : G →
[0, 1], and has been designed so to take into account:

i) the box from which the grasp has been generated;
ii) the predicted interaction wrench;

iii) the relative alignment between the box and the gripper;
iv) possible collisions with the environment.
In the following, we describe in detail the heuristics used to

embed the effects from i) to iv) into proper score functions, used
to construct the global score Sg.

1) Box Score

The first index is related to the specific box b used for
predicting the grasp and, in particular, to its density of points
belonging to the point cloud, ρb, and its distance from the point
cloud centroid, db.

This score is used to favor grasps originated from outer boxes
that can approximate handle-like parts and are associated with
a higher number of collision-free grasps [19], but with a high
density of points, i.e., that provide a good local approximation
of the object shape. The box score can then be computed as

Jb � 1

2

⎛
⎝ ρb

max
bk∈B

ρbk

⎞
⎠

2

+
1

2

⎛
⎝ db

max
bk∈B

dbk

⎞
⎠

2

(8)

where the density and centroid distance have been normalized
w.r.t. the maximum density and maximum distance of all the
boxes in B.

Note that the score Jb is equal for all the grasps g ∈ Gb.

2) Wrench Score

The second score, Jw, is used to embed the learned wrench
into the grasp selection procedure. It is used to favor grasps asso-
ciated with high interaction wrenches w. Indeed, our hindsight
is thatw can be used as an indirect measure of the robustness and
stability of the grasp, i.e., grasps associated with high interaction
wrenches w have a higher probability of being more robust.

The score has been designed as

Jw � 1

2

⎛
⎝ fg

max
gk∈G

fgk

⎞
⎠

2

+
1

2

⎛
⎝ τg

max
gk∈G

τgk

⎞
⎠

2

(9)

where the force and torque of the selected grasp have been
normalized w.r.t. the maximum force and maximum torque
considering all the grasps in G .

3) Alignment Score

This index considers the relative alignment between the grip-
per and the object to grasp, and depends on both the specific
gripper and the object (or its local approximation used to sample
the grasp). This score is used to penalize grasps that are highly
aligned with sides that exceed the physical limits of the robotic
hand. Grasps in which the fingers are highly aligned with long
sides [see Fig. 7(a)] are indeed discarded in favor of grasps less
aligned [see Fig. 7(b)].

In our previous work, we used the metric proposed in [55]
to select the to-be-executed grasp, searching the pose with the
thumb of the SoftHand more aligned with the longest side of a
candidate box. This actually leads to a greedy iterative procedure
that starting from the longest box side searches for the grasp with
the thumb most aligned without considering the alignment with
the other sides.

In this article, we exploit similar considerations for the def-
inition of the specific score Ja. First, we remove the iterative
procedure to select the grasp with the thumb more aligned with
the longest side, introducing a termα ∈ [0, 1] that combines both
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Fig. 7. Alignment of the fingers w.r.t. the box dimensions. (a) Fingers highly aligned to the longest side of the box. (b) Fingers loosely aligned to the longest side
of the box. (c) Tridimensional representation of βλj as function of the alignment and of the length.

information on the dimensions of the box and the alignment of
the thumb w.r.t. all the dimensions. More formally, we define α
as

α � 1

λ̄
max

j∈{1,2,3}
λb,j |̂rb,j · r̂h,t| (10)

where λ̄ = maxb∈B maxj∈{1,2,3} λb,j is the longest dimension
among all the boxes in B, r̂h,t is the versor of the hand frameOh

aligned with the thumb (see Fig. 3), and · is the scalar product
operator.

Second, we include into Ja information on the constraints
provided by the maximum opening of the hand. Indeed, the
dimensions of the hand provide a natural limit on the maximum
dimensions graspable.

Being r̂h,f the unitary versor of the hand frame directed along
the fingers (as in Fig. 3), the relative angle between the gripper
fingers and a box side versor r̂b,j can be simply computed as
θj � acos(|̂rb,j · r̂h,f|), being j = 1 . . . 3. Note that, given the
definition of θj , we have that θj ∈ [0, π/2]. We introduce the
following function to evaluate the alignment of the hand w.r.t.
the sides of the box:

βλj
�

{
1− sinc

(
θj
δθ

)
, (θj ≤ δθ) ∧ (λb,j > δλ)

1, otherwise
(11)

where δθ ∈ δ(h) is a user-defined threshold on the maximum
allowed relative alignment and δλ ∈ δ(h) is the maximum length
graspable by the gripper (25◦ and 100 mm, respectively, for the
SoftHand), and sinc is the unnormalized sinc function defined
as

sinc(x) �

⎧⎨
⎩

sin(x)

x
, x �= 0

1, x = 0
. (12)

A tridimensional representation of βλj
as function of the relative

alignment θj and of the length λb,j is reported in Fig. 7(c).
Combining (10) and (11), we eventually define Ja as follows:

Ja � α

3∏
j=1

βλj
. (13)

It can be noted that, if the alignment is above the desired
threshold and/or the length is within the gripper physical limits,

Ja will be equal to α, i.e., ranking the grasps depending on the
thumb alignment and the normalized length of the box side.

4) Collision Score

An important aspect to consider when selecting a grasp is
the potential collision of the gripper with the object and the
environment (such as a table) in the selected pose. In addition,
it is important to consider possible collisions that may happen
during the closure of the gripper fingers. We propose to include
into Sg information on these collisions, introducing a collision
score to penalize and discard grasps that are not collision-free.

The definition of this score exploits two auxiliary indexes de-
signed to take into account the two class of collisions presented
before, i.e., collisions of the whole gripper and collisions of the
fingers during the closure.

To model the former, we introduceκO , a function that exploits
the prior knowledge on the geometric representation of the shape
of the gripper h, i.e., O(h), to detect collisions of the gripper at
the grasping pose.

Given O(h), it is possible to define the density ρO of the
occupancy volume as the ratio between the number of points of
the object (and the environment) inside the said volume and the
total volume of O . From this, κO is defined as

κO �
{
0, if ρO ≥ δO

1, otherwise
(14)

where δO ∈ δ(h) is a user-defined threshold that determines
when the gripper is considered to collide with the environment.
This threshold is used to account for the resolution and presence
of noise in the acquired point cloud. The effect of κO is, hence,
to filter out the grasp poses for which the gripper would be in
collision with the object or the table on which the object lies.

For the sake of simplicity, we assume that the occupancy
volume O of the gripper can be approximated by a union of
cuboids, to speed up the computation of ρO . More complex
and detailed choices can be made, e.g., employing ellipsoids or
superquadrics [59], but this increases the time needed to check
the collisions.

To include the fingers’ range of movements and the possible
collisions during closure, we introduce κC , a function that
exploits the model of the closing region of the gripper h, C (h).
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Fig. 8. (a) and (b) Two examples of grasp poses generated for a specific box
output of the box decomposition algorithm using a boiler point cloud as input.
The orange box originated from the fingers of the hand is a simple model of the
closing region C (h).

Fig. 8 shows examples of two different grasp poses generated
for a boiler. The blue points are the point cloud acquired by
the camera; the pink points are the points of the cloud that
are inside the box used to generate the two grasps. The yellow
points represent the points of the cloud that do not belong to the
aforementioned box but are inside the closing region C (h) of
the gripper.

In the example, the gripper used was the Pisa/IIT SoftHand.
Due to its compliance and its synergy-based closure mechanism,
we modeled the closing region as a single cuboid originated
from the index and middle fingers. Different, and more fine,
approximations can be made to describe C (h), depending on
the specific gripper used [52], [57], [59].

It is possible to see how, for the grasp on the left, the closing
region contains points of the object (yellow points) that do not
belong to the box used to generate the grasp. Thus, while closing,
the fingers would collide with the object. This could reduce the
likelihood of a successful grasp, due to, e.g., a displacement of
the impacted object or the impeded closure of the hand around
the target box. For the grasp on the right, the closing region
contains only points part of the target box, hence providing a
collision-free closure.

We designedκC to include a heuristics into the grasp planning
algorithm favoring grasps as in Fig. 8(b) over grasps as in Fig.
8(a).

Given a graspg for a specific boxb ∈ B, we define the density
ρC as the ratio between the number of points of the object that
are not contained into the target box b but are inside the closing
region C (h) and the total volume of the closing region C (h).
From this, κC is defined as

κC �

⎧⎪⎨
⎪⎩
0, if ρC > δ̄C

ζ(δC ), if δ̄C ≤ ρC ≤ δ̄C

1, otherwise

(15)

where δ̄C ∈ δ(h) and δ̄C ∈ δ(h) are two user-defined thresh-
olds, and where ζ(δC ) is a smooth and monotonic function
such that ζ(δ̄C ) = 0 and ζ(δ̄C ) = 1, e.g., a cubic spline. The
collision score Jc is then modeled as the combination of the two
contributions, κO and κC , related to O and C . More formally,

Jc is defined as

Jc � κOκC . (16)

5) Global Grasp Quality Score

Having defined four cost indexes to model the effects from i)
to iv), we can eventually define the score Sg as the product of
these four elements

Sg(g) � Jb Jw Ja Jc. (17)

The designed metric is able to effectively describe the complex
interdependencies between the predicted grasp, the box it is
related to, and the gripper used for the grasp, by encompassing
all these factors into a global score.

It has to be noted that, from the definition, Sg(g) = 0 only in
the case of collisions, i.e., Jc = 0, and/or in the case of grasps
aligned with nongraspable sides, i.e., Ja = 0.

D. GRASP SELECTION POLICY

Using (17), the grasp to be executed is selected as the solution
of the constrained optimization problem

g∗ = arg max
g∈G

Sg(g)

s.t.

g ∈ Fr

Sg(g) > 0 (18)

where

Fr = {g |p(g) ∈ Wr}
is used to denote the set of grasps g for which the grasp pose
p(g) belongs to the reachable workspace Wr of the specific robot
r used to reach the pose. The problem is solved using a two-step
approach. First, find the grasp in the set G that maximizes Sg.
Then, the resulting pose is passed as input to a dedicated and
robot-specific inverse kinematic block that will check for the
feasibility. If the selected grasp is not feasible, it is removed
from G and the algorithm select the next best grasp. It is worth
noting that the last constraint, Sg(g) > 0, implies that all grasps
that are in collisions or are not feasible for the gripper due to the
size of the box side it is aligned with are automatically discarded.

IV. EXPERIMENTAL VALIDATION: SOFT HAND

In this section, we describe the setup used for the experimental
validation, and we present and comment the results of the
experiments. First we report and discuss the performance of GLP
2.0 compared to our previous work [19]. Then, we compare the
performance with two different state-of-the-art algorithms for
planning grasps for soft hands.

A. Experimental Setup

The setup we used for the experiments is shown in Fig. 9(a).
It is composed of two RGB-D Intel RealsenseTMD415 Camera,
used to acquire the point cloud of the target object. The grasp
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Fig. 9. (a) Experimental setup and complete set used for the experimental validation. (b) 30 objects, of which 21 are the ones used in [19]. (c) Nine additional
objects; from left to right: Big Colander, Small Colander, Controller, Brush, Pot, Boiler, Bottle, Foam Brick, and Tennis Ball. (a) Experimental Setup. (b) Objects
from [19]. (c) Additional objects tested.

pose is executed using a Franka EMIKA Panda equipped with a
Pisa/IIT SoftHand, the gripper used to collect the training data
for the DTR (see Section III-B2 and [19]).

The manipulator and the end-effector are controlled using
Robot Operating System (ROS). The point cloud acquisition is
made using the ROS interface provided by Intel. The box de-
composition is implemented in C++, while the grasp prediction
using the DTR is implemented with a Python script. We used
SciKit-Learn to train the DTR with a maximum tree depth of 8
(as in [19]). It has to be remarked that the DTR is trained only on
the set of grasp demonstrations provided by a human operator
for the set of cuboid boxes shown in Fig. 6, and thus, it does not
require to be trained on real objects. All the other steps have been
implemented in MATLAB, including the inverse kinematics step
through the reverse priority inversion algorithm proposed in [60]
and [61].

B. Object Dataset and Experimental Protocol

We evaluate the performance of the algorithm on a dataset
composed of 30 objects, for which the robot does not have
any model. We use the 21 objects used for the experimental
evaluation in [19] (chosen as they have characteristics similar
to the ones proposed in [62] as benchmark set), and we include
nine novel objects. The complete dataset is shown in Fig. 9(b)
and 9(c): on top, the original set of testing objects; at bottom, the
new objects. The new set presents three objects that are similar
to the ones already used in [19] (the ball, the pot, and the foam)
with slightly differences in terms of size and characteristics, but
also includes a set of large and/or heavy objects such as the
colander and the boiler which were not in [19].

In each test, the object is the only element in the scene, and
it is randomly placed on a table in the reachable workspace of
the robot. The robot always starts from the same position above
the object. The approaching trajectory is composed of a fifth-
order polynomial for the translational part, while spherical linear
interpolation is used to connect the initial and final orientation.
For each object, we tested five grasps, for a total of 150 grasps.

After the object is grasped, the robot lifts the object 150 mm
to evaluate the robustness of the closure. A grasp is considered
successful if the robot is able to complete the task (grasping
and lifting) without losing the object or without stopping. If the
algorithm does not return any feasible grasp, the task is marked
as a failure.

C. Results

In this section, we comment the results of the experimen-
tal validation. We first evaluate and compare the performance
against the original method, which acts as baseline, in terms
of overall grasping success rate and time needed to select a
candidate grasp. We also compare the number of boxes obtained
using the original and the modified box decomposition algo-
rithm presented in Section III-A. A summary of these results is
reported in Table I, our approach is denoted as GLP 2.0, where
the overall success rate is reported, together with statistics (in the
form mean ± standard deviation (min, max)) on the execution
time, the number of boxes, the number of points of the acquired
point cloud, and the time for each step of the two algorithms. The
values for the boxes have been rounded to the closest integer.

1) Grasping Performance: The first evaluation is about the
grasping success rate of GLP 2.0 for the 30 objects. The method
achieves an overall grasping success rate over the 150 grasps
of 94.0% compared to the 75.3% obtained by the baseline
algorithm. Fig. 10 reports the success rate for each object in
the dataset.

For every object, our approach outperforms, or at least evens
out, the baseline. Clear improvements can be seen when grasping
large and/or heavy boxes, such as the Power Drill, the Big
Colander, the Boiler, and the Brush. In particular, the baseline
is not able to generate a successful grasp for the Big Colander,
probably due to a poor box decomposition (large objects are
often decomposed into a single box using [19]). Even if we
remove this object from the statistics, the overall success rate us-
ing [19] is lower than the one we achieve (77.9% versus 94.5%).
In Fig. 11, we show some frames of the robot while grasping
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TABLE I
STATISTICS ON THE EXPERIMENTAL VALIDATION WITH THE PISA/IIT SOFTHAND

Fig. 10. Grasping success rate (%) with the Pisa/IIT SoftHand. Red dashed bars represent the results using GLP 2.0, the approach proposed in this article; blue
solid bars represent the results using [19]. GLP 2.0 shows a 25% improvement of the overall grasping success rate over the set of 30 objects (94% compared to
75.3%).

eight objects from the complete dataset: the Big Colander, the
Boiler, the Bottle, the Brush, the Controller, the Pot, the Small
Colander, and the Spatula.

It can be noted that the robot tries to grasp handle-like parts
for most of these objects, e.g., the Boiler, the Brush, and the Pot.
In addition, lateral grasps are selected for slender objects such
as the Bottle and the Brush, while top-down grasps seems more
likely for objects with a different aspect ratio, i.e., larger than
taller.

2) Box Decomposition: Following the considerations re-
ported in Section III-A on the modified box decomposition
algorithm, we compare the differences between GLP 2.0 and the
work in [19] in terms of the number of boxes used to approximate
the object. In Fig. 12, we report the number of boxes N as a
function of the number of points of the acquired point cloud.
It is worth noting as the different method for determining the
minimum number of points within each box leads to objects
with few points generally approximated with one or two boxes
at most, while the original approach can generate up to six boxes.
Objects with many points are instead decomposed more finely.

3) Execution Time: We then compare the timing perfor-
mance of the proposed approach and of the original algo-
rithm. Both the algorithms have been executed on a Laptop PC
equipped with an Intel Core i7 Processor (6×2.20 GHz) and
16-GB DDR4 RAM.

As shown in Fig. 13(a), our approach proved to be about
1.7 times slower on average, with a worst case execution time
that is around twice the one of the baseline. In particular, it can
be noted from Fig. 13(c) that while the previous approach is
weakly affected by the number of boxes (almost constant with

a linear regression coefficient of −0.03), GLP 2.0 takes longer
as the number of boxes increases (linear regression coefficient
of 2.34). It is worth to recall that the cardinality of the candidate
set G grows linearly with the number of boxesN (#G = 48N ).

Analyzing the average contribution of each step of the two
algorithms, it can be noted from Fig. 13(b) that the main differ-
ence between the two methods relies on the time spent during
the analysis of the candidate grasps and the grasp selection.
Indeed, the algorithm proposed in this article evaluates a larger
set of grasps with a more complex metric, so we can expect an
increased computational effort. Indeed, if we normalize the time
needed by the two algorithms for the cardinality of the respective
grasp sets (accounting also for the cases in which [19] is required
to select a different candidate box due to the lack of feasible
grasps), we obtain that our approach takes on average 20 ms per
grasp compared with 4 ms per grasp using [19]. Nonetheless,
the current MATLAB implementation has not been optimized
for performance, since optimizing the throughput of the entire
system was out of the scope of this article. We are confident that
an optimized implementation will be able to reduce the time
needed to select the candidate grasp.

D. Comparison With Other Approaches

While the previous section presented the results of the pro-
posed method compared to [19], this section presents the result
of the comparison with other two grasp planning methods for
soft hands.

First, we compare the performance with the method presented
in [28], called CS-GQ-CNN in the following, that combines the
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Fig. 11. Selections of frames of the robot grasping (a) the Big Colander, (b) the Boiler, (c) the Bottle, (d) the Brush, (e) the Controller, (f) the Pot, (g) the Small
Colander, and (h) the Spatula.

Fig. 12. Number of boxes as a function of the number of points of the point cloud. Solid: our approach; dashed: [19].
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Fig. 13. Execution time performance. (a) Statistics on the execution time. (b) Average contribution of each step of the algorithm. (c) Mean execution time as a
function of the number of boxes; solid: our approach; dashed: [19].

Fig. 14. Results of the comparison with GPD and CS-GQ-CNN using the Pisa/IIT SoftHand. GLP 2.0 outperforms both baselines on the tested objects, relying
on a smaller set of demonstrations. (a) Dimensions of the collected training datasets. Data are displayed using a logarithmic scale. (b) Execution times. (c) Success
rate.

grasp quality convolutional neural network (GQ-CNN) mod-
ule presented in [24] with the closure signature (CS) concept
presented in [56], to plan grasps with the Pisa/IIT SoftHand.
The GQ-CNN module estimates the optimal grasp (center and
direction) to be performed with a parallel-jaw gripper given an
observed depth image of the object to grasp. The CS module,
instead, is used to plan the hand–object alignment given the
estimated grasp center and direction. The CS provides a sim-
plified way to plan grasps with soft hands, as it characterizes
a specific closing motion that the hand can achieve through a
direction of maximum closure applied at a certain point. As
highlighted in [28], the center and direction defined by the
CS can be compared to the grasping center and direction of
a parallel-jaw gripper; thus, it allows fast adaptation of models
trained for parallel-jaw grippers to different hands.

Then, using a similar approach, we exploit the CS concept
to adapt the grasp pose detection (GPD) method presented
in [15] to the Pisa/IIT SoftHand gripper. GPD takes a point
cloud as input and produces 6-D pose estimates of viable grasps
as output. The GPD process involves two primary stages: gener-
ating a vast selection of potential grasps through sampling, and
subsequently evaluating with a four-layer convolutional neural
network (CNN) which of these candidates are good grasps.

Note that while GPD, similar to our methods, takes as input
the object point cloud and outputs 6-D grasp poses, the CS-GQ-
CNN plans a grasp pose from a depth image obtained from an

overhead camera and has been developed for top-down grasps.
Since our setup uses two cameras, we decided to run the CS-
GQ-CNN method on both depth maps, selecting the grasp with
the highest Q-value among the two sets generated.

The comparison has been carried out on a subset of 16 objects
taken from the ones listed in Table II. This subset contains objects
covering various sizes, shapes, and weights. Indeed, it has large
and heavy objects, the Boiler and the Power Drill, small objects,
such as the Small Cup and the Toy Block, and even soft objects,
like the Foam Brick. In addition, it also includes objects that are
hard to grasp with our proposed method, e.g., the Controller.
The experimental protocol is the same as the one described in
the previous section, and for each object, we perform five grasp
attempts with the three methods.

Fig. 14 reports the results of the comparison. First, we report
the dimensions of the dataset used to train the different machine
learning models used by the three methods [see Fig. 14(a)]. It
can be noted that GPD has been trained over 300 000 grasp
poses randomly sampled over the created dataset of 1.5 million
grasps (50 000 labeled grasps for each of the 55 objects of the
BigBird dataset), while the GQ-CNN model presented in [24]
has been trained over a dataset of 6.7 million synthetic point
clouds, parallel-jaw grasps, and analytic grasp methods. In con-
trast, our method builds upon a small dataset of less than 1000
demonstrations of a human grasping sample cuboids. In fact,
we use machine learning to generate the set of candidate grasp
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poses, while the grasp evaluation is performed through a white
box method that exploits the grasp quality metric presented in
Section III-C and does not require training a neural network.

Then, we show the average time needed to obtain the grasp
pose to be executed for each method [see Fig. 14(b)] and the
success rate for each object and the overall success rate over the
testing set [see Fig. 14(c)]. The three algorithms have similar
performance in terms of average time needed to generate and
select the grasp to be executed. The results show that our method
clearly outperforms both the baselines for every object in the
testing set, realizing an overall 91.25% success rate, while the
two baselines remain around a 50% of successful grasps.

The CS-GQ-CNN is the method achieving the worst perfor-
mance. This result can be explained by the fact that it does not
generate 6-D grasps, but, exploiting the Dex-Net architecture,
it predicts and evaluates grasps parameterized with the planar
position, angle, and depth of a gripper relative to the depth
image. In addition, the method has been designed for overhead
cameras and top-grasps and struggles to adapt to more general
settings and camera positions. On the other hand, GPD predicts
6-D grasps and performs slightly better than the other baseline,
but it has to be pointed out that the grasp quality network has
been trained for rigid parallel grippers. Our approach, instead,
is able to take into account the gripper structure and charac-
teristics when generating and evaluating the grasps, as shown
with the experimental validation on rigid gripper described in
the following.

V. EXPERIMENTAL VALIDATION: RIGID GRIPPER

Some considerations about the general applicability of
the method to different grippers are necessary. Indeed, the
experimental validation has been carried out with the SoftHand,
an underactuated and compliant gripper. The compliant nature of
the SoftHand, and its capability to adapt during the closure, can
affect, to some extent, the performance. Thus, an experimental
validation using a rigid two-finger gripper (the Franka Hand) has
been performed. This validation aims to assess if GLP 2.0 can
be adapted to different grippers, and to evaluate the influence of
compliance on the performance of the method. In the following,
the procedure used to collect the data needed by the DTR for
the grasp prediction and the considerations used to provide a
well-posed definition of the gripper to compute the grasp quality
score are presented.

A. Acquisition of the Human Expertise

In order to apply the method to a different gripper, it is
necessary to collect the data (grasping poses and wrenches) used
to train the DTR. To this end, the setup depicted in Fig. 15
has been used to collect them. First, an ARuco marker is used
to retrieve the pose of the box w.r.t. the robot frame. Then, a
human operator uses the Franka Hand, through the hand-guiding
interface of the Franka arm, to grasp the box attached to the F/T
sensor and collect the data following the same protocol used for
the Pisa/ITT SoftHand.

Considering the maximum opening of the gripper, it was
not possible to demonstrate a grasp for each of the possible

Fig. 15. Data acquisition with the Franka Hand.

Fig. 16. Top: Definition of the local frame used to compute Ja for the Panda
Gripper and examples of alignment of the gripper with a box. Bottom left:
approximation of the collision volume O as union of three cuboids. Bottom
right: fingers’ closing region C .

configurations of the 56 cuboids, so the dataset consists of 630
grasps, compared to the 648 grasps that were collected using the
SoftHand.

1) Considerations on the Grasp Quality Metric: Given the
definition of each element of (17), while Jb and Jw, as described
in (8) and (9), are basically gripper-agnostic, Ja and Jc are
instead strongly gripper-dependent. Specifically, they depend
on the definition of the quantities collected into the tuple h [see
(4)].

For Jc, being it related to the collisions of the gripper and
its fingers during the grasping procedure, it should only be
necessary to provide an approximation, even rough, of O and C
to compute κO and κC . More critical instead is the question of
the box–gripper alignment. Indeed, the considerations provided
in Section III-C3 are, at first glance, arising from assumptions
on the structure of the specific robotic hand used.

It is possible to use similar considerations for standard parallel
grippers, as shown in Fig. 16 using the Franka Hand (a two-finger
parallel gripper). The top row shows how it is possible to define
a local frame as the one defined for the SoftHand (see Fig. 3)
to compute the gripper–box alignment score Ja. Following con-
siderations analogous to the ones used for the SoftHand, grasps
highly aligned with the longest side of a box might not be robust
(or even unfeasible) given the limits on the gripper width (that for
the Franka Hand is set to 0.08 cm). The bottom row is instead
a representation of the approximation using a combination of
cuboids for O and the approximation of C through a single
cuboid.



4030 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 5, OCTOBER 2023

Fig. 17. Experimental setup and grasping success rate using the Franka Hand. GLP 2.0 achieves an overall grasping success rate of 85.0%, comparable with the
one obtained on the same objects with the Pisa/IIT SoftHand (91.25%). GLP 2.0 outperforms the other two baselines, which score a success rate lower than 60%.
(a) Objects used for the validation and examples of generated grasps. (b) Franka Hand: Grasping success rate (%).

From these considerations, it is possible to provide a suitable
definition of h even for the case of more standard grippers.

B. Experimental Setup and Objects

The setup replicates the one used for the validation with the
SoftHand: two Intel Realsense D415 cameras are used to collect
the object point cloud. The manipulator and the gripper are
controlled using ROS. The point cloud acquisition is made using
the ROS interface provided by Intel. The box decomposition is
implemented in C++, while the grasp prediction using the DTR
is implemented with a Python script.

The performance of the algorithm is evaluated on a dataset
composed of 16 objects, representing a subset of the complete
dataset used for the validation with the SoftHand. A picture of
the set of objects and a snapshot of executed grasps is shown in
Fig. 17(a).

For each object, five grasps are attempted, with the target
object placed randomly on the table at the beginning of each
trial. The robot starts each trial from the same initial position.
An RRT planner is used to plan a collision-free trajectory to
reach the grasping pose. When the robot reaches the computed
grasping pose, the gripper fingers are closed, and the manipulator
tries to lift the object 150 mm. A grasp is successful if the robot
can keep the object grasped after the lifting phase. The trial is
marked as a failure also in the case of the algorithm returning
no feasible grasps.

C. Results

The results of the method applied to the Franka Hand (in the
following denoted as GLP2-F) are compared to three different
baselines: 1) the proposed method using the Pisa/IIT SoftHand
(GLP2-SH); 2) Dex-Net 2.0 [24]; and 3) GPD [15] .

The results of the experimental validation are reported in
Fig. 17(b), where the success rate for each object is reported for
the method and the three baselines. Eventually, Fig. 18 shows
some frames of the robot while grasping six objects with the rigid
gripper. The method using the Franka Hand achieves an overall
grasping success rate of 85.0%, compared with the 91.25%
obtained with the same objects with the Pisa/IIT SoftHand.

It is worth noting that it achieves satisfactory performance for
almost every object in the dataset, except for the Small Cup and
the Spatula, and clearly outperforms the other two baselines,
GPD and Dex-Net, that score a success rate lower than 60%. As
expected, Dex-Net is the method with the worst performance, as
it has been developed assuming observations from an overhead
camera. Compared to the results obtained with the SoftHand,
it is possible to notice an improvement for the Controller. At
the same time, there is a clear decrease for the Small Cup (60%
against 100%).

The reason for this reduction can be explained by the fact
that such a small object is, in general, more affected by errors
and artifacts in the acquired point cloud and depth maps. This
type of artifact consequently influences the grasp pose generated
and, for a rigid gripper such as the one used, can lead to failures
and nonrobust grasps. Indeed, it can be noted that also GPD and
Dex-Net struggle with this particular object, since they are both
able to grasp only once over the five trials. In these cases, the
compliance of the gripper and its ability to adapt influence the
performance positively.

Overall, these results seem to confirm that the proposed
method is generally capable of generating and selecting good-
quality grasps even for noncompliant grippers, outperforming
both GPD and Dex-Net. Furthermore, the results show that the
performance is not strongly affected by the compliance of the
gripper used initially. Nonetheless, using a compliant gripper can
help increase robustness against uncertainties and errors related
to poor perception.

VI. LIMITATIONS

This section will discuss the main limitations and shortcom-
ings of the different parts of the proposed method.

A. Box Decomposition

The main limitation is related to the robustness of the method
to perception inaccuracies. Indeed, the performance of the box
decomposition phase, and thus of the whole pipeline, strongly
depends on the quality of the point cloud acquired by the sensors.
Noisy or incomplete point clouds can lead to poor decomposition
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Fig. 18. Selections of frames of the robot grasping (a) the Big Colander, (b) the Boiler, (c) the Power Drill, (d) the Toy Orange, (e) the Spray, and (f) the Spatula.

and, therefore, to reduced grasping performance. One possible
solution to this shortcoming might be to use shape completion
networks to reconstruct the acquired point cloud from partial
views [63], [64]. This change would also work toward a more
flexible framework because it could reduce the number of cam-
eras needed to capture the point cloud.

B. Grasp Generation

The method requires a dataset of grasp poses and interac-
tion wrenches to train DTR. These data are gripper dependent;
therefore, to adapt the method to different grippers, it would be
necessary to reacquire the data with the specific gripper. It has
to be noted that this limitation is common to other data-driven
algorithms that learn grasps for the specific gripper used for
data collection. Further investigations are needed to increase the
generality of the proposed approach and to understand if the
data collected with a specific gripper, e.g., a two-finger parallel
gripper, can be transferred to and used for other grippers that
have similar properties, e.g., other two-finger grippers.

C. Grasp Selection

The grasp selection procedure depends on the evaluation of
the quality score Sg. This score has been designed according

to a set of heuristics that we believe are capable of evaluating
the “quality” of a grasp. Nonetheless, some of these heuristics
are based on the specific gripper definition h and have been
described in Section III-C for the case of the SoftHand. We
have later shown that it is possible to transfer the score and
gripper definition to a completely different gripper, i.e., the
Franka Hand. However, while some of the parameters like
the ones describing the gripper’s shape and closing regions, or
the maximum graspable dimension, might be straightforward to
compute and tune, the tuning of the other parameters, i.e., the
collision’s and alignment’s thresholds, is less direct, and it is
impossible to provide a general automatic procedure.

In addition, in the current form, the grasp selection policy
is designed to select the best kinematically feasible grasps and
does not take into consideration any other property related to the
specific robot used to move the gripper, e.g., the manipulability
of the grasp pose. In theory, it could be possible to modify the
grasp selection policy presented in (18) by scaling the grasp
quality metric by a measure of the manipulability of the spe-
cific grasp pose. This term could be computed using, e.g., the
manipulability index introduced by Yoshikawa [65]

μ(g) =
√

det
(
J(qg)JT (qg)

)
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TABLE II
OBJECT DIMENSIONS

where qg is the joint configuration realizing the grasp pose g,
retrieved using a robot-specific inverse kinematics solver. This
procedure would select a grasp considering both the quality of
the grasp, measured by Sg, and the manipulability of this grasp
given the specific manipulator.

D. Grasp Execution

Eventually, the current framework only tackles the problem
of generating a grasp pose for the gripper. It uses the interaction
wrenches learned from the demonstrations only for planning
purposes, i.e., to compute the associated score Jw, and does
not use them during the execution of the grasp. The selected
grasp is then executed in open loop. However, especially in the
presence of uncertain and noisy perception, open-loop execution
might cause failures because of early or inaccurate hand–object

contacts [9]. Indeed, including closed-loop adaptive grasping
strategies, capable of using tactile and contact information [9],
or the information of the learned interaction wrenches, into the
proposed framework has the potential of improving the perfor-
mance, especially when using rigid, noncompliant, grippers.

VII. CONCLUSION

In this article, we presented GLP 2.0, a data-driven grasp
planning algorithm, for the grasping of unknown objects. The
method leverages and improves a previous work from the same
authors, which exploits an approximation of the target object into
a generic number of basic shapes to generate a set of candidate
grasps from demonstrations by a skilled human operator grasp-
ing the same shape. Based on the same philosophy of transferring
the human grasping skills to the robot, we proposed an improved
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Algorithm 1: MVBB Decomposition.

grasp generation method and a novel grasp selection policy. The
experimental validation with a compliant underactuated hand
shows that the method outperforms the original algorithm in
terms of overall grasping success rate, at the expense of an
increased execution time. We also showed that the method is
transferable to more standard, rigid, grippers, providing an ex-
perimental validation of the method when applied to the Franka
Hand, a two-finger gripper. Finally, we compared the method
with several baselines, showing that GLP 2.0 achieves better
performance in terms of grasping success rate. Future works
will extend the method to multiobject cluttered scenarios and to
task-oriented grasp planning.

APPENDIX

Object Dimensions

In Table II, we reported the dimensions and the weights of the
objects used for the experimental validation.

Box Decomposition Algorithm

Algorithm 1 describes the decomposition procedure. The
algorithm uses a fit-and-split approach, which starts with fitting
a 3-D bounding box on the whole point cloud. This box is added
to a list of candidate boxes that are iteratively tested for potential
splitting. If the volume of the candidate box or the number of
points enclosed within it are below a user-specified threshold,
the candidate box is added to the final set of boxes. Otherwise,
the algorithm evaluates a best split of this box, by using 2-D
projections of the enclosed points to the box faces, according to
the procedure reported in Algorithm 2. This split produces two
boxes, box1 and box2, and if the reduction rate of the volume of
the two new boxes compared with the original box is less than
the user-specified gain, the two are added to the list of candidate
boxes. Otherwise, the split is not enforced, and the original box
is added to the final set of boxes.

Algorithm 2: Find Best Split.

Decision Tree Regressor

We use DTRs to learn the model ψ̃(λb) to predict the grasp
pose and the associated interaction wrenches. In this article,
we trained two DTRs: one for predicting the grasp pose given
a vector of box dimensions, and one for regressing the metric
of the interaction wrenches described in Section III-B2. The
regression tree model is represented as a binary tree, with each
node representing a single input variable xj and a split point on
that variable. The tree’s leaf nodes include an output variable
y, which is utilized to produce a prediction. Given a (xi,yi)
observation for I = 1, 2 . . . , n, the regression tree construction
is explained by the following stages:

1) Choose a splitting variable j and a splitting point s.
2) Create two regions, R1 and R2: R1(j, s) = {x|xj ≤ s},

R2(j, s) = {x|xj > s}.
3) For each k ∈ {1, . . . ,K}, find the splitting variable j and

the split point s that solve the problem

min
j,s

⎡
⎣min

c1,k

∑
xi∈R1(j,s)

(yi,k − c1,k)
2

+ min
c2,k

∑
xi∈R2(j,s)

(yi,k − c2,k)
2

⎤
⎦

where c1,k, c2,k ∈ R are two constant decision variables
that describe the model response. Given j and s, the
solution of the minimization is

ĉ1,k = ave(yi,k|xi ∈ R1(j, s)), ĉ2,k

= ave(yi,k|xi ∈ R2(j, s))

where ave is the average of yi,k in regionR1 orR2, and we
define ĉ1 = [ĉ1,1, . . . , ĉ1,K ]T and ĉ2 = [ĉ2,1, . . . , ĉ2,K ]T .

4) After determining the optimal split for each splitting
variable, divide the data into two areas and perform the
splitting procedure on each of the two regions recursively.



4034 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 5, OCTOBER 2023

The maximum tree depth is empirically chosen to 8 as a
tradeoff between model complexity and risk of overfitting. We
used K-fold cross validation to verify the performance of the
trained models, evaluating the mean squared error between the
models’ predictions and the true labeled data in the validation
set.
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