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Soft Robots Modeling: A Structured Overview
Costanza Armanini , Member, IEEE, Frédéric Boyer, Anup Teejo Mathew ,

Christian Duriez , Senior Member, IEEE, and Federico Renda , Member, IEEE

Abstract—The robotics community has seen an exponential
growth in the level of complexity of the theoretical tools presented
for the modeling of soft robotics devices. Different solutions have
been presented to overcome the difficulties related to the modeling
of soft robots, often leveraging on other scientific disciplines, such
as continuum mechanics, computational mechanics, and computer
graphics. These theoretical and computational foundations are
often taken for granted and this leads to an intricate literature
that, consequently, has rarely been the subject of a complete review.
For the first time, we present here a structured overview of all
the approaches proposed so far to model soft robots. The chosen
classification, which is based on their theoretical and numerical
grounds, allows us to provide a critical analysis about their uses
and applicability. This will enable robotics researchers to learn the
basics of these modeling techniques and their associated numerical
methods, but also to have a critical perspective on their uses.

Index Terms—Dynamics, flexible robots, kinematics, modeling,
control, and learning for soft robots.

I. INTRODUCTION

THE term soft robot appeared for the first time in a scientific
paper in [1], describing a McKibben pneumatic artificial

muscle a family of braided pneumatic actuators developed in
the 50 s to assist polio patients. Even though they were not ex-
plicitly called soft robots, McKibben actuators represent the first
example of a robotic device exploiting its compliance to achieve
improved performances with respect to their exclusively rigid
counterpart. Since then, soft robotics has been one of the fastest
growing research community in the last decades. Many different
soft robotics devices and actuators have been presented, ranging
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Fig. 1. Some resolution methods that have been distinguished in this re-
view. (a) FEM, (see Section IV-A). (b) Shooting method (see Section V-A2).
(c) Relative modal-Ritz reduction (Section V-B4). (d) Pseudorigid approach (see
Section VII-B).

in almost every possible technological field, from biomedical
engineering to aerospace and underwater robotics. The increas-
ing interest in soft robotics is demonstrated by the vast number
of review papers that have been published to summarize the
employed techniques, the achievements and the future prospects
of this research field [2], [3], [4], [5]. Among the available
reviews on the theoretical modeling components, some have
been published for specific groups of approaches [6], [7], [8], [9],
[10], some for specific application fields [11], [12], and others
for specific families of robots [13].

Unlike traditional rigid robots, soft robots are infinite-
dimensional systems whose time evolution is governed by highly
nonlinear partial differential equations (PDEs), generally not
analytically integrable. Based on this observation, the search for
a tradeoff between accuracy and numerical usability for robotic
purposes (such as control and optimization), is undoubtedly the
great challenge of soft robot modeling. For the first time, we
present here a comprehensive literature review of the techniques
that have been presented to model soft and continuous robots.
Given the enormous quantity and diversity of contributions on
this theme in recent years, choices had to be made to classify
them. The chosen classification is based on the mathematical
techniques themselves (see Fig. 1), and not on their uses (de-
sign, simulation, control). Although this choice may seem a bit
arbitrary at first sight, it has the great advantage of highlighting
the structural similarities and differences that gather and/or
discriminate all the modeling approaches proposed so far in
the field. Moreover, it allows us to go back to the theoretical
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roots of the different approaches and to give their historical
origins, sometimes from other communities. We believe that
this will enable robotics researchers to learn the basics of these
modeling techniques and their associated numerical methods,
and to have a critical perspective on their uses. The rest of
this article is organized as follows. In Section II, some general
concepts are drawn and the classification employed to discuss
all the modeling approaches is presented. In Section III, we
present the formulation of models that are based on continuum
mechanics theories, while their numerical resolution is presented
in Sections IV and V. In Section VI, we present the approaches,
which rely on the hypothesis that the deformed shape of the
robot follows a specific geometrical curve. Proceeding with the
level of discretization, in Section VII, the approaches that arise
from an a priori discretization of the soft body are presented,
while in Section VIII, data-driven models are discussed. Sec-
tion IX presents the software implementation of the proposed
approaches. Finally, Section X concludes this article.

II. BASIC CONCEPTS AND CLASSIFICATION

Mechanical modeling is a set of mathematical techniques,
allowing us to represent the evolution of a material system. It is
defined by the following key concepts [14], [15].

1) Configuration: The set of position of the system’s particles
compatible with the internal (joints) and the external [geo-
metric boundary conditions (BCs)] kinematic constraints.
At any given time, the configuration of a mechanical
system defines a subset of the ambient Euclidean space.

2) Generalized coordinates: A set of parameters describing
any configuration. They are the coordinates of a unique
point in an abstract space or “configuration space.” They
can be absolute when they refer to a fixed inertial frame,
or relative when they refer to a moving frame covarying
together with the system.

3) Kinematic map: It takes as input the generalized coor-
dinates and it returns the configuration of the system.
This is also called forward kinematics, while the inverse
kinematics represents exactly the opposite process, i.e.,
the calculation of the coordinates (typically, the actuation
ones) required to obtain a specific configuration of the
system.

4) Dynamic principle: Such as Newton’s laws, d’Alembert’s
principle, or Hamilton’s principle. Such a principle pro-
vides the equations of motion (EoM) of the system gov-
erning the temporal evolution of its configurations.

The abovementioned characteristics of a mechanical model
can be identified relatively easily for a traditional rigid robot.
However, this is not the case for soft robots, due to their contin-
uum nature. In fact, while traditional rigid robots can be fully
represented by some finite discrete set of frames, in soft robotics
the robot is a continuum of particles. Let us draw some general
considerations on the main steps that are required to obtain a
model for a continuum body. In the Lagrangian description of
solid continuum mechanics, the body’s configuration is param-
eterized through positional fields, which depend both on time
and on the material coordinates, i.e., a set of continuous labels

X that identifies each particle. In particular, X can be defined
as the coordinates of the particles of the body when it is in
a stress-less configuration, called reference configuration. The
motion of a continuum body is defined by a continuous sequence
of configurations along time. A change in the configuration of
a continuum body results in a displacement, which usually has
two components: a rigid-body displacement and a deformation.
To describe the internal deformation state of the body, it is
necessary to define its strain (time) rate, which is a combination
of the gradient of the velocity fields. The definition of the strains
needs to be objective, i.e., observer independent. Finally, beyond
kinematics, the closed formulation describing the time evolution
of a continuum medium is given by the following.

1) a principle of the dynamics (as before), providing the
PDEs relating the stress with the acceleration of the parti-
cles and the external forces applied inside and across the
boundaries of the medium;

2) a set of geometric BCs;
3) a constitutive law that relates the time evolution of the

stress to that of the strains.
The resulting dynamic equations are, in general, highly non-

linear and characterized by an infinite-dimensional configura-
tion space. The soft robotics modeling literature could be viewed
as the story of how these extremely complex equations, when
applied to soft robots, can be discretized and solved. It should be
noted that discretization and reduction are two distinct concepts
that should not be confused. A discretization is employed to
obtain a numerical solution to the nonlinear problem and, for
example, the finite differences methods fall in this category. On
the other side, a reduction consists in the depiction of a basis of
functions allowing a proper description of the kinematic fields of
the body. These features are not always clearly expressed in the
developing of a theoretical model, or they might be implicitly
imposed by the assumptions of the model itself or its numerical
resolution. One of the aims of this work is to shed light on
the underline structure of the proposed models using a unified
language, which facilitate their understanding and comparison.
With this as a guideline, we classified the modeling of soft robots
as follows.

1) Continuum mechanics models: They are characterized by
a continuous (infinite-dimensional) configuration space, and on
physical considerations about the soft bodies deformations. As
such, they benefit from a physically rigorous definition of the
kinetic and potential energy of the system. This family of models
can employ both absolute and relative coordinates reduction and
they are derived from continuum mechanics theories. When no
specific assumptions are made, they are based on the classical
three-dimensional continuum mechanics theory, while other
approaches have been presented for surface structures (shells,
membranes) or slender structures (beam, rods). In particular, the
latter include Cosserat, Kirchhoff, and nonlinear Euler Bernoulli
beam theories, which are frequently employed in soft robotics.

2) Geometrical models: They are based on geometrical as-
sumptions on the deformed shape undertaken by the soft body
when specific loads are applied. For this group, the central role
is taken by the generalized coordinates, on which the system’s
kinetic and potential energy are defined. In particular, two main
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groups emerged. The first one includes the “functional” models,
which all rely on the assumption that the deformed shape of
the body resembles a theoretical space curve represented by
a specific mathematical function. In this case, the generalized
coordinates are usually absolute in nature. The second group
includes the widely known piecewise-constant-curvature (PCC)
models, which are based on the discretization of the continuous
soft body in a finite number of sections having circular arc shape,
with intrinsically relative coordinates.

3) Discrete material models: As the name suggests, these
models are based on a discretization of the continuous body in
a finite number of discrete material components. As such, they
are characterized by an a priori finite-dimensional configuration
space of absolute and/or relative coordinates, the relative ones
being usually preferred in practice.

4) Surrogate models: The configuration of the system is
obtained using sets of data and a learning process. The great
majority of the approaches falling in this group use neural
networks (NNs) models and machine learning algorithms.

This classification has been defined to ease the explanation
of the models, in an effort to group them based on the different
parametrization path that they employ (see Fig. 1). Clearly, this
is only one of the classifications that can be conceived and, in
some cases, it is possible to note some overlapping between the
models that we will try to underline while going through them
and which are summarized in Section X.

III. CONTINUUM MECHANICS MODELS

Soft robotics is an extremely interdisciplinary field and con-
tinuum mechanics represents the most influential community
for the theoretical modeling of soft robots. Classical elasticity
theories have been used for centuries to precisely model the
mechanics of continuum bodies and they offer an established
and general framework that is already available to the soft
robotics community. Thus, one of the main goals of using these
approaches in the robotics community is to make them compu-
tationally efficient for the purpose at hand, while maintaining
the realism of the models produced.

In the following, we will start considering in Section III-A, the
models that are obtained from the three-dimensional elasticity
theory, treating the soft body as a continuum medium. We will
then move in Section III-B to the so-called “director approaches”
[16]. For slender bodies, these approaches are all based on the
Cosserat rod theory which encompasses the Kirchhoff and the
large deflections (nonlinear) Euler Bernoulli theories.

A. Classical 3-D Models

Defining a (soft) body as a set of material particles Ω labeled
by their (material, in general curvilinear) coordinatesX , the aim
of any three dimensional theory is to predict the time-evolution
of its configuration r defined by

r(·) : X ∈ Ω �→ r(X) ∈ R
3. (1)

In order to proceed, the first step consists in obtaining the
balance equations of the system. Shall we consider a material
subpart of the body B ⊂ Ω, having frontier ∂B and outward unit

Fig. 2. Scheme of the considered body.

normal n ∈ R
3, Fig. 2. In general, volume and surface forces

are applied upon B, and modeled by some volume and surface
vector densities, b ∈ R

3 and t ∈ R
3, respectively. While the first

represents the external forces acting on the volume, the latter
represents the forces thatB exchanges with its surroundings (the
other parts of Ω) across its boundary ∂B, which are also known
as internal forces. In particular, t is called stress vector and we
admit the Cauchy theorem, i.e., t = σn, where σ ∈ R

3 × R
3

is the Cauchy’s stress tensor. It is then possible to express the
balance equations for any part B of Ω, as∫

B
(b− ρv̇) dV +

∫
∂B

tdS = 0 (2)

where ρ is the mass density, v is the body velocity, and “·”
denotes the partial time-derivation ∂./∂t. Using divergence the-
orem, and remarking that (2) holds for any material subdomain
B, yields the Cauchy equilibrium equations

∇ · σ + b = ρv̇ (3)

where “∇·” stands for the divergence operator. In order to
close the formulation, (3) needs to be supplemented with a
definition of the strains and a constitutive relation characterizing
the response of the body’s material under external forces (or any
external stimuli), i.e., a relationship between the stress tensor σ
and an objective strain measure as the Green–Lagrange tensor
field

E =
1

2

(∇rT∇r −∇rTo ∇ro
)

(4)

where∇r is the gradient (the Jacobian) of the nonlinear map (1),
while the index o denotes the positional field over a reference
configuration. There are different ways to define a constitutive
relation and the first and most famous example is the Hooke’s
law for linear elastic materials, which in the 1-D case reads
σ = Eε. One other more general constitutive relation has been
proposed by Green, employing the concept of strain energy
function. A Green elastic material (also known as hyperelastic
material) is a type of medium for which the stress–strain rela-
tionship can be derived from a strain energy density function (or
stored-energy function). This function depends symmetrically
on the principal stretches (the eigenvalues of (4)) λ1, λ2, and
λ3, which, for incompressible materials satisfy the constrain
λ1λ2λ3 = 1. It is worth to remind that the stretch ratios λi
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are defined as the ratio between the stretched length li and the
undeformed one. Many soft robotics devices and components are
realized with rubber-like materials, which, in the case of static
deformations, are often treated as hyperelastic (while, in general,
they can exhibit other nonlinear behaviors, such as hysteresis,
visco-elasticity, and stress softening). Beyond Green’s model,
the Ogden [17] material model represents one of the most general
framework for the modeling of hyperelastic materials. In such
a material, the strain energy density is expressed in terms of
the principal stretches of the left Cauchy–Green strain tensor
B = (∇r∇r−1

o )(∇r∇r−1
o )T as

U (λ1, λ2, λ3) =
n∑

j=1

μj

αj

(
λ
αj

1 + λ
αj

2 + λ
αj

3 − 3
)

(5)

where n, μj , and αj are material constants. In particular, for
n = 1 and α = 2, the Neo–Hookean model is obtained, while
the Mooney–Rivlin model for an incompressible material is
obtained for n = 2, α1 = 2, α2 = −2. Once the strain energy
function is defined, the principal Cauchy stresses σ1, σ2, and σ3
are related to the principal stretches through the equations

σi = λi
∂U

∂λi
− p (6)

where p represents the Lagrange multiplier (or pressure), associ-
ated with the incompressibility constraint. It is worth to remind
that the Cauchy principal stresses are related to the correspond-
ing nominal (or engineering) stresses σe by the relationship
σe,i = σiλ

−1
i . The great majority of the materials that are em-

ployed within the soft robotics community can be considered as
hyperelastic. However, most soft robotics modeling approaches
still rely on a linear-elastic material assumption, as they are
mostly focused on the description of the large deformation of
the body, rather than the large strains.

B. Directors Approaches

The abovementioned 3-D model applies to material bodies of
any geometry (at rest). However, there are many situations where
the considered bodies are flattened or elongated, i.e., where two
or one of the material dimensions dominate the others. In the
first case, we speak of plates or shells, in the second of beams
or arches. In these cases, the full 3-D position field of (1) can be
developed in Taylor series around a reference material surface
for shells, or a material line for beams, and the dependence on
small orthogonal material dimensions analytically preintegrated
into the thickness. At leading order, this provides reduced mod-
els where the positional field r of (1) is replaced by that of
the reference surface or line, plus vector fields supporting the
remaining small dimensions, named directors. For both 2-D or
1-D reduced media, the resulting models are due to Kirchhoff
and Reissner depending whether transverse shearing is neglected
or not. In robotics, except for modeling soft robots inspired of
octopus [18], [19], [20], the great majority of these reduced
models are beam models. To obtain such models, one can advan-
tageously replace the limit process applied to the 3-D model [16],
by a simpler approach consisting in directly modeling the rod as
a material line along which is continuously stacked a set of rigid

Fig. 3. Cosserat rod representation.

cross-sections (supporting the directors), and labeled by a single
material coordinate X . In this case, the rod is called a Cosserat
rod [21]) and its configuration is defined by the positional vector
field r ∈ R

3 of its center-line, and the orientation (rotation) field
R ∈ SO(3), of its (mobile) cross-sectional basis (of directors).
Both these fields are functions of X ∈ [0, l], where l is the rod
length at rest. With this parametrization, the balance equations
of the rod can be derived with the Newton’s law and Euler’s
theorem, by considering an arbitrary subinterval [a, b] ⊂ [0, l]
of the rod (see Fig. 3). Across any X-section splitting the rod
in two parts, the action of the side Y ≤ X upon the other side
is modeled by the stress resultant vector n(X) and the couple
stress m(X) in the global frame. The mass density of the rod
is ρ, I is its cross-sectional inertia tensor, while v and ω are
the linear and angular velocities of cross-sections in the global
frame. The rod is also subject to some external forces f̄ , and
moments l̄ densities per unit of X , in the global frame. Stating
the linear and angular (Newton–Euler) balance equations over
the subdomain [a, b], and taking the limit of the interval going
to 0 provides the dynamic equilibrium [16]⎧⎨⎩

n′ + f̄ = ρAv̇
m′ + r′ × n+ l̄ = ∂t (ρI · ω)
n(0) = −f0 , n(l) = f l , m(0) = −l0 , m(l) = ll

(7)

where from now on, a “′” denotes the space-partial derivative
∂(·)/∂X , while l0,l f0,l are the moments and forces applied in
X = 0 and X = l, respectively. In order to close the formula-
tion, (7) needs to be supplemented with a definition of strains
and a stress–strain law. In the assumption of finite deformations
and small strains, one can use as strain measurements the two
3× 1 vectors

ε� = RT (r′ − r′o) , εa = K −Ko (8)

where the index o denotes a reference configuration of the rod,
K = (RTR′)∨ is the vector of material torsion and curvature in
the cross-sectional frame, where∨ changes any skew symmetric
matrix W ∈ R

3 × R
3 into W ∨ ∈ R

3 s.t. ∀V ∈ R
3, WV =

W ∨ × V , while conversely ∧ is s.t. Ŵ ∨ = W . In this context,
the constitutive law takes the usual linear Hookean form

n = RH�ε� , bmm = RHaεa (9)
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with H� = diag(EA,GA,GA) and Ha = diag(GI1, EI2,
EI3) defining the usual cross-sectional linear and angular stiff-
ness matrices in the cross-sectional frames, respectively. In the
recent years, the abovementioned model has been reformulated
and exploited in the modern language of Cosserat rod theory
on Lie groups. Introduced in biorobotics [22], [23] to study
dynamics of hyper-redundant locomotors, the configuration of
a soft body is directly defined as a curve

g(·) : X ∈ [0, l] �→ g(X) ∈ SE(3) (10)

where g(X) denotes the 4× 4 homogeneous matrix of the X-
cross sectional frame, with positional and rotational components
denoted r(X) and R(X), respectively. The space variations of
the field g can be entirely described by the field of space-twists
ξ = (KT ,ΓT )T ∈ R

6, which defines a continuous geometric
model of the rod

g′ = gξ̂ , g(0) = g0. (11)

With these definitions, the strain state (9) can be expressed
as a unique field of twist ε = (εTa , ε

T
� )

T = ξ − ξo. Similarly,
replacing X by the time variable t, yields

ġ = gη̂ (12)

which defines the field of velocity twist η = (ΩT ,V T )T ∈ R
6,

where Ω(X),V (X) ∈ R
3 are the angular and linear velocity of

theX-cross-sectional frame in its mobile basis, which are related
to their inertial counter-part through: Ω = RTω, V = RTv.
On SE(3), the dynamic equilibrium equations of a rod subject
to a density of external wrench F̄ on ]0, l[ and two tip external
wrenches F 0 and F l at X = 0 and X = l, respectively, are
expressed in the cross-sectional frames, in the form [23], [24]{Mη̇ − adT

ηMη = Λ′ − adT
ξ Λ+ F̄

Λ(0) = −F 0 , Λ(l) = F l
(13)

where ad is the adjoint action of the Lie algebra, M is the
6× 6 cross-sectional inertia matrix, and Λ models the stress
field along the beam (it is the dual counterpart of the strain
field). The balance (13) can be derived by applying Hamilton’s
principle in the framework of Lagrangian reduction theory [19],
or deduced from (7), by using the relations between vectors
of components in the inertial and cross-sectional frames: η =
((RTω)T , (RTv)T )T , Λ = ((RTm)T , (RTn)T )T , F 0,l =
((RT l)T0,l, (R

Tf)T0,l)
T , and F̄ = ((RT l̄)T , (RT f̄)T )T . Equa-

tion (13) is first-order PDEs that govern the time-evolution of
velocities η along the rod. Thus, they need to be supplemented
with the kinematic model (12) allowing us to reconstruct (by
integration) the time-evolution of the configuration g.

To apply the Cosserat rod model to soft robots, an actuation
model must be introduced into the abovementioned formulation.
In general, this has to be done on a case by case basis, depending
on the specific technology and design of the robot. However, this
task has been fully accomplished in the case of tendon-driven
robots. Two equivalent approaches have been proposed in this
case, depending whether the effect of actuation is introduced
through the densities of external wrenches (̄l, f̄) or through a
field of internal stress Λ added to the elastic restoring ones of

the constitutive law (9). In both approaches, the tendons are ide-
alized as inelastic and friction-less force transmitters. Initiated
in the planar case in [25] and extended to the three-dimensional
case in [26], the first approach is based on the application of the
Newton’s laws to the rod and to each of the tendons, isolated
separately. Then, using the action-reaction principle provides
the internal forces and moments exerted by a set of na tendons
onto the rod (

l̄
f̄

)
= −

na∑
i=1

(
di × t′ci

t′ci

)
ui (14)

where di(X) and tci(X) are, respectively, the position vector
of the tendon routing i with respect to the rod’s backbone and
its unit tangent vector, both expressed at X , while ui(t) is the
uniform tension (u′i = 0) transmitted along the tendon. In the
second approach [27], [28], applying the virtual work principle
to the whole arm, allows modeling the effect of tendons by
changing the constitutive law (9) into the active one [28](

m
n

)
=

(
RHaεa
RH�ε�

)
+

na∑
i=1

(
di × tci

tci

)
ui (15)

where the derivatives of tci(X) appearing in (14) are now taken
in charge by the space derivations of the equilibrium equations
(13).

Remarkably, other nonlinear beam theories can be defined as
submodels of the abovementioned theory, often referred to as
the Reissner beam model [29]. The Kirchhoff rod theory can
be obtained by fixing in ξ of (11), the first component Γ1 of
Γ to one, and the two others to zero, which prevents the beam
from stretching and shearing, respectively. By imposing that the
motion of a Kirchhoff rod is planar and ignoring its thickness,
the stress equilibrium (13), restricted to statics, can then be
integrated explicitly. The model is then that of the elastica, i.e.,
an elastic line of minimal curvature energy, and we have

EI(X)θ′ =Mext (16)

where θ′(X) is its curvature in the plane, EI(X) its bending
stiffness, and Mext(X) is the integral of the external bending
moments about the center of the X-cross section, acting on the
remaining part (Y > X) of the beam.

IV. NUMERICAL RESOLUTION OF 3-D CONTINUUM

FORMULATIONS

To integrate the dynamics of a soft manipulator modeled by
3-D continuum mechanics, one needs to solve for each material
subdomain a closed formulation obtained by the PDEs (3) with
a definition of strains, a constitutive law of the type of (6) and
BCs (some of them imposed by the connection of the bodies).
The usual numerical resolution methods use finite differences to
discretize the time axis through explicit or implicit integration
schemes. However, the spatial discretization can be achieved
differently by using finite differences, boundary elements, or
finite-elements method. The first approach is based on Taylor
approximations of the PDEs, but it is difficult to apply to complex
shaped objects, while the second is based on Green’s theorems
and restricted to linear problems. In contrast, the finite-elements
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method has the advantage of inheriting the variational struc-
ture of the original formulation, which is transformed into a
robust nonlinear optimization problem in the context of the Ritz
method.

A. Finite-Element Method (FEM) for 3-D Formulations

FEM is a well-known and widely-spread numerical technique
for finding approximate solutions to PDEs. It was established
by a set of scientific papers in the 40 s and it soon became one
of the most commonly employed technique for the modeling
of a wide range of engineering problems. The main property
of this technique is the subdivision of the problem’s domain
into a set of smaller parts, called finite elements. These are
obtained by the construction of a mesh [see Fig. 1(a)], which
represents the numerical domain for the solutions. Once this
space discretization is performed, the continuous field r is
approximated on each element by a polynomial interpolation of
its values at the edges of the elements, called nodes, according
to a Ritz reduction approach. Introducing this discretization in
the above continuous formulation and projecting it on the same
trial (polynomials) basis, changes the PDEs (3) into a set of
algebraic discrete equations for steady-state problems, or ODEs
for transient problems. In the former case, the static equilibrium
becomes

Qint(q) = Qext(q) (17)

where Qint(q) and Qext(q) represent the internal and external
generalized forces, respectively, while q are the generalized
coordinates, i.e., the nodal positions. On the other hand, the
dynamic equilibrium is given by a system of ODEs{

q̇ = v
Mv̇ +Qint (q,v) = Qext(q,v)

(18)

where M is the (constant) generalized mass matrix. Note that
the terms appearing in (17) and (18) are computed integrating
the distributed variables element-by-element according to the
selected shape functions, which play the role of the kinematic
map, while the position of each element in the mesh is ensured
by the assembly process. Since nodal coordinates are of absolute
nature, the nonlinearities appear in Qint(q,v). They are named
geometric or material, depending whether they come from the
large displacements (and namely the rotations) of the elements,
or from the constitutive laws. To capture the local finite rotations
along bodies, the corotational approach is often used in three-
dimensional finite element (FE) software. One other solution to
represent the nonlinearities is to use an absolute nodal coordinate
formulation (ANCF-FEM) [30].

The FEM represents a standard for many popular simulation
software, such as Abaqus, ANSYS, and COMSOL. The main
advantage of these software is that they provide a powerful and
general tool that can be applied to a wide spectrum of physi-
cal problems ranging from structural dynamics, fluid-structure
interactions, contact, and thermodynamics. Moreover, they pro-
vide a readymade and user-friendly framework that can be
easily employed for specific studies on multiphysics systems.
They have been widely used to model soft robots [31], [32]

(Abaqus), [33] (ANSYS). However, their generality intrinsically
entail an increased computational cost and the simulations can
take a lot of time to converge. There are some popular exam-
ples of ad hoc finite-element approaches (and softwares) that
have been specifically proposed for (soft) robotics applications.
In 2007 [34], a group of researchers from different institutes
released simulation open framework architecture (Sofa), an
open-source C++ library, which was originally presented as a
computational environment for medical simulations [35], [36].
In the following years, Sofa became a comprehensive high-
performance library that have been widely implemented for
different application fields, and a SoftRobots plugin was also
created for the design [37], modeling and control [38], [39]
of soft robots, including self-collision scenarios [40]. More
recently, a model combining the FEM and the discrete Cosserat
approach of Section III-B was presented in [41]. A discussion
on the architecture of the software is addressed in Section IX,
while here we mostly focus on the modeling part for the soft
bodies. In Sofa, a deformable continuum is modeled using a
dynamic or quasi-static system of simulation nodes. The node
coordinates are the independent DOFs of the object, and they are
typically governed by equations of the type (17) and (18). Some
approaches have also introduced reduced coordinates and these
are presented in Section VIII-B. With regards to the actuation, a
constraint-based approach is employed. Imposing a linearization
of the internal forces Qint(qi) ≈ Qint(qi−1) +K(qi−1)dq and
considering the contribution of the actuation constraints, the
static equilibrium at each ith step (17) becomes:

Qint(qi−1) +K(qi−1)dq = Qext(qi−1) +B(qi−1)
Tλ (19)

where the term BTλ models the contributions of the Lagrange
multipliers (i.e., those of the actuators), and B represents the
Jacobian of the constraint equations imposed by the actuators.
The following three steps are then performed.

1) a free configuration qfree is found for λ = 0 and, for each
constraint, the violation δfree is estimated;

2) the solver computes the value of λ through a projection
of the mechanics into the constraint space, obtaining the
smallest possible projection space δ = BK−1BTλ +
δfree;

3) the final configuration is corrected using the value of the
constraint response q = qfree +K−1BTλ.

For a fluidic actuation, λ and δ represent the cavity pressure
and volume. For a cable, λ and δ are the cable tension and length.
While in the inverse model case, λ is unknown and can be find
by solving a QP type problem [36], in the direct problem case,
λ can be unknown too, as this is the case of a cable driven arm
where the nonnegative tensions condition is modeled as a set of
unilateral and complementarity (nonholonomic) constraints. Be-
cause standard finite elements are not differentiable at element
boundaries, some authors have recently implemented a moving
least squares (MLS-FEM) formulation, making the deformation
gradient twice differentiable [42], with the aim of applying usual
optimization gradient descent techniques to different design
problems related to automated actuation routing [43] and sensor
design [44] for soft robots.
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V. NUMERICAL RESOLUTION OF DIRECTORS-BASED

FORMULATIONS

The closed formulation of a soft manipulator modeled by
Cosserat rods consists, for each rod, of the kinematic model
(12), the stress balance (13) (where the BCs can depend on the
connection between the rods), and a constitutive law of the type
of (9), with the associated strain definition (8). This formulation
is consistent with the definition of the configurations (10) in
terms of the absolute fields g. For soft manipulators, one can
alternatively parameterize the configuration with the fields ξ or
ε and use (11) as a space-reconstruction equation of g along
the rod. Time-differentiating twice this geometric model (11)
provides two further models [23] [45]

η′ = ξ̇ − adξη

η̇′ = ξ̈ − adξ̇η − adξη̇
(20)

whose spatial integration allows us to reconstruct the absolute
velocity and acceleration fields along the rod, from the strain ve-
locities and accelerations ξ̇, and ξ̈. In this case, the parametriza-
tion of configurations is said to be relative and opposed to the
classical absolute one based on g. In this section, we discuss
the most important examples of approaches using Cosserat rod’s
theory for modeling soft robots. They are separated into “nonen-
ergetic” and “energetic” methods. In the first case, the original
formulation is first set in the form of a space boundary value
problem (BVP) with BCs partly defined at one end, and partly
at the other. Then, this BVP is directly discretized on a spatial
grid with no further reduction. In the second case, often referred
to as the “Ritz” or “Ritz–Galerkin” method, the configuration
needs first to be parameterized by some vector fields (absolute
or relative) that are reduced on a truncated functional basis of
space-dependent vectors. The components along these vectors
define a finite set of generalized coordinates governed by a set
of Lagrange ODEs in time. In the following, Ritz methods are
classified into nodal and modal, depending whether the basis is
defined by some nodal interpolation polynomials over the finite
elements of a mesh, or defined over the full rod domain.

A. Nonenergetic Approaches

In practice, these approaches consist in extracting from the
previous model a closed formulation (absolute, relative, or
mixed), which is reshaped into one of the standard forms of
numerical analysis.

1) Finite Differences: The finite-difference method is one of
the simplest and oldest methods to solve PDEs. In the case of
Cosserat beams, it has been widely used by the ocean engi-
neering community to predict the temporal evolution of towed
submarine cables, subjected to low tensions that cause a dynamic
singularity in the standard catheter model. Developed by Burgess
and his successors [46], [47], the direct dynamics of the cable
modeled by a shear-less Cosserat rod is formulated as a nonlinear
BVP in space and an initial value problem (IVP) in time. The
application of a spatial finite-difference scheme transforms this
continuous formulation into a set of time-ODEs at the grid
nodes, which can then be solved explicitly, or by a predictor–
corrector strategy (with correction by the Newton–Raphson

algorithm), depending on whether an explicit or implicit time
finite-difference scheme is used. In continuum and soft robotics,
finite-differences method has been applied to both statics [48],
[49] and dynamics [24], [50]. One canonical example of such
a numerical resolution applied to soft robotics is presented
in [24], where the dynamic modeling and simulation of a cable
driven multibending soft robot arm is addressed. Gathering the
geometric model (12), with that of velocities (20)1, and the
balance of stress (13), in which the model of tendons actuation
(14) and the constitutive law (9) are introduced, allows first to set
the forward dynamics BVP in the form ż = f(z, z′z,′′ t), where
z is composed of the angular and linear components of fieldsg,ε,
and η, while the time dependency is due to the actuation. Then,
approximating, the space derivatives of the kinematic field η
with a forward (from the base to the tip) finite-difference scheme,
and those of the strains field ε, with a backward one (from tip
to the base), this BVP is changed into a finite-dimensional state
system of the usual form ẋ = f(x, t) that can be time-integrated
with a standard explicit Runge–Kutta integrator.

2) Shooting Methods: The shooting method represents one
of the most popular numerical approach to solve a BVP along
one dimension of space or time. In the context of Cosserat rods,
it has been introduced in the oceanic engineering community
of submarine cables as an alternative way to finite differences
for solving the forward dynamics of these systems [51]. In the
case of soft arms, the archetypal BVP is that of the forward
static model of a Cosserat rod. It is obtained by gathering (11)
with the stress balance (13), in which we remove the velocities
and accelerations. Then, expressing the strains in terms of stress
by inverting the constitutive law (9) provides a (forward static)
BVP in the form z′ = f(z) that can be solved by the shooting
algorithm, i.e., by integrating a sequence of initial (proximal)
value problems, whose unknown proximal conditions are first
predicted and then iteratively corrected (with a Newton type-
algorithm), until a solution of the BVP that fulfills the known
distal BCs is found [see Fig. 1(b)].

In [26], Cosserat theory is used for static and dynamic mod-
eling of continuous robots, driven by tendons. The effect of
tendons on the rod is modeled as some densities of external
forces and moments defined by (14), in which the routing path of
each tendon is expressed as a function of the rod strain variables.
After some clever algebraic manipulations, an explicit BVP
of the forward statics in the form z′ = f(z, t) is obtained, to
which the shooting method is applied for the purpose of cal-
culating the static equilibrium configurations of these systems.
In [52], the shooting-based resolution was extended from statics
to the forward dynamics of several designs of continuum robots
for simulation purposes. Inspired by [51] and [53], an implicit
time-integrator is used in order to remove the time derivatives of
the system of PDEs (12), (20)1, and (13). Using the constitutive
law (9) and the model of actuation (14), provides a BVP in space
in the usual formz′ = f(z, t), that is, solved at each time-step of
the simulation by the shooting method starting from a prediction.
With the rapid expansion of continuum robotics, the approach
has been successfully extended to several multisegment designs,
ranging from multisegment tendon robots [54], to parallel con-
tinuum robots [52], [55], to concentric tube robots [56] and [57].
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In the first case, the BVPs along segments are connected in series
by their BCs and the approach is reapplied in cascade from
the base to the tip of the arm. In the second case, it is applied
along each legs and the residual vector of distal conditions must
integrate the equilibrium equations of the rigid platform. In
the third case, the superimposed tubes must be considered as
nonmaterial domains of varying length, along which the method
is applied in cascade.

3) Continuous Newton–Euler-Based Method: The Newton–
Euler formalism of rigid multibody systems has produced fast
and simple algorithms for solving the direct and inverse dy-
namics of rigid robots [58]. In [22], the Luh “computed torque
algorithm” has been extended to solve the inverse dynamics of
fish-inspired hyper-redundant robots modeled as Cosserat rods
whose shape is controlled by the internal torque field RTm.
Concatenating (13) with (11), and its first and second time-
derivatives (20), defines a continuous Newton–Euler model,
where the rod sections take the place of the rigid bodies and K
that of the joint variables of a rigid discrete system. Imposing the
curvature time law in this model provides an inverse dynamics
BVP, which, in contrast to the forward dynamics one, can be
solved in two decoupled pass (i.e., without resorting to shooting).
Solving the (locomotion) dynamics of net motions, this algo-
rithm has been extensively exploited for the study of bio-inspired
swimming [59]. Although first designed for hyper-redundant
systems, this algorithm has been recently applied to soft and
continuum robotics [28]. Remarkably, when pose-dependent
external forces (such as gravity) are neglected, the forward static
BVP enjoys the same decoupling property as the inverse BVP,
a feature that was exploited in [60] for quasi-static simulation
of tendon-driven robots with the same two pass approach. Note
that in such cases, the Newton–Euler and finite-difference-based
approaches can lead to the same numerical solutions but from
different points of view.

4) Collocation Methods: Alternatively to shooting, the for-
ward static BVP of soft arms can also be solved using the collo-
cation method. The main idea is to replace the unknown strain
field with a polynomial and setting the vanishing of the residual
between the two in a finite set of points on the domain, also called
collocation points. Considering m collocation points, a total of
m+ 1 equations is obtained, providing the parameters that are
required to define an mth order polynomial. In [61], the ODEs
describing the kinematics of a Cosserat rod are directly solved
in terms of transformations on SE(3), using a combination of
orthogonal collocation and forward integration through Magnus
Expansion on SE(3). In particular, the unknown ξ(X) in (11) is
expressed as a set of three Chebyshev polynomials.

B. Energetic Approaches

Energetic approaches seek to reduce the continuous models
of Section III-B to a finite set of Lagrangian ODEs in time, thus
retaining the variational (energetic) structure of the modeling.

1) Absolute Nodal-Ritz Reduction: One of the most powerful
method to capture in an exact manner the geometric nonlinear-
ities of soft robots is the geometrically exact FEM (GE-FEM)
introduced by Simo [62]. In this approach, the model of rotations

is introduced at the same level as that of positions, by replacing
the material points of classical medium by the rigid microstruc-
tures of a Cosserat medium. The GE character, then imposes to
apply the FEM without resorting to any simplifications on finite
rotations, except the unavoidable space and time discretizations
required by the numerical resolution. The GE-FEM was devel-
oped for both shells [63], and rods [64], [65], [66]. The method’s
tour de force was to generalize all the key operations of the
FEM (interpolation and space and time-integration), from the
linear vector space of positional fields to the curved manifold
SO(3). Rooted in Lagrangian mechanics, the resulting dynamic
equations take a form similar to that of (18), except that q and
v are now defined by the sets of (r,R) and (ṙ,Ω) at the nodes,
while an additional Coriolis term survives due to the intrinsic
curvature of SO(3)

Mv̇ +C(v)v +Qint(q,v) = Qext(q,v). (21)

Finally, (21) is solved iteratively at each time step according
to a standard prediction–correction strategy, in which the time-
dependence is removed with an implicit geometric time inte-
grator on SO(3)× R

3, which preserves the Lie group structure
and the geometrically exact character of the approach. This
approach, which is probably the most advanced for modeling
mechanisms of rods subject to rigid motions and finite deforma-
tions, is today used as a reference for others, and commercialized
in the SAMCEF software through its plugin MECANO [67].
In this software, the model of rods is the full-Cosserat model
of Reissner. However, its dynamic resolution is ill-conditioned
when the aspect ratio of the rod increases, i.e., for very slender
rods. To overcome this limitation, several FEM based on the
nonlinear Euler–Bernoulli or Kirchhoff rod models, were pro-
posed, such as the absolute nodal FEM [68] or the Kirchhoff
GE-FEM [65], [69]. Despite their power, these methods have
not yet been adapted to the specific needs of soft robotics as was
done for Sofa. As a result, specific applications, more or less
related to the original spirit of Simo’s GE-FEM were proposed
for these systems. In [70], a GE-FEM approach for modeling
inflatable robots is presented. A strain field measuring radial
inflation is added to the usual 6 strains of the Reissner model
and the weak form of the static equilibrium in this augmented
space is derived and solved in COMSOL.

2) Absolute Modal-Ritz Reduction: The Ritz method can be
applied directly on the full domain of the rod and, in this case, we
refer it to the modal-Ritz method. The approach can be applied
both to absolute or relative vector fields. In the first case, one
needs first to parameterize the rod configuration with a set of
vector fields (e.g., the positional field along the backbone r and
the vector field of its 3 cross-sections Euler’s angles θ). Then,
applying the separation of variables, the components of these
fields can be approximated on a truncated basis of Ritz functions
compatible with the BCs

r(X, t) = Φ(X)qr(t) , θ(X, t) = Ψ(X)qθ(t) (22)

where Φ(X) and Ψ(X) are matrices of spatial shape functions,
or “modes” (stacked in columns), while q = (qT

r , q
T
θ )

T is a
vector of time-dependent generalized (modal) coordinates.
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In [71], the Ritz–Galerkin method is used to reduce the
weak-form of a Cosserat rod in both statics and dynamics. The
kinematics of the rod is obtained expressing equation (11) in an
inertial reference system, placed at the base of the manipulator.
Then, the positional field of the backbone can be approximated
as in (22), while using Kirchhoff assumption and Bishop frames,
the rotation field is parameterized with a unique further field of
torsion angle. Applying (22) to this field and introducing all these
approximations into the static balance equations projected onto
the same truncated basis, provides a set of algebraic equations
in the usual form (17). Using a numerical root finder finally
provides the qi that minimize the approximation error. In the
dynamic case, applying the same reduction process provides
ODEs of the form (21) where M and C depend on q due to
the geometric nonlinearities introduced by the parametrization
of SO(3). The coefficients qi(t) are then found by explicit
time-integration of these ODEs.

3) Relative Nodal-Ritz Reduction: After the works of Simo,
a small group of authors proposed an alternative GE-FEM based
on the polynomial interpolation of strains instead of poses [72].
This approach is more accurate, but also more computation-
ally complex than conventional GE-FEM. In the field of soft
robotics, a GE-FEM based on strain parametrization was pre-
sented in [73]. Inspired by [66], in [73], a helical shape function
defined with the exponential map is used to express the shape of
a manipulator. It is given in terms of the pose at the base (X = 0)
and the strain ε.

4) Relative Modal-Ritz Reduction: The modal Ritz approach
has been recently applied to the strain fields of Cosserat rods
in the context of the geometric variable-strain (GVS) ap-
proach, [28], [74], [75]. Equation (22), thus, becomes ε(X, t) =
Φ(X)q(t) [see Fig. 1(c)]. In this case, the Ritz coefficients
of the strains stand for the generalized coordinates of a set of
homogeneous transformations along the soft robot, similar to the
joint transformations for rigid ones [15]. This (relative) strain
parametrization, produces a highly reduced set of ODEs in the
classical form

M(q)q̈ +C(q, q̇)q̇ +Qint(q, q̇) = Qext(q, q̇) (23)

where q is then comparable to the vector of joint angles of a
rigid robot. In [28], the GVS was successfully validated against
the GE-FEM with standard benches in statics and dynamics.
The results showed that the approach can provide very good
results in terms of accuracy with a few number of generalized
coordinates. Moreover, in contrast to absolute Ritz methods, the
strain functions do not need to fulfill any BCs. On the other hand,
unlike the usual absolute Ritz reduction (such as the FEM), it
handles double space integrals which are not easy to calculate.
Recent progress has been made to overcome this difficulty and
obtain the reduced model (23). In [75], D’Alembert’s principle
of virtual works is used to project the Cosserat model (12), (13),
from the space of pose fields g onto that of strain coordinates q.
This approach has been achieved in a purely analytical way. It
first exploits the fact that since (11) is a system of homogeneous
first order ODEs of matrix form Y ′ = Y A(X), the exponen-
tial representation of its solutions can be obtained through the

Magnus expansions, yielding to the geometric map

g(X) = exp
(
Ω̂(q, X)

)
(24)

where exp represents the exponential map in SE(3), and
Ω̂(q, X) is the Magnus expansion of ξ̂, truncated at a desired
order of approximation. The strain reduction and (24) are then
introduced into the expressions of η̇ andη obtained by analytical
integration of the model of velocities and accelerations along the
rods (20). This provides the kinematic map η = J(q)q̇ and its
time derivative η̇ = J(q)q̈ + J̇(q)q̇, with J(q) the Jacobian
between the twist and q̇-spaces. Finally, applying this change
of space in the contributions of external and inertial forces of
the weak form of the virtual works, while those of the elastic
and actuation ones are directly deduced of the projection of the
active constitutive law (15) on the strain modes, we obtain the
EoM in the classical Lagrangian form (23). Alternatively, to
this analytical Jacobian-based approach, in [28], a numerical
Newton–Euler-based approach has been proposed to calculate
(23). In this case, the complex double space integrals required
by the strain-based parametrization are automatically performed
through the two passes of the continuous computed torque
algorithm of [22], whose inputs and outputs are reduced on the
strain modes. In [76], the GVS approach is further extended
to the modeling of concentric tube robot systems, including
the modeling of the tube’s insertion motion in quasi-steady
conditions. In [77], the same approach is applied to the un-
steady case to address the “paradoxical” dynamics of the sliding
spaghetti [78]. The GVS approach has been implemented in a
MATLAB Toolbox, SoRoSim, for the simulation of soft, rigid,
and hybrid robots [75]. A special case of the GVS is the piece-
wise constant-strain approach (PCS) [45], [79], where the strains
in the sections are assumed to be constant, an approach which
has been extended to closed-chain geometries in [80]. In [81],
a similar approach to PCS is presented. Based on the constant
curvature (CC) assumption, it also incorporates hyperelastic and
viscoelastic material behaviors. A planar restriction of the GVS,
named polynomial curvature approach was introduced in [82]
and [83] to address the control of planar soft manipulators. A
similar approach was also used in [84] to model planar elastic
flexure joints.

C. Analytical-Based Resolutions

In some specific loading conditions (especially when the rod
is subject to concentrated external loads, and not distributed
ones), some analytical solutions to (16) can be obtained in terms
of elliptic functions. To illustrate this, let us consider the case of a
simply supported beam subjected to a concentrated compressive
force F applied at its tip. The analytical solution of the Euler
Bernoulli equation then yields [85]

F =
4EI

l2

[
K sin

(
θ(0)

2

)]2
(25)

where an uniform cross-section along the length of the beam is
assumed, and K is a complete elliptic integral of the first kind.
It should be noted that (25) provides an implicit expression
of the base angle θ(0) as a function of the applied load F .
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Once θ(0) calculated for a given F , the rotational field θ can
be obtained through integration of (16), and used to get the
displacement field of the rod in terms of other elliptic functions.
When applicable, this approach can offer great advantages for
the study of some specific phenomena related to soft robots
design. EB rod theory was applied to statics and dynamics of
a soft arm with a continuously rotating clamp subject to a tip
dead load for the purpose of analysing snap-back phenomenon
and post buckling behavior [86]. In [87], kineto-static modeling
of multiple-backbone continuum robots is addressed with EB
solutions able to express the deflected shapes of the backbones
over a subsegment of the robot. In the paper [88], planar EB
theory is applied to the modeling of continuous tendon-driven
robots, and the static equilibrium of end and spacer disks is
derived. In [89], EB theory is applied to the modeling of a
fiber-reinforced bending actuator. The soft actuator is modeled
as a Neo–Hookean material, where the strain energy functional
of (5) reduces to U = μ

2 (λ
2
1 + λ2

2 + λ2
3 − 3), with μ, the shear

modulus. The principal nominal stresses are deduced from the
principal Cauchy stresses of (6). Considering the fiber rein-
forcement on the circumferential direction (λ2 = 1) and the
material incompressibility, provides the three nominal stress and
the Lagrange multiplier p in terms of μ and λ1. The bending
moment is then deduced from stresses at the top and bottom
layers, and set equal to that of the internal air pressure against
the distal cap of the actuator. The actuator force is obtained from
the torque balance, assuming that the actuator is constrained in
a flat configuration and that no internal moments is generated
under pressurization. In [90], the approach is extended in order
to capture the effect of pressure on the lateral surface of the inner
chamber of the actuator. In [91], a soft arm made of longitudinal
pneumatic actuators is described in terms of its curvature with
(16), a stretch field along the center line, and the bending plane
defined by an angle at the base. The balance of internal and the
external loads is then formulated, together with that of the cross
section. The model is finally solved numerically, discretizing the
arm into a finite number of sections and driving the residual of
the static balance to zero.

VI. GEOMETRICAL MODELS

The main characteristic of the approaches in this section is
that they rely on the assumption that the deformed shape of
the soft body resemble a specific geometrical shape. All these
approaches are based on a representation of the soft body which
falls in the definition of a Cosserat rod. The main difference
from the approaches described in Section III-B is that, when
moving from the kinematics to the static and dynamic equations,
these methods do not rely on the PDEs (7), but built from the
generalized coordinates specifically used to represent the body
geometry. We can then conclude that, while the configuration
of these models can vary, being discrete or continuous, they all
have their roots in some set of shape coordinates mapped to the
configuration by

q ∈ R
n �→ g(q) ∈ SE(3). (26)

The equilibrium is then given by the Euler–Lagrange equations
or other equivalent principles of dynamics. Note that all these
approaches can be considered as some approximations of
the Cosserat model starting from the model of a sequence of
deformable curves. As a result, depending on their material
consistency, the resulting models can be equivalent to the ones
derived in the previous section, with particular reference to
the Ritz-based approach of Sections V-B2 or V-B4. Two main
groups of approaches fall in this category: the functional models
and the PCC models.

A. Functional Approaches

Functional approaches probably represent one of the first
attempts to model soft robotic devices. Their main characteristic
is that they all use a chosen mathematical function to describe
the desired space curves representing the geometry of the robot.
One of the first example falling in this category is developed
in [92], which employs a serpenoid curve to describe the kine-
matics of snake-like robots. Then, the kinematics of the robot is
obtained by simple forces and torques equilibrium, considering
the action of the ground on the robot and the internal force
components [93]. One other important example is the so-called
modal approach that have been originally presented for the
modeling of hyper-redundant robots both in statics [94] and in
dynamics [95], while a survey of the approach is presented in [7].
The central concept of the approach is that of “backbone curve,”
i.e., a 3-D curve r parameterized by the integral representa-
tion r(X, t) =

∫X

0 λ(s, t)t(s, t)ds, where λ(X, t) represents a
length scaling factor, while t(X, t) is the unit tangent vector,
parameterized by any spherical kinematics representation (e.g.,
Euler angles, quaternions). In words, the deformed axis of the
robot is represented as a curve growing along a direction field
t(X, t) from the base to its tip, with a magnitude rate λ(X, t). In
order to obtain the complete description of the robot geometry,
the curve is equipped with a set of orthonormal frames and a roll
distribution that describes the twist of the robot. At the end, the
robot geometry is defined by a reduced set of shape functions,
describing the backbone curve itself and a model of the twist.
In [94], a set of four independent shape functions Si(X, t) =
{λ(X, t) θ(X, t) φ(X, t) ψ(X, t)} is used, in which θ(X, t) and
φ(X, t) are the two angles defining t(X, t) and ψ(X, t) is the
roll distribution function. The inverse kinematic problem then
consists in finding the set of shape functions satisfying the task
constraints, which are usually represented by the end-effector
positioning. For this purpose, a modal approach is employed and

each Si(X, t) takes the form Si(X, t) =
∑NSi

j=1 Φij(X)qij(t),
where qij are modal participation factors and the Φij(X), NSi

modal functions, which are chosen by the robot programmer to
fulfill the task constraints. At the end, the robot shape is fully de-
scribed by the modal factors qij , which represent the generalized
coordinates of the system q in (26). In [6], it has been proved
that, when the curvature of the body is assumed to be constant,
this approach provides a transformation which is equivalent to
(27), presented in the following section. In one other work by
the same authors [7], variational approaches are presented in
order to compute the optimal curve shapes that comply with both
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joint and task constraints. The same kinematic model was also
employed in [96] and extended to the dynamical modeling of
coiling continuum robots. Another possible function that can be
used to represent the robot geometry consists in the pythagorean
hodograph curves [97]. The backbone is represented using
quadratic polynomials, which are functions of the chosen control
points, representing the generalized coordinates of the system. In
order to obtain the optimal quadratic polynomials to compute the
control points, the minimizing of the potential energy is applied.
Finally, an NN model is employed to predict the effects of
loads on the position of the robot, including the case of variable
loads. In [98], the kinematics of a soft pneumatic actuator is
modeled representing its backbone with cubic Hermite splines
(also called cspline). In this way, the backbone is defined by
two control points and two control orientations (vectors). The
control points are obtained experimentally and an optimization
procedure is carried out to fit the cspline with the given backbone.
To complete the description of the robot configuration, the
orientation along the curve is finally obtained assuming the
minimizing of the torsion of the actuator’s backbone. In [99],
the backbone of tendon driven continuum robots is represented
as a sequence of Euler arc splines, which are directed arcs
whose curvature varies in arithmetic progression. This article
represent an example of a modeling technique that is based on
the CC assumption, as the models presented in Section VI-B, but
employs a functional representation of the robot’s kinematics.
In [100], elliptic Fourier descriptors are employed to describe
soft deformable morphologies. Compared to the other methods
described in this section, this approach does not model the soft
robot through its backbone, but uses a closed curve to represent
the boundary of the 2-D regions that it occupies. This is obtained
thanks to elliptic Fourier descriptor, through a procedure that
fits a closed curve to a set of 2-D points with arbitrary precision.
In particular, the image of the region occupied by the robot is
extracted from experimental recordings and its contour is iden-
tified through a discrete representation. Finally, the coefficients
of the Fourier series are computed, providing the description
of the shape.

B. CC Models

CC is often viewed as a desirable characteristic in contin-
uum robots, due to the simplifications it enables in kinematic
modeling as well as in real-time control and other useful com-
putations. This is motivated by the fact that actuators with
a path parallel to the mid-line on a cylindrical manipulator
produce a CC shape, in the absence of external forces. For these
reasons, the CC assumption has been successfully applied in
a great number of continuum robots modeling approaches. In
these models, a soft body is represented by a finite number
of circular arcs, each having a curvature that is constant in
space. The coordinates q in (26) are specifically obtained to
describe the circular arcs geometry. We can distinguish two
main groups of PCC approaches: the Kinematics-based models
are developed from a kinematical relation between the actuator
and the arcs parameters, while the mechanics-based models are
based on the mechanical description of the problem. Finally,

a survey on some of the main PCC approaches can be found
in [6] and [8].

1) Kinematics-Based CC Models: Once the continuous body
is represented as a finite set of CC segments, each of these can be
represented by a finite set of arc parameters and it is possible to
obtain a map from them to the task space of the robot. Different
parameters can be used to describe a CC segment, yielding
to different kinematics maps. One of the most popular sets of
arc parameters that have been proposed consists of triplets of
curvature κ, the angle of the plane containing the arc φ, and arc
length l, which define q in (26). Different approaches have been
proposed to obtain the kinematic map from these arc parameters.
In [6], it has been proved that they all provide an identical
transformation from the arc base to any point s ∈ [0, l] of the
robot arm (noting cos = c and sin = s)

T (κ, φ, s) =

⎡⎢⎢⎢⎣
cφcκs −sφ cφsκs 1

k cφ(1− cκs)

sφcκs cφ sφsκs 1
k sφ(1− cκs)

−sκs 0 cκs 1
κ sκs

0 0 0 1

⎤⎥⎥⎥⎦ .
(27)

One way to obtain (27) is based on the use of Denavit–
Hartenberg (D–H) parameters [101], [102], [103].

In [101], under the CC assumptions, the continuous backbone
of the robot is fitted with a virtual conventional rigid-link ma-
nipulator and modified D–H parameters are obtained to consider
the coupling imposed by the curvature in a continuum system,
providing the standard homogenous transformation matrix (27).
In a following work [102], a similar, improved, approach is pre-
sented, finally providing the transformation from three parallel
actuating tendons to the arc parameters:

l =
l1 + l2 + l3

3
, φ = tan−1

(√
3

3

l2 + l3 − 2l1
l2 − l3

)

κ =
2

d

√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

l1 + l2 + l3
(28)

where (l1, l2, l3)T are actuator’s lengths, while d is the distance
from the center of the section to the actuator. This approach has
been applied for the modeling of a great number of continuum
robots [104], [105] and [106], [107].

One of the main restrictions of these PCC models is that the
used parametrization and kinematic maps can implicitly provide
a numerical singularity that occurs when the curvature tends
to vanish (κ→ 0), resulting in an infinite or undefined radius
of curvature. In order to overcome this limitation, different
solutions have been introduced. In [108] and [109], the rotational
and position components of the homogeneous transformation
(27) are represented in modal form, similarly to the models
presented in Section VI-A. In particular, the entries in (27)
are numerically approximated using multivariate Taylor series
expansions for actuator’s lengths variables at 0. Based on this
formulation, a Lagrangian approach was developed in [110]
and [111] for the spatial dynamics of a single section continuum
arm and this was further extended to multisection arms in [112].
Other approaches have been mostly focused on the definition of
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a different parametrization and transformation map to describe
the geometry of the soft bodies. One alternative is provided by
the exponential map of [113], [114], and [115]. In particular,
(27) can be obtained using the exponential coordinates from
the lie group theory seen in Section V-B. Considering that the
transformation for a circular arc is the composition of a rotation
ζrot with an in-plane ζ inp transformation, one has

T (κ, φ, s) = exp(ζ̂rotφ)exp
(
ζ̂ inp(κ)s

)
. (29)

In [114], this approach is applied to the modeling of concentric
tubes robot. It is assumed that the two tubes have the same
stiffness and are torsionally rigid, while applying torques to one
another. Given the arc assumption, these torques can be con-
sidered to be uniform. The in-plane bending model is obtained
employing EB linear equation and the resultant curvature of
two overlapping tubes is obtained through a force balance in
analogy with linear springs connected in parallel. Finally, the
mapping from the arc-parameters to the Cartesian poses of the
tube cross-sections is obtained with (29). Similarly, in [116], the
arcs are expressed with an axis-rotation parametrization. The
origin of the axis ω is positioned at point ρ on the horizontal
plane at the base of the section and ω is perpendicular to ρ. ‖ρ‖
is the radius of arc curvature, while ‖ω‖ = l/‖ρ‖ is equal to
the angle between the proximal and distal positions when ρ is
used as the vertex of the angle. The CC arc is then parameterize
by (ρ, l) or equivalently (ω, l) which defines q. The forward
kinematics can, thus, be obtained through the exponential maps.
Straightforward geometry finally provides the mapping between
the configuration parameters and the length of the actuating
tendons (28). In essence, this is a screw theory method, since
ω is exactly the axis of the screw motion required to cover the
arc bend, as shown in [27].

One other example of a parametrization that does not entail
the singularity in the proximity of a null curvature configuration
is provided in [117], where for each CC section composing
the robot, the configuration of a segment is defined as linear
combinations of four arcs included in the section’s volume.
In particular, given the difference in length between opposite
arcs, Δx,i and Δy,i, through geometrical considerations, it is
possible to obtain a transition map from the “conventional” arc
parameters (κ, φ, l) and the new parametrization (Δx,Δy, δl),
where δl represents the change in the length of the section with
respect to the at rest position. Algebraic steps are finally used to
obtain the explicit expression of the analogous of (27), in terms
of the new parameters.

2) Mechanics-Based CC Models: Some authors have sought
to draw mechanical consequences, by applying static laws to a
soft arm whose shape is described by the PCC. In [25], both
the forward and the inverse kinematics for a tendon driven
manipulator with parallel routines are derived in this way. More
precisely, considering a single tendon that can experience only a
constant tension u along its length, force, and moment balances
are used to define the internal reaction forces acting on a section
of the beam. This model is then extended to consider the presence
of a finite number of tendons, based on an analogy with a system
of linear springs acting in parallel. In the considered planar case,

the generalized coordinates q describing the configuration of the
arm are the curvature κ and an axial stretch measurement εa.
The static equilibrium leads to the description of the mechanical
response of the manipulator in the form Kq = BTu, where
BT represents the tendon moment arms and the axially directed
tangent. Relating the tendon tension and displacements is then
possible to obtain the mechanical response of the tendons in
terms of their displacements y, y = Cmu, where Cm is a com-
pliance matrix, which is function of BT and of the manipulator
and tendon stiffness matrices and lengths. Finally, this yields to

y = A†q (30)

whereA = K−1BTC−1
m is the forward kinematics transforma-

tion matrix. Equation (30) provides a mechanics-based relation-
ship between the beam and the tendon configuration, analogous
to transformations (28). In a following work [118], the 3-D static
model is also developed.

In [119], the statics of a braided pneumatic continuum ma-
nipulator is addressed. In this case, the effect of cross-sectional
deformations on the arm deformation is studied using a strain
energy function based on the Cauchy–Green stretch. The study
shows that the PCC parametrization fails while releasing the
PCC constraints gives better results. Another source of me-
chanical inconsistency in the PCC is related to the modeling
of torsion, which is absent from the model mainly concerned
with bending. In order to solve this issue, several developments
of the PCC were proposed. In [120] and [121], the virtual
power method is used to obtain the TDCRs robot dynamics.
The considered robot geometry is that of [88], i.e., an elastic
backbone connected by rigid disks and three tendon cables. The
disks are considered rigid, while the backbone and the cables
subsegment are treated as circular arcs. The relative pose of
two adjacent discs is obtained from the two constant orthogonal
curvatures (β, γ) and an additional lumped torsional angle ε of
the subsegment, which define the q-vector.

The torsion model has become particularly critical in con-
tinuum robotics of CTR, where it is at origin of the so called
“snapping” phenomenon. In [122], the authors provide first the
design conditions necessary for the validity of PCC approach,
and conclude with a general model for CTRs. In this further
model, the relative twist angle between two tubes is defined
as a function of the arc length and then used to write the
moment equilibrium and to impose the compatibility equations,
enforcing the coincidence of the tube centerlines. The torsional
strain is then deduced from the Cosserat rod equilibrium (7).
The resulting BVP was then solved by exploring the entire
input–output set. Based on this model, the stability analysis was
performed in [123] and [124].

VII. DISCRETE MODELS

In this section, we discuss the approaches where the configu-
ration of the system is discrete from the very beginning (i.e., the
system is not discretized at the resolution level or through some
assumptions on its backbone’s geometry). In particular, we can
distinguish the following three main groups: the lumped-mass,
the pseudorigid, and the discrete rods models.
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Fig. 4. Lumped mass representation of a continuous rod.

A. Lumped-Mass Models

One of the simplest approaches to modeling a continuous
body is to represent it as a set of discrete masses, dampers, and
springs (see Fig. 4). The governing equations can be obtained
by energy methods or applying classical Newton equations to
describe the propagation of the forces from one particle to the
other in the configuration space

Q ⊂ R
3 × R

3 × R
3 · · · × R

3. (31)

The main advantage of lumped-parameter mechanics models is
that they are characterized by a simple structure, easy to adapt to
the capture of complex phenomena, such as nonlinear friction,
material hysteresis, and inertial dynamics. On the other hand, to
reach the same fidelity of the continuum mechanics models or
FEM, they require a high number of DOFs and a data-expensive
system identification procedure.

In [125], mass-spring-damper arrays are used to model the
large deformations of a continuum surface (LDCS) actuated by
continuum arms. In particular, the 3-D problem of a system
composed of two interconnected layers of LDCSs is considered,
where bending and shear deformations are allowed. The surface
is modeled as a lattice where the masses are defined as the
nodes of the system and they are connected through linear
spring and dampers. Assuming a uniformly stiff surface, the
elastic constant of the springs and the damping coefficients are
assumed to be constant. Considering an isotropic linear elastic
material, the EoM for each mass is obtained by combining
direct application of the Newton’s second law and Hooke’s law.
In [126], a lumped-mass approach is presented for the modeling
of tendon driven medical robotic catheters. The axial and the
bending stiffness of the model are adjusted through the selection
of the spring stiffness and their radial location, while the smooth
motion of the catheter is modeled through the dampers. Because
of their simplicity, lumped mass models are particularly suited
for large robotics simulations library, such as the one presented
in [127]. Titan is a GPU-accelerated C++ software library for
the modeling of soft bodies and multi-agent robots at massive
scales. The main benefit of this approach is the possibility to

perform parallel computing, resulting in good computational
performances.

B. Pseudorigid Models

The opportunity to exploit established rigid robotics theories
for soft robots motivated the family of models that are described
here. The soft bodies are represented as series of rigid links,
which are connected by revolute, universal, or spherical joints
[see Fig. 1(d)]. Thus, the configuration space of the soft body is
given in the form

Q ⊂ SE(3)× SE(3)× SE(3) · · · × SE(3). (32)

While these approaches can provide satisfactory results for the
modeling of hyper-redundant or snake-like robots, when dealing
with continuous elastic structures they provide a low order of
spatial approximation accuracy, in addition to the expensive
identification procedure. In [128], a dexterous catheter manipu-
lator is represented as a series of pin joints connected by rigid
links. In [129], a pseudorigid 3-D approach is applied for the
modeling of a steerable ablation catheter. The catheter is treated
represented as four rigid links connected by three revolute joints
and three torsional springs. Venkiteswaran et al. [130] presented
a pseudorigid model for continuum manipulators subject to
multiple external loads. In this case, a flexible manipulator
is represented as four rigid links of given length, which are
connected by three joints having 2DOF each. In [131], a flexible
beam is represented as a mass-less rigid body with a torsion
spring attached at one end, providing the dynamical modeling of
compliant mechanisms. In [132], the modeling of hyperflexible
manipulators is addressed using a serial rigid chain, where the
number of kinematic DOF goes to infinity. The backbone curve is
first described as a continuous curve with extended Frenet frames
attached to each point along its length. For the numerical sim-
ulations, the backbone curve is approximated by a serial chain
of rigid bodies. In [133], a steering catheter is represented as a
combination of three sections: the virtual base of the distal shaft,
represented as a prismatic joint; the bending section of the distal
shaft, represented as two revolute joints, one prismatic joint and
two revolute joints; the distal end of the catheter, which is treated
as a rigid body. In [134], a pseudorigid approach is proposed for
modeling an octopus inspired swimmer. In particular, each arm
of the octopus is modeled as a kinematic chain of cylindrical
rigid segments, which are connected by planar rotatory joints.
The first joints in the chain, connecting the arms to the main
body, are modeled as actuated rotatory joints, while the other
joints are modeled as (unactuated) rotatory linear spring and
damper elements.

C. Discrete Rods

The computer graphics research community represents an
important source of inspiration for soft robotics modeling. This
is the case of the approaches that are described here, which are
all based, with different extent, on the discrete elastic rod (DER)
approach, originally introduced in [135], [136], and [137]. In this
formulation, the inextensible Kirchhoff rod assumptions (9) are
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Fig. 5. Representation of a rod in the DER approach.

considered and, similarly to the Cosserat rod model, the config-
uration g of an elastic rod is given by a curve r(X), representing
the centerline, and a material frame, where the first axis is always
tangent to the curve. The Bishop (natural) frame{t,v,w} is then
introduced, providing, for a given centerline, the most relaxed
frame, i.e., with zero twist. Finally, parallel transport allows us to
define the evolution of the Bishop frame along the mid-line. This
model provides a simple parametrization of the cross-sectional
poses, given by the curve r(X) and an angle θ(X) between the
Bishop and the cross-sectional frame. The rod is then discretized
into a series of finite nodes (or vertices) connected by straight
segments (or edges). Each node is characterized by a position
vector ri, while each segment is associated to the edge vector
ei = ri+1 − ri and its tangent unit vector ti (see Fig. 5). In this
way, the discrete curvature associated with the ith vertex takes
the form

κi =
2 sinφi

1 + cosφi
= 2 tan

φi
2

(33)

where φi represents the turning angle between two consecutive
edges. Each ith vertex is also characterized by a total mass Mi,
which is the average mass of the edges meeting in the vertex,
while the mass moment of inertia for each edge can be obtained
through volume integration. Finally, a discrete bending energy
and a discrete twist energy can be obtained in terms of the
generalized coordinates (ri, θi, φi).

Following the DER formulation, in [138], the three-
dimensional space of a soft filament is represented by a set of
vertices ri(t) and a set of material frames Ri(t). Each vertex
is characterized by a linear velocity, a concentrated mass, and a
set of concentrated external forces. Extension, shear and axial
deformations are considered. Finally, through the spatial inte-
gration, the discrete governing equations are obtained and they
are solved using a symplectic, second-order scheme. Similarly to
other approaches, the external physical interactions are included
in the external forces and moments vectors, while the internal
physical effects (such as those modeling muscular activities)
are added to the internal forces and moments resultants. In
a recent work [139], this model has been implemented in an
open-source simulation environment, Elastica, for the modeling
and simulation of the dynamics of slender rods.

In [140], the planar case of the DER formulation is con-
sidered, where the rod is free to move on a plane, while the
torsional deformations are neglected. Moreover, the notion of
folding for a straight rod is introduced to apply the approach to

Fig. 6. Scheme of an NN.

tree-like architecture, which are frequently encountered in the
soft robotics community. In [141], the DER-based formulation
is further enhanced to include frictional contact, inelastic col-
lisions and inertial effects. In particular, considering a planar
case, a Rayleigh damping matrix is defined to formulate the
internal damping forces vector, which is added to the external
forces. In order to model the contact and the friction between
the robot and an unstructured ground, whose normal direction
can vary with the horizontal axis, a Coulomb law is employed.
In [142], the DER is hybridized with a pseudorigid body model is
used to represent compliant mechanisms. Based on this model,
the authors provided a computational design tool to perform
different optimization tasks related to soft robotics.

VIII. SURROGATE MODELS

With respect to the models presented so far, a complete
different approach to tackle the modeling of a soft robot consists
in using large sets of data that are derived from various forms
of external sources. These approaches are often referred to as
surrogate or data-driven models and a survey on some of them
is presented in [9] and [10]. While one of the main benefits of
these solutions is that they do not require a physical model, on
the other hand they rely on large amounts of representative data
that are sometimes difficult to collect.

A. Neural Networks

NNs have been proved to be an effective tool to solve many
kinds of nonlinear problems in different application fields, in-
cluding robotics. As the name suggests, they are inspired from
the biological NNs that operate animal brains: the artificial
neurons, which represent the elementary units of NNs, can
transmit a signals to the other neurons. The signal is usually a real
number and the output of each neuron is computed as a nonlinear
combination of all the inputs. Neurons are connected by edges
and they are all characterized by weights adjusted during the
learning process. Usually, neurons are gathered in layers: the
first layer is also called input layer, the last one is called output
layer, and the intermediate layers are called hidden layers (see
Fig. 6). NN results in a high dimensional set of nested functions

y = fM (AM , . . . f2 (A2, f1 (A1,x)) . . . ) (34)
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where x are the values of the input nodes, Ai are the edges
weights, fi are the activation functions, and y are the values
of the output nodes. In most soft robotics applications, the
input and the output layers represent the actuation variables
u and the shape parameters q. The learning process results in
an optimization over the network weights, which is performed
through back-propagation, a form of chain rule, where, after each
forward step through the network, a backward pass is performed
to compute the network Jacobian and to adjusts the model’s
weights accordingly. NNs have been used to approximate the
kinematics, the statics and also the dynamics description of
soft robots. Typically, Feed-forward neural network (FNN) are
employed for kinematics and static modeling. On the other hand,
recurrent neural networks are usually preferred for dynamical
modeling.

The first examples of the employment of NN algorithms
for the control of continuum robots were presented in [143].
In particular, a controller for continuum robots uses an FNN
component to compensate the dynamic uncertainties of the
system, in an attempt to reduce the uncertainty bound. In [144],
the forward kinematic modeling of a bionic assistant trunk is
obtained through multilayer perceptron (MLP) and radial basis
function (RBF) NNs, which are both class of FNNs. The input
neurons propagate the input variables to the following layers,
while each neuron in the hidden layer is associated with an RBF
kernel (usually Gaussian). The data are obtained experimen-
tally, measuring the arm’s tip position at varying the actuation
pressure, using a trilateration algorithm. In one other paper by
the same authors [145], the same handling assistant trunk is
modeled, both with a data-driven and a pseudorigid modeling
approach. With regards to the latter, the trunk is modeled as a
series of rigid vertebrae connected by a total of four prismatic
joints. For the data-driven approach, a modified Elman NN is
employed. FNNs are also employed in [146] and [147], which
deal with the inverse kinetics of a cable driven soft manipulator.
While the kinematical model describes the configuration of the
robot without considering the involved loads, the kinetics model
relates the motion of the robot with its actuation forces. The
direct kinetics model is obtained using a geometrically exact
model [60]. Thus, an FNN, taking the tip position as an input
and giving the cable tension as an output, is employed. An
experimental data collection phase is carried out, using a set
of cable tensions and obtaining the tip position with an infrared
vision system. These data were used for the optimization and
training of the FNN. After the training phase, the performance
of the FNN is measured on test sets, using the output of the FNN
as the input of the direct kinetics model. One other example of a
machine learning formulation for the global inverse kinematics
of continuum manipulators was presented in [148]. The data
samples are generated by continuous motor babbling and a
single hidden-layer artificial NN is employed to learn directly
the mapping (xi+1, qi) �→ qi+1, where x is the pose of the end
effector. In [149], a dynamic model for open-loop control of soft
robotics manipulators is presented. The PCS model described in
Section V-B4 is employed to obtain the dynamics of a cable
driven robot operating underwater. Considering the case where
the robot and the task space have the same number of DOF, the

forward dynamics of system (18) is formulated using only the
task space variables and the direct mapping between the states
of the task space variables and the control inputs can be ob-
tained. Once the training is completed, an open-loop predictive
controller is developed through a trajectory optimization that is
carried out with an iterative sequential quadratic programming.
In [150], the closed-loop controller is also implemented. The in-
verse kinematic modeling of a bionic trunk is addressed in [151].
In particular, a learning phase is carried out considering a volume
of desired cartesian position for the robot’s tip, defining a finite
set of target vertices. The inverse model is asked to estimate a
posture that allows us to move the effector to each vertex, and
the training is carried out until the distance between the target
and the actual position for each vertex is minimized.

B. Data-Driven Order Reduction

Some modeling tools employ different forms of data-driven
order reduction to efficiently approximate the physical model.
In [152], a Koopman operator theory is employed for a data
driven controller of soft robots. A dynamical system is repre-
sented in an infinite function spaceF , which is composed of real-
valued functions inside the state of the system domain [153]. The
elements q ∈ F are called observables. The Koopman operators,
denoted by Ut, are defined as the linear transformation Utq =
q ◦ Tt, where ◦ indicates the composition operation, while Tt
is the flow (or dynamic) map of the system. In other words, the
Koopman operator lifts the dynamics of the system from the state
space to the space of the observables, describing the evolution
of the observables q along the trajectories of the system. Its main
advantage is that it provides a linear representation of the flow of
a nonlinear system, but in the infinite-dimensional space of the
observables. The discrete approximate of the Koopman operator
can be obtained from a set of experimentally measured state,
given in the form of snapshot pairs. Some approaches have been
focused on the model reduction of FEM that were presented
in Section IV-A. Model reduction methods are based on the
projection of the FE EoM to attractive subspaces of smaller
dimensions. In this way, the size and the computational time of
the simulation are drastically lowered, allowing the application
of FE methods for control purposes. In [39], a snapshot proper or-
thogonal decomposition is employed to generate relevant bases
to be used for the order reduction. More into details, the solution
q of (19) is expressed as a truncated expansion of orthonormal
vectors, which depend on the constraints λ. The orthonormal
basis is then set to minimize the sum of all the errors that are
generated by the projection of the exact solution onto the basis.
In [154], this approach is further extended for the development of
a low-order controller and observer, while in [40], it is applied for
the reduction of self-collision contact forces. One other example
of an FE order reduction is presented in [155] for modeling soft
robots made of hyperelastic materials and actuated by cables or
tendons, with a special focus on contact problems.

IX. SOFTWARE IMPLEMENTATION

An important aspect of the above models and their numerical
resolution, is related to their software implementation. There
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TABLE I
SUMMARY OF THE MAIN MODELING FAMILIES, THEIR FUNDAMENTAL PROPERTIES, AND THEIR DESIGN APPLICATIONS

are several industrial as well as open-source soft robotic soft-
ware/toolboxes available. Here, we briefly summarize the most
popular ones. In Section IV-A, we introduced Sofa, one of the
earliest open-source platforms for physics-based simulation.
Its SoftRobots plugin employs a multimodal description of
a problem, allowing the presence of several representations
(mechanical, thermal, and visual) of the same object. This
multimodal representation allows the simulation of scenarios
involving the interaction of different components (rigid and/or
soft bodies, fluids). PyElastica is the Python implementation of
Elastica [139], described in Section VII-C. SoRoSim [75] is a
MATLAB toolbox that uses the geometrically exact PVS model
described in Section V-B4. One other example of a MATLAB
toolbox is TMTDyn, which employs discretized lumped systems
with reduced-order models [156]. SoMo (Soft Motion) [157]
couples the pseudorigid model discretization of Section VII-B
with a rigid body physics engine of Python to model soft robots.
ChainQueen [158] and incremental potential contact simulator
(IPC-Sim) [159] are simulators oriented toward computer graph-
ics rather than mechanical systems. ChainQueen is a Python
toolbox that uses the moving least square material point method,
a hybrid Eulerian/Lagrangian FEM, which uses both particles
and grids to simulate soft bodies. IPC-Sim solves extreme non-
linear volumetric elastodynamic models using FEM. Finally,
some toolboxes are developed for specific applications, such as
the DiffAqua [160], an optimization toolbox for soft underwater
swimming robots.

X. CONCLUSION

Providing realistic models able to be operated computation-
ally in real time or faster, to solve direct and inverse problems
of the wide variety of soft robots designed so far is an unattain-
able dream. Therefore, the choice of a modeling technique is

the result of a compromise between realism (accuracy) and
computational efficiency, which is largely dictated by the user’s
specific needs. For example, designers may be more interested
in realism in order to capture the concept of a new actuator in
a first phase, and in a second phase by computational efficiency
of forward (kinematics, statics, dynamics) algorithms that can
help optimization techniques requiring many simulations with
different sets of design parameters. In the same way, closed-loop
control strategies can allow some relaxation of accuracy in favor
of designing inverse algorithms (kinematics, statics, dynamics)
capable of running online. Based on this tradeoff, here follows
a critical analysis of the modeling approaches presented above.

Surrogate models of Section VIII have the great advantage of
being conceptually applicable to all systems, without physical
modeling effort, and can provide fast dedicated algorithms com-
patible with real-time control. However, for each robot design,
a huge database of measurements has to be built to feed the
learning process.

As regards physics-based models, the only approaches that are
physically consistent at all levels of modeling, (geometry, kine-
matics, and dynamics), are those based on continuum mechanics
of Sections III–V, as well as the discrete rods method of Section
VII-C. Potentially, they can be used to solve both direct problems
(simulation) and inverse problems (control). Like data-driven
models of Section VIII, commercial FEM software have the
advantage of being applicable to complex systems of arbitrary
3-D geometry in multiphysics contexts. For these reasons, they
are well suited to the design of new actuation principles or to the
study of specific complex phenomena. However, they are often
expensive in terms of computation time and poorly adapted to
robotics specific control problems. To speed up the computa-
tions, the direct material discretizations in Sections VII-A and
VII-B, may be appealing at first glance, since they allow any
continuous system to be replaced by a discrete one with lumped
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parameters. However, although they can provide mechanically
consistent discrete formulations suited to fast simulation, they
require complex identification methods to relate the lumped
parameters to the distributed original ones. In this regard, it is
worth mentioning that it is one of the historical motivations of
the FEM to have overcame this “naive” discretization. With the
same goals in mind, Sofa has made great efforts in recent years
to revisit and optimize 3-D FEM for user-friendly modeling
and rapid simulation of soft robots interacting with complex
environments. However, due to the large number of nodal dof, all
these approaches remain difficult to exploit for control purposes,
and one of the challenges they face is to develop efficient reduc-
tion numerical methods compatible with the highly nonlinear
character of soft robots (see Section VIII-B). When possible, a
natural reduction is to consider special geometries such as shells
and rods. While the former remain little represented in robotics,
the latter are widely used to model multibody systems composed
of rods and rigid bodies. In FEM, the use of beam-specific
finite elements then becomes natural, and the GE-FEM based
on Cosserat beams of Section III-B, seems to be a good choice,
as it is very efficient both in terms of accuracy and computational
cost. However, it still suffers from a lack of existing commercial
software dedicated to robotics and is difficult to implement from
scratch.

Based on the same models (based on 1-D directors), the other
methods in Section IV inherently enjoy similar accuracy to that
of GE-FEM, and represent reliable alternatives for soft robots
that can be described as beams (or a combination of beams).
This includes robots with concentric tubes, continuous parallel
robots, or soft arms that do not involve large cross-sectional
inflation, but also systems with thread-like actuators, such as TD-
CRs. Moreover, unlike FEM, they were specifically developed
for robotic purposes, whether for real-time simulation based on
the shooting method, or for the design of model-based control
laws. In the latter case, modal Ritz approaches as the GVS can
provide highly reduced dynamic models in the usual explicit La-
grangian form of rigid robots, and thus, facilitate the transfer of
methods from rigid to soft robotics. On the other hand, although
computationally very efficient and ideally suited for kinematic
control, the geometric approaches of Section VI-B. are based
on certain kinematic simplifications that are not consistent with
continuum mechanics. In particular, PCC remains mechanically
consistent only for specific actuation designs and when gravity
is negligible. Note that although widely used, this approach
being a subcase of the fully consistent GVS, it should be ad-
vantageously replaced by this alternative approach. Regarding
the other simplified models of Section VI, while functional
approaches built around a reference curve, are conceptually
natural and can be computationally efficient, they often struggle
to capture the torsional state in a consistent way. Also note that
in contrast to modeling approaches based on a direct material
discretization, the discrete rod method is fully consistent since it
is based from the beginning on the discrete differential geometry
of the Cosserat theory (and from that point of view, should
be classified into the directors based approaches of Section
III-B). Moreover, it has been developed from the start for fast
(interactive) simulation by the computer graphics community

and from this point of view, it represents a promising perspective
for soft robotics. Finally, Table I summarizes the main modeling
families in relation to their uses and robot designs.

Soft robotics was developed in the last two decades and
the main efforts so far have been focuses on the simulation
of the robot’s static and dynamic behavior. Now the efforts
of many researchers are mostly toward the extension of these
approaches for control [161], [162] and for their integration with
optimization tools [42], [163]. The main sources of inspiration
toward the achievements of these goals are more likely to come
from other research disciplines. While going through the papers
of this survey, we tackled a great number of disciplines that
represent their theoretical foundations: continuum and solid me-
chanics, computational mechanics, machine learning, computer
graphics, just to name a few. This interdisciplinary is probably
what makes soft robotics so interesting, attracting scientists from
different research fields. On the other side, being the topic so
widespread, it is not easy to grasp it and this constitutes the main
motivation behind this manuscript. In this way, we were able to
recognize more clearly the uniqueness and the commonalities
between the different techniques that have been presented so
far, in the effort to untangle such a vast research topic.
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