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Large-Dimensional Multibody Dynamics Simulation
Using Contact Nodalization and Diagonalization
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Abstract—In this article, we propose a novel multibody dy-
namics simulation framework that can efficiently deal with large-
dimensionality and complementarity multicontact conditions. Typ-
ical contact simulation approaches require performing contact
impulse fixed-point iteration, which has high time-complexity from
large-size matrix factorization and multiplication, as well as sus-
ceptibility to ill-conditioned contact situations. To circumvent this,
we propose a novel framework based on velocity fixed-point it-
eration (V-FPI), which, by utilizing a certain surrogate dynam-
ics and contact nodalization (with virtual nodes), we achieve not
only intercontact decoupling but also their interaxes decoupling
(i.e., contact diagonalization) at each iteration step. This then
enables us to one-shot/parallel-solve the contact problem during
each V-FPI iteration-loop, while avoiding large-size/dense matrix
inversion/multiplication, thereby, significantly speeding up the sim-
ulation time with improved convergence property. We theoreti-
cally show that the solution of our framework is consistent with
that of the original problem and, further, elucidate mathematical
conditions for the convergence of our proposed solver. Perfor-
mance and properties of our proposed simulation framework are
also demonstrated and experimentally validated for various large-
dimensional/multicontact scenarios including deformable objects.

Index Terms—Contact modeling, dexterous manipulation,
dynamics, simulation and animation.

I. INTRODUCTION

A S TECHNOLOGY and automation advance, robots per-
forming diverse tasks in various environments on behalf of

humans are becoming an increasingly essential topic [1]. Robots
no longer do specific tasks in a stationary and well-known
environment, necessitating the ability to notice changes in their
surroundings and react immediately through interaction. In this
regard, enhancing online performance and flexibility through
offline pretraining has recently emerged as a very promising
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solution. These concepts have been implemented in a variety of
ways (e.g., self-supervised learning [2], [3] and reinforcement
learning [4], [5]) and have been used to succeed in tasks in
a variety of challenging situations (e.g., climbing in complex
terrain [6], tight tolerance assembly [7]).

Since the approaches described earlier can be broadly under-
stood in terms of optimization, they commonly require large
amounts of high-quality data to achieve adequate performance
and robustness. These data can also be gathered in real-world
contexts, but by using virtual environments (i.e., simulation),
the data collecting process becomes considerably safer and
faster, and the environment can be adjusted without the need
for human intervention. Furthermore, perfect knowledge of the
system can be used for more efficient learning [8], [9] and does
not necessitate a separate estimating approach to collect data. As
a result, simulation is frequently utilized as a backbone to train
robots to do challenging tasks (i.e., sim-to-real transfer [10],
[11], [12]).

However, for practically useful data collection, simulation
must be both fast and accurate. One of the most challenging is-
sues in dynamic simulation of robot applications is contact [13],
while it inevitably occurs in situations where the robot interacts
with the environment and other objects. In this article, we mainly
focus on following common form of discrete-time dynamics
equations with contact, as shown in [14], [15], and [16]

Akv̂k = bk + JT
c,kλc,k (1)

where Ak ∈ Rn×n, bk ∈ Rn are constructed from the system
state at the kth time step, v̂k ∈ Rn is the representative veloc-
ity between the time intervals of kth to k + 1th steps, Jc,k ∈
R3nc×n is the contact Jacobian, λc,k ∈ R3nc is the contact
impulse,n is the system dimension, andnc is the contact number
at the time step.

In general, the contact constraints can be expressed as the
complementarity-based relation between v̂k and λc,k. Therefore,
in many cases, the solution process of (1) requires the following
contact impulse space transform:

Jc,kv̂k = Jc,kA
−1
k JT

c,kλc,k + Jc,kA
−1
k bk (2)

where Jc,kA
−1
k JT

c,k is called Delassus operator [17]. This
impulse-based formulation (2) implies the linear relation be-
tween contact impulse and the velocity relative to the contact
frame. Based on this formulation, various algorithms [18], [19],
[20], [21] perform impulse fixed-point iteration (I-FPI) to find
a proper collision response that satisfies the contact conditions.
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Despite their popularity in rigid body simulation, I-FPI suffers
from the following challenges in general multibody simulation.

1) Due to numerous coupling between states (e.g., finite
element method), structure of the matrix Ak in (1) is
complex and time-varying, which makes the computation
of Delassus operator in (2) intractable especially for a
large-size dynamics with varying contact points.

2) In the case of ill-conditioned contact situations (i.e., the
condition number of the Delassus operator is poor), the
I-FPI adopted to (2) converges slowly and often fails, re-
sulting in implausible contact behavior of the simulation.

Accordingly, it is difficult to efficiently simulate a high degree
of freedom (DOF) systems with multiple contacts, particularly
in scenarios involving deformable objects.

I-FPI based approaches [18], [19], [20], [21] may be charac-
terized as executing fixed-point iteration to meet contact comple-
mentarity condition while intrinsically reflecting (1). In contrast,
in this article, we present a new method that uses fixed-point iter-
ation to satisfy (1) while keeping the contact condition based on
velocity fixed-point iteration (V-FPI). We first propose contact
nodalization, which turns all contacts into nodal situations (i.e.,
contact with Cartesian nodal points) while precisely preserving
the contact condition. We then proceed to develop a novel
numerical solver based on contact diagonalization, which is
achieved through multiple contact generation and solution with
respect to certain surrogate dynamics. Each surrogate dynamics
problem can be solved in a one-shot/parallelized manner due to
the diagonal properties and converges to the original dynamics
equation (1) as iteration progresses. The main features of our
framework can be summarized as follows.

1) Scalable: The entire procedure of the solver consists solely
of matrix-vector multiplication and simple algebraic op-
erations, resulting in low time and memory complexity.

2) Accurate: Dynamics and contact conditions are precisely
enforced, resulting in accurate contact simulation as
demonstrated by experimental validations.

3) Convergent: Convergence is theoretically investigated and
practically proved to have fast and robust convergence
even for ill-conditioned problems.

4) Versatile: Diverse formulations including a combination
of rigid-deformable body and maximal-generalized co-
ordinate can be dealt with. Furthermore, it is compati-
ble with various integrator types and friction models as
well.

From now on, we refer to the framework as simulation
using contact nodalization and diagonalization (COND). We
also release an implementation of COND for a specific sce-
nario (cable winding manipulation, see Section V for detail) so
that it can be utilized for simulation and learning benchmarks:
https://github.com/INRoL/inrol_sim_cablewinding.

The problem of solving dynamics with contact has been
studied for a long time. One of the well-known directions is to use
the spring-damper-based penalty contact force formulation [22],
[23], which calculates and applies a force proportional to the
penetration or sliding velocity. By explicitly formulating the
contact force, it is advantageous in terms of scalability. However,
it often demands a very small time step to prevent penetration or

physically odd behavior, and the result tends to vary depending
on the gain value [23], [24], [25].

Another very traditional method is to use a direct solution of
the linear complementarity problem (LCP) [26], which is based
on a polyhedral shape approximation of the friction cone. In
contrast to the nonlinear complementarity problem (NCP), LCP
can be solved exactly using various algorithms, such as [27],
but they require impulse space conversion and have a high
computational load during the solution process. In addition,
because of the linearized friction cone, unplausible frictional
behavior can be generated [17].

In modern simulation research, numerical methods are mainly
used. One of the most prevalent methods is the projected Gauss–
Seidel (PGS) algorithm [17], which solves (2) using Gauss–
Seidel type I-FPI while projecting the solution to the friction
cone. Similarly, gradient-based methods such as [28] can be
used, with numerical acceleration schemes. The methods are
faster than direct methods in many cases and able to handle more
preferable contact formulation (than LCP) including NCP and its
convex relaxation [29], [30]. Therefore, they have been widely
adopted in open-source simulation software (e.g., Bullet [31],
MuJoCo [14], Chrono [32], RaiSim [33]). The projection step
can sometimes be replaced with a slight modification using the
bisection [18] and Newton [19] algorithms. However, under a
complex structure of A, there is still a scalability issue in multi-
body systems due to their reliance on impulse space conversion
and their ability to converge slowly in ill-conditioned contact
situations.

Various techniques have been proposed to improve compu-
tational efficiency for large-scale problems. For soft objects,
model order reduction is utilized to reduce the system dimension
in [15] and [34] with the open-source framework SOFA [35].
The methods are promising, yet the applicable scenarios are
restricted since they assume small deformation or limited modes
of system behavior. Position-based dynamics (PBD) idea [36],
[37] is prevalent in graphics area, and also utilized in open-
source software FleX [38] and Brax [39] with various robotic
researches [40], [41]. The main limitation of PBD for robotic
simulation is their slow convergence to adequate accuracy in
engineering, and possible occurrence of implausible contact
behavior which is also described in [16]. Also, its nonlinear
Gauss–Seidel fashion constraint resolution is incompatible with
generalized coordinates representation, which is widely used
in the robotic simulation. Subsystem-based architectures are
presented in [42] and [43], which split the original problem
into smaller size problems with parallelization, but the methods
are yet limited to systems with few interconnections between
subsystems. In [16] and [44], efficient solvers that can simulate
objects, such as cloth and hair are proposed while avoiding im-
pulse space conversion. In contrast to our framework, they rely
on the global relaxation and linear solving process and cannot
deal with general rigid body representation. Another notable
work is [37] that develops a nonsmooth Newton method to solve
contact conditions using Schur-complement and complementar-
ity preconditioner. It has the advantage of fast convergence due
to the nature of the second-order but requires multiple large-size
linear solving processes for a single time step.

https://github.com/INRoL/inrol_sim_cablewinding
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The rest of this article is organized as follows. Section II will
explain how we create the constrained dynamics with contact
in a discrete-time domain [i.e., (1)]. Then, in Section III, our
main algorithm COND for multibody dynamics solver will be
described in detail. Section IV will investigate the convergence
of the solver. The simulation and experimental analysis to eval-
uate the performance of COND will be presented in Section V.
Section VI provides some discussions on the framework and
future work. Finally, Section VII concludes this article.

II. CONSTRAINED DYNAMICS WITH CONTACT

In this section, we will describe how we construct the dynamic
equation with multiple constraints and contact.

A. Dynamics Integration

We formulate discrete-time domain dynamics at the velocity
and impulse level, as is generally the case to avoid incon-
sistency [45]. Dynamics integration methods can be broadly
classified according to explicit/implicit type and linear/nonlinear
type. In this work, we construct the dynamic equation in lin-
earized form, considering the constraints in an implicit manner.
This is because: 1) while targeting complex systems including
flexible bodies, the explicit method has clear limitations in its
stability, and 2) nonlinear integration can actually be expressed
as an iteration of a linear integration. The equation of motion
of mechanical system under contacts in the continuous-time
domain can be written as follows [14]:

M(q)q̈ + C(q, q̇)q̇ + dψT = fext + Jc(q)
Tλc

= fext +

nc∑
m=1

Jc,m(q)Tλc,m (3)

where q is the generalized coordinate variable1 of system,
M(q), C(q, q̇) ∈ Rn×n are the mass, Coriolis matrix, dψT ∈
Rn is the potential action, fext ∈ Rn is the external force, λc =
[λc,1; · · · ; λc,nc

] ∈ R3nc is the contact impulse with λc,m =
[λn,m; λt1,m; λt2,m] ∈ R3, Jc = [Jc,1; · · · ; Jc,nc

] ∈ R3nc×n is
the contact Jacobian, and subscripts n, t1, t2 denote the normal
and tangential directions. Then, we perform the discretization
of the dynamics as

Mk
vk+1 − vk

tk
+ Ckvk + dψT

k = fext,k + JT
c,kλc,k

v̂k =
vk + vk+1

2
, qk+1 ← update(qk, v̂k, tk) (4)

where k denotes the time step index, Mk =M(qk), Ck =
C(qk, vk), tk is the step size, vk ∈ Rn is the velocity, and v̂k is
the representative velocity of each time step. We derive potential
action from the passivity relation presented in [46] i.e.,

dψT
k v̂ktk =

∂ψ

∂qk
v̂ktk +

1

2
v̂Tk
∂2ψ

∂q2k
v̂kt

2
k (5)

1Here, q can involve representation in Euclidean space as well as the orien-
tation representation, such as SO(3). Note that the generalized velocity q̇ and
acceleration q̈ can still be expressed as Rn.

≈ ψk+1 − ψk (6)

with the second-order approximation of exact potential energy
deviation. Here, potential function may be nonconvex, therefore,
the Hessian term may not be symmetric positive definite. Yet,
some common approximations can be adopted to solve the issue
in a compact way. Consider the following constraint potential
form:

ψ(q) =
1

2
e(q)TK(q)e(q) (7)

where e(q) ∈ Rne is the constraint error and K(q) ∈ Rne×ne

is the symmetric positive definite gain matrix, and ns is the
constraint dimension. This form (7) is very versatile, as it can
represent almost all types of constraint including simple spring,
corotational finite element model [47] and even hyperelastic
material with generalized compliance model [37]. Then, we
can write as follow using outer product approximation similar
to [37], [43], [48]

∂ψ

∂q
≈ Je(q)TK(q)e(q)

∂2ψ

∂q2
≈ Je(q)TK(q)Je(q) + E(q) (8)

where Je(q) ∈ Rne×n is the constraint Jacobian (i.e., ∂e
∂q ) and

E(q) ∈ Rn×n is the symmetric positive definite damping ma-
trix. To maintain the exact energy relation along these approx-
imations (or at least, stability preserved), determining E(q)
is another meaningful subject, as it is necessary to find an
appropriate energy dissipation to preserve the passivity of the
system. Yet in this article, we do not delve deep into this issue and
apply the following two simple policies: 1) user-defined constant
damping matrix or 2) symmetric positive definite projection of
geometric stiffness matrix [48] i.e.,

E(q) = projS+
n

[
∂Je
∂q

K(q)e(q)

]
where projS+

n
is the projection to n× n symmetric positive

definite matrix manifold [49]. One of classical ways to compute
projS+

n
uses singular value decomposition [50], however, to

reduce the computation time for this, we construct a diagonal
matrix where each element is the sum of the absolute values of
the elements in each column of the original matrix.

One of the widely used potentials that cannot be represented
by (7) is gravity potential, however, its Hessian can be ignored
by dropping out the derivative of the Je(q) as above. Finally,
substituting (8) to (4), dynamics can be represented as in form
of (1) with

Ak = M̂k +
1

2
(Je(qk)

TK(qk)Je(qk) + E(qk))tk

bk = M̂kvk − C(qk, vk)vk − Je(qk)TK(qk)e(qk) + fext,k

(9)
where M̂k = 2t−1k Mk. The structure of (9) is very similar to the
one used in [46], [48]. Although it is based on the linearization of
nonlinear potential action, constraints are considered in implicit
manner, therefore, applicable to complex multibody systems
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including rigid and deformable bodies. Also here, note that Ak

is always a symmetric positive definite matrix.
The form of (1) is also applicable to the general integration

method. For example, coordinate transform usingM(q)
1
2 intro-

duced in [46] can be utilized to improve the passivity property
of the dynamics, as it maintains the linearized form with a
symmetric positive definite property of Ak. For the cases of
nonlinear integration that takes constraints into account in a
completely implicit manner without linearization, we can write
the equation in the form of

g(v̂k) = 0

where g : Rn → Rn is the nonlinear function. For instance, for
fully implicit Euler integration [51], g(v̂k) is

Mk
vk+1 − vk

tk
+ Ckvk +∇ψ(q̂k)− fext,k − JT

c,kλc,k

with v̂k = vk+1, q̂k = update(qk, v̂k, tk). Similarly, implicit
midpoint integration [52], variational integration [53] can be rep-
resented. Then, solving this equation using the Newton method
is equivalent to

v̂k ← v̂k − ∂g

∂v̂k
g(v̂k) (10)

and (10) can be simplified as

Akv̂k = bk + JT
c,kλc,k

which is same as (1). Here, Ak is a symmetric positive definite
matrix, with some quasi-Newton style approximation. Mean-
while, still there remains room for expansion to be directly
applicable to the nonlinear integration methods, especially those
that can be expressed in an optimization form [51]. However, we
will remain the part as future work.

For specific cases, algorithms such as [54] and [55] can be
utilized for effective factorization or linear solving of Ak. They
are not considered here as they do not apply to general multibody
dynamics.

B. Signorini-Coulomb Condition

To reflect the physical properties of the contact robustly and
precisely, we consider solving the constructed dynamics (1)
under the following complementarity-based Signorini-Coulomb
condition (SCC):

0 ≤ λn,m ⊥ Jn,mv̂ + φn,m ≥ 0

0 ≤ δm ⊥ μmλn,m − ‖λt,m‖ ≥ 0

δmλt,m + μmλn,mJt,mv̂ = 0 (11)

for all contact indicesm = {1, . . . , nc}where μm is the friction
coefficient, φn,m ∈ R1 is the additional term for penetration
compensation and restitution coefficient, and δm ∈ R1 is the
auxiliary variable. The first line of (11) is known as the Signorini
condition, which prevents penetration in a collision. The rest
parts correspond to the Coulomb friction condition that ensures
the contact impulse contained within the friction cone set is
defined as

Cλ = {λn, λt | λn ≥ 0, μλn − ‖λt‖ ≥ 0} (12)

Fig. 1. Three cases induced from SCC. Blue shape represents friction cone
set, green line denotes contact frame velocity and yellow line denotes contact
impulse. (a) Open. (b) Stick. (c) Slip.

Fig. 2. Schematic of nodal contact situation. Red points are the nodes that
originally exists in the mesh. Orange point is a virtual node that temporally
generated on rigid body. (a) Nodal contact. (b) Nodal contact with virtual node.

and tangential impulse operates in the opposite direction of
motion if sliding occurs. There are three possible behavior
outcomes as the result of this condition, which are illustrated
in Fig. 1—open (λn,m = 0), stick (λn,m > 0, δm = 0), and slip
(λn,m > 0, δm > 0).

III. CONTACT NODALIZATION AND DIAGONALIZATION

The main idea of COND is to solve the original contact prob-
lem [i.e., solve (1) with (11)] using the repetitions of surrogate
contact problem [i.e., solve surrogate dynamics with (11)]. In
this section, we will describe how the surrogate dynamics contact
problems are constructed and solved, with the concept of COND.

A. Contact Nodalization

We start with the following definition that categorizes contacts
into two types.

Definition 1: For any point of contact, it is an S-contact, if
it is a part of a collision between a dynamic object and a static
environment. Otherwise, it is a D-contact, which is a part of a
collision between two dynamic objects.

1) Nodal Contact Assumption: As illustrated in Fig. 2(a),
nodal contact assumes that the points at which the contact acts
are only on the nodes that comprise the part of the system coordi-
nates. That is, under the nodal contact assumption, S-contact is a
static environment-node contact, while D-contact is a node-node
contact. Based on this, we can take the important observation that
the contact Jacobian Jc in the nodal situation can be represented
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by the stack of SO(3){
Jc,m = [0, . . . , Rc,m, . . . , 0] if S-contact

Jc,m = [0, . . . , Rc,m, . . . ,−Rc,m, . . . , 0] if D-contact
(13)

where Rc,m ∈ R3×3 is the SO(3) matrix for mth contact that
converts global frame to nodal contact frame. Although this
concept is reasonable for fine mesh-based systems in practice
and successively applied to thin nodal objects such as cloth and
hair [16], [44], it has not been applied to general multibody sys-
tems. This is mainly because contact points cannot be regarded
as a system node, in a coordinate representation, such as rigid
bodies or joint angles. However, since we are aiming for robotic
applications, this extension is essential, and thus, we propose
the following new technique.

2) Virtual Node: To embrace the broader contact situation
under the nodal assumption, we make the concept of the virtual
node, as shown in Fig. 2(b). The mass-less virtual node is
temporarily formed when contact occurs if the point is not a
predefined node and the contact is treated as occurring on the
virtual node. By this, all the contacts that exist in the system
can be fairly considered nodal contacts. However, for the virtual
node concept to be valid, the motion of the virtual node and
the point where the contact originally occurred must match. To
implement this, we utilize viscous damping force between the
virtual nodes and collision points

fv = −kv(Jv v̂ − v̂v) (14)

where kv can be interpreted as a gain, Jv ∈ R3nv×n is the
Jacobian matrix that maps the velocity of the original coordinate
to collision point velocity, and v̂v ∈ R3nv is the representative
velocity of virtual nodes whilenv is the number of virtual nodes.
Note that damping force is sufficient to match the motion since
the virtual nodes are created at the exact locations (i.e., no
constraint error) at every time step and disappear at the next time
step. Virtual nodes can be generated on any part of the system
(e.g., surface on rigid body, interior points between mesh nodes)
by simply creating a mapping from the original coordinate to the
location of the node.

Based on (14), we can reformulate the original dynamics as[
Ao + kvJ

T
v Jv −kvJT

v

−kvJv kvI

]
︸ ︷︷ ︸

=A

[
v̂o

v̂v

]
︸ ︷︷ ︸
=v̂

=

[
bo

0

]
︸︷︷︸
=b

+

[
JT
co 0

0 JT
cv

]
︸ ︷︷ ︸

=JT
c

[
λco

λcv

]
︸ ︷︷ ︸

λc

(15)
whereAo, bo are from original dynamics, λco, λcv, Jco, and Jcv
are, respectively, the contact impulse on original/virtual nodes
and contact Jacobian on original/virtual nodes.

3) Analysis on Virtual Node: It is easy to see that (15) is
structurally identical to (1). We also demonstrated in Prop. 1
that the symmetric positive definite property of dynamic matrix
A is preserved even after nodalization.

Proposition 1: A in (15) is a symmetric positive definite
matrix.

Proof: Since Ao is a symmetric positive definite matrix,A is
at least symmetric and positive semidefinite. Now suppose that

x = [x1;x2] exists that satisfies xTAx = 0. Then, x1 must be
zero vector to make xT1 Aox1 = 0. Then, xTAx = kvx

T
2 x2 = 0

holds, which show x2 is also a zero vector and it denotes A is
positive definite. �

Now let us identify how the viscous damping force (14) affects
the system dynamics. Dynamic equation (15) can be rewritten
as

Aov̂o = bo − kvJT
v Jv v̂o + kvJ

T
v v̂v + JT

coλco (16)

JT
cvλcv = −kvJv v̂o + kv v̂v. (17)

Substituting (17) to (16), we can obtain

Aov̂o = bo + JT
v J

T
cvλcv + JT

coλco (18)

which implies that the formulation is consistent with the original
dynamics structure, without any additional force. However, the
contact solution from (15) satisfies the SCC with respect to vir-
tual node velocity rather than the original contact point velocity
i.e.,

Jcv v̂v = Jcv(Jv v̂o + k−1v JT
cvλcv)

instead of JcvJv v̂o. This means the term k−1v JcvJ
T
cvλcv in-

duces the “perturbation” on the contact constraint. However,
we theoretically show that as kv increases, this perturbation
term vanishes in Proposition 2, and thus, constraint drift (e.g.,
penetration) can be certifiably avoided if kv is large enough.
Note that, this is clearly different from spring-damper-based
force injection, as they creates additional force in the system
and does not guarantee the satisfaction of the constraint. For
empirical evaluation, see Section V.

Proposition 2: The contact formulation using virtual nodes
converges to the original contact formulation as kv →∞.

Proof: From the dissipative property of SCC (normal com-
plementarity, opposite friction direction)

λT
cvJcv(JvA

−1
o JT

v + k−1v I)JT
cvλcv + λT

cvJcvJvA
−1
o b′o ≤ 0

holds where b′o = bo + JT
coλco. Suppose that if k−1v JT

cvλcv does
not converges to 0 as kv →∞, which means ‖JT

cvλcv‖ goes
to +∞. Now notice that the left-hand side of the inequality is
a summation of kv‖k−1v JT

cvλcv‖2 and the quadratic term with
respect to JT

v J
T
cvλcv. Then, it is clear to see that the former

goes to +∞, and the latter also has a lower bound as A−1o is a
symmetric positive definite matrix. This means that k−1v JT

cvλcv

must converge to 0 to satisfy the inequality. Therefore, as kv →
∞, virtual node-based contact formulation converges to original
contact formulation as the perturbation becomes zero and the
relation between JcvJv v̂ and λcv is exactly leveraged. �

It is important to note that in (14), utilizing the implicit repre-
sentation v̂, v̂v rather than v, vv is critical, as it not only implies
solution consistency of (18) with no additional force as men-
tioned above, but also can maintain stability even with sporadic
generations of multiple virtual nodes and high-gain kv (e.g., via
discrete-passivity of [46]). Our virtual node-based formulation
also has some similarity with the concept of slack variable in
that both increase the system state dimension. Nonetheless, the
nodal transformation significantly contributes to the ability of
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our algorithm to reduce the burden of high complexity in matrix
operations [14], as will be further discussed as follows.

B. Derivation of Surrogate Dynamics

Let us first consider solving (15) with only Signorini condition
in (11). Then, we can find that it is equivalent to Karush–
Kuhn–Tucker (KKT) conditions of the following velocity-level
optimization problem:

min
v̂

1

2
v̂TAv̂ − bT v̂

s.t. v̂ ∈ CV (19)

where CV = {v̂ | Jnv̂ + φn ≥ 0} is the feasible set of velocity
with φn = [φn,1, . . . , φn,m]T . Here and hereafter, notations for
kth time step are omitted for simplification, however, all the com-
ponents are still time-varying. This means that contact problems
without friction can be replaced with solving (19). One way to
solve (19) is the projected gradient descent method [56], which
takes the following steps:

v̂∗ ← v̂l −W (Av̂l − b) (20)

v̂l+1 ← ΠW
CV (v̂

∗) (21)

where l is the iteration loop index,W ∈ Rn×n is the symmetric
positive definite step size matrix for gradient descent. Here, W
can alternatively interpreted as an inverse of surrogate dynamics
matrix, which will be a key component of our derivation. Also,
Π(·) is defined as

ΠW
CV (x) = arg min

y∈CV
‖y − x‖2W

which is the projection from x on the convex set CV , with
respect to weighted Euclidean distance. Since A is positive
definite and CV is convex, the projected gradient descent method
will well converge to the solution of (19) if the problem is
feasible. However, since (11) also include the impulse constraint
like friction direction constraint, it is not enough to deal with the
generic contact problem. Instead, we modify the projection step
(21) as follows:

W−1v̂l+1 ←W−1v̂∗ + JT
c λc. (22)

Noticing the similarity between (22) and (1), (22) can be con-
sidered as a surrogate dynamics, which is constructed from W
and v̂∗. Then, the update step can be interpreted as solving the
contact problem with respect to this surrogate dynamics. Now
recalling the form of (2), λc is equivalent to

λc = SOL(ηc,Γc) (23)

where Γc = JcWJT
c ∈ R3nc×3nc can be interpreted as a sur-

rogate Delassus operator, ηc = Jcv̂
∗ ∈ R3nc , and SOL denotes

the solution that λc andJcv̂l+1 = Γcλc + ηc satisfies SCC. After
solving this contact problem (23), update step is performed as

v̂l+1 ← v̂∗ +WJT
c λc. (24)

Unlike the projection step in projected gradient descent that only
enforces velocity-level constraint, this new V-FPI [i.e., iteration

of (20), (23), and (24)] directly achieves the contact condition
(11).

Remark 1 (Consistency): If the fixed-point iteration con-
verges i.e.,

v̂l+1 = v̂l −W (Av̂l − b) +WJT
c λc = v̂l

then the solution exactly consistent with the original dynamics

Av̂l = b+ JT
c λc

as W is supposed to be a nonsingular matrix. Therefore, we
can find that surrogate dynamics (22) eventually accurately re-
flects the dynamics condition if the iteration converges, see also
Section V. For the analysis of the convergence, see Section IV.

C. Contact Diagonalization

In our V-FPI process above, v̂∗ computing step (20) and v̂l+1

updating step (24) are simple processes, yet the part that solves
surrogate contact problem (23) may be complicated. However,
we find that selecting an appropriate surrogate dynamics matrix
(i.e., W ) under contact nodalization can make our surrogate
Delassus operator Γc = JcWJT

c to be a diagonal matrix for
all situations and the process can be drastically simplified. The
proposition below demonstrates how it works.

Proposition 3: Under contact nodalization, suppose

W = diag(w11, . . . , wnn)

withwi1i1 = wi2i2 = wi3i3 = w̄i ∈ R1 for all ith node that is in
contact, where i1, i2, i3 are indices corresponding to the node.
Then, the surrogate Delassus operator Γc can be written as
follows:

Γc = diag(Γc,1, . . . ,Γc,nc
)

= diag(γc,1I3×3, . . . , γc,nc
I3×3)

γc,m =

{
w̄i, if ith node is in S-contact

w̄i + w̄j , if i, jth node are in D-contact
(25)

where I denotes the identity matrix.
Proof: Recalling the structure of (13), for S-contact

Γc,m = Rc,m(w̄iI3×3)RT
c,m = w̄iRc,mR

T
c,m = w̄iI3×3

and for D-contact

Γc,m = Rc,m(w̄iI3×3)RT
c,m +Rc,m(w̄jI3×3)RT

c,m

= w̄iRc,mR
T
c,m + w̄jRc,mR

T
c,m

= (w̄i + w̄j)I3×3

holds from the definition of SO(3). �
Proposition 3 demonstrates that under a certain structure of

W , extracting the components of W is sufficient to construct
the surrogate Delassus operator, without any matrix–matrix
multiplication or factorization. Therefore, we can obtain signif-
icant advantages in time and memory compared to the original
Delassus operator (i.e., JcA−1JT

c ) assembly. Also, the simple
structure of the Delassus operator is significantly advantageous
for the contact solving process (see Section III-D).
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Algorithm 1: COND.
1: while Simulation loop do
2: Construct original dynamics
3: Perform collision detection with contact nodalization
4: Construct dynamics A, b, Jc based on (15)
5: Initialize l = 1, v̂1

6: while V-FPI loop do
7: Determine step size matrix W
8: Compute v̂∗ using (20)
9: Construct Γc based on diagonalized property (25)

10: Solve (23) using Algorithm 2
11: Update v̂l+1 using (24)
12: Compute residual θ = ‖v̂l+1 − v̂l‖
13: if θ < θth or l = lmax then
14: break
15: end if
16: l← l + 1
17: end while
18: Update state using v̂l+1

19: end while

With this contact “diagonalization” method, we have built the
basic structure of our simulation algorithm—COND, which is
summarized in Algorithm 1.

D. Solving Surrogate Dynamics Problem

Now the remaining part is how to solve (23). In typical solvers,
although the contact conditions (11) are constraints that are in-
dependent with each contact, coupling between each contact still
exists since the Delassus operator is dense. These coupling terms
make the global iteration and relaxation process essential for
contact solvers when dealing with multicontact situations [17],
[18]. However, in COND, the diagonalized property of Γc es-
tablished in Section III-C resolves this problem. Convenience
induced from the property of Γc in the contact solving process
can be summarized as follows.

1) Coupling relaxation through global iteration (e.g., Gauss–
Seidel) is unnecessary since each contact situation is
completely decoupled. Furthermore, completely parallel
computation is possible for each contact.

2) Even for each single contact problem, coupling between
normal and tangential impulse does not exist and it leads
the exact solution to be obtained more simply without
the need of numerical methods such as bisection [18] and
Newton [19].

Overall, our contact solver consists only of a single linear
solving of −Γ−1c (which is very simple since Γc is a diagonal
matrix) with parallelized local projection step on Cλ. We sum-
marize this contact solver in Algorithm 2.

The friction cone projection step (denoted as ProjectFC in
Algorithm 2) is necessary to enforce the output of the contact
solver to satisfy the SCC. If temporary value (i.e., λ∗c,m in
Algorithm 2) is inside Cλ, ProjectFC simply yields the same
value as input. Otherwise, λ∗c,m is projected on the surface of
Cλ. In this article, we use two projection schemes—“strict” and

Algorithm 2: One-Shot/Parallelized Contact Solver.
1: for m = 1 to nc do in parallel
2: λ∗c,m = −(γc,mI3×3)−1(ηc,m + φc,m)
3: λc,m = ProjectFC(λ∗c,m)
4: end for

Fig. 3. Two ProjectFC schemes: strict and proximal. Black dot: value before
projection, Red arrow: projection. (a) Strict (b) Proximal.

“proximal” operator as illustrated in Fig 3. Each can be written
as

Strict: λn,m = max(λ∗n,m, 0)

λt,m = ΠI
Cλn,m

(λ∗t,m)

Proximal: λc,m = ΠI
Cλ(λ

∗
c,m) (26)

whereCλn,m
is the cross-section ofCλ cut vertically from λn,m. It

can be easily verified that for both strict operator and proximal
operator, we can obtain the solution in a very simple analytic
form. Also note that φc is only related to normal component,
therefore, φc,m = [φn,m; 0; 0].

We figure out that the two projection schemes have the follow-
ing tradeoffs in our solver: 1) the strict operator exactly satisfies
the SCC (11), yet its guarantee for convergence is weaker than
that of the proximal operator2 and 2) the proximal operator
always guarantees the convergence of the solution, yet SCC is
not exactly enforced. Also, the result from the proximal operator
is equivalent to the convex contact model proposed in [29] and
[30], therefore having a unique solution under strong convexity.

1) Strict Operator: The strict operator can exactly achieve
SCC in one-shot which is shown in Proposition 4.

Proposition 4: Output of Algorithm 2 with the strict operator
in (26) is the unique solution of (23).

Proof: From Γc,m = γc,mI3×3, normal component is com-
pletely decoupled from tangential component as

Jn,mv̂ = γc,mλn,m + ηn,m

where ηc,m = [ηn,m, ηt1,m, ηt2,m]T . If λ∗n,m > 0, λn,m = λ∗n,m
is the only solution that Jn,mv̂ + φn,m = 0 is satisfied. Else,
λn,m = 0 is the only solution as Jn,mv̂ + φn,m > 0 since
γn,m > 0. Therefore, normal components are uniquely deter-
mined, and satisfy the complementarity condition is satisfied.

2This nonguarantee of the convergence is due to the well-known problem
of the friction modeling with SCC (e.g., Painleve paradox). Throughout our
investigation, we have not experienced the failure of convergence though. For
detailed discussions and results, see Sections IV and V.
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For tangential components, stick case is trivial. For slip case

γc,mλt1,m + ηt1,m = −βλt1,m

γc,mλt2,m + ηt2,m = −βλt2,m (27)

must be satisfied for β > 0. Substituting (27) to boundary of Cλ,
β is uniquely determined as

β = −γc,m +
‖λt,m‖
μmλn,m

and therefore, λt,m is uniquely determined and equivalent to the
result of the strict operator. �

2) Proximal Operator: As depicted in Fig. 3, a result of the
proximal operator is different from the strict operator, which
implies that the proximal operator-based formulation contains
some approximation in SCC, as shown in Proposition 5.

Proposition 5: Output of Algorithm 2 with the proximal
operator in (26) is the unique solution of (23), while SCC is
replaced with following relaxed form:

0 ≤ λn,m ⊥ Jn,mv̂ + φn,m − μmδm ≥ 0

0 ≤ δm ⊥ μmλn,m − ‖λt,m‖ ≥ 0

δmλt,m + μmλn,mJt,mv̂ = 0. (28)

Proof: Proximal operator solves following optimization
problem:

λc,m = min
λ

1

2
λTΓc,mλ + λT (ηc,m + φc,m) s.t. λ ∈ Cλ

(29)
for all contact index m = {1, . . . , nc}. Then, KKT conditions
of the problem can be written as

Jn,mv̂ + φn,m − ϑ′ − μmϑ = 0 (30)

Jt,mv̂ + ϑ(λt,m/‖λt,m‖) = 0 (31)

ϑ′λn,m = 0 (32)

ϑ(−μmλn,m + ‖λt,m‖) = 0 (33)

ϑ, ϑ′ ≥ 0 (34)

λc,m ∈ Cλ (35)

for m = {1, . . . , nc} where ϑ, ϑ′ is the Lagrange multipliers.
From (30), (32), and (34), we can find that

Jn,mv̂ + φn,m − μmϑ = ϑ′ ≥ 0

λn,m(Jn,mv̂ + φn,m − μmϑ) = ϑ′λn,m = 0

holds and it is equivalent to relaxed normal complementarity
condition in the statement. For tangential component condition,
open case is trivial from (35). Also from (33), ϑ = 0 holds for
stick case and‖Jt,mv̂‖ = 0 is satisfied. Finally, (31) is equivalent
to the condition for slip case. Also, since (29) is the strictly
convex optimization problem, the solution is unique. �

If V-FPI iteration with proximal operator converges, original
dynamics (1) is satisfied and

Γcλc + ηc = Γcλc + Jc(v̂ −WJT
c λc)

= Acλc + bc

holds where Ac = JcA
−1JT

c and bc = JcA
−1b. Thus, λc =

SOL(ηc,Γc) = SOL(bc, Ac) and we can find that converged
solution of COND using proximal operator is equivalent to the
solution of CCP [29], which can be written as

λc = min
λ=[λ1;··· ;λnc ]

1

2
λTAcλ + λT (bc + φc)

s.t. λm ∈ Cλ m = {1, . . . , nc} . (36)

Compare the conditions in Proposition 5 with (11), we can
find that Signorini condition is relaxed. Consequently, as also
shown in [17], the solution of CCP may generate unplausible
dynamic behavior (e.g., gliding effect during sliding). However,
as mentioned in [29], the moderate use of φ can reduce the
effect of the approximation of normal conditions, and in practice
it is employed in well-known simulators such as MuJoCo and
Chrono as it works quite robustly.

Remark 2 (Uniqueness): Proposition 4 and Proposition 5
are concerned with the solution uniqueness of (23) for each
lth iteration of the surrogate dynamics, not that of the overall
surrogate dynamics. Note also that, although this solution of (23)
is unique, the surrogate dynamics can still capture the solution
multiplicity of the original dynamics via its dynamics coupling
(20) (i.e., V-FPI) with the solution still guaranteed to respect the
original dynamics as stated in Remark 1.

E. Extensions

Contact diagonalization allows COND to easily extend with
various contact models. Here, we present some examples.

1) Invertible Contact: In [30], an invertible contact model
based on the regularization term is proposed as follows:

λc = SOL(bc, Ac +Ωc) (37)

where Ωc ∈ R3nc×3nc is the symmetric positive definite regu-
larization term. Under the model, λc is uniquely determined as

λc = SOL(Jcv̂,Ωc)

which can be easily computed under the simple structure of Ωc.
Invertible contact model allows for reversely calculating contact
impulse (i.e., λc) from the velocity result (i.e., v̂), which can be
useful in fields, such as contact-implicit trajectory optimization.
Such a scheme can straightforwardly be included in COND,
as it can be easily verified that (37) is also solvable using our
framework by simply using Γc +Ωc instead of Γc in (23).

2) Anisotropic Friction: So far, we focus on isotropic friction
model, which use the same friction coefficient for all tangential
directions. However, in some cases, anisotropic friction model-
ing is necessary [57] for accurate surface modeling. For example,
ellipsoidal cone as

Cλ =

{
λn, λt | λn ≥ 0, λ2

n ≥
λ2
t1

μ2
1

+
λ2
t2

μ2
2

}
can be utilized instead of isotropic cone. In this article, we use the
maximal dissipation principle (MDP [58]) to model the behavior
under anisotropic friction. The validity of the MDP formulation
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Fig. 4. Illustration of the strict operator projection result (orange) for the
isotropic friction model (left) and the anisotropic friction model (right). The
solution with the friction direction opposite to the sliding direction (red) differs
in anisotropic friction.

has been shown in [59] and [60]. Here, due to our diagonalization
process, MDP can be conveniently accommodated, using the
strict operator. Details are shown in Proposition 6.

Proposition 6: Output of Algorithm 2 with the strict operator
is the maximal dissipation solution.

Proof: Maximal dissipation principle can be written as

λc = min
λ=[λ1;··· ;λnc ]

1

2
λTΓcλ + λT (ηc + φc)

s.t. 0 ≤ λn,m ⊥ γc,mλn,m + ηn,m + φn,m ≥ 0

λm ∈ Cλ m = {1, . . . , nc} .
We can easily find that the cost function in MDP is proportional
to the square of the distance from λ∗t,m as in Fig. 4 while the
normal component is already determined to satisfy the Signorini
condition. Therefore, the optimal solution is equivalent to the
minimum distance projection result. �

Note that, in the case of anisotropic friction, the MDP is
not equivalent to that the friction is in the opposite direction
which is also depicted in Fig. 4. Also, the projection result
of the strict operator may not be represented analytically, thus
numerical methods (e.g., bisection) may be required. However,
as Algorithm 2 supports parallelization for all contacts, the
problem can be handled without bottlenecks.

F. Complexity

Summarizing the preceding contents, it is established that all
components of V-FPI in COND (Algorithm 1) are made up of
simple scalar algebraic operations and matrix-vector multiplica-
tion. More precisely, the first multiplication ofW in (22) and (24)
hasO(n) complexity for both time and space sinceW is a diago-
nal matrix. One-shot contact solving process (Algorithm 2) also
possessesO(n) complexity since the construction ofΓc does not
involve any multiplication, but only element extraction fromW ,
while contact solving is interpreted as nc (usually proportional
to n) number of simple parallelizable operations. Also, since Jc
can be treated as just a stack of SO(3) matrices, matrix-vector
multiplication on Jc has also O(n) complexity. Therefore, the
only part that has over linear complexity is a computation of
Av̂l. Matrix-vector multiplication requiresO(n2) complexity if
A is dense, but in many cases, especially for deformable body
parts,A contains many 0 components. As a result, COND shows
the complexity near O(n)—see Section V. Note that despite A
is sparse, A−1 is generally fully dense, therefore, computation

Algorithm 3: V-FPI With Chebyshev Acceleration.
1: while V-FPI loop do
2: Determine step size matrix W
3: Compute v̂∗ using (20)
4: Construct Γc based on diagonalized property (25)
5: Solve (23) using Algorithm 2
6: Update v̂∗∗ instead of v̂l+1 using (24)

7: νl+1 =

⎧⎪⎨
⎪⎩
1 if l < ls

2
2−�2 if l = ls

4
4−�2νl

if l > ls

8: Update v̂l+1 using (38)
9: Compute residual θ = ‖v̂l+1 − v̂l‖

10: if θ < θth or l = lmax then
11: break
12: end if
13: Compute � using (39)
14: l← l + 1
15: end while

of Delassus operator JcA−1JT
c is still has a complexity near

O(n3).

G. Chebyshev Acceleration

We find that Chebyshev acceleration [61] can be utilized as an
efficient plug-in to accelerate the V-FPI in COND. For iterative
linear solver to solve Av̂ = b defined as

v̂l+1 = A−11 (A2v̂
l − b)

whereA = A1 −A2, Chebyshev acceleration method proposes
iteration scheme as

v̂l+1 = νl+1(A
−1
1 (A2v̂

l − b)− v̂l−1) + v̂l−1 (38)

with

νl+1 =
2Pl

(
1
�

)
�Pl+1

(
1
�

)
whereP denotes the Chebyshev polynomial and � is the spectral
radius of A−11 A2. Looking closely at Algorithm 1, we can find
that our solver is quite similar to the linear solving scheme with
A1 = −W−1, A2 =W−1 −A. Therefore, it can be expected
that applying Chebyshev acceleration to COND will be effective.
The algorithm is clarified in Algorithm 3.

Here, ls is the index for slowly starting acceleration as in [61],
which is helpful to avoid oscillation at the beginning of the
iteration. Also, since spectral radius � is equivalent to the largest
of the absolute values of the eigenvalues, its time complexity
becomes an issue for a large size matrix. For this reason, we use
a simple approximation of it instead as

� = min

( ‖v̂l − v̂l−1‖
‖v̂l−1 − v̂l−2‖ , 1

)
. (39)
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Intuitively, this formulation reflects the degree of a contraction
property, which is directly related to the spectral radius. The min
operator is necessary because monotonic decreasing of residual
is not always guaranteed with the acceleration schemes. In
practice, when Chebyshev acceleration is applied, the residual of
V-FPI reduces much faster, yet with some chattering. To reduce
the resulting instability, we utilize the under-relaxation strategy
(i.e., 0 < u < 1 in Algorithm 3), which is proposed in [61].

IV. CONVERGENCE ANALYSIS

In this section, sufficient conditions for convergence of V-FPI
in COND will be discussed concretely. We first utilize the Ba-
nach fixed-point theorem [62] as a basis to discuss convergence
i.e.

Lemma 1 (Banach Fixed-Point Theorem [62]): Iff : X → X
is a contraction mapping on nonempty complete metric space,
fixed-point iteration x← f(x) always converges to a unique
fixed-point.

The iteration process of COND can be written in the following
function form:

f(v̂) = (I −WA)v̂ +Wb+WJT
c λc

= v̂∗ +WJT
c λc.

Here, λc is the function of v̂∗, yet cannot be expressed ana-
lytically in usual cases. However, our one-shot contact solver
described in Section III-D facilitates access to this difficulty.

Definition 2: V-FPI in COND is contractible if the contraction
property of the iteration can be guaranteed under the proper
matrix W .

By Lemma 1, if we show the contractibility of V-FPI, it
implies that we can ensure the convergence of iteration and the
uniqueness of the problem solution. We find that exact and prox-
imal operators exhibit different mathematical properties so the
analysis for each will be dealt with separately. Note that we use
2-norm as a distance metric so further notation of ‖ · ‖ denotes
2-norm of a matrix/vector. Also,σ(·)will refer eigenvalues of the
matrix, and v̄i = [v̂i1 ; v̂i2 ; v̂i3 ] ∈ R3 will indicate representative
velocity of ith node.

Remark 3 (Nodalization): The contact acts only on the (vir-
tual) nodes among the total system degrees of freedom. For this
reason, the value of the elements of f(v̂) other than the indices
of the node to which the contact acts is equal to that of v̂∗—the
description of the corresponding content will be omitted in the
proofs.

A. Strict Operator

Since the strict operator gives the solution that exactly sat-
isfy SCC, it means that if our V-FPI always converges, there
is always a unique solution to the original contact problem.
However, feasibility and uniqueness of the contact NCP solution
cannot be always guaranteed [28], [58]. For this reason, dealing
with complete convergence property of the strict operator is a
fundamentally hard problem, unlike the proximal operator case
(which will be explained later). Therefore, in this article, we
consider specific type of system.

Definition 3: A system is a completely-nodal system if the
system is composed only of particle nodes, and contact only
acts on the nodes.

Even if a definition of the completely-nodal system does not
cover all commonly used system dynamics expressions, it can
“represent” any system by adopting a sufficiently large number
of nodes. We find that for the completely-nodal system with a
sufficiently small time step, the contractibility of V-FPI can be
guaranteed. For this, we first present the following lemma.

Lemma 2: Strict operator is Lipschitz continuous.
Proof: From the property that projection on convex set is

contraction [63] (and therefore, Lipschitz continuous), we can
find that max operator is Lipschitz continuous, as λn ≥ 0 is the
invariant convex set. Therefore, we only need to show ΠCλn,m

is Lipschitz continous. Suppose two inputs of ΠCλn,m
are λ∗1 =

[λ∗1,n; λ
∗
1,t1

; λ∗1,t2 ] and λ∗2 = [λ∗2,n; λ
∗
2,t1

; λ∗2,t2 ] with outputs are
λ1 and λ2 correspond to each. Now consider following triangular
inequality:

‖λ1 − λ2‖ ≤ ‖λ1 − λ3‖+ ‖λ2 − λ3‖
with λ∗3 = [λ∗2,n; λ

∗
1,t1

; λ∗1,t2 ] and output λ3. Then, we can prove
each of the following two.

1) ‖λ1 − λ3‖ ≤ ζ‖λ∗1 − λ∗3‖ for finite constant ζ
If λ∗1, λ

∗
3 ∈ Cλ, it is trivial. If λ∗1, λ

∗
3 /∈ Cλ, it holds from the

fact that following derivative is bounded:∥∥∥∥ ∂λt

∂λ∗n

∥∥∥∥ =

∥∥∥∥ μλ∗t
‖λ∗t‖

∥∥∥∥ = μ.

If λ∗1 ∈ Cλ, λ∗3 /∈ Cλ, it can be derived from following
inequality:

‖λ1 − λ3‖ ≤ ‖λ́1 − λ́3‖ ≤ ζ‖λ́∗1 − λ́∗3‖ = ζ‖λ∗1 − λ∗3‖
where λ́ is the output of ΠCλn,m

from input λ́∗ =
[λ∗n; dλ

∗
t1
; dλ∗t2 ] with large enough d that satisfies λ́∗ /∈ Cλ.

2) ‖λ2 − λ3‖ ≤ ζ‖λ∗2 − λ∗3‖ for finite constant ζ
Since λ2 and λ3 share same cross-section Cλn,m

, the prop-
erty is directly derived from the contraction property of
convex set projection.

Finally, following inequalities hold

‖λ∗1 − λ∗3‖ ≤ ‖λ∗1 − λ∗2‖ ‖λ∗2 − λ∗3‖ ≤ ‖λ∗1 − λ∗2‖
and therefore, Lipschitz continuity is established. �

Here, the Lipschitz constant is dependent on friction coeffi-
cients and increases as the friction coefficient gets bigger. Based
on the lemma, we can derive the following theorem.

Theorem 1: Suppose that the system is a completely-nodal
system. Then, V-FPI in Algorithm 1 with the strict operator is
contractible for sufficiently small time step t.

Proof: Consider that mth contact is S-contact on ith node.
From

v̄1,l+1
i − v̄2,l+1

i = v̄1,∗i − v̄2,∗i + w̄iR
T
c,m(λ1

c,m − λ2
c,m)

with triangular inequality∥∥∥v̄1,l+1
i − v̄2,l+1

i

∥∥∥ ≤ ∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥+ w̄i

∥∥λ1
c,m − λ2

c,m

∥∥
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holds. From Lemma 2, let us Lipschitz constant of the strict
operator as ζm. Then∥∥λ1

c,m − λ2
c,m

∥∥ ≤ w̄−1i ζm

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥
is satisfied and we can find that∥∥∥v̄1,l+1

i − v̄2,l+1
i

∥∥∥ ≤ (1 + ζm)
∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥ (40)

holds. Now consider thatmth contact is D-contact on i, jth node.
Then, similarly to above∥∥∥v̄1,l+1

i − v̄2,l+1
i

∥∥∥
≤

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥+ ζm

(∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥+
∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥)∥∥∥v̄1,l+1
j − v̄2,l+1

j

∥∥∥
≤

∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥+ ζm

(∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥+
∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥)
is satisfied and we can find that∥∥∥v̄1,l+1

i − v̄2,l+1
i

∥∥∥2 + ∥∥∥v̄1,l+1
j − v̄2,l+1

j

∥∥∥2
≤ ζ ′m

(∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 + ∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥2) (41)

holds for finite ζ ′m. Applying (40) and (41) to all contact

‖v̂1,l+1 − v̂2,l+1‖ ≤ ζ‖v̂1,∗ − v̂2,∗‖
is established for finite ζ. Therefore, from v̂∗ = (I −WA)v̂l,
if ‖I −WA‖ < 1

ζ , V-FPI satisfies contraction property. Now

recall the structure ofA in (9). SupposeW = M̂−1 as it satisfies
the structure in Proposition 3 as the system is a complete-nodal
system. Finally, from

‖I −WA‖ = t2

2
‖M−1(JT

e KJe + E)‖

we can reach ‖I −WA‖ < 1
ζ by lowering t. �

Although Theorem 1 does not describe the complete conver-
gence property of the solver, it provides a partial answer to the
uniqueness and existence of the contact NCP solution in the
multicontact situation, which is previously unknown. We also
believe that this result suggests that in the case of a completely-
nodal system, small local deformation of the contact part is
possible even when it is a rigid body, so the contradictions arising
from assuming an ideal rigid body can be alleviated. Extensive
study for generalization of the completely-nodal system will
remain as future work. Note that aside from the theoretical
analysis, we empirically observe that the solver is robustly
convergent in the general case.

B. Proximal Operator

As mentioned earlier, when the proximal operator is used,
it is the same as the solution of a convex optimization, which
indicates the existence and uniqueness of the solution. We find
that our algorithm can always ensure convergence in this case.
To show this, we first utilize the following lemma.

Fig. 5. Counter-example of Lemma 3 on strict operator. Red vector denotes
λ1c − λ2c and green vector denotes ξ1c − ξ2c .

Lemma 3: Consider the following equations:

λ1
c,m = ΠI

Cλ(−γ−1c,m(η1c,m + φc,m))

λ2
c,m = ΠI

Cλ(−γ−1c,m(η2c,m + φc,m)).

Then, for ξc,m = −γ−1c,m(ηc,m + φc,m)− λc,m, following is
holds:

(ξ1c,m − ξ2c,m)T (λ1
c,m − λ2

c,m) ≥ 0.

Proof: Since Cλ is a convex set, proximal operator has fol-
lowing property [63]:

x = ΠI
Cλ(x

∗)→ x∗ ∈ x+NCλ(x)
where N is the normal cone defined as

NCλ(x) =
{
y|yT (x′ − x) ≤ 0

} ∀x′ ∈ Cλ, x ∈ Cλ.
Therefore, ξ1c,m ∈ NCλ(λ1

c,m), ξ2c,m ∈ NCλ(λ2
c,m) and

(ξ1c,m)T (λ1
c,m − λ2

c,m) ≥ 0

(ξ2c,m)T (λ2
c,m − λ1

c,m) ≥ 0

is satisfied from the definition of normal cone. �
As depicted in Fig. 5, Lemma 3 does not always hold for the

strict operator, since it takes a two-stage projection rather than
finding the nearest point. Based on this lemma, we can prove the
contractibility of our algorithm, which is shown in Theorem 2.

Theorem 2: V-FPI in Algorithm 1 with the proximal operator
is contractible.

Proof: Suppose that mth contact is an S-contact on ith node.
From the

v̄1,l+1
i − v̄2,l+1

i = v̄1,∗i − v̄2,∗i + w̄iR
T
c,m(λ1

c,m − λ2
c,m)

we can derive following equations:∥∥∥v̄1,l+1
i − v̄2,l+1

i

∥∥∥2
=

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 + w̄2
i

∥∥λ1
c,m − λ2

c,m

∥∥2
+ 2w̄i

(
v̄1,∗i − v̄2,∗i

)T

RT
c,m

(
λ1
c,m − λ2

c,m

)
=

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 − w̄2
i

∥∥λ1
c,m − λ2

c,m

∥∥2
− 2w̄i

(
ξ1c,m − ξ2c,m

)T (
λ1
c,m − λ2

c,m

)
.

Then, from Lemma 3, we can find that∥∥∥v̄1,l+1
i − v̄2,l+1

i

∥∥∥2 ≤ ∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 (42)
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holds. Now suppose thatmth contact is D-contact on i, jth nodes
and w̄i = w̄j holds. From

v̄1,l+1
i − v̄2,l+1

i =
(
v̄1,∗i − v̄2,∗i

)
+ w̄iR

T
c,m

(
λ1
c,m − λ2

c,m

)
v̄1,l+1
j − v̄2,l+1

j =
(
v̄1,∗j − v̄2,∗j

)
− w̄iR

T
c,m

(
λ1
c,m − λ2

c,m

)
we can derive following equations:∥∥∥v̄1,l+1

i − v̄2,l+1
i

∥∥∥2 + ∥∥∥v̄1,l+1
j − v̄2,l+1

j

∥∥∥2
=

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 + ∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥2
+ 2w̄i

(
λ1
c,m−λ2

c,m

)
TRc,m

((̄
v1,∗i −v̄1,∗j

)
−
(̄
v2,∗i −v̄2,∗j

))
+ 2w̄2

i

∥∥λ1
c,m − λ2

c,m

∥∥2
=

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 + ∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥2
− 4w̄2

i

(
λ1
c,m−λ1

c,m

)T (
ξ1c,m−ξ2c,m

)−2w̄2
i

∥∥λ1
c,m− λ2

c,m

∥∥2 .
Then, from Lemma 3, we can find that∥∥∥v̄1,l+1

i − v̄2,l+1
i

∥∥∥2 + ∥∥∥v̄1,l+1
j − v̄2,l+1

j

∥∥∥2
≤

∥∥∥v̄1,∗i − v̄2,∗i

∥∥∥2 + ∥∥∥v̄1,∗j − v̄2,∗j

∥∥∥2 . (43)

Applying (42) and (43) to all contacts∥∥v̂1,l+1 − v̂2,l+1
∥∥ ≤ ∥∥v̂1,∗ − v̂2,∗∥∥

is established. Therefore, from v̂∗ = (I −WA)v̂l, contraction
property is satisfied if ‖I −WA‖ < 1 holds. Now consider
W = αI with 0 < α < 2σ−1max(A). It satisfies the structure in
Proposition 3 and w̄i = w̄j for D-contact that we suppose. Also,
since A is a symmetric matrix, I −WA = I − αA is also a
symmetric matrix. Then

‖I −WA‖ = ρ(I −WA)

holds. Also from the positive definite property of A shown in
Proposition 1, we can easily find that

ρ(I −WA) < 1

can be ensured, therefore, the V-FPI is contractible. �
The abovementioned implies an interesting insight; contacts

are contributing property for the contraction property of the iter-
ation process. For this reason, we observe that COND converges
faster than proceeding linear solving on a gradient basis in the
absence of contact, and convergence is still well established even
in the case that ‖I −WA‖ is slightly over 1.

C. Determination of W

As discussed above, choosing W is the important part of
the solver since the sufficient condition to guarantee the global
convergence is directly related to the value of ‖I −WA‖. As

already known

W = αI where α =
2

σmin(A) + σmax(A)

can enforce ‖I −WA‖ < 1 with the conditions required in
Proposition 3. However, computing the eigenvalues of a large
size matrix is generally time-consuming and using the fixed
step size for every iteration, and index is not favorable in terms
of performance. Here, we propose some efficient and robust
strategies to determineW . These strategies work well for all the
cases we tested.

1) Frobenius Norm Minimization: Frobenius norm of I −
WA, which can be written as

‖I −WA‖2F = n−
n∑

i=1

wiiaii +

n∑
i=1

‖Ai∗‖2

where subscript i∗ denotes ith row of matrix. Considering
wi1i1 = wi2i2 = wi3i3 = w̄i for each node that in contact, first-
order necessary condition to minimize ‖I −WA‖2F can be
written as

w̄i =
ai1i1 + ai2i2 + ai3i3

‖Ai1∗‖2 + ‖Ai2∗‖2 + ‖Ai3∗‖2

If the nodes are in D-contact, as described above, six components
need to be the same value and the result can be derived similarly
to above. For the index corresponds to the object that is not in
contact, as it does not affect Γc

wii =
aii

‖Ai∗‖2

can be used as in [64].
2) Barzilai–Borwein Step Size: Barzilai–Borwein

method [65] is the popular method to solve large-scale
optimization problems. Even though the problem we are
dealing with is not an optimization problem, we find that the
strategy can also be well adopted to our framework. Here, α
can be determined by two ways

αl
bb1 =

sTl sl
sTl zl

αl
bb2 =

sTl zl
zTl zl

where sl = v̂l − v̂l−1 and zl = A(v̂l − v̂l−1). Any of the two
can be selected or can be used alternately as in [65].

We observe that the two methods show similar performance
levels and that better methods vary depending on the scenario.
Frobenius norm minimization takes longer to constructW since
it corresponds to O(n2) complexity. We find that recycling W
for several time step sections can circumvent this, utilizing the
fact that the value of W does not significantly change for the
adjacent time step. Note that reuse ofW does not affect the solver
accuracy, since the variables associated with the true physical
state (e.g., A, b, Jc) remain unchanged.

V. RESULTS AND EVALUATION

In this section, simulation results of diverse scenarios using
COND with performance evaluation will be presented.
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A. Implementation Details

1) Tools: For our implementation, we use Intel Core i5-7500
CPU 3.40 GHz (Quad-Core), OpenGL as rendering tool, C++
Eigen as matrix computation library, and C++ OpenMP as
parallelization library.

2) Matrix Format: To handle large-size matrices efficiently,
we use compressed sparse column format to store A and K. Jc
is stored as a stack of 3× 3 matrices. The matrices which are
always guaranteed to be diagonal like Γc and W are stored in
vector format.

3) Collision Detection: Collision detection is performed per
time step. Here, we use self-developed code, which is mainly
based on vertex-volume detection.

4) Solver Specification: For all examples, we use fixed time
step size as tk = 10ms. The strict operator is used in contact
solver for all results except in Section V-F.

5) Warm Start: A warm start is utilized to promote the per-
formance of the solver. For the part that is not a virtual node, we
directly set v̂1 as the v̂ value from the previous time step. The
warm start of virtual nodes velocity is calculated by multiplying
Jacobian mapping Jv to the original state (i.e., state without
virtual nodes) value. Note that this velocity warm start is not
available in I-FPI-based methods. Instead, we utilize the warm
start in I-FPI to the previous time step value for the contact index
overlapping the previous step.

B. Effect of Virtual Nodes

In this section, we intend to characterize our formulation
based on nodalization. Without virtual nodes, our framework
does not take any relaxation. With virtual nodes, we show that the
solution can precisely satisfy the SCC (11) for a reasonably large
kv in Proposition 2. To demonstrate the property, we configure
the simple test cases that apply a constant force (y-direction) to
the cube-shaped rigid box placed on the floor. The parameters
are set to length 0.2m, mass 0.5 kg, the friction coefficient is
set to 0.2, and the four vertices of the bottom face are set as
contact points. We compare the result with an analytic solution,
and the solution from the spring-damper-based penalty contact
model [22]. Two gain sets are selected for the penalty model
(Penalty 1 and Penalty 2), and the gains in Penalty 2 are all
gains in Penalty 1 multiplied by 10. Given that the calculation
speed per time step is about 5 times faster for the penalty model
than COND, the result of the reduced step-size of 2ms is also
added for evaluation.

Comparison results are depicted in Fig. 6 and Table I. Virtual
node-based formulation utilized in COND shows a small error,
and its magnitude decreases as kv increases. This demonstrates
the consistency of virtual node formulation with original dy-
namics, which is described in Proposition 2. On the other hand,
the spring-damper penalty model shows a much larger error.
Also, the result varies greatly depending on the gain parameters
and implausible behavior (e.g., bouncing motion) is generated in
Penalty 2. This indicates that large gain values do not guarantee
a reduction in error, unlike virtual node formulation. These
characteristics of the penalty model are mitigated as the time
step is reduced, but it still has a significantly larger error than
our COND framework.

Fig. 6. Snapshots and result comparison plot for box sliding simulation.
COND: virtual nodes gain kv = 105. (a) Box sliding. Analytic solution (green
box), COND (red box) and Penalty2 (blue box). Left: start, Right: after sliding.
(b) Position of box.

TABLE I
POSITION ERROR COMPARISON RESULTS FROM ANALYTIC SOLUTIONS OF

VARIOUS CONTACT FORMULATIONS (VIRTUAL NODE AND PENALTY)

C. Multibody Simulation Examples

In this section, several multibody simulation examples are
implemented using COND and evaluated.

1) Baselines: As previously mentioned, due to their ver-
satility, I-FPI-based methods are widely used in the robotics
community, as well as in open-source simulation software (Mu-
JoCo, Bullet, Chrono, etc.). Here, we implement the following
two I-FPI baseline algorithms and characterize the difference
between I-FPI and V-FPI: 1) PGS ([17]); and 2) accelerated
projected gradient descent (APGD [28]). Here, we adopt differ-
ent implementation styles for each solver. For PGS, we perform
I-FPI after assembling the Delassus operator. For APGD, we
do not explicitly assemble the Delassus operator but perform
multiplication of the Delassus operator and the vector (denoted
as x) by multiplying y = JT

c x, solvingAz = y, and multiplying
w = Jcz. This is to maximize the efficiency by utilizing the fact
that APGD performs this multiplication only once per iteration
and does not require access to specific elements of the Delassus
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TABLE II
COMPARISON RESULTS FOR SOFT MAT FOLDING MANIPULATION SIMULATION

operator. We use the SimplicialLLT function of the Eigen Sparse
library for factorization, which is a state-of-the-art open-source
implementation. Residual in I-FPI is converted to velocity space
using the map A−1JT and evaluated to be consistent with
V-FPI.

2) Performance Indices: Performance comparisons are con-
ducted based on the following indices.

1) Max penetration (MP): MP at each time step.
2) Dynamics index: Internal force error (IE), deformation

error (DE), etc., when compared with ground-truth value.
3) Computation time: Time for each step, divided into 1) dy-

namics time (DT), to construct (1) that includes calculation
of constraint error, constraint error Jacobian, mass matrix
and collision detection, etc. and 2) solver time (ST), to
obtain v̂ with the contact impulse λc.

As the ground-truth result for the dynamics index, real-world
experimental values are used for two examples (cable manipu-
lation and soft gripper), while solutions from enough iterations
(i.e., sufficient convergence with negligible residual) are used
for the other examples (soft mat manipulation and soft ball
gripping). For all scenarios, 20 repetitions are performed under
several randomized parameter settings.

3) Soft Mat Manipulation: First, a robotic soft mat folding
manipulation scenario is implemented. In this case, the contact
situation includes a large number of contact and stick-slip tran-
sition behavior. Franka Emika Panda is used to fold the soft mat,
the corotational FEM model is used to formulate the deformable
part dynamics, and parameters are randomly chosen between
Young modulus 50–100 kPa, Poisson ratio 0.3–0.4, and friction
coefficient 0.1–0.5. Also in FEM modeling, 1477 nodes and
4100 tetrahedral elements are used, therefore, total DOF is 4438
with 24 606 constraints. For the dynamics index, we measure
the internal force of the soft mat induced from its deformation
and take the norm. A residual threshold is set as 10−4.

The results are illustrated in Fig. 7 and Table II. The most
decisive difference is the computation time, where COND is over
150 times faster than PGS and 20 times faster than APGD. This
is a result of the COND feature, which performs iteration only
by sparse matrix-vector multiplication without dense matrix op-
eration. The penetration depth in the COND result is much lower
than in the PGS/APGD result. This is very predictable because
COND solves the surrogate dynamics problem at each iteration
step so that the solution satisfies the contact condition. On the
other hand, COND shows a larger IE, which can be interpreted
as the residual is biased to the dynamics error. Note that the

Fig. 7. Snapshots and performance comparison plots for soft mat folding ma-
nipulation simulation. GT: ground-truth. (a) Soft mat manipulation simulation
using COND. (b) Penetration depth. (c) Internal force.

TABLE III
COMPARISON RESULTS FOR SOFT BALL GRIPPING SIMULATION

computation time of COND is fast, so this error can be further
reduced by using more iterations. For example, by lowering the
residual threshold as 10−5, we can obtain IE 0.407m ·N and
ST 18.90ms. The average iteration numbers are comparable
but lowest in COND, indicating that it converges to reasonable
accuracy in tens of iterations on average.

4) Soft Ball Gripping: Next, the scenario where a rigid
gripper grasps soft ball is implemented. In this case, gripping
generates a combined contact situation between dynamically
moving rigid and soft parts, which should be handled using
virtual nodes in COND. We design the gripper consisting of
6 DOF rigid bodies with 2 DOF prismatic joints which perform
grasping of soft ball. A soft ball is modeled by corotational FEM
and parameters are set as Young modulus 0.5–2MPa, Poisson
ratio 0.3–0.4, and the friction coefficient is set to 0.4–0.6. Also
in FEM modeling, 1463 nodes and 6928 tetrahedral elements
are used, therefore, total DOF is 4397 with 41 568 constraints.
As in the soft mat scenario, the internal force of the soft ball is
measured to assess the accuracy of dynamics, as it depends on
the deformation and material properties of the ball. A residual
threshold is set as 10−5.

The results are illustrated in Fig. 8 and Tables III and IV.
Although the DT process differs slightly from other solvers due
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Fig. 8. Snapshots and performance comparison plots for soft ball gripping
simulation. GT: ground-truth. (a) Soft ball gripping simulation using COND.
(b) Penetration depth. (c) Internal force.

TABLE IV
AVERAGE NUMBER OF ITERATION FOR GRIPPING SIMULATION OF DIFFERENT

STIFFNESS SOFT BALLS

to the use of a virtual node, the majority of the processes are
the same, so the time required is very similar. As in soft mat
scenarios, the solver computation speed of COND is signifi-
cantly faster than others (over×80). Also, COND allows for the
least amount of penetration here, demonstrating the validity of
the virtual node formulation. APGD can successfully simulate
gripping without significant penetration and has the lowest IE,
while IE in COND is larger than APGD but comparable. This is
also a consistent result with the soft mat scenario that the error
of COND is dynamics-biased, but reaches a reasonable value
after a few tens of iterations.

In many cases, PGS allows for large amounts of penetration.
We also observe this improper contact behavior eventually de-
grades overall dynamics accuracy, resulting in the greatest IE.
Failure of PGS is from convergence degradation of I-FPI, as the
Delassus operator is ill-conditioned while the object is captured
symmetrically on both sides. Our further experimental results
in Table IV shows that the PGS and APGD iteration numbers
increase as the stiffness of the ball increases. However, COND
is resistant to this effect, as it takes V-FPI.

5) Flexible Cable Manipulation: As shown in Fig. 9(a), we
conduct simulations and experiment on cable winding manipu-
lation using a robot arm (Franka Emika Panda). Here, dynamics
equation of flexible cable is constructed using Cosserat rod
model [66] and parameters of the cable are measured following

Fig. 9. Snapshots and comparison results for flexible cable winding manipu-
lation simulation. (a) Cable winding manipulation simulation using COND and
experiment. (b) Penetration depth. (c) End effector force (x). (d) End effector
force (y). (e) End effector force (z).

TABLE V
COMPARISON RESULTS FOR FLEXIBLE CABLE WINDING SIMULATION

to [43]: Young modulus 2.954MPa, Poisson ratio 0.49, and
friction coefficient 1.3. When testing for indicators other than
experimental comparisons, these parameters are randomized as
4–5MPa, 0.4–0.49, and 0.5–1.5. The entire cable is split into
a total of 320 links, therefore, total DOF is 1927 with 1926
constraints. For the comparison with the experiment, we measure
the force applied to the end effector of the robot arm during the
operation task using the F/T sensor (ATI Gamma). A residual
threshold is set as 10−4.

Overall results are depicted in Fig. 9 and Table V. As in previ-
ous scenarios, COND is significantly faster than the other two,
while APGD outperforms PGS. In the case of end effector force,
the overall value agrees well with the experimental value, and the
results of the three solvers are nearly identical. This means that
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TABLE VI
COMPARISON RESULTS FOR SOFT GRIPPER MANIPULATION SIMULATION

the COND iteration can rapidly arrive at a solution that satisfies
the analytical cable model equations, which is close to the real
world physics. The remaining error can be described as a gap
between the model and the real world, and it may be resolved
through more precise matching (e.g., damping parameter) in
future work. Iteration number in COND is significantly lower
than in others, and again, as expected, COND has the lowest
penetration error.

6) Soft Gripper: Lastly, we simulate and experiment with the
contact situation between the soft gripper and the rigid object.
The soft gripper part is made using liquid silicone Ecoflex 0050
(Smooth-on Inc.) and attached to a linear actuator so that it could
be operated as a gripper. The rigid object part is manufactured
using a 3-D printer (PLA). The soft gripper dynamics is modeled
using corotational FEM, and we use the Ecoflex 0050 material
parameter reported in [67] (Young modulus: 83 kPa, Poisson
ratio: 0.42), and the friction coefficient is determined using a
simple stick-slip test, yielding a value of 2.1. When testing for
indicators other than experimental comparisons, these parame-
ters are randomized as 50−100 kPa, 0.4−0.49, and 0.5−2.1.
For FEM modeling, 4889 nodes and 18122 tetrahedral elements
are used, therefore, total DOF is 14 681 with 108 744 constraints.
The rigid part is modeled as a dynamic object rather than a static
environment, so virtual nodes are applied to its points of contact.
For experimental comparison, the contact force is measured with
the F/T sensor (ATI Gamma) connected to the rigid part, and
the displacement of the markers attached to the soft gripper at
the final state is measured using a vision sensor (SC-FD110B).
A residual threshold is set at 10−6.

Fig. 10 and Table VI show the overall result. As in cable ma-
nipulation scenario, the force/displacement results well match
with the experiment for all three solvers, and the difference in
error level is insignificant. But still, there exists a gap with reality.
COND allows for the least amount of penetration and the fastest
STs (over 30× faster). Note that in the scenario, the number
of contact points is relatively small (around 40), therefore, the
speed increase amount in COND is relatively lower compare
to other scenarios. Finally, COND shows the lowest average
number of iterations.

D. Scalability

Although the computational advantage of COND is clearly
demonstrated in the preceding section, we proceed with further
experiments to measure its scalability in more detail. For the soft
mat manipulation scenario, we check the ST while changing the

Fig. 10. Snapshots and comparison results for soft gripper manipulation sim-
ulation. (a) Soft gripper manipulation simulation using COND and experiment.
(b) Penetration depth. (c) Contact force (x). (d) Contact force (y). (e) Contact
force (z).

Fig. 11. Computation time results for soft mat manpulation scenario with
various number of node.

node number of the FEM model. A residual threshold is set at
10−4 for all tests.

Scalability measure results are depicted in Fig. 11. We take
the logarithm of the time result and then quantify the complexity
through polyfit function in MATLAB. The computation time of
COND increases as almost linear (0.9997) as DOF increases,
which demonstrates the analysis in Section III-F. Meanwhile,
computation of PGS/APGD grows super-linearly as DOF in-
creases (PGS: 2.473, APGD: 1.470), which originated from
matrix factorization and dense matrix operations. Note that by
bringing the efficiency from the implementation described in
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TABLE VII
COMPARISON RESULTS OF COND AND CCS FOR SOFT MAT MANIPULATION

SIMULATION

Section V-C, APGD performs better than PGS, but still shows
higher complexity than COND.

E. Comparison With Other Methods in Graphics

Apart from popular and versatile I-FPI-based methods, there
have been several attempts to improve computational efficiency.
Most of them are originated in the field of graphics, primarily
dealing with large-scale problems, and in this section, COND
and their comparisons are discussed.

1) Contact Constraint Splitting: In [16], the contact dynam-
ics problem is divided into two subproblems using the alternating
direction method of multiplier (ADMM), thereby replacing the
assembly of the Delassus operator with multiple linear solving
processes. The methods significantly reduce simulation time for
hair/cloth, making them state-of-the-art in the field. In this arti-
cle, we denote the algorithm as contact constraint splitting (CCS)
and implement it for a soft mat manipulation scenario. Note
that the method is intended for thin nodal objects, thus, it is not
compatible with contact situations over joint variables or rotation
representations (e.g., gripping scenarios). Since CCS employs
ADMM, it is ambiguous to set the fair residual threshold value
because primal and dual residuals must be considered together.
Hence, we compare the performance under the fixed number of
iterations.

The results are summarized in Table VII. As the projection
variable of CCS guarantees the contact feasibility, it also shows a
comparable penetration amount with COND. However, IE result
is much smaller with COND, which means COND converges
faster to accurate solution. Also, computation time is nearly
5 times faster in COND. This is unsurprising, because CCS
requires linear solving of size n for every iteration step, whereas
COND only necessitates matrix-vector multiplication. Overall,
given the versatility of COND for robotic simulation, it is clear
that this is a better option in many cases. Combining CCS
with contact nodalization to improve its applicability (e.g., joint
variables) is also an interesting option, but we observe that the
ADMM algorithm of CCS does not converge well in this case.

2) Position-Based Dynamics: For various graphical and
robotic applications [40], [41] with open-source software (FleX,
Brax, etc.), PBD is a prevalent method for deformable body sim-
ulation. In PBD, nonlinear Gauss–Seidel iteration is performed
for each constraint, therefore, can avoid large-size matrix fac-
torization and multiplication. We implement the flexible cable
manipulation scenario using PBD. We adopt the substepping and

TABLE VIII
COMPARISON RESULTS OF COND AND PBD FOR FLEXIBLE CABLE WINDING

SIMULATION

Fig. 12. Snapshot and end effector force plots of COND and PBD for flexible
cable winding manipulation simulation. (a) Simulation snapshot (PBD 100).
(b) End effector force (x). (c) End effector force (y). (d) End effector force (z).

contact handling method presented in [68], which are the state-
of-the-art techniques to increase the performance of PBD. PBD
differs from our solver in several respects, as it is not derived
from the form of (1), nor does it use complementarity-based
contact conditions. Thus, as in CCS comparison, performance
over a fixed iteration number is evaluated. When using 320 links
as in Section V-C, we observe that the convergence of the PBD
is extremely poor. Instead, 120 links are used.

The results are depicted in Table VIII. For COND, the results
from 100 and 200 iterations are nearly identical, while the force
error matches the experimental results well. However, in PBD re-
sults, the result varies with iteration number, which denotes that
the solution does not sufficiently converge to the ground-truth
solution. Also, as shown in Fig. 12(a), the visual appearance
of the PBD result is plausible, implying that the results for
proper graphics may be insufficient for overall accuracy. In
terms of computation time, COND has a faster computation
time per iteration step. This is due to the fact that PBD performs
sequential constraint handling with state update, which is more
time-consuming than a single matrix-vector multiplication.
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Fig. 13. Force results from two scenarios. Left: proximal operator, blue line
denotes contact impulse norm computed using forward dynamics and red line
denotes contact impulse norm computed inversely from the result. Right: strict
operator. (a) Norm of contact force applied to the mat during Franka soft mat
folding. (b) Norm of contact force applied to the soft ball during gripping.

F. Invertible Contact Model

The applicability of COND in the invertible contact model
is evaluated. For soft mat and soft ball gripping scenarios, we
applied the model described in Section III-E and record vector
norm of forwardly/inversely calculated contact forces applied to
all nodes for each time step. The implementation is based on the
proximal operator, and regularization term is set as Ωc = 10−3I
for both scenarios, with residual threshold 10−4.

Results are depicted in Fig. 13. We can find that the invertible
property is well preserved as a forward result and the inverse
result well-matched, as the error amount is 0.087m ·N for
soft mat, 0.48m ·N for soft ball. This demonstrates the solver
successfully handle the convex optimization problem. In Franka
soft mat scenario, the results using the proximal operator show
that jittering occurs during sliding unlike the results using the
strict operator. This seems to have occurred due to the fact that
Signorini conditions are not exactly satisfied in the proximal op-
erator, and repeatedly take off and collide simultaneously across
nodes. On the other hand, for the softball gripping scenario, the
two results are very similar. Also in some cases, the proximal
operator requires an adequate amount of φ to avoid implausible
contact behavior (e.g., detaching).

G. Anisotropic Friction

Simulation with anisotropic friction is tested using box slip-
ping scenario. As shown in Fig. 14(b), we set ellipsoidal friction
model (12) with various set of (μ1, μ2) and measure trajectory
while the initial velocity is set to [1; 1; 0]. Then, we compare
the result with the solution obtained from MDP problem, and
the result is depicted in Fig. 14(b). The trajectory of the box

Fig. 14. Box sliding simulation on anisotropic friction region. Left: snap-
shot, red coordinates visualize anisotropic friction model, Right: position plot.
(a) Experiment setup. (b) Box trajectory.

TABLE IX
EFFECT OF CHEBYSHEV ACCELERATION IN ITERATION NUMBER

is curved, as seen in other experimental reports [60]. In addi-
tion, the trajectory is exactly matched with the MDP solution,
demonstrating the property described in Proposition 6.

H. Effect of Chebyshev Acceleration

To evaluate the efficacy of Chebyshev acceleration in COND,
we perform an ablation study that compares the average iteration
number for convergence with/without Chebyshev acceleration.
As shown in Table IX, the average iteration number to reach the
threshold value is decreased for all scenarios and demonstrates
that Chebyshev acceleration effectively works on COND.

VI. DISCUSSIONS AND FUTURE WORK

While COND handles common multibody situations, bet-
ter alternatives exist in some cases. For example, in granular
material simulation or tight tolerance assembly (e.g., bolt-nut
assembly) simulation, computation of the Delassus operator is
easy, while COND requires a large number of virtual nodes.
In such cases, I-FPI-based methods such as [28] may perform
better. In general, COND is most effective when the system
involves many internal constraints (therefore, hard to factorize
A), such as deformable object manipulation. Therefore, the
direction of proper integration of COND with other solvers will
be an interesting topic.

Although not explicitly demonstrated through implementa-
tion, we believe that other kinematic constraints such as nonholo-
nomic constraints can be dealt with in following approaches:
1) softening and incorporation as a potential function; and 2)
extension of contact diagonalization into a general constraint
form using the idea of virtual nodes. In future work, we will
concretely develop the approaches, with several implemented
scenarios.
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The current strategy for determiningW in Section IV-C works
well, but there may still be a room for improvement. For instance,
Nesterov momentum [28] and Anderson acceleration [69] can
be adopted to our framework. The Barzilai–Borwein method in-
cluding diagonal scaling [70] is also seen as a possible direction.
Based on the strategies, verifying the theoretical convergence
rate will be useful. Also, the number of fixed points remains
unknown when using the strict operator. While it does not yet
induce practical issues, it makes sense to explore cases where
solutions do not exist. It will also be interesting to present
other operators capable of ensuring uniqueness and other useful
properties.

As shown in comparison with experiments, simulators can
represent reality to some extent, but there are still sim-to-real
gaps for a variety of reasons. From this point of view, in-
tegration with the so-called real-to-sim method such as [40]
will be promising. Further improvement of efficiency by com-
bining with model order reduction schemes is a practically
meaningful direction. As our method is well compatible with
parallelization, GPU implementation will contribute well to the
performance. Finally, as an extension of our project in https:
//github.com/INRoL/inrol_sim_cablewinding, the development
of an open-source framework will be a valuable contribution to
the community.

VII. CONCLUSION

In this article, we propose the new multibody simulation
framework COND. The framework mainly focuses on develop-
ing V-FPI, which can avoid large-dimensional matrix factoriza-
tion and multiplication while utilizing a complementarity-based
contact model. To that end, we first propose contact nodalization
based on virtual nodes, which converts all contact into nodal
situations. Then, using the contact diagonalization technique,
we create a contact solving algorithm based on solving multiple
surrogate problems, and each surrogate problem can be solved in
a one-shot/parallelized manner. Theoretical statements related
to the accuracy and convergence of the solver are presented.
Simulations and experiments are carried out for a variety of
multibody examples. The results demonstrate that our solver
is significantly faster than popular factorization-based solvers,
and shows near O(n) complexity in practice. Also, it is shown
that COND can produce the result with convincing accuracy
compared to the ground-truth results. Despite its performance
and versatility, COND still has room to evolve such as numerical
techniques and integration with other solvers, and future work
will focus on topic like these.
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