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Abstract—Image processing has significantly extended the prac-
tical value of the eye-in-hand camera, enabling and promoting its
applications for quantitative measurement. However, fully vision-
based pose estimation methods sometimes encounter difficulties
in handling cases with deficient features. In this article, we fuse
visual information with the sparse strain data collected from a
single-core fiber inscribed with fiber Bragg gratings (FBGs) to
facilitate continuum robot pose estimation. An improved extreme
learning machine algorithm with selective training data updates
is implemented to establish and refine the FBG-empowered (F-
emp) pose estimator online. The integration of F-emp pose esti-
mation can improve sensing robustness by reducing the number
of times that visual tracking is lost given moving visual obstacles
and varying lighting. In particular, this integration solves pose
estimation failures under full occlusion of the tracked features
or complete darkness. Utilizing the fused pose feedback, a hybrid
controller incorporating kinematics and data-driven algorithms is
proposed to accomplish fast convergence with high accuracy. The
online-learning error compensator can improve the target tracking
performance with a 52.3%–90.1% error reduction compared with
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constant-curvature model-based control, without requiring fine
model-parameter tuning and prior data acquisition.

Index Terms—Camera pose estimation, fiber Bragg grating
(FBG), hybrid control, online learning, visual-strain fusion.

I. INTRODUCTION

R ECENT advances in computer vision enable the detection
of the robot configuration in unstructured environments

[1], [2], similar to human visual perception that allows us to in-
terpret body movement relative to our surroundings. In computer
vision, camera pose estimation is a fundamental problem that has
been widely studied in the areas of structure from motion (SfM),
visual odometry [3], simultaneous localization and mapping
(SLAM), and even commonly applied in augmented reality
[4] as well as autonomous navigation [5]. Pose estimation by
means of temporally coherent features in a sequence of two-
dimensional/three-dimensional (2-D/3-D) images [6] can avoid
the complicated integration of additional positional sensors.

However, feature-based estimation using cameras is inher-
ently subject to the image quality, which is inevitably affected
by unstable light exposure, vision occlusion, and rapid viewpoint
changes [3]. This weakness is made more apparent with cameras
used in the eye-in-hand configuration, where the camera (i.e.,
the eye) is fixed on the robot end-effector (the hand) to see
its surroundings. Although the eye-in-hand approach is intu-
itive and provides active visual perception, it requires effective
end-effector movement for pose detection [7], [8] and greatly
demands for consistent robot motion patterns. In addition, as
the camera usually points closer toward the objects of interest
[9], the effect of local lighting variations and specular reflection
will be dominant in the camera view. To compensate for the pose
error induced by the lack of high-quality image features, fusing
computer vision data with other sensing feedback has become a
promising option.

The most prevalent type of fusion approach is to integrate
cameras with inertial measurement units (IMUs) [4], [10], that
is, the visual-inertial system (VINS), which has been generally
developed for rigid-link robots. Detected acceleration and angu-
lar velocity could be utilized by employing statistical filtering
techniques, such as extended Kalman filters [4] or learning-
based fusion methods, e.g., long short-term memory [11] and
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convolutional neural networks [12]. Although the extrinsic cal-
ibration and accumulated drift in VINS were widely discussed
[13], [14], [15], residual and nonquasi-static vibrations in soft
robots would induce increased or accumulated positional errors
much more than their rigid counterparts. Note that the IMUs
accuracy and reliability are also bounded by its limited acceler-
ation/velocity sensing range. Mechanical integration of IMUs
would also require tailor-made or compact packing with the
camera at the soft robot’s tip, whereas rigid robots have the
freedom to fix the IMUs anywhere along their links. To this end,
there remains a demand for alternative sensors that can directly
measure the pose of soft robots.

Soft robots usually involve relatively large deformation of
which the strain changes on its body surface would give strong
cues to estimate its configuration. Real-time strain sensing
achieved with fiber Bragg grating (FBG) optical fiber is a poten-
tial candidate that can utilize these strain changes for feedback
[16], [17], [18]. FBG sensors provide several advantages over
electronic strain sensors, including the capability for dense strain
measurements with a single connection and insusceptibility to
water submersion and electromagnetic (EM) fields. As a result,
FBGs have been investigated in thin surgical tools, such as
biopsy needles [19] or even in magnetic resonance imaging en-
vironments [20], [21]. Continuous-grating multicore fiber with
optical frequency-domain reflectometry (OFDR) interrogation
is one form of FBG sensing that is capable of stand-alone 3-D
curvature sensing with a single fiber and is typically integrated
in manipulators or instruments with strict diameter require-
ments [22], [23]. For pose estimation of fluid-driven soft robots,
single-core optic FBGs using the common wavelength division
multiplexing method would be more appropriate considering
its advantages of higher sensing sampling rate (100–3000 Hz)
and significantly lower cost. When helically wound onto the
robot surface [24], [25], the fiber can sensitively detect small
deformations at high frequencies enabling reliable closed-loop
robot control. Task space control of the soft robot using ab-
solute FBG-detected strain would be more reliable than using
IMU feedback, which needs to calculate the integral of relative
acceleration/velocity.

The mapping from FBGs measurement to continuum robot
configuration can be established using either analytical modeling
[21] or machine learning [26] approaches. Sefati et al. [25]
had compared their tip positional sensing accuracy of a planar
bending continuum manipulator equipped with three parallel
FBG fibers. The results demonstrated improved sensing perfor-
mance using the data-driven method without prior information
of the FBG allocation. In learning-based methods, positional
markers need to be employed as the ground truth to complete
the mapping. In our previous work [27], we also proposed a
flexible surface sensing system in which only one single-core
fiber inscribed with FBGs was embedded in a soft substrate.
Offline learning was needed to “train” the mapping between
FBG strains and the surface morphology detected by motion
capture cameras.

Considering the small form factor of FBG fibers and their
ease of integration with devices/instruments, researchers have
also aimed to leverage them with various camera configurations.

In other previous work, we employed a single-core FBG fiber
on a continuum robot to enhance the 2-D motion estimation and
path tracking in the endoscopic camera view [28]. However,
these types of 3-D shape and 2-D motion estimators need to
be trained by additional positional sensors in advance, heavily
relying on prior data exploration and accurate ground truth data.
Alambeigi et al. [29] also proposed a sensor fusion technique to
address the shape/position estimation of continuum robots. As
an illustration, the intermittent external information provided
by an eye-to-hand camera calibrated the continuous imperfect
FBG feedback to achieve the accurate 2-D positional sensing in
obstructed environments. This work is one example of the few
visual-strain fusion combinations for positional sensing, with
even fewer examples using cameras integrated into the robot tip
for eye-in-hand feedback.

Therefore, our concern in this article is to utilize a self-
contained camera to serve as the pose ground truth in ordinary
cases, while the online initialized and updated FBG sensor can
be fused to settle estimation error caused by poor-quality images.
No external sensors would be applied to the algorithm since we
would like to simplify the employed devices. A widely adopted
sensor may be used in the test but just to prove the accuracy of
camera-based pose estimation as the training ground truth. The
sensing dimension is also extended from 3-D position/shape to
6-D pose, offering more flexibility in robot applications, such as
spatial image stitching.

With real-time learning-based sensing feedback available, the
design of the continuum robot controller can also leverage the ad-
vantages of data-driven refinement [30], [31], [32]. Our previous
work had utilized online-learning locally weighted projection re-
gression and Gaussian process regression (GPR) for orientation
control [33] and visual servoing control [34], respectively. Such
pure data-driven control has encouraging potential in soft robots
but is subject to time-consuming data-exploration procedures.
Although analytical kinematics modeling encounters challenges
in parameter characterization due to nonlinear fluid and elas-
tomer’s dynamics, the convergence of analytical solutions can
usually be guaranteed as it is calculated from the inverse kine-
matics mapping. The combination of kinematics model-based
and learning-based approaches could leverage both of their
respective advantages. The constant-curvature (CC) assumption
can be used to establish a rough kinematics model, saving the
time for data collection. Once the robot starts manipulation, the
online data exploration could be activated, with which an error
compensator is learned/updated to reduce the positional error
induced by the model-based control.

In this article, we aim at accurate eye-in-hand pose estimation
of soft robots, which is realized by sensing fusion of an integrated
single-core FBG fiber and a monocular camera. The fusion result
can be further used as feedback for position control. The pro-
posed framework is depicted in Fig. 1. The major contributions
of this work are summarized as follows:

1) online-learning-based pose estimation using sparse strain
measurement of single-core FBG fiber and sensing fusion
with monocamera SLAM;

2) hybrid control combining model-based and data-driven
methods for accurate position tracking using soft robots,
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Fig. 1. Robot control architecture. Hybrid controller combining kinematics model and data-driven-trained compensator is implemented, with the pose feedback
obtained by sensing fusion of FBG strain measurement and visual feedback. Monocamera ORB-SLAM2 is used, which serves as the ground truth to initialize and
update the ELM-based model using FBG strain data. The FBG-estimated portion in the sensing fusion will be more heavily weighted in visual feature-deficient
scenarios.

without the need for precise parameter tuning and prior
data collection;

3) Experimental validation of the proposed sensing fusion
modality under poor visual conditions and validation of
the robust hybrid controller via target tracking tasks.

The rest of this article is organized as follows. Section II
focuses on the pose estimation aspect, which acts as the sens-
ing feedback in the robotic system. It briefly introduces the
state-of-the-art camera-based pose estimation method Oriented
FAST and Rotated BRIEF (ORB) SLAM2, after which our
proposed online-training FBG-empowered (F-emp) pose esti-
mator by extreme learning machine (ELM) and the visual-strain
fusion scheme are explained in detail. Section III presents the
hybrid kinematics controller comprising the CC-based model
and GPR-based error compensator. Experimental validation for
both sensing and control is summarized in Section IV, includ-
ing comparisons between fusion-based and camera-based pose
estimations in handling visual obstacles, as well as comparisons
between controllers using only a CC model versus combining
the model with an error compensator. In addition, the overall
performance of path following by integrating our proposed
visual-strain fusion sensing and hybrid controller is demon-
strated. The effect of physical contacts on our system is also
investigated. Finally, Section V concludes this article.

II. POSE ESTIMATION OF SOFT MANIPULATOR

To improve the eye-in-hand pose estimation stability by in-
tegrating a single-core FBG fiber, the FBGs can be evenly
distributed on the robot body. In our case, the fiber is helically
wrapped on the cylindrical surface, thus reflecting the robot’s
overall deformation [see Fig. 2(a)] via wavelength shifts [see
Fig. 2(b)].

We hypothesize that the camera-based estimation in feature-
abundant scenarios is the primary choice of sensing information

Fig. 2. Soft continuum robot wrapped with a helically wound single-core
FBG fiber. (a) Camera poses obtained at each time step k based on the SLAM
algorithm. (b) FBG wavelengths shifted correspondingly, i.e., from λ(k) to
λ(k+1).

but may suffer from inadvertent poor image quality. For such
circumstances, the F-emp pose estimation model, trained by
accurate camera-based estimations, could act as a stable backup
and guarantee the operation of the entire framework.

A. Task Space Definition

The eye-in-hand camera is fixed on the robot end-effector,
therefore sharing the same pose with the robot tip. There have
been various approaches utilizing visual feedback to analyze
the camera pose. We take the initial position of the end-effector
without robot actuation as the origin of a global (measuring)
coordinate system (green coordinate frame in Fig. 2), and the
robot central axis as the z-axis with downward as the positive
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direction. In the SLAM algorithm, the initial pose is taken by de-
fault as the origin of its measuring frame. The task space related
to the end-effector position is defined in the 3-D global frame.
The camera pose estimated by SLAM at time step k is defined
as zc =

[
pc(k) qc(k)

]
, including the position pc(k) ∈ R3

and quaternion-represented orientation qc(k) ∈ R4. The actual
pose becomes z =

[
p(k) q(k)

]
. Under stable and smooth

movement, the SLAM estimation zc in feature-abundant camera
views can be considered as the approximation of robot end-
effector pose, i.e., zc ≈ z. It is worth noting that SLAM would
not be the only option to provide zc; the feedback from other
pose measuring approaches will also be valid to train the FBG
estimation model, such as EM tracking. Here, the reason to adopt
the SLAM-based pose is to utilize the integrated camera without
the need for any external sensing devices. The actuator input
is represented as u(k) ∈ Rm (at equilibrium state), where m
denotes the dimension of actuation space. The control objective
is to generate an actuation command Δu(k), achieving the
desired movement Δp∗(k) or Δq∗(k). The single-core FBG
fiber is helically wrapped along with the continuum robot.
The multiplexing l units of FBGs inscribed are independent
of each other, providing the corresponding l wavelength/strain
measurement points. Wavelength shift vector λ(k) ∈ Rl depicts
the difference between wavelength vector at time step k and the
original wavelength vector λ0 corresponding to the initial robot
configuration [see Fig. 1(b)].

B. Camera Pose Estimation Via ORB-SLAM2

ORB-SLAM2 has three common modules: tracking, local
mapping, and loop closing [35]. The camera pose can be ob-
tained at each input image frame by building a perspective-n-
point model through the tracking thread. After ORB features
in the image are extracted, pose estimation can be conducted
by matching features in two consecutive frames and refined
by minimizing the reprojection error with motion-only bundle
adjustment optimization. This reprojection error, represented as
eS here, is defined as the Euclidean distance between the image
projection of 3-D map points and the corresponding observed
feature in the image plane. That is to say, the precision of eS
represents the matching accuracy of feature correspondences
and then the quality of the pose estimation. The monocular
camera was calibrated with OpenCV via robot operating system.
It should be noticed that the pose estimation result using SLAM
has a different measurement scale than that of common posi-
tional sensors. An affine transformation on the raw measurement
would be needed to proceed with its usage in robot control. We
utilized the EM tracker to calibrate the scaling parameter in this
transformation in advance such that the online training of F-emp
model and sensor fusion is both in the metric scale.

C. Learning-Based Pose Estimation Using FBGs

The consideration of optic fiber integration is that the wave-
length shift/strain sequence of all FBGs should be mapped
uniquely to reflect the end-effector pose but not altering the
original soft robot mechanical properties (see Fig. 3). Details
about the fiber placement can be found in our previous work [28].

Fig. 3. Finite-element modeling of the strains helically distributed along
an elastic continuum manipulator. (a) Strains varying in amplitude when the
manipulator bends on the same plane/direction. (b) Strains under four different
bending directions distinguished by their phase differences.

Simply, the fiber was wound helically on the robot body (see
Fig. 2). No rigorous requirements on the wrapping structure were
set as long as the FBGs can be dispersedly distributed. Distances
between adjacent turns could also vary without strict consis-
tency. The details of the fiber used in our experiments can be
found in Section IV-A. With an appropriate sampling rate of pose
estimation provided by the SLAM algorithm (i.e., 20–50 Hz,
related to the camera and computer performance), both the wave-
length shiftλ(k) and the pose estimationzc(k) (see Section II-B)
at time step k could be obtained correspondingly. These sensing
feedback pairs enable the establishment of a mapping relation-
ship. A pose estimation model using FBG feedback can, thus, be
trained.

ELM is an online-updated algorithm employing single-
hidden-layer feedforward networks (SLFNs) with randomly as-
signed input biases and weights. It can facilitate rapid initializa-
tion and updates of a trained model, outperforming tuning-based
training methods (e.g., fully connected network, FCN for short)
in the rapid weight initialization, extremely fast learning speed
(thousands of times faster than FCN [36], [37]), and strong gen-
eralization performance. Here, we improved an existing adaptive
online sequential ELM (FOS-ELM) [38], making it capable of
dynamic adaptation as well as outlier exclusion. Different from
the standard ELM, our method enables online parameter updates
with the adaptive forgetting scheme inherited from FOS-ELM
[38] and selectively adopts the newly obtained samples based
on the SLAM reprojection error. The main unknown parameter
to be tuned during the training procedure is the output weights,
which can be automatically calculated by a mathematical trans-
formation. This part is for determining the mapping between
wavelength shifts λ(k) and end-effector poses zc(k) of the soft
robot.

Training: A few sample pairs are collected for the pose
estimation model’s initialization, where the robot is actuated
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by a predefined sequence U =
[
u(1) u(2) · · · u(N0)

]
with N0 steps of exploration. The corresponding sequences of
wavelength shift and camera-based pose estimation are as fol-
lows:

Λ =
[
λ (1) λ (2) · · · λ (N0)

] ∈ Rl×N0

and

Zc =
[
zc (1) zc (2) · · · zc (N0)

] ∈ R7×N0

respectively. The mapping

zc (k) = f (λ (k)) (1)

is to be learned. Consider the training set with inputΛ and output
Zc, with N0 distinct training samples. The output of an SLFN
with N hidden nodes can be represented by [39], [40]

oj =

N∑
i=1

βiφi (λ (j)) =

N∑
i=1

βiφ (λ (j) ,ai, bi),

j = 1, 2, . . . , N0 (2)

where for the ith hidden node, ai =
[
ai1 ai2 · · · ail

]T
and

βi =
[
βi1 βi2 · · · βi,7

]T
are the weighting vectors linking

to the input nodes and output nodes, respectively. The activation
node function is φ(λ(j),ai, bi), where bi is the threshold of the
ith node. It is set as radial basis functions here, i.e.,

φi (λ (j)) = φ (λ (j) ,ai, bi) = exp

(
‖λ (j)− ai‖2

bi

)
. (3)

Represent the inner product of vectors ai and λ(j) as aiλ(j).
Equation (2) can be written compactly as follows:

Φβ = O (4)

where

Φ=

⎡
⎢⎣
φ(a1λ (1) + b1) · · · φ(aNλ (1) + bN )

... · · · ...
φ(a1λ (N0) + b1) · · · φ(aNλ (N0) + bN )

⎤
⎥⎦∈RN0×N

β =
[
βT
1 βT

2 · · · βT
N

]T ∈ RN×7,

O =
[
oT
1 oT

2 · · · oT
N0

]T ∈ RN0×7.

Here, Φ is called the output matrix of the hidden layer.
Obviously, proper values of parameters in Φ will result in

Φβ = Zc. (5)

The goal during training is to minimize the network cost
function ‖O −Zc‖, i.e., to find a solution vector that includes
the to-be-tuned aT

i , βT
i , and bTi , i = 1, 2, …, N. Several

algorithms can be utilized to search this solution, e.g., gradient-
based iteration and least-square solution. Here, we use the latter
method. An advantage of the ELM algorithm is that the values of
input weightsai and hidden-layer threshold bi could be assigned
randomly without having to consider the input data; thus, the
output matrix Φ could then be obtained. Given an input set Λ,

the least-square solution
�

β of linear system (5) could then be
determined by∥∥∥φ (A, b)

�

β −Zc

∥∥∥ = min
β

‖φ (A, b)β −Zc‖ (6)

whereA = {a1 a2 · · · aN} andb = {b1 b2 · · · bN}.
Finally, the output weights β will be analytically determined as
follows:

�

β = Φ†Zc (7)

where Φ† means the Moore–Penrose (MP) generalized inverse
of Φ. After these steps, the global nonlinear mapping model
(1) generated by ELM is ready for prediction. The initialization
step hereto is the whole procedure of standard ELM, which is an
offline training method. Its robustness is determined by the MP
inverse, possibly resulting in low overall estimation accuracy.
However, the MP inverse is only employed in the initialization
phase for network weights calculation, and the subsequent online
update can weaken the adverse effects of MP inverse.

Prediction: Provided with the wavelength shift λ(k) at the kth
time step obtained, the corresponding pose of robot end-effector
can be calculated by

zw (k) = f (λ (k)) , k = 1, 2, . . . . (8)

Since during the prediction procedure, the model is indepen-
dent of camera-based pose estimationzc(k) (see Section II-B), it
could be regarded as another pose estimator that could be further
fused with zc(k).

Updating: Suppose the existing prediction vector β(0) is
obtained by initial training dataset D(0) composed of Λ and
Zc with N0 distinct sample pairs. The expression of β(0) based
on (7) could be rewritten as

β(0)=

((
Φ(0)

)T
Φ(0)

)−1(
Φ(0)

)T
Zc=

(
K(0)

)−1(
Φ(0)

)T
Zc.

(9)
When a new set of training data D(1) with N1 distinct sample

pairs is available for ELM, the weighting vector β(1) corre-
sponding to both D(0) and D(1) can be calculated as follows:

β(1) =

[
Φ(0)

Φ(1)

]+ [
Z

(0)
c

Z
(1)
c

]

=
(
K(1)

)−1(
Φ(1)

)T (
Z(1)

c −Φ(1)β(0)
)
+ β(0) (10)

where

K(1) =

[
Φ(0)

Φ(1)

]T [
Φ(0)

Φ(1)

]
=
(
Φ(1)

)T
Φ(1) +K(0).

Following this iteration, the ELM model would be updated
after the kth training dataset D(k) as follows [36]:

β(k) =
(
K(k)

)−1(
Φ(k)

)T (
Z(k)

c −Φ(k)β(k−1)
)
+ β(k−1)

(11)
where

K(k) =
(
Φ(k)

)T
Φ(k) +K(k−1).
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In consideration of the possible deteriorated camera-based
estimations due to the poor image quality, it is necessary to set
an activation threshold of the model updating mechanism. The
reprojection error eS mentioned in Section II-B can be utilized
as such an indication to determine whether the newly obtained
sample is incorporated for online learning. When eS is larger
than the threshold (> 1.4), the matrix β(k) will keep the value
as in the last iteration step.

The reduction of effects from old data in the update procedure
of ELM model can be achieved by introducing and adjusting sev-
eral weight parameters for the old measurements. Equation (11)
can be expressed in the form of

β(k) =

([
Φ(k−1)

Φ(k)

]T [
Φ(k−1)

Φ(k)

])−1

×
[
Φ(k−1)

Φ(k)

]T [
Z

(k−1)
c

Z
(k)
c

]
= H(k)M(k) (12)

where

H(k) =

[(
Φ(k)

)T
Φ(k) +

(
Φ(k−1)

)T
Φ(k−1)

]−1

(13)

M(k) =
(
Φ(k)

)T
Z(k)

c +
(
Φ(k−1)

)T
Z(k−1)

c . (14)

Weighting w is added to the variables related to old training
samples; thus, the two factors (13) and (14) will be

�

H
(k)

=

[(
Φ(k)

)T
Φ(k) + w

(
Φ(k−1)

)T
Φ(k−1)

]−1

(15)

�

M
(k)

=
(
Φ(k)

)T
Z(k)

c + w
(
Φ(k−1)

)T
Z(k−1)

c . (16)

The recursive expression of (15) can be obtained by Sherman–
Morrison formula as follows [38]:

�

M
(k)

=

�

M
(k−1)

w
− N(k)

(
N(k)

)T
w
[
w +Φ(k)N(k)

] (17)

where N(k) = Φ(k)
�

M
(k−1)

.

D. Camera-FBG Sensing Fusion

In the ORB-SLAM2 algorithm, the reprojection error eS
(introduced in Section II-B) can reflect the pose estimation
accuracy. The fusion result can be regarded as a combination
of SLAM and F-emp portions, with an adjustable weighting
that characterizes the visual sensing accuracy. Based on this
error eS , the weighting of SLAM portion in sensing fusion
can be determined. The final pose estimation can, thus, be
obtained by the following criteria (18) shown at the bottom of
this page, where EL and EU are the error bounds distinguishing

Fig. 4. Structural diagram of the continuum robot mounted with LEDs and a
camera at its tip. (a) Configuration parameters r, θ, and φ defined to describe a
spatial arc of the CC-based model. (b) Cross section showing three air chambers
for robot actuation. (c) Endoscopic camera providing real-time visual feedback
to ORB-SLAM2 for camera pose estimation.

whether or not to entirely trust or discard the SLAM estimation,
respectively; KS is an adjusting factor.

III. HYBRID POSITION CONTROL OF SOFT ROBOTS

A. Kinematics Initialization by CC Model

In consideration of the limited dimensions of the actuation
space compared with the task space, only the position p or
orientation q can be controlled. In this section, the control
objective is illustrated by the end-effector position p. As in
this article, we utilize such a single-segment soft manipulator to
demonstrate the idea of visual-strain fusion and hybrid control,
and the controllable number of DoFs would be limited to 2.
This results from a curved surface workspace with negligible
thickness. Here, positional DoFs x and y are controlled as an
example. The robot kinematics can be initialized based on the
CC assumption, which is widely applied to continuum robots.
The CC model is constructed based on the assumptions of zero
torsion and uncoupling among actuation chambers. That is, the
bending robot is assumed as no torsion involved, and the length
variation of inflated chambers will not affect the other chambers.
Two main parts need to be considered during the modeling,
namely mappings from configuration space to task space and
from joint space to configuration space. The former mapping is
robot independent, while the latter mapping is robot specific as
it is related to the robot actuation mechanism. In the CC-based
model, the three parameters in the configuration space can be
interpreted as r, θ, and φ, representing the radius, the central
angle, and the bending direction (rotation angle) of the arc,
respectively [see Fig. 4(a)].

The lengths of the three fluidic chambers [see Fig. 4(b)] are
denoted as

�

u =
[
l1 l2 l3

]T
. The angle φ representing the

z =

⎧⎨
⎩
zc, eS ≤ EL

KS (eS − EL) zw − [1−KS (eS − EL)] zc, EL < eS < EU

zw, eS ≥ EU

(18)
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bending direction could be obtained as follows:

φ = tan−1
(√

3 (l2 + l3 − 2l1)
/
3 (l2 − l3)

)
(19)

as well as the backbone arc curvature κ as

κ =
l2 + l3 − 2l1

(l1 + l2 + l3) d sinφ
. (20)

The central angle of the backbone arc can be obtained by θ =
κl, while the axial length l of robot yields l = (l1 + l2 + l3)/3.
To summarize, the expression of three parameters r, θ, and φ in
the configuration space can be represented as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
(

�

u
)
= d (l1 + l2 + l3)/2δ

θ
(
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)
= 2δ/3d

φ
(

�

u
)
= tan−1

(√
3 (l2 + l3 − 2l1)

/
3 (l2 − l3)

) (21)

where δ = (l21 + l22 + l23 − l1l2 − l1l3 − l2l3)
1/2.

The position of end-effector p in the coordinate, as shown in
Fig. 4(a), can be found as follows:
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The corresponding differential format can be expressed as
follows:

ṗ = J
�̇

u (23)

where the Jacobian matrix J can be calculated by differentiating
the position p with respect to the input

�

u. Proved with the matrix
J, we could establish its inverse function as follows:

�̇

u = J †ṗ (24)

where J † is the generalized inverse of J. A singularity point
exists on the initial status, that is, when the robot body is straight
and aligns with the z-axis as in Fig. 4(a). This circumstance could
be handled by adding tiny-value (e.g., 10−5) variations on the
chamber lengths during the calculation of J inverse. To involve
constraints during generating motion commands for solving
redundancy, e.g., to maintain the closest status to a preferred
configuration, this scheme could be extended by an additional
factor as [41] follows:

Δ
�

u
(k+1)

= J †Δp∗(k+1) +
(
1− J †J

) · β (�

u0 − �

u
(k)
)
(25)

where β(
�

u0 − �

u
(k)

) is used to find a redundant solution ap-
proaching the preferred robot configuration, which could be set
as the initial configuration

�

u0 without actuation air pressure or
only with prepressure. The original chamber length is denoted

by
�

u0 and the length in current time step k is
�

u
(k)

.
Therefore, during the runtime, once a command of the desired

displacement Δp∗ is given, the corresponding change of three

chambers Δ
�

u could be obtained to calculate the actuation com-
mand of stepper motors controlling the chamber air pressure.
Thus, for the kth time step, the new chamber lengths can be
formed as follows:

�

u
(k+1)

=KpΔ
�

u
(k+1)

+
�

u
(k)

(26)

where Kp is a proportional gain to adjust the change of chamber
length. To simplify the modeling for fluid dynamics, we assume
that the extension of chamber lengths has a linear positive
correlation relation with the stepper motors’ output u, i.e.,

u(k+1) = α ·
(

�

u
(k+1) − �

u0

)
(27)

where α is a diagonal matrix, including the three multiples for
three chambers. However, in actuality, this linearization could
not describe the transformation well. Nonlinear elongation of
elastic chambers and transmission of fluids, as well as other
modeling uncertainties, would induce errors in the robot con-
trol. Thus, a learning-based component to compensate tracking
deviations is investigated in the Section III-B.

B. Online Data-Driven Error Compensator

The online update of an additional error compensator enables
the controller to compensate steady errors and even adapt to
mechanical property changes, e.g., material fatigue. Once the
actuation change Δu(k) is executed in a new step, the corre-
sponding actual motion vector Δp(k) could be estimated as in
Section II. Thereby, a set of new sample pairs, including input

x = [u(k − 1)T,Δz(k)T]
T

and output y = Δpe(k) would be
produced. Here, the variable Δpe(k) represents the difference
between desired motion and actual motion, i.e.,

Δpe = Δp∗ −Δpr (28)

where Δpr is the actual motion in task space corresponding to
the desiredΔp∗. The purpose of our proposed error compensator
is to predict this error in advance and consider this potential
deviation together with the desired robot movement. Thus, Δp∗

would be improved after compensation as follows:

Δp̃∗ = Δp∗ +Δpe · |Δp∗| . (29)

This newly collected sample could reflect the latest robot
mechanical status and is added into the model training dataset,
i.e., input matrix X and output Y. GPR is utilized here for
the model training. The working principle of GPR has been
introduced in our previous work [34]. For each step of motion,
the model would be retrained for updating. A size limitation
Nmax

r for this dataset is predefined to keep the prediction fast
and effective. If the current sizeN (k)

r > Nmax
r , the oldest sample

[x1,y1] will be discarded.
No prior data exploration is needed in robot manipulation. The

robot can be actuated using the CC model-based controller first,
while feedback for compensator initialization is being collected.
After several motion steps Nc (≤ Nr), the GPR-based compen-
sator will be first trained and updated in the following steps.
For time step k > Nc, an additional compensated component is
added as in (29).
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Fig. 5. Camera-based pose estimation results, where the SLAM-based estimation was compared with the EM-tracker measurement (ground truth). (a) Pose
estimation errors as well as the mean value. (b) Trajectories recorded by EM trackers (red) and estimated by ORB-SLAM2 (“o”). (c) Front and side views of the
stitched images in 3-D, which are reconstructed using the SLAM pose estimation and image feedback.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

A. Soft Robot With Monocamera and FBG Fiber

The continuum robot was molded by silicone rubber
(Ecoflex30, Smooth-on Inc.), with a 3-D printed tip cap and
a fixation base [see Fig. 4(a)]. Three pneumatic chambers are
distributed in a distance of 5.1 mm to the robot’s central axis and
an angle of 120° between each other [see Fig. 4(b)], providing
omnidirectional bending [42]. The chamber inflation was regu-
lated by an actuation unit comprising of three pairs of stepper
motors and cylinders. Precise angular position control could be
implemented on the motors, thus adjusting the volumes of sealed
cylinders connected to chambers. An endoscopic camera (depth
of field: 8 to 150 mm) and a LED module were fixed on the
tip cap [see Fig. 4(c)]. A single-core optical FBG fiber with
17 FBGs (6-mm long gratings, 20-mm spacing) was helically
wrapped and adhered on the silicone continuum body. For the
convenience of fabrication, the distances between adjacent turns
of fiber were set at approximately 16.5 mm. The robot outer
diameter was 20 mm, and the bendable part was 90 mm in length.
As the robot base was fixed in the experiment and the twisting
is negligible, the roll orientation would not be controllable.

B. Pose Estimation by ORB-SLAM2

Pose estimation accuracy using ORB-SLAM2 was vali-
dated in a LEGO-constructed scenario. The robot was actuated

according to a predefined sequence U for three stepper motor
sets. This actuation sequence was expected to steer the robot to
follow a trajectory that spreads out from the initial position.

A pair of EM trackers were attached on the robot tip to
record the actual (ground truth) pose z. Intrinsic calibration of
the monocamera was performed first. Extrinsic calibration of
monocular metric scale was also required in the initialization
procedure. Before each time of manipulation, the robot would
move slowly along one or two direction(s), until the initial-
ization for visual features was ready. With the robot actuated
by sequence U with N steps, the set of SLAM estimation
�

Zc =
[
zc(1) zc(2) · · · zc(N)

]
and EM tracker measure-

ment
�

Z =
[
z(1) z(2) · · · z(N)

]
can be obtained. The

affine transformation from P to
�

P c could be calculated; thus,
the SLAM position measurement is calibrated as follows:

pc = R
�

pc · k+
�

p (30)

where R, k, and
�

p are the rotation matrix, scale factor along all
dimensions, and translation vector, respectively. Measurement
errors of P c comparing with P were calculated. The mean
absolute errors of ORB-SLAM2 along x, y, and z axes were,
respectively, 0.508 mm, 0.596 mm, and 0.385 mm, while the
root-mean-square error (RMSE) was 0.998 mm [see Fig. 5(a)].
The trajectories constructed by P c and P could be found in
Fig. 5(b). As can be seen in conditions of abundant visual
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Fig. 6. Sensor fusion performance in the presence of moving obstacles. (a) Examples of camera view and corresponding visual features under 1©LEGO-constructed
scenario with abundant visual features; 2© moving/static hand where features were partly detected; 3© moving hand with no features detected; 4© static hand where
all the features were obscured for several seconds. (b) Deviations of SLAM-based and fusion-based pose estimation compared with the ground truth measured
by EM trackers. Percentages of error with respect to total motion range and each-step motion are provided, respectively. (c) Trajectories of fusion-, SLAM-, and
FBG-based camera positions.

features, the robot manipulation is slow and smooth, and ORB-
SLAM2 is reliable, acting as the benchmark of pose estimation
for our following training. In soft robot manipulation, this kind
of sensing would not rely on any other external position sensors,
e.g., EM trackers.

Through the pose estimation and corresponding image views,
the 6-D image stitching of scenes is possible [see Fig. 5(c)].
Different from SfM or other feature-based methods, this recon-
struction is simplified by positioning the images according to
the estimated end-effector/camera pose. This will effectively
increase the function of sparse SLAM algorithm as well as the
mosaicking efficiency.

C. Sensor Fusion Pose Estimation

The ELM was chosen to train and update the F-emp pose
estimation model in real time. With the same actuation sequence
as in Section IV-B, wavelength shifts were collected and trained
by ELM to estimate end-effector pose at the same time. We set
the numbers of hidden nodes and initialization samples as N =
200 and N0 = 450, respectively. These parameters were roughly
tuned referring to the ELM estimation accuracy. The interval
between adjacent steps was set as 0.05 s. It could be found in
our experiments that the prediction result of ELM would be
improved with the increment of sample number N0. Once a
necessary number to guarantee the convergence of prediction
was satisfied, the accuracy would not significantly increase. The
ELM model was updated every newly obtained sample. The
prediction results were compared with the measurement using

ORB-SLAM2, which was the benchmark in training. The tra-
jectory reconstructed by ELM estimation approached that of the
SLAM measurement closely. The mean estimation errors along
x, y, and z axes of ELM were 1.82×10–4 mm, 3.95×10–4 mm, and
4.39×10–4 mm, respectively, while the mean spatial error was
8.28×10–4 mm. This result demonstrates that ELM is capable
of learning the pose information utilizing wavelength feedback.
To test the pose estimation effectiveness when SLAM is unable
to achieve consistent and stable estimation, we validated the
sensing fusion methodology in the following two conditions,
which are under moving visual obstacles and under the varying
lighting condition, respectively.

1) Under Moving Obstacles: The robot was actuated with a
similar predefined spiral sequence, as shown in Section IV-B.
Moving or stable obstacles would disturb camera view, with
examples of the camera view and features, as illustrated in
Fig. 6(a). In the first 100 s [i.e., first 2000 time steps, marked
with 1© in Fig. 6(a)], no disturbances in the camera view were
applied. For the testing scenario, this period would guarantee
around 600 features in each frame, and the mean error of SLAM
and fusion was 0.840 mm and 0.768 mm, respectively. After
that, a hand was positioned statically in front of the camera
or moving quickly to partly shield the field-of-view (marked
with 2© and 3©). Neither case would consistently cover all
features in the camera view. During these periods, the number
of features was less than or even reduced to 0 in rare frames,
the mean SLAM error was 1.694 mm (4.2% to the largest
distance to starting point, 40.23 mm) and the maximum error
was 26.272 mm (65.3% to the largest distance), while the
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Fig. 7. Sensor fusion under varying lighting conditions. (a) Examples of
camera view and corresponding visual features with 1© ordinary lab lighting,
2© low-level lighting, and 3© moving additional LED lighting. (b) Deviations

of SLAM-, FBG-, and fusion-based pose estimation compared with the ground
truth obtained by EM tracking. Percentages of error with respect to total motion
range and each-step motion are provided, respectively.

fusion errors had a mean of 1.132 mm (2.8% to the largest
distance) and max. of 2.573 mm (6.4% to the largest distance).
For the last case, the hand would statically cover the whole
field-of-view (marked with 4©) for ∼2 s each time. During this
period, the visual features would be consistently lost; thus, the
SLAM procedure would be stagnated (max. error 38.483 mm,
95.7%), but the fusion results could be maintained (max. error
4.747 mm, 11.8%). In the moving-obstacle period, there would
also be moments where all the features in the camera view
were blurred 3©, resulting in the SLAM estimation pausing.
However, in our sensing modality, the F-emp estimator would
compensate for the lack of visual sensing and guarantee the
acquisition of sensing feedback. In the control and plot, if no
SLAM estimation was provided, we would set the SLAM pose
as the latest valid value to avoid the lack of feedback. As shown
in Fig. 6(b) and (c), including the plots of errors, the trajectory
of fused pose would not be affected by the moving obstacles,
while pure SLAM-based pose would be deteriorated as expected.
However, there is still a defect of the SLAM estimation that
could not be obviously resolved by the fusion method. As can
be seen in the lower subfigure of Fig. 6(b) demonstrating the
error percentage to the corresponding motion step, the smaller
step lengths (e.g., during first 50 s, mean step size 0.12 mm) will
result in poorer estimation (mean errors 0.82 mm, 1074.4% and
0.75 mm, 966.8% for SLAM and fusion results, respectively).

Fig. 8. Scenario reconstructions with disturbances of (a) moving obstacle (see
Fig. 6) and (b) varying lighting condition (see Fig. 7). Several blurs due to the
obstacle or varying lighting are indicated by dotted outlines.

The noise of SLAM dominated the estimation error in such
tiny steps, and this is also a reason for the high percentage
throughout the whole procedure. Even in the outer trajectory
(e.g., during the last 175–200 s), the step size was only 0.29 mm.
Therefore, we may conclude that the advantage of SLAM is the
overall localization rather than incremental estimation, and this
behavior would also be maintained in the fusion method based
on SLAM.

2) Under Varying Lighting Conditions: Varying lighting
conditions were also tested in the pose estimation experiment
(see Fig. 7). Under the lighting provided by incandescent lamp
[marked with 1© in Fig. 7(a)], the robot started the same series
of movement as in Section IV-C1.

During manipulation of the robot, the lighting condition
was changed gradually or abruptly to weak lighting (marked
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Fig. 9. Comparison of control performance tracking a target moving along a pentagram path. Tracking trajectories and errors with gain factor Kp as (a) 0.08
and (b) 0.04 are plotted. “Error” represents the Euclidean distance between the current target and the actual end-effector position. “Deviation” is calculated as the
distance from end-effector position to the closest point on the desired path. The model-based method was validated for the first 100 s (step 1–2000), afterward
another 100 s run with the hybrid control. Two series of 100-s period data are plotted and overlaid for ease of comparison. (c) Zoomed-in view of the square blocks
in (a) and (b).

with 2©) or complete darkness during 75–150 s (i.e., time
step 1500–3000), and then returning to the initial lighting. An
additional moving LED source was tested from 150 to 200 s (step
3000–4000), which was oriented directly toward the endoscopic
camera ( 3©). It could be seen that low-light level would reduce
the number of visual features in the camera view and induce
minor noise in the SLAM-based pose estimation [see Fig. 7(b)].
However, once the lighting was fully removed in the camera
view (which resulted in entire black image feedback), the SLAM
procedure would be interrupted due to the absence of features.
The moving lighting source would also bring consistent noise
to SLAM estimation. When the LED was directly facing the
camera, most of the features (especially on the lighting spot
area) would be lost and SLAM estimation error increased. The
fusion-based estimation could keep a stable estimation level
(RMSE: 1.324 mm, 3.4% to the largest distance to starting point,
40.23 mm), largely improving the estimation accuracy compared
with SLAM (RMSE: 3.116 mm, 3.4% to the largest distance).
A similar limitation on the tiny incremental motion estimation,
as discussed at the end of Section IV-C1, also appeared in this
varying lighting test.

Scene reconstructions under conditions in Section IV-C1 and
C2 were also conducted (see Fig. 8). Poses for image stitching
were provided by the sensing fusion result. The blurs caused
by the moving hand and varying lighting were reflected in the
reconstruction, several of which are marked with a dotted out-
line. Although the images were blurred, the whole mosaicking

could still successfully stitch together, accredited to the stable
and consistent feedback of sensing fusion.

D. Tracking: Hybrid Control Versus Model-Based Control

Control performance comparisons were tested by target track-
ing along two kinds of paths: a pentagram trajectory comprising
of straight lines and sharp angles (see Fig. 9); and a circle
trajectory (see Fig. 10). It should be noticed that the control
task aims at the positions on the x and y axes. Paths shown in
the following figures are projections on the x–y plane, while the
actual end-effector trajectory is distributed on the spatial curve
surface. EM trackers were used to provide the sensing feedback
in this section. During this tracking task, the target was moving
at a consistent speed. Each iteration of control loop was set as
0.05 s. As we know, model-based control could guarantee stable
performance but needs parameter tuning to achieve higher accu-
racy. Besides those related to robot structures, others, such as the
proportional–integral–derivative (PID) factors, would also affect
the convergence performance in tracking tasks. The following
two experiments are to validate the effects of online-learning-
based portion in the hybrid control.

Proportional gain Kp in (26) is to adjust the calculated cham-
ber length change, which plays an important role in the CC
model-based control. The smaller its value is, the smaller the
actuation change will be. We roughly set several different values
of Kp and tested if the learning-based portion could compensate
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Fig. 10. Comparison of control performance tracking a circle path, where Kp were set as (a) 0.1 and (b) 0.06. Subfigures are arranged in the same way as in
Fig. 9.

TABLE I
MEAN TRACKING ERRORS AND PATH DEVIATIONS IN PENTAGRAM TRACKING WITH FOUR DIFFERENT GAINS Kp

for the tracking deviation under different values of Kp. The robot
was actuated by model-based control at the beginning 100 or
75 s (2000 or 1500 steps, corresponding to two cycles), after
which the initialization of GPR-based error compensator was
finished and added. For the following steps, the CC-based model
and GPR-based compensator in hybrid controller would work
together to correct the tracking performance. To distinguish
the errors of pure model-based control and hybrid control, we
plotted these errors on the same time range. However, in the
actual manipulation, they should be successively arranged as
model-based control first (time 0–100 s, or 0–75 s) and then
hybrid control (time 100–200 s or 75–150 s).

1) Path With Sharp Angles: The performance of tracking the
moving target along the pentagram path is shown in Fig. 9. Gain
Kp was defined as 0.1, 0.08, 0.06, and 0.04, respectively. As
the target would switch on every time step, the curve named
with “Error” represents the distance between the current target

and actual end-effector position. “Deviation” is calculated as
the distance from the actual end-effector position to the closest
point on the desired path. When Kp was tuned as a proper
value [see Fig. 9(a)], the pure model-based controller’s tracking
performance was roughly acceptable. However, for the cases
that Kp could not be tuned well [see Fig. 9(b)], the model-based
method was not capable of adapting to the speed of moving
target, i.e., the “Error” obviously increased. Mean tracking errors
(i.e., step errors) and path deviations (e.g., the closest distances to
the desired path) with different values of Kp are listed in Table I,
accompanied with the standard deviation (STD). Both the value
and percentage of the errors are provided. The percentage for
tracking error was obtained by averaging all tracking (error/step
size), where the step size is 3 mm that for the path deviation was
the average value of all (deviation/corresponding distance to the
starting point). The column “Improv.” indicates the percentage
that hybrid controller outperforms model-based controller in the
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TABLE II
MEAN TRACKING ERRORS AND PATH DEVIATIONS IN CIRCLE TRACKING WITH FOUR DIFFERENT GAINS Kp

value or errors. Such improvements were calculated by (em –
eh)/em, where em and eh are the tracking errors (or path devia-
tion) using model-based controller and hybrid controller, respec-
tively. For these four cases, the hybrid controller could improve
the performance (68.9%–86.4% in tracking error, 65.8%–80.9%
in path deviation) compared with the model-based one, even
under the precondition that the tracking performance of mode
was far from an acceptable standard.

2) Smooth Path: Similar to the pentagram path tracking, the
performance when following a circle (see Fig. 10) is shown
according to the same arrangement of Fig. 9. The difference
with Section IV-D1 is that this path was constructed with smooth
curves. When Kp was not fine-tuned, the compensated part could
steer the end-effector to approach the desired path quickly [see
Fig. 10(b)]. Both the tracking error and the path deviation in
tracing results can be largely reduced (52.3%–90.1% in the
tracking error, 78.7%–94.1% in path deviation, Table II) under
four values of Kp.

Both experiments in Section IV-D demonstrated that the hy-
brid control scheme enables the tracking convergence and grad-
ually increased tracking accuracy without fine modeling tuning
and data exploration. Taking the path deviation in pentagram
tracking (see Table I) as an example, 0.1 was the optimal value of
Kp among the four values; however, the distinction of deviation
was effectively reduced after using the hybrid controller (e.g.,
path deviation: 0.361–0.696 mm), greatly outperforming the
model-based controller (1.057–3.646 mm). It could be noticed
that there were deviations at the lower middle of the pentagram
path (see Fig. 9(a) and (b), coordinate around [0, −10]) as well
as on three areas with 120° interval in the circle path [see
Fig. 10(a) and (b)], when Kp was set as both 0.1 and 0.06.
This kind of error results from the highly nonlinear mapping
from stepper motor positions (i.e., air cylinder volumes) to
elastic chamber elongations. The rough linearization (27) to
correlate the motor command and chamber elongation could not
meet the nonconstant change of factor α. However, even with
such an insufficiently tuned kinematics for control, the online-
learning-based error compensator still enables enhancement of
the tracking performance [see Fig. 10(c)].

E. Hybrid Control With Sensing Fusion

Experiments integrating the visual-strain fusion-based pose
estimation and hybrid controller were also conducted. The robot
end-effector was instructed to track a complicated closed path
along an elephant-shaped path [see Fig. 11(a)]. The desired path

Fig. 11. Tracking performance along an elephant-shaped path. The sensing
feedback was provided by visual-strain pose fusion. CC model-based control
was conducted for the first-cycle tracking after which the learning-based error
compensator was included. (a) Trajectories of the two cycles were plotted, as well
as the (b) tracking error and the (c) path deviation with mean values indicated.

involved 1500 target points, with approximately equal distances.
For the pose estimation part, the ELM model was initialized after
the first N0 = 450 steps before which the SLAM estimation
was acting as the sensing feedback for robot control. After
initialization, the pose information would be provided by the
fusion result of SLAM and FBG measurement. The ELM model
was also updated online. For the closed-loop target tracking,
model-based control was used for the first cycle (0–85 s, step
1–1700). Considering the initial end-effector position [0, 0] was
not on the path, 200 more time steps after the 1500th step were
included in the validation of model-based control to compensate
for the initial approaching procedure. During this period, data
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Fig. 12. Tracking performance with the same subfigure meanings as in Fig. 11. The nonlinear relationship between chamber elongation and motor actuation for
each chamber was fitted using real-robot data. The third-cycle performance was added, where a moving obstacle created visual disturbances in the camera view.

collection and initialization of the GPR-based error compensator
were also finished. Thus, in the second cycle (85–160 s, step
1701–3200), the robot was actuated utilizing hybrid control,
which includes model-based control and the online-updated
error compensator. The improvement using hybrid controller
compared with the model-based controller can then be reflected.

1) Using Linear Actuation–Elongation Mapping: We tested
the performance using the same hybrid controller as in Sec-
tion IV-D (Kp = 0.1), the result of which is demonstrated
in Fig. 11. The path of hybrid controller is marked by dense
small filled circles, while that of the model-based method is
marked by unfilled triangles. It could be seen that similar to
the previous tests, the learning-based part in the hybrid con-
troller can effectively compensate for most of the deviations of
modeling uncertainties. However, when switching the inflated
chambers [marked red in Fig. 11(a)], the hybrid controller still
met difficulties in totally correcting the tracking trajectory to the
desired path. Although, if we further fine-tune parameters in the
model-based controller, it is feasible to bring a satisfactory track-
ing result with less path deviation. However, such performance is
still valuable to be discussed, which shows that switching cham-
bers is one of the main cases of concern for pneumatic-driven
soft actuators, especially in the continuous-path-following tasks.
In Fig. 11(b) and (c), the height difference of two controllers’
error peaks [e.g., 13.322 mm and 7.944 mm, respectively, for
model-based and hybrid controllers in Fig. 11(b)] as well as the
mean values [2.625 ± 2.501 mm and 1.604 ± 1.487 mm in
Fig. 11(b)] demonstrate that the error compensator can decrease
the tracking error under various regions.

2) Using Nonlinear-Fitted Actuation–Elongation Mapping:
In this experiment, the robot-specific mapping (27) was modi-
fied. Instead of a linear magnification, a nonlinear relationship
between the chamber length and actuation motor was fitted
using cubic spline data interpolation. With this specific-mapping
correction, the control performance of model-based method
could also be obviously increased with a fine-tuned Kp. The three

deviations [see Fig. 12(a)] when switching inflated chambers
could be eliminated, as no obvious error peaks are found [see
Fig. 12(b) and (c)]. This time, we supplemented one more cycle
(160–235 s, step 3201–4700), where the hybrid control contin-
ued being used, but moving obstacles were applied as visual
disturbances in the camera view, similarly in Section IV-C1.
In the last cycle with visual disturbances, the tracking error
(1.751± 0.473 mm) and path deviation (0.336± 0.221 mm) [see
Fig. 12(b) and (c)] could also maintain in a low level. These two
experiments demonstrate that the fusion-based pose estimation
could provide valid feedback for the hybrid controller or other
controllers.

F. Effects of Physical Collisions

Considering that the general purposes of soft robot use in-
volved physical interaction with surrounding objects, we intend
to investigate how the proposed fused sensing scheme, even
under the interaction disturbance, can encounter deteriorated
feedback either from visual or strain sensors. As a result, the
synergetic use of both sensing approaches would give rise to the
overall control performance. We intentionally made the robot
even more susceptible to the contact interaction such that the
FBGs wrapped on the robot cylindrical surface (without outer
layer protection) would reflect the disturbance to the measured
robot configuration as to which the proper visual sensing is
expected to compensate this FBG sensing disturbance in or-
der to maintain the control performance. Besides the LEGO-
constructed setting, an abdominal simulator was built using
swine viscera, acting as the surrounding for the camera in these
experiments.

1) Slow Push on the Robot: Statistical results (in the two
setups) are summarized in Table III. When the force was applied
on the rigid tip [see Fig. 13(a)], its effect on the pose estimation
can roughly be compensated by the fusion method (Fig. 13(a)
1©, mean error: 1.216 mm). The appearance and removal of
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TABLE III
MEAN, MAXIMUM (MAX.), AND STD OF ESTIMATION ERROR (MM) WHEN SLOWLY PUSHING THE ROBOT ON ITS RIGID CAP [SEE FIG. 13(A)] OR SOFT BODY

WITH HELICALLY WRAPPED FIBER [SEE FIG. 13(B)]

Fig. 13. Pose estimation results when pushing the robot slowly on (a) rigid cap
or (b) soft body. The robot was actuated with the same sequential command as in
Figs. 5–7. A pair of EM trackers acted as the ground truth (and their connection
wires are marked in (a)). Undesired displacements (∼15 mm) were induced by
the push. Two randomly selected time points during the path journey (marked
as 1© and 2©) were shown as examples. End-effector trajectories (with four
sensing settings) when the force was applied are depicted.

external forces would cause rapid change of robot moving
directions. Such changes may result in large occasional errors of
SLAM-based estimation (Fig. 13(a) 1©, Max. 16.109 mm) but
can be resolved by the fusion-based approach (Max. 3.180 mm).
During the smooth and continuous pushing period, the difference
between SLAM-, FBG-, and fusion-based estimations is not
obvious (see Table III). Although sometimes the mean errors
using the above three methods are slightly larger (Fig. 13(a)
2©, ∼2.5 mm), the fusion result can also reflect the pattern of

movement.
Contact tests were also conducted on the soft body [see

Fig. 13(b)]. As the local contacts usually resulted in only a small
portion of sparse FBGs being affected, the F-emp estimation
accuracy did not deviate too much (e.g., Table III LEGO mean

error 0.698–0.732 mm). Meanwhile, the image quality could be
in a valid level for pose estimation (mean error 0.489–0.516 mm)
and guaranteed the fusion result (mean error 0.634–0.703 mm).
The fusion sensing performance can be comparable to the base-
line that is the EM tracking directly on the robot end-effector
(video 3:17–3:30). When the force was intentionally applied
to the location wrapped with fiber, noise was observed from the
F-emp pose estimations. This correlates with our hypothesis, i.e.,
if direct contacts exist between the fiber and surroundings, the
measured FBG wavelength will involve external-force-caused
strain variation and induce estimation error. One method to avoid
this is to add a protective sheath/bellow externally in order to
isolate or weaken the intensity of forces on fiber gratings. Such
protection can be considered when applying the proposed sensor
fusion method in specific applications.

2) Fast Flick on the Robot: To address more complicated
circumstances involving both FBG and visual sensing distur-
bances, we conducted a set of finger flick tests in which we can
observe how the F-emp estimation behaves when the vision-
based estimation deteriorated by motion blur (see Tables IV
and V). Different from the case with continuous pushing, the
SLAM algorithm was unable to stably measure the motion
since visual features were lost (video 3:30–3:39). Although the
accuracy of the fusion-based estimation was slightly reduced
relative to finger push, the fusion-based estimation was still
stable (Table IV, error: 1.221 ± 0.860 to 1.769 ± 1.434 mm).
Although, due to the robot hyperelasticity, a large deviation (e.g.,
10.911 mm) would appear at the moment when an abrupt force
was applied, our fusion-based estimation could gradually adapt
to the vibration.

Table V took two extreme examples to discuss the limitation
of this robot structure. They were chosen when the robot was
executing in the abdominal simulator. It can be seen that the
error is larger than in Table IV, particularly the error maximum,
due to the increased force and corresponding bigger vibration
amplitude. Although the fusion result occasionally fell from the
optimal estimation, its mean error and STD were still close to the
best one (e.g., fusion error 2.654 mm, min. error 2.275 mm). An
interesting observation is that, here, the mean error of pushing
on the rigid cap was even larger than on the body. One possible
reason for this issue is the online-trained ELM model that
did not involve enough related samples to accommodate such
large range of motions. Aiming at fast model establishment, the
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TABLE IV
MEAN, MAX., AND STD OF ESTIMATION ERROR WHEN RAPIDLY FLICKING THE ROBOT IN LEGO-CONSTRUCTED SCENES

Fig. 14. Tracking performance in the swine-viscera-constructed abdominal simulator. (a) Trajectories of model-based (first cycle) and hybrid (second cycle)
controllers are plotted, where a zoomed-in area (yellow contoured) shows the improved tracking accuracy of hybrid controller. Paths marked by an ellipse means
the area that (b) fixed aluminum rod limited one-side robot bending. (c) Tracking error and path deviation. (d) Image-stitched figure of the abdominal simulator.

TABLE V
MEAN, MAX., AND STD OF ESTIMATION ERROR WHEN RAPIDLY FLICKING THE

ROBOT IN ABDOMINAL SIMULATOR

ELM models in our experiments were initialized online with a
limited number of samples, which were in large probability of
dense local distribution. Our model focused more on incremental
local motions instead of cross-workspace movements. Such a
mode was set for fast readiness of the F-emp prediction. The
tradeoff between global accuracy and training samples should be
adjusted if similar cases (large vibration) take a great proportion
in the specific applications. In the Appendix, we discussed the
robustness of the proposed sensing framework trained by various
numbers of training samples to fast flick, where we can see that
more and denser initialization samples will benefit to higher
accuracy under physical collisions. The effect of protection on
the FBG fiber was also simply tested.

3) Fixed Obstacles in the Workspace: Besides the valida-
tion on sensing, we also tested the controller’s performance
in the abdominal simulator. The same controller, as shown
in Section IV-E2, was used. In Fig. 14(a), a zoomed-in area

(yellow outline) demonstrated the improvement of our proposed
controller again compared with the model-based controller.
Noted that to extend the types of physical collision, an alu-
minum rod was fixed in the robot workspace, limiting the robot
bending on one side [see Fig. 14(b)]. The paths marked by an
ellipse indicate the area that the robot body was blocked by
such a constraint. It can be observed that the actual paths of
robot deviated from the desired path, even using the hybrid
controller. This is due to the friction between the hyperelastic
robot body and rod. As the target on the desired path switched for
each control step, the correction effect of closed-loop controller
could not totally compensate for the friction. However, the
actual trajectory could keep convergent to the desired. Once
the robot left the blocked area, the hybrid controller enables to
bring the path back to the desired path in high accuracy again
[mean error: 0.399 ± 0.401 mm, Fig. 14(c)], while when using
pure model-based control, the robot motion could not return
smooth. The image stitching of the abdominal-simulator scene
[see Fig. 14(d)] clearly demonstrates the details of the scene.

V. CONCLUSION

In this article, we proposed an integrated soft robot control
system, integrating visual-strain fusion-based pose sensing and
online-updated hybrid control. All the data-driven models used
in the system could be conducted online, without prior data
collection. Sparse strain measurements along a single-core FBG
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TABLE VI
COMPARISON OF ESTIMATION ERRORS UNDER RAPID FLICKS WHEN MODELS INITIALIZED BY VARIOUS DENSITIES OF TRAINING DATA

fiber wrapped on the robot were trained online as a pose sensor.
SLAM estimation using the monocular camera on the robot
end-effector was used for the FBG sensor training. The fusion
result of SLAM and FBG was able to provide robust feedback
of the end-effector pose and accomplish 6-D image stitching.
Sensing accuracy and continuity under extreme visual condi-
tions, such as moving obstacles and varying lighting conditions,
were resolved, even when encountering full shielding or absolute
darkness. The sensing fusion proved immune to failures in
SLAM caused by poor feature quality in images. The mean
estimation error could be increased and stabilized from RMSE
3.116 to 1.324 mm. For the control scheme, the hybrid controller
combining model-based kinematics and learning-based error
compensator enabled steady control in target tracking tasks. The
learning-based compensator in the hybrid controller reduced
the tracking error by >80%. This controller can relax the re-
quirement on modeling accuracy and effectively accommodate
unmodeled nonlinearity.

The proposed framework integrated visual-strain fusion sens-
ing modality and hybrid controller could be extended to other
robot designs, including multisegment prototypes, although, in
this article, we only validate it on the single-segment continuum
robot. The application of single-core FBG fiber was not limited
by the number of segments, as long as the adjacent segments
were connected by a continuous joint that was smooth for wrap-
ping the fiber. However, for the hybrid controller, the kinematics
model should be changed or modified according to the specific
manipulator used. The learning-based error compensator had
the potential to be implemented by the same means as in Sec-
tion III-B and enhanced the model-based control performance, if
the feedback variable and actuation command could be collected
and trained.

It is worth noting that our learning-based FBG model in-
corporates sparse FBGs to predict the robot pose based on its
configuration, which has been proved capable of adapting to
common local contacts. The further advanced multicore fiber
using OFDR technique can even eliminate the local/global in-
teraction effect on a similar pose/configuration estimation, such
as impulsive or continuous interaction-induced deformation.
Examples can be found in bronchoscopy (e.g., ion endoluminal
system, Intuitive Surgical, Inc.) and catheterization platforms
[22], [23], [43]. The FBG sensing could still be robust against
pulsatile liquid flow or sudden contact with the surrounding.
In light of the increasing use of FBGs in soft robotics, we
can foresee the syngenetic and practical value of using both
camera image and FBG strain data as the closed-loop control
feedback.

In the aspect of the proposed algorithm, the combination of
vision and FBG strain sensing can be further explored. The FBG
fiber can be calibrated offline as a position or orientation sensing
device and integrated with a monocular camera to compose a
visual-FBG soft-robot SLAM framework, similar to the VINS
SLAM [15]. Well-calibrated FBGs can take on the role of IMUs
in a new enhanced visual SLAM system, therefore recovering the
metric scale to enlarge their usage in soft robotic applications.
FBGs could resolve challenges in processes, such as estimator
initialization, extrinsic calibration, online loop detection, and
tightly coupled relocalization, thus generating a new SLAM ar-
chitecture for continuum robots. This visual-FBG SLAM system
would have a great potential to be used in endoscopic robot
localization, navigation, and control.

APPENDIX

As a summarized analysis of Section IV-F1 and F2, the possi-
ble factors that affect the sensing accuracy under collisions could
be categorized into two types, namely, algorithmic and physical
factors. The hypothesis is that more samples for F-emp model
training and external protection for FBG fiber will increase the
robustness to external contacts. We conducted two simple tests
as straightforward validations. First, experiment to test the effect
of training samples’ number and density under fast flick on the
robot was conducted. As mentioned in Section IV-C, the number
of samples for ELM model initialization was set as N0 = 450
throughout this article. It is hypothesized that when the number
of samples increases with an incremental density, the ELM
model can be trained to deal with abrupt and irregular collisions
more effectively. Therefore, N0 = 450, 900, and 1800 were
used separately under the same scene condition (see Table VI).
Their corresponding distribution densities were also constant to,
double, and quadruple the original density, respectively. After
initialization, the samples for model’s incremental training also
maintained such densities. It can be found that the model initial-
ized by 1800 samples and updated accordingly has the minimum
estimation error (0.712 ± 0.173–0.808 ± 0.316 mm) among the
three settings. The maximum error also has a decreasing trend
when the density of samples increases. This is consistent with
our hypothesis. Note that the time for model initialization and
updating in each step is not obviously affected, showing that our
proposed model is able to improve the robustness to collisions
by increasing the number of samples.

To test FBG fiber’s susceptibility to contact, we compared
the wavelength shift with and without a silicone sheet cover
(∼2-mm thickness) for protection (see Table VII). The unit
of wavelength shift is nanometer (nm). The average range of
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TABLE VII
PROPORTION OF NOISE IN WAVELENGTH SHIFT

absolute wavelength shift during the spiral sensing test was
0–0.158 nm (mean 0.024 nm). The noise in wavelength shift
under static status (without external force applied) was mea-
sured as max. 0.004 nm (2.53% of the max. wavelength change
0.158 nm; the following brackets indicate the same meaning)
and mean 9.07×10−4 nm (0.57%). The fiber was placed in
straight, C-shaped, and S-shaped grooves separately, where
the maximum wavelength shift under finger push (∼2 N) was
recorded. In Table VII, the “%” represents the proportion of such
maximum shift in the sensing range 0.158 nm. It can be seen that
the silicone protection can effectively isolate external forces on
the fiber, with the sensing noise on wavelength shift reduced
from 46.14%–58.35% to 9.18%–24.49%. Other fiber integration
methods (e.g., placing a multicore FBG fiber in the inner channel
of a continuum robot) will also facilitate the improvement of
sensing accuracy under collisions.
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