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Perceptive Locomotion Through Nonlinear
Model-Predictive Control

Ruben Grandia , Fabian Jenelten , Shaohui Yang , Farbod Farshidian , and Marco Hutter

Abstract—Dynamic locomotion in rough terrain requires ac-
curate foot placement, collision avoidance, and planning of the
underactuated dynamics of the system. Reliably optimizing for
such motions and interactions in the presence of imperfect and
often incomplete perceptive information is challenging. We present
a complete perception, planning, and control pipeline, which can
optimize motions for all degrees of freedom of the robot in real
time. To mitigate the numerical challenges posed by the terrain,
a sequence of convex inequality constraints is extracted as local
approximations of foothold feasibility and embedded into an on-
line model-predictive controller. Steppability classification, plane
segmentation, and a signed distance field are precomputed per
elevation map to minimize the computational effort during the
optimization. A combination of multiple-shooting, real-time iter-
ation, and a filter-based line search is used to solve the formulated
problem reliably and at high rate. We validate the proposed method
in scenarios with gaps, slopes, and stepping stones in simulation and
experimentally on the ANYmal quadruped platform, resulting in
state-of-the-art dynamic climbing.

Index Terms—Legged locomotion, optimal control, terrain
perception.

I. INTRODUCTION

INSPIRED by nature, the field of legged robotics aims to
enable the deployment of autonomous systems in rough

and complex environments. Indeed, during the recent DARPA
subterranean challenge, legged robots were widely adopted and
highly successful [2], [3]. Still, complex terrains that require
precise foot placements, e.g., negative obstacles and stepping
stones, as shown in Fig. 1, remain difficult.

A key challenge lies in the fact that both the terrain and the sys-
tem dynamics impose constraints on contact location, force, and
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Fig. 1. ANYmal walking on uneven stepping stones. In the shown configura-
tion, the top foothold is 60 cm above the lowest foothold. The top right visualizes
the internal terrain representation used by the controller.

timing. When taking a model-based approach, mature methods
exist for perceptive locomotion with a slow static gait [4], [5],
[6], [7], [8] and for blind dynamic locomotion that assumes flat
terrain [9], [10], [11]. Learning-based controllers have recently
shown the ability to generalize blind locomotion to challenging
terrain with incredible robustness [12], [13], [14]. Still, tightly
integrating perception to achieve coordinated and precise foot
placement remains an active research problem.

In an effort to extend dynamic locomotion to uneven terrain,
several methods have been proposed to augment foothold se-
lection algorithms with perceptive information [15], [16], [17].
These approaches build on a strict hierarchy of first selecting
footholds and optimizing torso motion afterward. This decom-
position reduces the computational complexity but relies on
hand-crafted coordination between the two modules. In addition,
separating the legs from the torso optimization makes it difficult
to consider kinematic limits and collision avoidance between
limbs and terrain.

Trajectory optimization where torso and leg motions are
jointly optimized has shown impressive results in simula-
tion [18], [19], [20] and removes the need for engineered
torso–foot coordination. Complex motions can be automatically
discovered by including the entire terrain in the optimization.
However, computation times are often too long for online de-
ployment. In addition, due to the nonconvexity, nonlinearity, and
discontinuity introduced by optimizing over arbitrary terrain,
these methods can get stuck in poor local minima. Dedicated
work on providing an initial guess is needed to find feasible
motions reliably [21].

This article presents a planning and control framework that
optimizes over all degrees of freedom of the robot, considers
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collision avoidance with the terrain, and enables complex
dynamic maneuvers in rough terrain. The method is cen-
tered around nonlinear model-predictive control (MPC) with a
multiple-shooting discretization [22], [23]. However, in contrast
to the aforementioned work, where the full terrain is integrated
into the optimization, we get a handle on the numerical difficulty
introduced by the terrain by exposing the terrain as a series of
geometric primitives that approximate the local terrain. In this
case, we use convex polygons as foot placement constraints, but
different shapes can be used as long as they lead to well-posed
constraints in the optimization. In addition, a signed distance
field (SDF) is used for collision avoidance. We empirically
demonstrate that such a strategy is an excellent tradeoff between
giving freedom to the optimization to discover complex motions
and the reliability with which we can solve the formulated
problem.

A. Contributions

We present a novel approach to locomotion in challenging
terrain where perceptive information needs to be considered and
nontrivial motions are required. The complete perception, plan-
ning, and control pipeline contains the following contributions.

1) We propose an MPC architecture that enables simultane-
ous and real-time optimization of all degrees of freedom
of the robot for dynamic motions across rough terrain. Per-
ceptive information is encoded through a sequence of ge-
ometric primitives that capture local foothold constraints
and a signed distance field used for collision avoidance.

2) We benchmark the combination of multiple-shooting tran-
scription, sequential quadratic programming (SQP), and
a custom filter-based line search procedure for fast and
reliable online solutions to nonlinear optimal control prob-
lems for locomotion.

We provide a detailed description of the implemented MPC,
its integration with whole-body and reactive control modules,
and extensive experimental validation of the resulting locomo-
tion controller. The MPC implementation is publicly available
as part of the OCS2 toolbox1 [24]. The implemented online seg-
mentation of the elevation map and the efficient precomputation
of a signed distance field are contributed to existing open-source
repositories.2,3

B. Outline

An overview of the proposed method is given in Fig. 2. The
perception pipeline at the top of the diagram runs at 20 Hz
and is based on an elevation map constructed from point cloud
information. For each map update, classification, segmentation,
and other precomputation are performed to prepare for the high
number of perceptive queries during motion optimization. At
the core of the framework, we use nonlinear MPC at 100 Hz
to plan a motion for all degrees of freedom and bring together

1[Online]. Available: https://github.com/leggedrobotics/ocs2
2[Online]. Available: https://github.com/leggedrobotics/elevation_mapping_

cupy
3[Online]. Available: https://github.com/ANYbotics/grid_map

Fig. 2. Schematic overview of the proposed method together with the update
rate of each component.

user input, perceptive information, and the measured state of the
robot. Finally, state estimation, whole-body torque control, and
reactive behaviors are executed at a rate of 400 Hz.

After a review of related work in Section II, this article is
structured similarly to Fig. 2. First, we present the percep-
tion pipeline in Section III. Afterward, the formulated optimal
control problem and the corresponding numerical optimization
strategy are discussed in Sections IV and V, respectively. We
introduce the motion execution layer in Section VI. The resulting
method is evaluated on the quadrupedal robot ANYmal [25] (see
Fig. 1) in Section VII. Finally, Section VIII concludes this article.

II. RELATED WORK

A. Decomposing Locomotion

When assuming a quasi-static gait with a predetermined step-
ping sequence, the planning problem on rough terrain can be
simplified and decomposed into individual contact transitions, as
demonstrated in the early work on LittleDog [4], [26]. In a one-
step-ahead fashion, one can check the next foothold for kine-
matic feasibility, feasibility w.r.t. the terrain, and the existence
of a statically stable transition. This problem can be efficiently
solved by sampling and checking candidate footholds [27].
Afterward, a collision-free swing leg trajectory to the desired
foothold can be generated based on an SDF, for example, with
CHOMP [28]. Fully onboard perception and control with such
an approach were achieved by Fankhauser et al. [7]. Instead of
one-step-ahead planning, a rapidly exploring random tree graph
can be built to plan further ahead [5]. Sampling over templated
foothold transitions achieves similar results [6], [29].

In this article, we turn our attention to dynamic gaits, where
statically stable transitions between contact configurations are
not available. In model-based approaches to dynamic perceptive
locomotion, a distinction can be made between methods where
the foothold locations are determined separately from the torso
and those where the foothold locations and torso motions are
jointly optimized.

https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/elevation_mapping_cupy
https://github.com/leggedrobotics/elevation_mapping_cupy
https://github.com/ANYbotics/grid_map
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Several methods in which footholds are selected before op-
timizing the torso motions, initially designed for flat terrain,
have been adapted to traverse rough terrain [30], [31]. These
methods typically employ some form of Raibert heuristic [32]
to select the next foothold and adapt it based on perceptive
information such as a traversability estimate [33]. The work of
Bellicoso et al. [9] was extended by including a batch search
for feasible footholds based on a given terrain map and foothold
scoring [15]. Similarly, in [16], the foot placement is adapted
based on visual information resulting in dynamic trotting and
jumping motions. Magana et al. [34] proposed to train a con-
volutional neural network (CNN) to speed up the online eval-
uation of such a foothold adaptation pipeline. This CNN was
combined with the MPC strategy in [11] to achieve perceptive
locomotion in simulation [17]. In [35] and [36], a reinforce-
ment learning (RL) policy has replaced the heuristic foothold
selection.

However, since foothold locations are chosen before opti-
mizing the torso motion, their effect on dynamic stability and
kinematic feasibility is not directly considered, requiring addi-
tional heuristics to coordinate feet and torso motions to satisfy
whole-body kinematics and dynamics. Moreover, it becomes
hard to consider collisions of the leg with the terrain because
the foothold is already fixed. In our approach, we use the same
heuristics to find a suitable nominal foothold in the terrain. How-
ever, instead of fixing the foothold to that particular location, a
region is extracted around the heuristic in which the foothold is
allowed to be optimized.

The benefit of jointly optimizing torso and leg motions has
been demonstrated in the field of trajectory optimization. One
of the first demonstrations of simultaneous optimization of
foot placement and a zero-moment point [37] trajectory was
achieved by adding 2-D foot locations as decision variables
to an MPC algorithm [38]. More recently, Kinodynamic [39],
Centroidal [40], [41], [42], and full dynamics models [43], [44],
[45] have been used for simultaneous optimization of 3-D foot
locations and body motion. Alternatively, a single rigid-body
dynamics (SRBD) model or other simplified torso models can
be extended with decision variables for Cartesian foothold lo-
cations [19], [46]. Real-time capable methods have been pro-
posed with the specification of leg motions on position [10],
velocity [47], or acceleration level [48]. One challenge of this
line of work is the computational complexity arising from the
high-dimensional models, already in the case of locomotion on
flat terrain. Our method also uses a high-dimensional model and
falls in this category. A key consideration when extending the
formulations with perceptive information has, thus, been to keep
computation within real-time constraints.

Finally, several methods exist that additionally optimize gait
timings or even the contact sequence together with the whole-
body motion. This can be achieved through complementarity
constraints [18], [20], [49], mixed-integer programming [50],
[51], or by explicitly integrating contact models into the opti-
mization [48], [52]. Alternatively, the duration of each contact
phase can be included as a decision variable [19], [53] or
found through bilevel optimization [54], [55]. However, such

methods are prone to poor local optima, and reliably solving the
optimization problems in real time remains challenging.

B. Terrain Representation

The use of an elevation map has a long-standing history in
the field of legged robotics [56], and it is still an integral part
of many perceptive locomotion controllers today. Approaches
where footholds are selected based on a local search or sampling-
based algorithm can directly operate on such a structure. How-
ever, more work is needed when integrating the terrain into a
gradient-based optimization.

Winkler et al. [19] use an elevation map for both foot place-
ment and collision avoidance. The splines representing the foot
motion are constrained to start and end on the terrain with
equality constraints. An inequality constraint is used to avoid
the terrain in the middle of the swing phase. Ignoring the discon-
tinuity and nonconvexity from the terrain makes this approach
prone to poor local minima, motivating specialized initialization
schemes [21] for this framework.

In [46], a graduated optimization scheme is used, where a
first optimization is carried out over a smoothened version of
the terrain. The solution of this first optimization is then used to
initialize an optimization over the actual elevation map. In a sim-
ilar spirit, Mordatch [18] considers a general 3-D environment
and uses a soft-min operator to smoothen the closest point com-
putation. A continuation scheme is used to gradually increase
the difficulty of the problem over consecutive optimizations.

Deits and Tedrake [57] describe a planning approach over
rough terrain based on mixed-integer quadratic programming
(MIQP). Similar to [8], convex safe regions are extracted from
the terrain, and footstep assignment to a region is formulated as
a discrete decision. The foothold optimization is simplified be-
cause only convex safe regions are considered during planning.
Furthermore, the implementation relied on the manual seeding
of convex regions by a human operator. We follow the same
philosophy of presenting the terrain as a convex region to the
optimization. However, we remove the mixed-integer aspect by
preselecting the convex region. The benefits are twofold: First,
we do not require a global convex decomposition of the terrain,
which is a hard problem in general [58], and, instead, only pro-
duce a local convex region centered around a nominal foothold.
Second, the MIQP approach does not allow for nonlinear costs
and dynamics, which limits the range of motions that can be
expressed. We first explored the proposed terrain representation
as part of our previous work [59], but relied on offline mapping,
manual terrain segmentation, and did not yet consider terrain
collisions. In [60], we applied this idea to wheeled-legged robots,
but again relied on offline mapping and segmentation. Moreover,
as discussed in the next section, in both [59] and [60], we used
a different solver, which was found to be insufficient for the
scenarios in this article.

C. Motion Optimization

For trajectory optimization, large-scale optimization pack-
ages, such as SNOPT [61] and IPOPT [62], are popular. They



GRANDIA et al.: PERCEPTIVE LOCOMOTION THROUGH NONLINEAR MODEL-PREDICTIVE CONTROL 3405

Fig. 3. Perception pipeline overview. (a) Elevation map is filtered and classified into steppable and nonsteppable cells (see Section III-A). All steppable areas
are segmented into planes (see Section III-B). After segmentation, the steppability classification is refined. (b) Signed distance field (see Section III-C) and
torso reference layer (see Section III-D) are precomputed to reduce the required computation time during optimization. (c) Convex foothold constraints in (21)
are obtained from the plane segmentation. The signed distance field enables collision avoidance in (23), and the torso reference is used to generate height and
orientation references (see Section IV-E).

are the workhorse for offline trajectory optimization in the
work of Winkler [19], Dai [20], Mordatch [18], Posa [49],
and Pardo [43]. These works show a great range of motions
in simulation, but it typically takes minutes to hours to find a
solution.

A different line of work uses specialized solvers that ex-
ploit the sparsity that arises from a sequential decision making
process. Several variants of differential dynamic programming
(DDP) [63] have been proposed in the context of robotic motion
optimization, e.g., iLQR [64], [65], SLQ [39], and FDDP [45],
[66].

With a slightly different view on the problem, the field of
(nonlinear) MPC [23], [67] has specialized in solving successive
optimal control problems under real-time constraints. See [68]
for a comparison of state-of-the-art quadratic programming
(QP) solvers that form the core of second-order optimization
approaches to the nonlinear problem. For time-critical appli-
cations, the real-time iteration scheme can be used to trade
optimality for lower computational demands [69]: In an SQP
approach to the nonlinear problem, at each control instance,
only a single QP optimization step is performed.

The current work was initially built on top of a solver in
the first category [39]. However, a significant risk in classi-
cal DDP-based approaches is the need to perform a nonlinear
system rollout along the entire horizon. Despite the use of a
feedback policy, these forward rollouts can diverge, especially
in the presence of underactuated dynamics. This same obser-
vation motivated Mastalli et al. to design FDDP to maintain
gaps between shorter rollouts, resulting in a formulation that is
equivalent to direct multiple-shooting formulations with only
equality constraints [22], [66]. Giftthaler et al. [70] studied
several combinations of iLQR and multiple shooting but did
not yet consider constraints beyond system dynamics nor a

line search procedure to determine the step size. Furthermore,
experiments were limited to simple flat terrain walking.

We directly follow the multiple-shooting approach with a
real-time iteration scheme and leverage the efficient structure
exploiting QP solver HPIPM [71]. However, as also mentioned
in both [66] and [70], one difficulty is posed in deciding a step
size for nonlinear problems, where one now has to monitor
both the violation of the system dynamics and minimization
of the cost function. To prevent an arbitrary tradeoff through
a merit function, we suggest using a filter-based line search
instead [72], which allows a step to be accepted if it reduces
either the objective function or the constraint violation. As we
will demonstrate in the results section, these choices contribute
to the robustness of the solver in challenging scenarios.

III. TERRAIN PERCEPTION AND SEGMENTATION

An overview of the perception pipeline and its relation to the
MPC controller is provided in Fig. 3. The pipeline can be divided
into three parts: (a) steppability classification and segmenta-
tion; (b) precomputation of the SDF and torso reference; and
(c) integration into the optimal control problem.

The elevation map, represented as a 2.5-D grid [73] with a
4-cm resolution, is provided by the GPU-based implementation
introduced in [74]. The subsequent map processing presented
in this article runs on the CPU and is made available as part of
that same open-source library. Both (a) and (b) are computed
once per map and run at 20 Hz, asynchronously to the motion
optimization in (c).

A. Filtering and Classification

The provided elevation map contains empty cells in occluded
areas. As a first step, we perform inpainting by filling each
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cell with the minimum value found along the occlusion border.
Afterward, a median filter is used to reduce noise and outliers in
the map.

Steppability classification is performed by thresholding the
local surface inclination and the local roughness estimated
through the standard deviation [75]. Both quantities can be com-
puted with a single pass through the considered neighborhood
of size N :

μ =
1

N

∑
i

ci, S =
1

N

∑
i

cic
�
i , Σ = S− μμ�, (1)

where μ and S are the first and second moments, and Σ ∈ R3×3

is the positive-semidefinite (p.s.d) covariance matrix of the cell
positions ci. The variance in normal direction, σ2

n, is then the
smallest eigenvalue of Σ, and the surface normal, n, is the
corresponding eigenvector. For steppability classification, we
use a neighborhood of N = 9 and set a threshold of 2 cm
on the standard deviation in normal direction and a maximum
inclination of 35°, resulting in the following classification:

steppability =

{
1, if σn ≤ 0.02 and nz ≥ 0.82

0, otherwise
(2)

where nz denotes the z-coordinate of the surface normal.

B. Plane Segmentation

After the initial classification, the plane segmentation starts
by identifying continuous regions with the help of a connected
component labeling [76]. For each connected region of cells,
we compute again the covariance as in (1), where N is now the
number of cells in the connected region, and accept the region
as a plane based on the following criteria:

planarity =

{
1, if σn ≤ 0.025, nz ≥ 0.87, and N ≥ 4

0, otherwise
.

(3)
Notice that here we loosen the bound on the standard deviation to
2.5 cm, tighten the bound on the inclination to 30 ◦, and add the
constraint that at least four cells form a region. If the planarity
condition is met, the surface normal and mean of the points
define the plane.

If a region fails the planarity condition, we trigger
RANSAC [77] on that subset of the data. The same criteria in (3)
are used to find smaller planes within the connected region. After
the algorithm terminates, all cells that have not been included in
any plane have their steppability updated and set to 0.

At this point, we have a set of plane parameters with connected
regions of the map assigned to them. For each of these regions,
we now extract a 2-D contour from the elevation map [78] and
project it along the z-axis to the plane to define the boundary in
the frame of the plane. It is important to consider that regions
can have holes, for example, when a pit or an obstacle is located
in the middle of an open floor. The boundary of each segmented
region is, therefore, represented by an outer polygon together
with a set of polygons that trace enclosed holes. See Fig. 4 for
an illustrative example of such a segmented region and the local
convex approximations it permits. Finally, if the particular region

Fig. 4. Example of a segmented region represented by a nonconvex outer
polygon and two nonoverlapping holes (drawn in black). Three different local
convex approximations (drawn in orange) are shown that are found around query
points with the iterative algorithm described in Section IV-F.

allows, we shrink the boundary inward (and holes outward) to
provide a safety margin. If the inscribed area is not large enough,
the plane boundary is accepted without margin. In this way, we
obtain a margin where there is enough space to do so, but at the
same time, we do not reject small stepping stones, which might
be crucial in certain scenarios.

C. Signed Distance Field

Before computing the SDF, we take advantage of the clas-
sification between terrain that will be potentially stepped on
and terrain that will not be stepped on. To all cells that are
nonsteppable, we add a vertical margin of 2 cm and dilate the
elevation by one cell. The latter effectively horizontally inflates
all nonsteppable areas by the map resolution. This procedure
corrects for the problem that edges tend to be underestimated in
the provided elevation map.

We use a dense 3-D voxel grid, where each voxel contains
the value and 3-D gradient. The previous motion plan is used to
determine the 3-D volume where distance information is needed.
This volume is a bounding box that contains all collision bodies
of the last available plan with a margin of 25 cm. This way,
the size and shape of the SDF grid dynamically scales with
the motion that is executed. Storing both value and derivative
as proposed in [79] allows for efficient interpolation during
optimization. However, in contrast to [79], where values and
gradients are cached after the first call, we opt to precompute
the full voxel grid to reduce the computation time during opti-
mization as much as possible.

This is possible by taking advantage of the extra structure that
the 2.5-D representation provides. A detailed description of how
the SDF can be efficiently computed from an elevation map is
given in Appendix A.

D. Torso Reference Map

With user input defined as horizontal velocity and an angular
rate along the z-direction, it is the responsibility of the controller
to decide on the height and orientation of the torso. We would
like the torso pose to be positioned in such a way that suitable
footholds are in reach for all of the feet. We, therefore, create a
layer that is a smooth interpolation of all steppable regions, as
described in [46]. The use of this layer to generate a torso height
and orientation reference is presented in Section IV-E.
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IV. MOTION PLANNING

In this section, we describe the nonlinear MPC formulation.
In particular, we set out to define all components in the following
nonlinear optimal control problem:

minimize
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t)dt (4a)

subject to x(0) = x̂ (4b)

ẋ = f c(x,u, t) (4c)

g(x,u, t) = 0 (4d)

where x(t) and u(t) are the state and the input at time t,
respectively, and x̂ is the current estimated state. The term L(·)
is a time-varying running cost, andΦ(·) is the cost at the terminal
state x(T ). The goal is to find a control signal that minimizes
this cost subject to the initial condition, x0, system dynamics,
f c(·), and equality constraints, g(·). Inequality constraints are
all handled through penalty functions and will be defined as part
of the cost function in Section IV-F.

A. Robot Definition

We define the generalized coordinates and velocities as

q =
[
θ�B ,p

�
B ,q

�
j

]�
, q̇ =

[
ω�B ,v

�
B , q̇

�
j

]�
(5)

whereθB ∈ R3 is the orientation of the base frame,FB , in Euler
angles, and pB ∈ R3 is the position of the base in the world
frame, FW . ωB ∈ R3 and vB ∈ R3 are the angular rate and
linear velocity of the base in the body frame FB , respectively.
Joint positions and velocities are given by qj ∈ R12 and q̇j ∈
R12, respectively. The collection of all contact forces is denoted
by λ ∈ R12. When referring to these quantities per leg, we will
use a subscript i, e.g.,qi ∈ R3 or λi ∈ R3. All subscripts for legs
in contact are contained in the set C. A graphical illustration of
the robot together with the defined coordinate frames is provided
in Fig. 5.

B. Torso Dynamics

To derive the torso dynamics used in this article, consider the
full rigid-body dynamics of the robot

M(q)q̈+ n(q, q̇) = S�τ + τ dist +
∑
i∈C

J�i (q)λi (6)

with inertia matrix M : R18 → R18×18, generalized accelera-
tions q̈ ∈ R18, and nonlinear terms n : R18 ×R18 → R18 on
the left-hand side. The right-hand side contains the selection ma-
trix S = [012×6, I12×12] ∈ R12×18, actuation torques τ ∈ R12,
disturbance forces τ dist ∈ R18, contact Jacobians Ji : R18 →
R3×18, and contact forces λi ∈ R3.

For these equations of motion, it is well known that for an
articulated system, the underactuated top six rows are of main
interest for motion planning [53]. These so-called centroidal
dynamics govern the range of motion that can be achieved [40],

Fig. 5. Overview of the coordinates frames and constraints used in the def-
inition of the MPC problem. On the front left foot, a friction cone is shown,
defined in the terrain frame FT . On the right front foot, a swing reference
trajectory is drawn between the liftoff frame FT− and touchdown frame FT+ .
Foot placement constraints are defined as a set of half-spaces in the touchdown
frame. Stance legs have collision bodies at the knee, as illustrated on the right
hind leg, while swing legs have collision bodies on both the foot and the knee,
as shown on the left hind leg.

[80]. Solving the centroidal dynamics for base acceleration gives[
ω̇B

v̇B

]
= M−1

B

(
τ dist
B −MBjq̈j − nB +

∑
i∈C

J�B,iλi

)
(7)

= fB(q, q̇, q̈j ,λ, τ
dist
B ) (8)

where MB(q) ∈ R6×6 is the net composite rigid-body inertia
matrix at the top left of M(q), and MBj(q) ∈ R6×12 is the top
right block that encodes inertial coupling between the legs and
base. The other terms with subscript B correspond to the top six
rows of the same terms in (6).

To simplify the torso dynamics, we evaluate this function with
zero inertial coupling forces from the joints, i.e., MBj q̈j = 0.
This simplification allows us to consider the legs only on velocity
level and removes joint accelerations from the formulation. From
here, further simplifications would be possible. Evaluating the
function at a nominal joint configuration and zero joint velocity
creates a constant inertia matrix and gives rise to the commonly
used single rigid-body assumption. While this assumption is
appropriate on flat terrain, the joints move far away from their
nominal configuration in this work, creating a significant shift
in mass distribution and center of mass location.

C. Input Loop Shaping

The bandwidth limitations of the series elastic actuators
used in ANYmal pose an additional constraint on the set of
motions that are feasible on hardware. Instead of trying to
accurately model these actuator dynamics, we use a frequency-
dependent cost function to penalize high-frequency content in
the contact forces and joint velocity signals [81]. For complete-
ness, we present here the resulting system augmentation in the
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time domain

ṡλ = Aλsλ +Bλνλ, ṡj = Ajsj +Bjνj

λ = Cλsλ +Dλνλ, q̇j = Cjsj +Djνj (9)

where sλ and sj are additional states, andνλ andνj are auxiliary
inputs, associated with contact forces and joint velocities, re-
spectively. When the filters (νλ → λ and νj → q̇j) are low-pass
filters, penalizing the auxiliary input is equivalent to penalizing
high-frequency content in λ and q̇j .

An extreme case is obtained when choosing Aλ = Dλ = 0
andBλ = Cλ = I, in which case the auxiliary input becomes the
derivative, λ̇. This reduces to the common system augmentation
technique that allows the penalization of input rates [23].

In our case, we allow some direct control (D �= 0) and select
Aλ = Aj = 0, Bλ = Bj = I, Cλ = 100

4 I, Cj =
50
3 I, Dλ =

1
4I, and Dj =

1
3I. This corresponds to a progressive increase in

cost up to a frequency of 100 rad s−1 for λ and up to 50 rad s−1

for q̇j , where high-frequency components have their cost in-
creased by a factor of 4 and 3, respectively.

D. System Dynamics

We are now ready to define the state vector x ∈ R48 and input
vector u ∈ R24 used during motion optimization

x =
[
θ�B ,p

�
B ,ω

�
B ,v

�
B ,q

�
j , s

�
λ , s

�
j

]�
, u =

[
ν�λ ,ν

�
j

]�
. (10)

Putting together the robot dynamics from Section IV-B
and system augmentation described in Section IV-C gives the
continuous-time MPC model ẋ = f c(x,u, t)

d
dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θB

pB

ωB

vB

qj

sλ

sj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(θB)ωB

RB(θB)vB

fB(q, q̇,0,Cλsλ +Dλνλ, τ
dist
B )

Cjsj +Djνj

Aλsλ +Bλνλ

Ajsj +Bjνj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where T(θB) : R3 → R3×3 provides the conversion between
body angular velocity and Euler angle derivatives, and
RB(θB) : R3 → R3×3 provides the body to world rotation
matrix. The disturbance wrench τ dist

B is considered a parameter
and is assumed constant over the MPC horizon.

E. Reference Generation

The user commands 2-D linear velocities and an angular rate
in the horizontal plane, as well as a desired gait pattern. A full
motion and contact force reference is generated to encode these
user commands and additional motion preferences into the cost
function defined in Section IV-F. This process is carried out
before every MPC iteration.

As a first step, assuming a constant input along the horizon,
a 2-D base reference position and heading direction are extrap-
olated in the world frame. At each point in time, the 2-D pose
is converted to a 2-D position for each hip. The smoothened
elevation map, i.e., the torso reference layer shown in Fig. 3, is

interpolated at the 2-D hip location. The interpolated elevation in
addition to a desired nominal height, hnom, gives a 3-D reference
position for each hip. A least-squares fit through the four hip
positions gives the six-degree-of-freedom base reference.

The extracted base reference and the desired gait pattern are
used to derive nominal foothold locations. Here, we use the
common heuristic that the nominal foothold is located below
the hip, in gravity-aligned direction, at the middle of the con-
tact phase [32]. In addition, for the first upcoming foothold, a
feedback on the measured velocity is added

pi,nom = pi,hip,nom +

√
hnom

g
(vB,meas − vB,com) (12)

where pi,nom ∈ R3 is the nominal foothold, pi,hip,nom ∈ R3 is
the nominal foothold location directly below the hip, and g is
the gravitational constant. vB,meas and vB,com are measured and
commanded base velocity, respectively.

With the nominal foothold locations known, the plane seg-
mentation defined in Section III-B is used to adapt the nominal
foothold locations to the perceived terrain. Each foothold is pro-
jected onto the plane that is closest and within kinematic limits.
Concretely, we pick the reference foothold, pi,proj, according to

argmin
pi,proj∈Π(pi,nom)

‖pi,nom − pi,proj‖22 + wkinfkin(pi,proj) (13)

whereΠ(pi,nom) is a set of candidate points. For each segmented
plane, we take the point within that region that is closest to the
nominal foothold as a candidate. The term fkin is a kinematic
penalty with weight wkin that penalizes the point if the leg
extension at liftoff or touchdown is beyond a threshold and
if the foothold crosses over to the opposite side of the body.
Essentially, this is a simplified version of the foothold batch
search algorithm presented in [15], which searches over cells of
the map instead of presegmented planes.

After computing all projected footholds, heuristic swing tra-
jectories are computed with two quintic splines: from liftoff to
apex and apex to touchdown. The spline is constrained by a
desired liftoff and touchdown velocity, and an apex location
is selected in such a way that the trajectory clears the highest
terrain point between the footholds. Inverse kinematics is used
to derive joint position references corresponding to the base and
feet references. Finally, contact forces references are computed
by dividing the total weight of the robot equally among all feet
that are in contact. Joint velocity references are set to zero.

F. Cost and Soft Inequality Constraints

The cost function (4a) is built out of several components.
The running cost L(x,u, t) can be split into tracking costs Lε,
loop-shaping costs Lν , and penalty costs LB

L = Lε + Lν + LB. (14)

The motion tracking cost is used to follow the reference
trajectory defined in Section IV-E. Tracking errors are defined
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TABLE I
MOTION TRACKING WEIGHTS

for the base, εB , and for each foot, εi, as follows:

εB =

⎡
⎢⎢⎢⎣

log(RBR
�
B,ref)

∨

pB − pB,ref

ωB − ωB,ref

vB − vB,ref

⎤
⎥⎥⎥⎦ , εi =

⎡
⎢⎢⎢⎢⎢⎢⎣

qi − qi,ref

q̇i − q̇i,ref

pi − pi,ref

vi − vi,ref

λi − λi,ref

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

where log(RBR
�
B,ref)

∨ is the logarithmic map of the orientation
error, represented as a 3-D rotation vector, and pi and vi are the
foot position and velocity in world frame, respectively. Together
with diagonal positive-definite weight matricesWB andWi, for
which the individual elements are listed in Table I, these errors
form the following nonlinear least-squares cost:

Lε =
1

2
‖εB‖2WB

+
4∑

i=1

1

2
‖εi‖2Wi

. (16)

As discussed in Section IV-C, high-frequency content in joint
velocities and contact forces are penalized through a cost on the
corresponding auxiliary input. This cost is a simple quadratic
cost

Lν =
1

2
ν�λ Rλνλ +

1

2
ν�j Rjνj (17)

where Rλ and Rj are constant p.s.d weight matrices. To obtain
an appropriate scaling and avoid further manual tuning, these
matrices are obtained from the quadratic approximation of the
motion tracking cost (16), with respect to λ and q̇j , respectively,
at the nominal stance configuration of the robot.

All inequality constraints are handled through the penalty
cost. In this article, we use relaxed barrier functions [82], [83].
This penalty function is defined as a log barrier on the interior
of the feasible space and switches to a quadratic function at a
distance δ from the constraint boundary

B(h) =
{−μ ln(h), h ≥ δ

μ
2

((
h−2δ

δ

)2 − 1
)
− μ ln(δ), h < δ

. (18)

The penalty is taken elementwise for vector-valued inequality
constraints. The sum of all penalties is given as follows:

LB =

4∑
i=1

Bj
(
hj
i

)
+
∑
i∈C
Bt
(
ht
i

)
+ Bλ

(
hλ
i

)
+
∑
c∈D
Bd
(
hd
c

)
(19)

with joint limit constraints hj
i for all legs, foot placement, and

friction cone constraints, ht
i and hλ

i , for legs in contact, and
collision avoidance constraints hd

c for all bodies in a set D.
The joint limit constraints contain upper{qj , q̇j ,τ} and lower

bounds {q
j
, q̇

j
, τ} for positions, velocities, and torques

hj
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qj − qj

qj − q
j

q̇j − q̇j

q̇j − q̇
j

τ − τ

τ − τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0 (20)

where we approximate the joint torques by considering a static
equilibrium in each leg, i.e., τ i = J�j,iλi.

The foot placement constraint is a set of linear inequality
constraints in task space

ht
i = At

i · pi + bt
i ≥ 0 (21)

where At
i ∈ Rm×3 and bt

i ∈ Rm define m half-space con-
straints in 3-D. Each half-space is defined as the plane spanned
by an edge of the 2-D polygon and the surface normal of the
touchdown terrainFT+. The polygon is obtained by initializing
all m vertices at the reference foothold derived in Section IV-E
and iteratively displacing them outward. Each vertex is displaced
in a round-robin fashion until it reaches the boundary of the
segmented region or until further movement would cause the
polygon to become nonconvex. Similar to [84], we have favored
the low computational complexity of an iterative scheme over an
exact approach of obtaining a convex inner approximation. The
first set of extracted constraints remains unaltered for a foot that
is in the second half of the swing phase to prevent last-minute
jumps in constraints.

The friction cone constraint is implemented as

hλ
i = μcFz −

√
F 2
x + F 2

y + ε2 ≥ 0 (22)

with [Fx, Fy, Fz]
� = R�TRBλi, defining the forces in the local

terrain frame. μc is the friction coefficient, and ε > 0 is a
parameter that ensures a continuous derivative at λi = 0 and,
at the same time, creates a safety margin [85].

The collision avoidance constraint is given by the evaluation
of the SDF at the center of a collision sphere, pc, together with
the required distance given by the radius, rc, and a shaping
function dmin(t)

hd
c = dSDF(pc)− rc − dmin(t) ≥ 0. (23)

The primary use of the shaping function is to relax the constraint
if a foot starts a swing phase from below the map. To avoid
the robot using maximum velocity to escape the collision, we
provide smooth guidance back to free space with a cubic spline
trajectory. This happens when the perceived terrain is higher
than the actual terrain, for example, in case of a soft terrain like
vegetation and snow, or simply because of drift and errors in the
estimated map. The collision setD contains collision bodies for
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Algorithm 1: Real-Time Iteration Multiple-Shooting MPC.
1: Given: previous solution wi

2: Discretize the continuous problem to the form of (27)
3: Compute the linear–quadratic approximation (30)
4: Compute the equality constraint projection (34)
5: δw̃← Solve the projected QP subproblem (35)
6: δw← Pδw̃ + p, back substitution using (33)
7: wi+1 ← LineSearch(wi, δw), (Algorithm 2)

all knees and for all feet that are in swing phase, as visualized
on the hind legs in Fig. 5.

Finally, we use a quadratic cost as the terminal cost in (4a).
To approximate the infinite horizon cost incurred after the finite
horizon length, we solve a linear–quadratic regulator (LQR)
problem for the linear approximation of the MPC model and
quadratic approximation of the intermediate costs around the
nominal stance configuration of the robot. The Riccati matrix
SLQR of the cost-to-go is used to define the quadratic cost around
the reference state

Φ(x) =
1

2
(x− xref(T ))

� SLQR (x− xref(T )) . (24)

G. Equality Constraints

For each foot in swing phase, the contact forces are required
to be zero

λi = 0 ∀i /∈ C. (25)

In addition, for each foot in contact, the end-effector velocity
is constrained to be zero. For swing phases, the reference trajec-
tory is enforced only in the normal direction. This ensures that
the foot lifts off and touches down with a specified velocity while
leaving complete freedom of foot placement in the tangential
direction{

vi = 0, if i ∈ C
n�(t) (vi − vi,ref + kp(pi − pi,ref)) = 0, if i /∈ C

The surface normal, n(t), is interpolated over time since liftoff
and touchdown terrain can have a different orientation.

V. NUMERICAL OPTIMIZATION

We consider a direct multiple-shooting approach to trans-
forming the continuous optimal control problem into a finite-
dimensional nonlinear program (NLP) [22]. Since MPC com-
putes control inputs over a receding horizon, successive in-
stances of (27) are similar and can be efficiently warm-started
when taking an SQP approach by shifting the previous solution.
For new parts of the shifted horizon, for which no initial guess
exists, we repeat the final state of the previous solution and ini-
tialize the inputs with the references generated in Section IV-E.
In addition, we follow the real-time iteration scheme where
only one SQP step is performed per MPC update [86]. In this
way, the solution is improved across consecutive instances of
the problem, rather than iterating until convergence for each
problem.

As an overview of the approach described in the following
sections, a pseudocode is provided in Algorithm 1, referring
to the relevant equations used at each step. Except for the
solution of the QP in line 5, all steps of the algorithm are
parallelized across the shooting intervals. The QP is solved using
HPIPM [71].

A. Discretization

The continuous control signal u(t) is parameterized over
subintervals of the prediction horizon [t, t+ T ] to obtain a
finite-dimensional decision problem. This creates a grid of
nodes k ∈ {0, . . . , N} defining control times tk separated by
intervals of duration δt ≈ T/(N − 1). Around gait transitions,
δt is slightly shortened or extended such that a node is exactly
at the gait transition.

In this article, we consider a piecewise constant, or zero-order-
hold, parameterization of the input. Denoting xk = x(tk) and
integrating the continuous dynamics in (11) over an interval
leads to a discrete time representation of the dynamics

fdk (xk,uk) = xk +

∫ tk+δt

tk

f c(x(τ),uk, t)dτ. (26)

The integral in (26) is numerically approximated with an inte-
gration method of choice to achieve the desired approximation
accuracy of the evolution of the continuous-time system under
the zero-order-hold commands. We use an explicit second-order
Runge–Kutta scheme.

The general nonlinear MPC problem presented below can
be formulated by defining and evaluating a cost function and
constraints on the grid of nodes

min
X,U

Φ(xN ) +
N−1∑
k=0

lk(xk,uk) (27a)

s.t. x0 − x̂ = 0, (27b)

xk+1 − fdk (xk,uk) = 0, k = 0, ... , N−1 (27c)

gk(xk,uk) = 0, k = 0, ... , N−1 (27d)

where X = [x�0 , . . .x
�
N ]� and U = [u�0 , . . .u

�
N−1]

� are the se-
quences of state and input variables, respectively. The nonlinear
cost and constraint functions lk and gk are discrete samples
of the continuous counterpart. Collecting all decision variables
into a vector, w = [X�,U�]�, problem (27) can be written as
a general NLP

min
w

φ(w), s.t.

[
F(w)

G(w)

]
= 0 (28)

where φ(w) is the cost function, F(w) is the collection of initial
state and dynamics constraints, and G(w) is the collection of
all general equality constraints.

B. Sequential Quadratic Programming

SQP-based methods apply Newton-type iterations to Karush–
Kuhn–Tucker optimality conditions, assuming some regularity
conditions on the constraints [87]. The Lagrangian of the NLP
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in (28) is defined as

L(w,λG,λH) = φ(w) + λ�FF(w) + λ�GG(w) (29)

with Lagrange multipliers λF and λG, corresponding to the
dynamics and equality constraints. The Newton iterations can
be equivalently computed by solving the following potentially
nonconvex QP [88]:

min
δwi

∇wφ(wi)
�δwi +

1

2
δw�i Biδwi (30a)

s.t F(wi) +∇wF(wi)
�δwi = 0 (30b)

G(wi) +∇wG(wi)
�δwi = 0 (30c)

where the decision variables, δwi, define the update step
relative to the current iteration wi, and the Hessian Bi =
∇2

wL(wi,λF,λG). Computing the solution to (30) provides a
candidate decision variable update, δwi, and updated Lagrange
multipliers.

C. Quadratic Approximation Strategy

As we seek to deploy MPC on dynamic robotic platforms, it
is critical that the optimization problem in (30) is well condi-
tioned and does not provide difficulty to numerical solvers. In
particular, when Bi in (30a) is p.s.d, the resulting QP is convex
and can be efficiently solved [68].

To ensure this, an approximate p.s.d Hessian is used instead
of the full Hessian of the Lagrangian. For the tracking costs (16),
the objective function has a least-squares form, in which case
the generalized Gauss–Newton approximation

∇2
w

(
1

2
‖εi(w)‖2Wi

)
≈ ∇wεi(w)�Wi∇wεi(w) (31)

proves effective in practice [89]. Similarly, for the soft con-
straints, we exploit the convexity of the penalty function applied
to the nonlinear constraint [90]

∇2
w (B(h(w))) ≈ ∇wh(w)�∇2

hB(h(w))∇wh(w) (32)

where the diagonal matrix∇2
hB(h(w)) maintains the curvature

information of the convex penalty functions. The contribution
of the constraints to the Lagrangian in (29) is ignored in the
approximate Hessian since we do not have additional structure
that allows a convex approximation.

D. Constraint Projection

The equality constraints in Section IV-G were carefully cho-
sen to have full row rank w.r.t. the control inputs, such that, after
linearization,∇wG(wi)

� has full row rank in (30c). This means
that the equality constraints can be eliminated before solving the
QP through a change of variables [88]

δwi = Pδw̃i + p (33)

where the linear transformation satisfies

∇wG(wi)
�P = 0, ∇wG(wi)

�p = −G(wi). (34)

After substituting (33) into (30), the following QP is solved w.r.t.
δw̃i

min
δw̃i

∇w̃φ̃(wi)
�δw̃i +

1

2
δw̃�i B̃iδw̃i (35a)

s.t F̃(wi) +∇w̃F̃(wi)
�δw̃i = 0. (35b)

Because each constraint applies only to the variables at one
node k, the coordinate transformation maintains the sparsity
pattern of an optimal control problem and can be computed
in parallel. Since this projected problem now only contains
costs and system dynamics, solving the QP only requires one
Riccati-based iteration [71]. The full update δwi is then obtained
through back substitution into (33).

E. Line Search

To select an appropriate step size, we employ a line search
based on the filter line search used in IPOPT [62]. In contrast to a
line search based on a merit function, where cost and constraints
are combined to one metric, the main idea is to ensure that each
update either improves the constraint satisfaction or the cost
function. The constraint satisfaction θ(w) is measured by taking
the norm of all constraints scaled by the time discretization

θ(w) = δt

∣∣∣∣
∣∣∣∣[F(w)�,G(w)�

]�∣∣∣∣
∣∣∣∣
2

. (36)

In case of high or low constraint satisfaction, the behavior is
adapted: When the constraint is violated beyond a set threshold,
θmax, the focus changes purely to decreasing the constraints;
when constraint violation is below a minimum threshold, θmin,
the focus changes to minimizing costs.

Compared to the algorithm presented in [62], we remove
recovery strategies and second-order correction steps, for which
there is no time in the online setting. Furthermore, the history
of iterates plays no role since we perform only one iteration per
problem.

The simplified line search as used in this article is given in
Algorithm 2 and contains three distinct branches in which a step
can be accepted. The behavior at high constraint violation is
given by line 9, where a step is rejected if the new constraint
violation is above the threshold and worse than the current
violation. The switch to the low constraint behavior is made
in line 13: if both new and old constraint violations are low and
the current step is in a descent direction, we require that the cost
decrease satisfies the Armijo condition in line 14. Finally, the
primary acceptance condition is given in line 18, where either
a cost or constraint decrease is requested. The small constants
γφ and γθ are used to fine-tune this condition with a required
nonzero decrease in either quantity.

VI. MOTION EXECUTION

The optimized motion planned by the MPC layer consists of
contact forces and desired joint velocities. We linearly interpo-
late the MPC motion plan at the 400-Hz execution rate and apply
the feedback gains derived from the Riccati backward pass to
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Algorithm 2: Backtracking Line Search.

1: Hyperparameters: αmin = 10−4, θmax = 10−2, θmin =
10−6, η = 10−4, γφ = 10−6, γθ = 10−6, γα = 0.5

2: α← 1.0
3: θk ← θ(wi)
4: φk ← φ(wi)
5: Accepted← False
6: while Not Accepted and α ≥ αmin do
7: θi+1 ← θ(wi + αδwi)
8: φi+1 ← φ(wi + αδwi)
9: if θi+1 > θmax then

10: if θi+1 < (1− γθ)θi then
11: Accepted← True
12: end if
13: else if max(θi+1, θi) < θmin and ∇φ(wi)

�δwi < 0
then

14: if φi+1 < φi + ηα∇φ(wi)
�δwi then

15: Accepted← True
16: end if
17: else
18: if φi+1 < φi − γφθi or θi+1 < (1− γθ)θi then
19: Accepted← True
20: end if
21: end if
22: if Not Accepted then
23: α← γαα
24: end if
25: end while
26: if Accepted then
27: wi+1 ← wi + αδwi

28: else
29: wi+1 ← wi

30: end if

the measured state [45], [85]. The corresponding torso acceler-
ation is obtained through (8). The numerical derivative of the
planned joint velocities is used to determine a feedforward joint
acceleration. A high-frequency whole-body controller (WBC)
is used to convert the desired acceleration tasks into torque
commands [91], [92], [93]. A generalized momentum observer is
used to estimate the contact state [94]. In addition, the estimated
external torques are filtered and added to the MPC and WBC
dynamics, as described in [46]. We use the same filter setup as
shown in [46, Fig. 13].

A. Event-Based Execution

Inevitably, the measured contact state will be different from
the planned contact state used during the MPC optimization.
In this case, the designed contact forces cannot be provided by
the WBC. We have implemented simple reactive behaviors to
respond to this situation and provide feedback to the MPC layer.

In case there is a planned contact, but no contact is measured,
we follow a downward regaining motion for that foot. Under the
assumption that the contact mismatch will be short, the MPC will
start a new plan again from a closed contact state. In addition, we

TABLE II
WHOLE-BODY CONTROL TASKS

propagate the augmented system in (9) with the information that

no contact force was generated, i.e., 0
!
= Cλsλ +Dλνλ. In this

way, the MPC layer will generate contact forces that maintain
the requested smoothness w.r.t. the executed contact forces.

When contact is measured, but no contact was planned, the
behavior depends on the planned time till contact. If contact
was planned to happen soon, the measured contact is sent to the
MPC to generate the next plan from that early contact state. In
the meantime, the WBC maintains a minimum contact force for
that foot. If no upcoming contact was planned, the measured
contact is ignored.

B. Whole-Body Control

The WBC approach considers the full nonlinear rigid-body
dynamics of the system in (6), including the estimate of distur-
bance forces. Each task is formulated as an equality constraint,
inequality constraint, or least-squares objective affine in the
generalized accelerations, torques, and contact forces. While we
have used a hierarchical resolution of tasks in the past [93], in
this article, we instead use a single QP and trade off the tracking
tasks with weights. We found that a strict hierarchy results in
a dramatic loss of performance in lower priority tasks when
inequality constraints are active. In addition, the complexity of
solving multiple QPs and null-space projections in the hierarchi-
cal approach is no longer justified with the high-quality motion
reference coming from the MPC.

The complete list of tasks is given in Table II. The first
two blocks of tasks enforce physical consistency and inequality
constraints on torques, forces, and joint configurations. The joint
limit constraint is derived from an exponential control barrier
function (CBF) [95] on the joint limits, q

j
≤ qj ≤ qj , resulting

in the following joint acceleration constraints:

q̈j + (γ1 + γ2)q̇j + γ1γ2(qj − q
j
) ≥ 0 (37)

−q̈j − (γ1 + γ2)q̇j + γ1γ2(qj − qj) ≥ 0 (38)

with scalar parameters γ1 > 0, γ2 > 0. Provided that the full QP
remains feasible, these CBF constraints guarantee that the state
constraints are satisfied for all time and under the full nonlinear
dynamics of the system [96].

For the least-squares tasks, we track swing leg motion with
higher weight than the torso reference. This prevents that the
robot exploits the leg inertia to track torso references in underac-
tuated directions, and it ensures that the foot motion is prioritized
over torso tracking when close to kinematics limits. Tracking the
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contact forces references with a low weight regulates the force
distribution in case the contact configuration allows for internal
forces.

Finally, the torque derived from the WBC, τwbc ∈ R12, is
computed. To compensate for model uncertainty for swing legs,
the integral of joint acceleration error with gain K > 0 is added
to the torque applied to the system

τ i = τ i,wbc −K

∫ t

tsw
0

(q̈i − q̈i,wbc) dt (39)

= τ i,wbc −K

(
q̇i − q̇i(t

sw
0 )−

∫ t

tsw
0

q̈i,wbcdt

)
(40)

where tsw
0 is the start time of the swing phase. The acceleration

integral can be implemented based on the measured velocity q̇i

and the velocity at the start of the swing phase, q̇i(t
sw), as shown

in (40). Furthermore, the feedback term is saturated to prevent
integrator windup. For stance legs, a proportional–derivative
term is added around the planned joint configuration and contact
consistent joint velocity.

VII. RESULTS

ANYmal is equipped with either two dome-shaped Robo-
Sense bpearl LiDARs, mounted in the front and back of the torso,
or with four Intel RealSense D435 depth cameras mounted on
each side of the robot. Elevation mapping runs at 20 Hz on an
onboard GPU (Jetson AGX Xavier). Control and state estima-
tion are executed on the main onboard CPU (Intel i7-8850H,
2.6 GHz, Hexa-core) at 400 Hz, asynchronously to the MPC op-
timization, which is triggered at 100 Hz. Four cores are used for
parallel computation in the MPC optimization. A time horizon
of T = 1.0 s is used with a nominal time discretization of δt ≈
0.015 s, with a slight variation due to the adaptive discretization
around gait transitions. Each multiple-shooting MPC problem,
therefore, contains around 5000 decision variables. Part (a) and
(b) of perception pipeline in Fig. 3 are executed on a second
onboard CPU of the same kind and provides the precomputed
layers over Ethernet.

To study the performance of the proposed controller, we
report results in different scenarios and varying levels of detail.
All perception, MPC, and WBC parameters remain constant
throughout the experiments and are the same for simulation and
hardware. An initial guess for these parameters was found in
simulation, and we further fine-tuned them on hardware. First,
results for the perception pipeline in isolation are presented in
Section VII-A. Second, we validate the major design choices in
simulation in Section VII-B. Afterward, the proposed controller
is put to the test in challenging simulation, as well as hardware
experiments in Section VII-C. All experiments are shown in the
supplemental video [1]. Finally, known limitations are discussed
in Section VII-D.

A. Perception Pipeline

The output of the steppability classification and plane seg-
mentation (part (a) in Fig. 3) for a demo terrain is shown in
Fig. 6. This terrain is available as part of the grid map library and

Fig. 6. Evaluation of the plane segmentation on a demo terrain [73]. The shown
map has a true size of 20 × 20 × 1 m with a resolution of 4 cm. Top left shows
the elevation map with additive uniform noise of ±2 cm plus Gaussian noise
with a standard deviation of 2 cm. Top right shows the map after inpainting,
filtering, steppability classification, and plane segmentation. Below, four areas
of interest are shown. Their original location in the map is marked in the top
right image.

Fig. 7. Computation time for constructing and querying the signed distance
field. Submaps of the terrain in Fig. 6 are used. SDF size on the horizontal axis
denotes the total amount of data points in the SDF (width× length×height). The
query time is reported for the total of 103 random queries for the interpolated
value and derivative.

contains a collection of slopes, steps, curvatures, rough terrain,
and missing data. The left middle image shows that slopes and
steps are, in general, well segmented. In the bottom right image,
one sees the effect of the plane segmentation on a curved surface.
In those cases, the terrain will be segmented into a collection of
smaller planes. Finally, the rough terrain sections shown in the
right middle and bottom left image show that the method is able
to recognize such terrain as one big planar section as long as
the roughness is within the specified tolerance. These cases also
show the importance of allowing holes in the segmented regions,
making it possible to exclude just those small regions where the
local slope or roughness is outside the tolerance. A global convex
decomposition of the map would result in many more regions.

The computation time for the construction and querying of
the signed distance field is benchmarked on submaps of varying
sizes extracted from the demo map (see Fig. 7). As expected,
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Fig. 8. ANYmal stepping up a box of 35 cm. Left: Without considering knee
collisions. Right: Knee collision included in the optimization.

the construction time scales linearly with the SDF size, and the
query time is constant with a slight increase when the memory
size exceeds a cache level. During runtime, the local SDF size is
typically below 105 voxels, resulting in a computation time well
below 10 ms. Together with the map update rate of 20 Hz, the
proposed method provides the SDF at an order of magnitude
faster than methods that maintain a general 3-D voxel grid,
with update rated reported around 1 Hz [79]. Per MPC iteration,
around 103 SDF queries are made, making the SDF query time
negligible compared to the total duration of one MPC iteration.

B. Simulation

1) Collision Avoidance: To highlight the importance of con-
sidering knee collisions with the terrain, the robot is commanded
to traverse a box of 35 cm with a trotting gait at 0.25 ms−1.
Fig. 8 compares the simulation result of this scenario with and
without the knee collisions considered. The inclusion of knee
collision avoidance is required to successfully step up the box
with the hind legs. As shown in the figure, the swing trajectories
are altered. Furthermore, the base pose and last stepping location
before stepping up are adjusted to prepare for the future, showing
the benefit of considering all degrees of freedom in one opti-
mization. Similarly, on the way down, the foothold optimization
(within constraints) allows that the feet are placed away from the
step, avoiding knee collisions while stepping down.

Fig. 9 provides insight into the solver during the motion
performed with the knee collisions included. The four peaks
in the cost function show the effect of the collision avoidance
penalty when the legs are close to the obstacle during the step
up and step down. Most of the time, the step obtained from
the QP subproblem is accepted by the line search with the full
step size of 1.0. However, between 7 and 8 s, the step size is
decreased to prevent the constraint violation from further rising.
This happens when the front legs step down the box and are close
to collision. In those cases, the collision avoidance penalty is
highly nonlinear, and the line search is required to maintain the
right balance between cost decrease and constraint satisfaction.
We note that the line search condition for low constraint violation
is typically not achieved when using only one iteration per MPC
problem.

2) Model Selection: In the same scenario, we compare the
performance of the proposed dynamics for the base with those
of the commonly used -SRBD. To be precise, the torso dynamics
in (8) are evaluated at a constant nominal joint configuration and
with zero joint velocities, while the rest of the controller remains

Fig. 9. Solver status during the box traversal motion (including knee collision
avoidance). The first and second plots show the total cost, and constraint violation
according to (36), after each iteration. The bottom plot shows the step size and
the line search branch that led to the step acceptance. “Constraint” refers to a step
accepted in the high constraint violation branch in line 9 of Algorithm 2, “Cost
OR Constraint” refers to the branch where either cost or constraint decrease is
accepted in line 18. Note that the low constraint violation branch, line 13, did
not occur in this experiment.

Fig. 10. Location of the center of mass (CoM) in heading direction for various
torso pitch angles. The first set of CoM locations is evaluated with the true joint
angles, which are obtained when aligning the legs with the gravity direction as
in the top image. This corresponds to the reference in Section IV-E, which is
tracked by the MPC. The second set of CoM locations is evaluated for the default
joint angles, shown in the bottom image, as assumed by the SRBD model.

identical. When using the SRBD, the model does not describe
the backward shift in the center of mass location caused by the
leg configuration. The result is that the controller with the SRBD
model has a persisting bias that makes the robot almost tip over
during the step up. This model error is quantified in Fig. 10. At
30° pitch angle, there is a center of mass error of 2.6 cm, resulting
in a bias of 13.3 N · m at the base frame. For reference, this is
equivalent to an unmodeled payload of 3.6 kg at the tip of the
robot. The proposed model fully describes the change in inertia
and center of mass location and, therefore, does not have any
issue to predict the state trajectory during the step up motion.

3) Solver Comparison: To motivate our choice to implement
a multiple-shooting solver and move away from the DDP-based
methods used in previous work, we compare both approaches
on flat terrain and the stepping stone scenario shown in Fig. 11.
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Fig. 11. ANYmal traversing stepping stones in simulation (right to left). The resulting state trajectories for feet and torso, and the snapshots are shown for a
traversal with the multiple-shooting solver and a trotting gait at 0.75 ms−1. The marked 63% and 78% locations indicate where the alternative solver, iLQR,
diverges for 0.5 and 0.75 ms−1, respectively.

TABLE III
SOLVER COMPARISON ON FLAT TERRAIN AND STEPPING STONES

In particular, we compare against iLQR [64] and implement it
with the same constraint projection, line search, and the Riccati
Backward pass of HPIPM, as described in Section V. The key
difference between the algorithms lies in the update step. For
multiple shooting, we update both state and inputs directly:
u+
k = uk + αδuk, x+

k = xk + αδxk. In contrast, iLQR pro-
ceeds with a line search over closed-loop nonlinear rollouts of
the dynamics

u+
k = uk + αkk +Kk

(
x+
k − xk

)
(41)

x+
k+1 = fdk (x

+
k ,u

+
k ), x+

0 = x̂ (42)

whereKk is the optimal feedback gain obtained from the Riccati
Backward pass and kk = δuk −Kkδxk is the control update.
Due to this inherently single-threaded process, each line search
for iLQR takes four times as long as for the multithreaded
multiple shooting. However, note that with the hybrid multiple-
shooting iLQR variants in [70], this difference vanishes.

Table III reports the solvers’ average cost, dynamics constraint
violation, and equality constraint violation for a trotting gait in
several scenarios. As a baseline, we run the multiple-shooting
solver until convergence (with a maximum of 50 iterations)
instead of real-time iteration. To test the MPC in isolation,
we use the MPC dynamics as the simulator and apply the

MPC input directly. Because of the nonlinear rollouts of iLQR,
dynamics constraints are always satisfied, and iLQR, therefore,
has the edge over multiple shooting on this metric. However, as
the scenario gets more complex and the optimization problem
becomes harder, there is a point where the forward rollout of
iLQR is unstable and diverges. For the scenario shown in Fig. 11,
this happens in the place where the robot is forced to take
a big leap at the 63% mark and at the 78% mark where the
hind leg is close to singularity as the robot steps down. The
continuous-time-variant SLQ [39] fails in similar ways. These
failure cases are sudden, unpredictable, and happen regularly
when testing on hardware, where imperfect elevation maps, real
dynamics, and disturbances add to the challenge. The absence of
long horizon rollouts in the multiple-shooting approach makes
it more robust and better suited for the scenarios shown in this
article. For cases where both solvers are stable, we find that
the small dynamics violation left with multiple shooting in a
real-time iteration setting does not translate to any practical
performance difference on hardware. Finally, even for the most
challenging scenario, multiple shooting with real-time iteration
remains within 10% cost of the baseline.

However, we did find a fixed value for μ that provides satis-
fying performance for all scenarios. A too small value neglects
constraint satisfaction, while a too large value induces small step
sizes that destabilize the real-time iteration scheme. It is well
known that the penalty parameter needs to be updated across
iterations [88]. However, doing so in the context of real-time
iteration is still an active area of research [97].

4) Contact Feedback: The reactive behavior under a mis-
match in planned and sensed contact information is shown in the
accompanying video. First, the sensed terrain is set to be 10 cm
above the actual terrain, causing a late touchdown. Afterward,
the sensed terrain is set 5 cm below the actual terrain, causing
an early touchdown. The resulting vertical foot velocity for
both cases is overlaid and plotted in Fig. 12. For the case of
a late touchdown, the reactive downward accelerating trajectory
is triggered as soon as it is sensed that contact is absent. For
the early touchdown case, there is a short delay in detecting
that contact has happened, but once contact is detected, the
measured contact is included in the MPC, and the new trajectory
is immediately replanned from the sensed contact location.

5) Stairs: The generality of the approach with respect to
the gait pattern is demonstrated in the accompanying video by
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Fig. 12. Desired and measured vertical foot velocity for the early and late
touchdown scenarios shown in the accompanying video. The vertical line at
0.5 s indicated the planned touchdown time.

executing a trot at 0.25 ms−1, a pace at 0.3 ms−1, a dynamic
walk at 0.25 ms−1, and a static walk at 0.2 ms−1 on a stairs
with 18.5 cm rise and 24 cm run. Depending on the particular
gait pattern and commanded velocity, the method autonomously
decides to progress, repeat, or skip a step. Note that there are
no parameters or control modes specific to the gait or the stair
climbing scenario. All motions emerge automatically from the
optimization of the formulated costs and constraints.

6) Obstacle Course: The controller is given a constant for-
ward velocity command on a series of slopes, gaps, stepping
stones, and other rough terrains. We traverse the terrain with a
pace at 0.4 ms−1, and a fast trotting gait with flight phase at
0.8 ms−1. Fig. 13 shows the obstacle course and snapshots of
the traversal with the fast trot. The supplemental video shows
the planned trajectories for the feet together with the convex
foothold constraints. On the right-hand side of the screen, a
front view is shown together with the elevation map and plane
segmentation below. The slower gaits used in the previous
section are able to complete the scenario as well, but their video
is excluded as they take long to reach the end.

Finally, a transverse gallop gait is demonstrated on a series
of gaps. Due to the torque limitations of the system and friction
limits up the slope, this gait is not feasible on the more complex
obstacle course.

7) Comparison Against RL: We compare our method against
a perceptive RL-based controller [14] in the same obstacle
course. We adapt the gait pattern of our controller to match the
nominal gait used by the learned controller. The video shows that
the learning-based controller can cross the unstructured terrain
at the beginning and end of the obstacle course. However, it
fails to use the perceptive information fully and falls between
the stepping stones when starting from the left and off the narrow
passage when starting from the right. While the RL controller
was not specifically trained on stepping stones, this experiment
highlights that current RL-based locomotion results in primarily
reactive policies and struggles with precise coordination and
planning over longer horizons. In contrast, using a model and
online optimization along a horizon makes our proposed method
generalize naturally to these more challenging terrains.

C. Hardware

1) Obstacle Course: The obstacle course simulation exper-
iment is recreated on hardware in two separate experiments.
First, we tested a sequence of a ramp, gap, and high step, as

TABLE IV
COMPUTATION TIMES PER MAP UPDATE AND MPC ITERATION

shown in Fig. 14. During the middle section of this experiment,
the robot faces all challenges simultaneously: While the front
legs are stepping up to the final platform, the hind legs are
still dealing with the ramp and gap. In a second scenario, the
robot is walking on a set of uneven stepping stones, as shown in
Fig. 15. The main challenge here is that the planes on the stepping
stones are small and do not leave much room for the MPC
to optimize the footholds. We found that in this scenario, the
inclusion of the kinematics and reactive foothold offset during
the plane selection, as described in Section IV-E, are important.
A remaining challenge here is that our plane segmentation does
not consider consistency over time. In some cases, the small
foothold regions on top of stepping stones might appear and
disappear as feasible candidates. The supplemental video shows
how in this case the planned foot trajectory can fail, and the
reactive contact regaining is required to save the robot.

Computation times are reported in Table IV. Per map update,
most time is spent on terrain classification and plane segmenta-
tion. More specifically, the RANSAC refinement takes the most
time and can cause a high worst-case computation due to its
sampling-based nature. On average, the perception pipeline is
able to keep up with the 20-Hz map updates.

For the MPC computation time, the “LQ approximation”
contains the parallel computation of the linear–quadratic model
and equality constraint projection (Algorithm 1, lines 2–4). “QP
solve” contains the solution of the QP and the back substitu-
tion of the solution (Algorithm 1, lines 5 and 6). Despite the
parallelization across four cores, evaluating the model takes
the majority of the time, with the single core solving of the
QP in second place. On average, the total computation time is
sufficient for the desired update rate of 100 Hz. The worst-case
computation times are rare, and we hypothesize that they are
mainly caused by variance in the scheduling of the numerous
parallel processes on the robot. For the line search, the relatively
high maximum computation time is attained when several steps
are rejected, and the costs and constraints need to be recomputed.

2) Stairs: We validate the stair climbing capabilities on two-
step indoor stairs and on outdoor stairs. Fig. 16 shows the robot
on its way down the outdoor stairs. For these experiments, we
obtain the elevation map from [98]. With its learning-based
approach, it provides a high-quality estimate of the structure
underneath the robot. Note that this module only replaces the
source of the elevation map in Fig. 3 and does not change the rest
of our perception pipeline. Figs. 17 and 18 show the measured
joint velocities and torques alongside the same quantities within
the MPC solution for five strides of the robot walking up the
stairs. The optimized MPC values are within the specified limits
and close to the measured values.
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Fig. 13. ANYmal traversing an obstacle course in simulation (left to right). Snapshots are shown for a traversal with a trotting gait at 0.8 ms−1. The MPC
predictions are shown for each foot and for the torso center. For all contact phases within the horizon, the convex foot placement constraints are visualized.

Fig. 14. Hardware experiment where ANYmal traverses a ramp, gap, and large step (from right to left). The bottom row shows the filtered elevation map, the
foot trajectories over the MPC horizon, and the convex foothold constraints.

Fig. 15. Hardware experiment where ANYmal walks on top of uneven step-
ping stones. Each wooden block has an area of 20 × 20 cm2 and each level of
stepping stones is 20 cm higher than the previous one. The right image shows
the filtered elevation map, the foot trajectories over the MPC horizon, and the
convex foothold constraints.

D. Limitations

A fundamental limitation in the proposed controller is that the
gait pattern is externally given and only adapted during early and
late touchdown. Strong adverse disturbances, for example, in
the direction of a foot that will soon lift, can make the controller
fail. A change in the stepping pattern could be a much better
response in such cases. Together with the reactive behaviors
during contact mismatch, which are currently hardcoded, we
see the potential for RL-based methods as a tracking controller
to add to the robustness during execution.

Closely related to that, the current selection of the segmented
plane and, therefore, the resulting foothold constraints happens
independently for each leg. In some cases, this can lead to
problems that could have been avoided if all legs were consid-
ered simultaneously. For example, while walking up the stairs

Fig. 16. Hardware experiment where ANYmal walks up and down outdoor
stairs with a 16 cm rise and 29.5 cm run. The right image shows the filtered
elevation map, the foot trajectories over the MPC horizon, and the convex
foothold constraints.

sideways, all feet can end up on the same tread, leading to fragile
support and potential self-collisions. Similarly, the presented
method targets local motion planning and control, and we should
not expect global navigation behavior. The current approach will
attempt to climb over gaps and obstacles if so commanded by
the user and will not autonomously navigate around them.

As with all gradient-based methods for nonlinear optimiza-
tion, local optima and infeasibility can be an issue. With the
simplification of the terrain to convex foothold constraints and
by using a heuristic reference motion in the cost function, we
have aimed to minimize such problems. Still, we find that in
the case of very thin and tall obstacles, the optimization can get
stuck. Fig. 19 shows an example where the foothold constraints
lie behind the obstacle, and the reference trajectory correctly
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Fig. 17. Measured and MPC commanded joint velocities for the left front leg
while walking up the stairs shown in Fig. 16. All joints, hip abduction aduction
(HAA), hip flexion extension (HFE), and knee flexion extension (KFE), have a
velocity limit of ±7.5 rad s−1.

Fig. 18. Measured torque and approximated torque within the MPC formula-
tion (τ i = J�j,iλi) for the left front leg while walking up the stairs shown in
Fig 16. All joints, hip abduction aduction (HAA), hip flexion extension (HFE),
and knee flexion extension (KFE), have a torque limit of ±80 N · m.

Fig. 19. Example of the MPC optimization being stuck inside a tall and thin
structure of 5-cm width and 20-cm height. The feet reference trajectories used
as part of the cost function are visualized as a sequence of arrows.

clears the obstacle. Unfortunately, one of the feet in the MPC
trajectory goes right through the obstacle. Because all SDF
gradients are horizontal at that part of the obstacle, there is no
strong local hint that the obstacle can be avoided. For future
work, we can imagine detecting such a case and triggering a

sampling-based recovery strategy to provide a new collision-free
initial guess. Alternatively, recent learning-based initialization
could be employed [99], [100].

Finally, we show a gallop and trot with flight phases at the
end of the video. For these motions, the perceptive information
is turned OFF, and the robot estimates the ground plane through a
history of contact points. It demonstrates that the presented MPC
is ready to express and stabilize these highly dynamic motions.
Unfortunately, the elevation map is not usable due to artifacts
from impacts and state estimation drift.

VIII. CONCLUSION

In this article, we proposed a controller capable of perceptive
and dynamic locomotion in challenging terrain. By formulating
perceptive foot placement constraints through a convex inner
approximation of steppable terrain, we obtain a nonlinear MPC
problem that can be solved reliably and efficiently with the
presented numerical strategy. Steppability classification, plane
segmentation, and an SDF are all precomputed and updated at
20 Hz. Asynchronously precomputing this information mini-
mizes the time required for each MPC iteration and makes
the approach real-time capable. Furthermore, by including the
complete joint configuration in the system model, the method
can simultaneously optimize foot placement, knee collision
avoidance, and underactuated system dynamics. With this rich
set of information encoded in the optimization, the approach dis-
covers complex motions autonomously and generalizes across
various gaits and terrains that require precise foot placement and
whole-body coordination.

APPENDIX A
SIGNED DISTANCE FIELD COMPUTATION

This section details how a signed distance field can be com-
puted for a 2.5-D elevation map. Consider the following general
definition for the squared Euclidean distance between a point in
space and the closest obstacle:

D(x, y, z) = min
x′,y′,z′

[
(x− x′)2 + (y − y′)2 + (z − z′)2

+ I(x′, y′, z′)
]

(43)

where I(x′, y′, z′) is an indicator function returning 0 for an
obstacle and∞ for empty cells.

As described in [101], a full 3-D distance transform can be
computed by consecutive distance transforms in each dimension
of the grid, in arbitrary order. For the elevation map, the distance
along the z-direction is trivial. Therefore, starting the algorithm
with the z-direction simplifies the computation. First, (43) can
be rewritten as follows:

D(x, y, z) = min
x′,y′

[
(x− x′)2 + (y − y′)2 (44)

+ min
z′

[
(z − z′)2 + I(x′, y′, z′)

]]
= min

x′,y′

[
(x− x′)2 + (y − y′)2 + fz(x

′, y′, z)
]
(45)
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Fig. 20. 1-D example illustrating the effect of distance metric on the SDF.
When taking the Euclidean distance between cell centers in (a), the SDF will
have a discontinuous gradient across the obstacle border. Taking the distance
between cell center and the border of an occupied/free cell as in (b) avoids this
issue.

where fz(x
′, y′, z) is a function that returns for each horizontal

position, the 1-D distance transform in z-direction. For an ele-
vation map, this function has the following closed-form solution
at a given height z:

fz(x
′, y′, z) =

{
(z − h(x′, y′))2, if z ≥ h(x′, y′)
0, otherwise

(46)

where h(x′, y′) denotes the evaluation of the elevation map.
The same idea can be used to compute the distance to obstacle-

free space and obtain the negative valued part of the SDF. Adding
both distances together provides the full SDF and gradients are
computed by finite differences between layers, columns, and
rows. However, naively taking the Euclidean distance between
cell centers as the minimization of (45) leads to incorrect values
around obstacle borders, as illustrated in Fig. 20. We need to
account for the fact that the obstacle border is located between
cells, not at the cell locations themselves. This can be resolved
by adapting (45) to account for the discrete nature of the problem

D(x, y, z) = min
{x′,y′}∈M

[d (x, x′) + d (y, y′) + fz(x
′, y′, z)]

(47)
where{x′, y′} ∈ Mnow explicitly shows that we only minimize
over the discrete cells contained in the map, and d(·, ·) is a
function that returns the squared distance between the center
of one cell and the border of another

d(x, x′) =

{
(|x− x′| − 0.5r)2 , if x �= x′

0, otherwise
(48)

where r is the resolution of the map. The distance transforms
can now be computed based on (47), for each height in parallel,
with the 2-D version of the algorithm described in [101].
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iors through contact-invariant optimization,” ACM Trans. Graph., vol. 31,
no. 4, 2012, Art. no. 43.

[19] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effectorparameterization,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 1560–1567, Jul. 2018.

[20] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in Proc. IEEE-RAS Int.
Conf. Humanoid Robots, 2014, pp. 295–302.

[21] O. Melon, M. Geisert, D. Surovik, I. Havoutis, and M. Fallon, “Reliable
trajectories for dynamic quadrupeds using analytical costs and learned
initializations,” in Proc. Int. Conf. Robot. Autom., 2020, pp. 1410–1416.

[22] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution of
optimal control problems,” IFAC Proc. Vol., vol. 17, no. 2, pp. 1603–1608,
1984.

[23] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design, vol. 2. Madison, WI, USA: Nob Hill
Publishing, 2017.

[24] F. Farshidian et al., “OCS2: An open source library for optimal control of
switched systems.” Accessed: May 23, 2023. [Online]. Available: https:
//github.com/leggedrobotics/ocs2

[25] M. Hutter et al., “ANYmal—A highly mobile and dynamic quadrupedal
robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 38–44.

[26] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Proc. Int. Conf. Robot.
Autom., 2008, pp. 811–818.

[27] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard,
“An efficient acyclic contact planner for multiped robots,” IEEE Trans.
Robot., vol. 34, no. 3, pp. 586–601, Jun. 2018.

[28] M. Zucker et al., “CHOMP: Covariant hamiltonian optimization for
motion planning,” Int. J. Robot. Res., vol. 32, no. 9/10, pp. 1164–1193,
2013.

https://youtu.be/v6MhPl2ICsc
https://www.roboticsproceedings.org/rss17/p061.html
https://www.roboticsproceedings.org/rss17/p061.html
https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2


3420 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 5, OCTOBER 2023

[29] C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell, and C. Semini,
“On-line and on-board planning and perception for quadrupedal loco-
motion,” in Proc. IEEE Int. Conf. Technol. Practical Robot Appl., 2015,
pp. 1–7.

[30] M. Bajracharya, J. Ma, M. Malchano, A. Perkins, A. A. Rizzi, and
L. Matthies, “High fidelity day/night stereo mapping with vegetation
and negative obstacle detection for vision-in-the-loop walking,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 3663–3670.

[31] S. Bazeille et al., “Quadruped robot trotting over irregular terrain as-
sisted by stereo-vision,” Intell. Service Robot., vol. 7, no. 2, pp. 67–77,
2014.

[32] M. Raibert, Legged Robots That Balance. Cambridge, MA, USA: MIT
Press, 1986.

[33] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and
M. Hutter, “Navigation planning for legged robots in challenging terrain,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 1184–1189.

[34] O. A. V. Magana et al., “Fast and continuous foothold adaptation for
dynamic locomotion through CNNs,” IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 2140–2147, Apr. 2019.

[35] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“RLOC: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Trans. Robot., vol. 38, no. 5, pp. 2908–2927,
Oct. 2022.

[36] W. Yu et al., “Visual-locomotion: Learning to walk on complex terrains
with vision,” in Proc. 5th Annu. Conf. Robot Learn., 2022, pp. 1291–1302.
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